1
|
Feng X, Chai YH, Jiang KX, Jiang WB, Chen WC, Pan Y. Bibliometric analysis of olaparib and pancreatic cancer from 2009 to 2022: A global perspective. World J Gastrointest Oncol 2024; 16:4489-4505. [DOI: 10.4251/wjgo.v16.i11.4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/24/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Genetic screening for breast cancer gene 1 (BRCA)1/2 mutations can inform breast/ovarian/pancreatic cancer patients of suitable therapeutic interventions. Four to seven percent of pancreatic cancer patients have germline BRCA mutations. BRCA genes aid in DNA repair, especially homologous recombination, which impacts genomic stability and cancer cell growth. BRCA1 regulates the cell cycle, ubiquitination, and chromatin remodeling, whereas BRCA2 stimulates the immune response. They predict the efficacy of platinum chemotherapy or polymerase (PARP) inhibitors such as olaparib.
AIM To determine the trends and future directions in the use of olaparib for pancreatic cancer treatment.
METHODS To evaluate the trends in how olaparib works in pancreatic cancer, we performed a bibliometric analysis. One hundred and ninety-six related publications were accessed from the Web of Science Core Collection and were published between 2009 and 2022. The analytic parameters included publications, related citations, productive countries and institutes, influential authors, and keyword development.
RESULTS This study visualizes and discusses the current research, including the present global trends and future directions in olaparib and pancreatic cancer. Overall, this study sheds light on optimizing the use of olaparib in pancreatic cancer treatment, offering valuable guidance for researchers in this field.
CONCLUSION Our findings identified trends in olaparib and pancreatic cancer, with China and the USA leading and with global cooperation tightening. O'Reilly EM's team and Memorial Sloan-Kettering had the highest output. The Journal of Clinical Oncology was the most cited journal. More PARP inhibitors are emerging, and combination therapy is suggested for future therapeutic trends.
Collapse
Affiliation(s)
- Xu Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yi-Han Chai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ke-Xin Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Wen-Bin Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Wen-Chao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yu Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
2
|
Yuan P, Ma N, Xu B. Poly (adenosine diphosphate-ribose) polymerase inhibitors in the treatment of triple-negative breast cancer with homologous repair deficiency. Med Res Rev 2024; 44:2774-2792. [PMID: 38922930 DOI: 10.1002/med.22058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.
Collapse
Affiliation(s)
- Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Ma
- Value & Implementation, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
McDonald HG, Kennedy A, Solomon AL, Williams CM, Reagan AM, Cassim E, Harper M, Burke E, Armstrong T, Gosky M, Cavnar M, Pandalai PK, Barry-Hundeyin M, Patel R, Nutalapati S, Moss J, Hull PC, Kolesar J, Pickarski JC, Kim J. Development of a Novel Protocol for Germline Testing in Pancreatic Cancer. Ann Surg Oncol 2024; 31:7705-7712. [PMID: 39133448 DOI: 10.1245/s10434-024-16011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Guidelines now recommend universal germline genetic testing (GGT) for all pancreatic ductal adenocarcinoma (PDAC) patients. Testing provides information on actionable pathogenic variants and guides management of patients and family. Since traditional genetic counseling (GC) models are time-intensive and GC resources are sparse, new approaches are needed to comply with guidelines without overwhelming available resources. METHODS A novel protocol was developed for physician-led GGT. Completed test kits were delivered to the GC team, who maintained a prospective database and mailed all orders. If results revealed pathogenic variants for PDAC, patients were offered comprehensive GC, whereas negative and variant of uncertain significance (VUS) test results were reported to patients via brief calls. RESULTS During protocol implementation between January 2020 and December 2022, 310 (81.5%) patients underwent GGT, with a physician compliance rate of 82.6% and patient compliance rate of 98.7%. Of 310 patients tested, 44 (14.2%) patients had detection of pathogenic variants, while 83 (26.8%) patients had VUS. Pathogenic variants included BRCA1/BRCA2/PALB2 (n = 18, 5.8%), ATM (n = 9, 2.9%), CFTR (n = 4, 1.3%), EPCAM/MLH1/MSH2/MSH6/PMS2 (n = 3, 1.0%), and CDKN2A (n = 2, 0.7%). The GC team successfully contacted all patients with pathogenic variants to discuss results and offer comprehensive GC. CONCLUSION Our novel protocol facilitated GGT with excellent compliance despite limited GC resources. This framework for GGT allocates GC resources to those patients who would benefit most from GC. As we continue to expand the program, we seek to implement methods to ensure compliance with cascade testing of high-risk family members.
Collapse
Affiliation(s)
- Hannah G McDonald
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Andrew Kennedy
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Angelica L Solomon
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Chelsey M Williams
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anna M Reagan
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Emily Cassim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Megan Harper
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Erin Burke
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Terra Armstrong
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Michael Gosky
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Michael Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Prakash K Pandalai
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Mautin Barry-Hundeyin
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Reema Patel
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Snigdha Nutalapati
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jessica Moss
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Pamela C Hull
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
| | - Jill Kolesar
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | | | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Demir O, Saglam KA, Yilmaz M, Apuhan T, Cebi AH, Turkyilmaz A. Secondary findings in genes related to cancer phenotypes in Turkish exome sequencing data from 2020 individuals. Am J Med Genet A 2024; 194:e63806. [PMID: 38940262 DOI: 10.1002/ajmg.a.63806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Big data generated from exome sequencing (ES) and genome sequencing (GS) analyses can be used to detect actionable and high-penetrance variants that are not directly associated with the primary diagnosis of patients but can guide their clinical follow-up and treatment. Variants that are classified as pathogenic/likely pathogenic and are clinically significant but not directly associated with the primary diagnosis of patients are defined as secondary findings (SF). The aim of this study was to examine the frequency and variant spectrum of cancer-related SF in 2020 Turkish ES data and to discuss the importance of the presence of cancer-related SF in at-risk family members in terms of genetic counseling and follow-up. A total of 2020 patients from 2020 different families were evaluated by ES. SF were detected in 28 unrelated cases (1.38%), and variants in BRCA2 (11 patients) and MLH1 (4 patients) genes were observed most frequently. A total of 21 different variants were identified, with 4 of them (c.9919_9932del and c.3653del in the BRCA2 gene, c.2002A>G in the MSH2 gene, c.26_29del in the TMEM127 gene) being novel variations. In three different families, c.1189C>T (p.Gln397*) variation in BRCA2 gene was detected, suggesting that this may be a common variant in the Turkish population. This study represents the largest cohort conducted in the Turkish population, examining the frequency and variant spectrum of cancer-related SF. With the identification of frequent variations and the detection of novel variations, the findings of this study have contributed to the variant spectrum. Genetic testing conducted in family members is presented as real-life data, showcasing the implications in terms of counseling, monitoring, and treatment through case examples.
Collapse
Affiliation(s)
- Oguzhan Demir
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tuna Apuhan
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
5
|
Elayapillai SP, Dogra S, Lausen J, Parker M, Kennedy A, Benbrook DM, Moxley KM, Hannafon BN. ATR inhibition increases reliance on PARP-mediated DNA repair revealing an improved therapeutic strategy for cervical cancer. Gynecol Oncol 2024; 191:182-193. [PMID: 39427557 DOI: 10.1016/j.ygyno.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/26/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cervical cancer results from persistent infection with high-risk human papillomavirus (HR-HPV) and the expression of E6 and E7 oncoproteins. E6 and E7 compromise the activity of p53 and Rb, the G1-S cell cycle checkpoint, and ATM-mediated DNA damage repair (DDR), which in turn increases reliance on ATR- and PARP-mediated DDR at the G2 cell cycle checkpoint. This study aimed to determine the effects of an ATR inhibitor (ATRi, AZD6738) and a PARP-inhibitor (PARPi, AZD2281) on HR-HPV+ cervical cancer cell lines. METHODS The effects of ATRi and PARPi, alone and in combination, on metabolic viability, cell cycle arrest, apoptosis, and DDR pathways in cervical cancer cell lines were evaluated in vitro, and the in vivo tumor response was evaluated using a xenograft model. RESULTS Cervical cancer cells were sensitive to ATRi and PARPi monotherapy. The combination therapy was only synergistic in reducing metabolic viability when exposed to ATRi first, followed by PARPi, owing to ATRi-mediated upregulation of PARP expression. Combination of ATRi and PARPi induced G2 cell cycle arrest and apoptosis. PARPi induced DNA damage and γH2AX phosphorylation, which was further increased by ATRi treatment. However, PARPi-induced Rad51 foci formation was reduced by ATRi treatment, suggesting the inhibition of homologous recombination repair. ATRi significantly reduced cervical cancer xenograft tumor growth and was not affected by simultaneous PARPi treatment at the doses studied. CONCLUSIONS Our findings show that ATRi increased reliance on PARP for metabolic viability, the combination of ATRi and PARPi induced synthetic lethality in cervical cancer in vitro, and reduced tumor burden in vivo.
Collapse
Affiliation(s)
- Sugantha Priya Elayapillai
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Samrita Dogra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - James Lausen
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Madison Parker
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy Kennedy
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Katherine M Moxley
- Oklahoma Cancer Specialists and Research Institute, Tulsa, OK 74164, USA.
| | - Bethany N Hannafon
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
6
|
Hanaoka T, Okuwaki K, Nakamura K, Okada S, Nishizawa N, Watanabe M, Iwai T, Adachi K, Kumamoto Y, Kusano C. High likelihood of BRCA2 reversion mutation in pancreatic cancer post-platinum-based chemotherapy: a case study. Int Cancer Conf J 2024; 13:493-498. [PMID: 39398920 PMCID: PMC11464854 DOI: 10.1007/s13691-024-00715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024] Open
Abstract
A 54-year-old man with resectable pancreatic cancer and abnormally high levels of carbohydrate antigen 19-9 (CA19-9) underwent 6 months of platinum-based chemotherapy. This treatment substantially reduced the primary tumor size and normalized CA19-9 levels. Subsequently, radical surgery was conducted. However, eight months post-surgery, CA19-9 levels re-elevated, and lymph-node recurrence was observed. The patient underwent treatment with poly(adenosine diphosphate ribose) polymerase inhibitors (PARPi) following the detection of frameshift L1904fs*5 via BRACAnalysis CDx. This mutation revealed a stop codon, leading to the inactivation of the BRCA function. Additionally, the patient tested positive for a mutation in the breast cancer susceptibility gene 2 (BRCA2). Two months after starting PARPi, there was evidence of tumor shrinkage. Nevertheless, 5 months later, CA19-9 levels increased again, and new metastatic tumors in the liver were identified. Genomic profiling test (FoundationOne CDx) of surgically resected specimens revealed a BRCA2 pL1908fs*2 mutation, indicating its location in the cis position on the same allele as the germline BRCA2 mutation. The pL1908fs*2 deletion, alongside the original L1904fs*5, resulted in three deletions, equating to one amino acid deletion. This deletion ultimately reversed the stop codon, leading to the restoration of BRCA2 functionality. Despite treatment with PARPi for postoperative recurrence, a sustained response was not achieved owing to BRCA reversion mutations. It is essential to acknowledge the rarity of BRCA reversion mutations, which limit the effectiveness of PARPi.
Collapse
Affiliation(s)
- Taro Hanaoka
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Kosuke Okuwaki
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| | - Shunji Okada
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Nobuyuki Nishizawa
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Masafumi Watanabe
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Kai Adachi
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Yusuke Kumamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374 Japan
| |
Collapse
|
7
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
8
|
Ma J, Qin X, Le W, Chen X, Wang X, Xu C. Identification of BBC3 as a novel indicator for predicting prostate cancer development and olaparib resistance. Discov Oncol 2024; 15:496. [PMID: 39331229 PMCID: PMC11436583 DOI: 10.1007/s12672-024-01373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer (PCa) is a commonly occurring malignancy in elderly men. Olaparib, a poly ADP-ribose polymerase inhibitor, is utilized in PCa treatment. However, patients often develop resistance to olaparib after a period of treatment. Genetic alterations may play a significant role in this resistance, but the specific genes involved remain unclear. This study collected RNA-sequence data from the Gene Expression Omnibus database on both olaparib-sensitive and -resistant PCa cells to identify genes crucial for resistance. Subsequently, the enriched pathways of these genes were analyzed, and a protein-protein interaction (PPI) network was constructed to identify hub genes. The effect of these hub genes on PCa occurrence, progression, and prognosis was assessed using data from The Cancer Genome Atlas and Chinese Prostate Cancer Genome and Epigenome Atlas databases. Finally, this study validated our findings in clinical PCa samples and cells. From the GSE189186 dataset, 50 upregulated genes and 2 downregulated genes were identified in olaparib-resistant C4-2B and LNCaP cells. Utilizing the PPI network, eight upregulated genes (BBC3, TP53I3, FDXR, DDB2, CDKN1A, GADD45A, ZMAT3, and SESN1) were identified as hub genes for olaparib-resistant PCa cells. Furthermore, some of these genes were central to PCa occurrence, with BBC3 also influencing progression and prognosis. Importantly, BBC3 expression was upregulated in clinical PCa samples and affected PCa cells sensitive to olaparib, suggesting its potential as a predictive marker for PCa development and olaparib resistance.
Collapse
Affiliation(s)
- Junjie Ma
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China
| | - Xin Qin
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China
| | - Wei Le
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China
| | - Xi Chen
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China
| | - Xiao Wang
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China.
| | - Chengdang Xu
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China.
| |
Collapse
|
9
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Ngo HX, Oh E, Li C, Yu J. Oncology Dose Selection in Subsequent Indications: What Can We Learn From FDA-approved Oncology Drugs? Clin Ther 2024:S0149-2918(24)00259-5. [PMID: 39304367 DOI: 10.1016/j.clinthera.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE The modern oncology drug development landscape has shifted away from traditional cytotoxic chemotherapies. Following their initial approvals, many oncology drugs have been approved in subsequent indications either as monotherapy or in combination to benefit a broader patient population. To date, dose selection strategies for subsequent indications have not been systematically reviewed. This review examines how approved dosing regimens were selected in subsequent indications for FDA-approved oncology drugs. METHODS The Drugs@FDA database was used to identify FDA-approved new molecular entities (NMEs) between 2010 and 2023. NMEs with more than 1 approved indication were included in the analysis. In total, the dosing regimens for 67 novel oncology drugs that obtained FDA approvals for multiple indications were evaluated. FINDINGS Overall, in subsequent indications, 72% of NMEs used the same or clinically equivalent alternative dosing regimens to those approved in the initial indications. Amongst the 28% of NMEs that used different dosing regimens, safety/tolerability was the leading cause of a dosing regimen changes in both monotherapy and combination therapy settings. Other factors leading to changes in dosing regimens include differences in tumor biology, disease burden, pharmacokinetics, and overall benefit-risk profiles obtained from dose-finding studies. IMPLICATIONS Our analysis highlighted the importance of selecting a safe, tolerable, and yet efficacious dosing regimen for the initial indication as a suboptimal initially approved regimen could lead to dosing regimen changes in later indications. Preclinical and clinical data could be leveraged to understand the pharmacology, pharmacokinetic, and pharmacodynamic differences between indications and thus support dose selection in subsequent indications.
Collapse
Affiliation(s)
- Huy X Ngo
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Elise Oh
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Chunze Li
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Jiajie Yu
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
| |
Collapse
|
11
|
Carconi C, Bosi C, Scartozzi M, Cergnul M, Cinausero M, Faloppi L, Garajova I, Lonardi S, Pecora I, Pisanu L, Spadi R, Spallanzani A, Peretti U, Macchini M, Orsi G, Reni M. A pilot study of chlorambucil in pre-treated metastatic pancreatic adenocarcinoma patients bearing germline BRCA or other DNA damage repair system variants. Pancreatology 2024:S1424-3903(24)00736-1. [PMID: 39277480 DOI: 10.1016/j.pan.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
BACKGORUND Pancreatic adenocarcinoma remains a malignancy with a grim prognosis and scarce personalized treatment options. Pathogenic variants of DNA damage repair (DDR) genes are emerging as molecular targets, as they confer a higher sensitivity to DNA-damaging agents. This study aimed at assessing the activity of chlorambucil as salvage therapy in metastatic pancreatic cancer patients bearing a germline pathogenetic variant or variant of uncertain significance on a DDR-related gene. METHODS Platinum-pretreated metastatic pancreatic cancer patients harbouring a germline variant on a DDR gene received chlorambucil at a daily oral dose of 6 mg/m2 for 42 every 56 days for the first cycle and for 14 every 28 days for the following cycles, until disease progression or unacceptable toxicity. The primary endpoint was 6-month progression-free survival rate (PFS-6). Median progression-free survival (PFS) and overall survival (OS) were secondarily described. RESULTS Twenty patients were enrolled between December 2020 and September 2022. PFS-6 was 5%, median PFS and OS were 1.6 months and 3.0 months, respectively. Grade-3 adverse events were observed in 25% of patients, while no Grade-4 toxicity was reported. CONCLUSIONS Single agent chlorambucil did not show sufficient signal of activity to warrant its further investigation in metastatic pancreatic cancer patients bearing a DDR-related germline alteration.
Collapse
Affiliation(s)
- Catia Carconi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Bosi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Massimiliano Cergnul
- Medical Oncology, Ospedale Civile di Legnano - ASST Ovest Milanese, Legnano, Italy
| | - Marika Cinausero
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale Santa Maria Della Misericordia, Udine, Italy
| | - Luca Faloppi
- Medical Oncology Unit, Ospedali Santa Maria Della Pietà e Bartolomeo Eustachio - AST di Macerata, Camerino, San Severino Marche, Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Irene Pecora
- Department of Medical Oncology, Azienda Toscana Sud-Est, Misericordia Hospital, Grosseto, Italy
| | | | - Rosella Spadi
- Department of Oncology, Medical Oncology, 1, Città Della Salute e Della Scienza, Turin, Italy
| | - Andrea Spallanzani
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Umberto Peretti
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
Li DD, Zhou T, Gao J, Wu GL, Yang GR. Circadian rhythms and breast cancer: from molecular level to therapeutic advancements. J Cancer Res Clin Oncol 2024; 150:419. [PMID: 39266868 PMCID: PMC11393214 DOI: 10.1007/s00432-024-05917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Dou-Dou Li
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guan-Lin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Guang-Rui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
13
|
Keggenhoff FL, Castven D, Becker D, Stojkovic S, Castven J, Zimpel C, Straub BK, Gerber T, Langer H, Hähnel P, Kindler T, Fahrer J, O'Rourke CJ, Ehmer U, Saborowski A, Ma L, Wang XW, Gaiser T, Matter MS, Sina C, Derer S, Lee JS, Roessler S, Kaina B, Andersen JB, Galle PR, Marquardt JU. PARP-1 selectively impairs KRAS-driven phenotypic and molecular features in intrahepatic cholangiocarcinoma. Gut 2024; 73:1712-1724. [PMID: 38857989 PMCID: PMC11420749 DOI: 10.1136/gutjnl-2023-331237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.
Collapse
Affiliation(s)
- Friederike L Keggenhoff
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stojan Stojkovic
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Jovana Castven
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Carolin Zimpel
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Tissue Biobank of the University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tiemo Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Harald Langer
- Cardiology Angiology, University Medical Centre, Mannheim, Germany
| | - Patricia Hähnel
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, University of Copenhagen Biotech Research & Innovation Centre, Kobenhavn, Denmark
| | - Ursula Ehmer
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universitat, München, Germany
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jesper B Andersen
- Department of Health and Medical Sciences, University of Copenhagen Biotech Research & Innovation Centre, Kobenhavn, Denmark
| | - Peter R Galle
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Wang P, Zhang L, Yu L, Huang C, Wang W. Successful treatment of GEMOX regimen combined with nimotuzumab in the pancreatic cancer with wild KRAS and mutant BRCA: a report of two cases. AME Case Rep 2024; 8:99. [PMID: 39380858 PMCID: PMC11459411 DOI: 10.21037/acr-24-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 10/10/2024]
Abstract
Background Pancreatic cancer is characterized by chemoresistance. In recent years, more potential therapeutic molecular targets for pancreatic cancer have been developed, and thus increasing attention has been paid to precise chemotherapy to improve the prognosis of patients with advanced pancreatic cancer. Case Description In this study, we reported two rare cases of advanced pancreatic cancer. One patient was diagnosed with retroperitoneal lymph node metastasis after radical resection of pancreatic ductal adenocarcinoma. The diagnosis of another patient was pancreatic ductal adenocarcinoma with liver metastasis. The whole genome sequencing of their tumor tissues detected both wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) and mutant breast cancer susceptibility gene (BRCA). And immunohistochemistry showed their tumor tissue was negative for epidermal growth factor receptor. We used the combined chemotherapy of gemcitabine (1,000 mg/m2) + oxaliplatin (135 mg/m2) + nimotuzumab (400 mg). After nine times of chemotherapy, the imaging examinations including positron emission tomography-computed tomography showed that both cases achieved complete remission. And there were no serious side effects during chemotherapy. Then, the patients were treated with oral olaparide (600 mg/day) for one year, and survived without tumor progress for more than 1.5 years. Conclusions These two cases achieved excellent effects of precise chemotherapy, which provided an important reference for the treatment of pancreatic cancer patients with wild KRAS and mutant BRCA.
Collapse
Affiliation(s)
- Puxiongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqin Yu
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wei M, Liu R, Xu Y, Chen X, Liu C, Bai X, Zhang X, Gao S, Li J, Sheng Z, Lian J, Wang W, Zhang J, Shi S, Xu J, Yu X. Phase 1b study of first-line fuzuloparib combined with modified FOLFIRINOX followed by fuzuloparib maintenance monotherapy in pancreatic adenocarcinoma. BMC Med 2024; 22:365. [PMID: 39232761 PMCID: PMC11375820 DOI: 10.1186/s12916-024-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Chemotherapy remains the standard first-line treatment for pancreatic adenocarcinoma, but with limited efficacy. We aimed to explore the feasibility of adding the PARP inhibitor fuzuloparib to mFOLFIRINOX in the locally advanced/metastatic (LA/M) setting. METHODS This was the dose-escalation and -expansion, phase 1b portion of a phase 1b/2 study. Patients were given oral fuzuloparib at escalating doses starting at 30 mg twice daily (BID) plus intravenous mFOLFIRINOX q2w for 8-12 cycles, followed by maintenance fuzuloparib at 150 mg BID. Cohorts at the maximal tolerated dose (MTD) and lower dose of fuzuloparib were expanded. Primary endpoints were dose-limiting toxicity (DLT), MTD, and recommended phase 2 dose (RP2D). RESULTS As of data cutoff on Jan 15, 2023, 39 patients were recruited. 12 patients were enrolled during dose escalation (30 mg [n = 4]; 60 mg [n = 6]; 100 mg [n = 2]). DLT occurred in 1 patient in 60 mg cohort and 1 patient in 100 mg cohort. 60 mg BID was determined to be the MTD, and then 60 and 30 mg cohorts were expanded to 22 and 15 patients, respectively. The most common grade ≥ 3 treatment-related adverse events were hematologic toxicities. Efficacy in 60 mg cohort seemed to be most favorable, with an objective response rate of 50.0% (95% CI, 26.0-74.0) and disease control rate of 94.4% (95% CI, 72.7-99.9). CONCLUSIONS First-line fuzuloparib plus mFOLFIRINOX followed by maintenance fuzuloparib was generally safe and showed encouraging anti-tumor activity in patients with LA/M pancreatic adenocarcinoma. The RP2D of fuzuloparib combination was 60 mg BID. TRIAL REGISTRATION ClinicalTrials.gov, NCT04228601.
Collapse
Affiliation(s)
- Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Rujiao Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yunyun Xu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaobing Chen
- Department of Internal Oncology, Henan Cancer Hospital, Zhengzhou, China
| | - Chao Liu
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xueli Bai
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuiping Gao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhen Sheng
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Jianpo Lian
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Wenliang Wang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Elhariri A, Patel J, Mahadevia H, Albelal D, Ahmed AK, Jones JC, Borad MJ, Babiker H. Identifying Actionable Alterations in KRAS Wild-Type Pancreatic Cancer. Target Oncol 2024; 19:679-689. [PMID: 39123077 DOI: 10.1007/s11523-024-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The 5-year relative survival rate for pancreatic cancer is currently the lowest among all cancer types with a dismal 13%. A Kirsten rat sarcoma virus (KRAS) gene mutation is present in approximately 90% of patients with pancreatic cancer; however, KRAS-specific drugs are not yet widely used in clinical practice for pancreatic cancer, specifically the KRASG12D variant. Advances in genomic testing revealed an opportunity to detect genetic alterations in a subset of patients with no KRAS mutation termed KRAS wild-type. Patients with KRAS wild-type tumors have a propensity to express driver alterations, hence paving the way for utilizing a targeted therapy approach either via clinical trials or standard-of-care drugs. These alterations include fusions, amplifications, translocations, rearrangements and microsatellite instability-high tumors and can be as high as 11% in some studies. Here, we discuss some of the most notable alterations in KRAS wild-type and highlight promising clinical trials.
Collapse
Affiliation(s)
- Ahmed Elhariri
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jaydeepbhai Patel
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Himil Mahadevia
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Douaa Albelal
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ahmed K Ahmed
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jeremy C Jones
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Mitesh J Borad
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
17
|
Moss E, Taylor A, Andreou A, Ang C, Arora R, Attygalle A, Banerjee S, Bowen R, Buckley L, Burbos N, Coleridge S, Edmondson R, El-Bahrawy M, Fotopoulou C, Frost J, Ganesan R, George A, Hanna L, Kaur B, Manchanda R, Maxwell H, Michael A, Miles T, Newton C, Nicum S, Ratnavelu N, Ryan N, Sundar S, Vroobel K, Walther A, Wong J, Morrison J. British Gynaecological Cancer Society (BGCS) ovarian, tubal and primary peritoneal cancer guidelines: Recommendations for practice update 2024. Eur J Obstet Gynecol Reprod Biol 2024; 300:69-123. [PMID: 39002401 DOI: 10.1016/j.ejogrb.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Esther Moss
- College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Adrian Andreou
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Christine Ang
- Northern Gynaecological Oncology Centre, Gateshead, UK
| | - Rupali Arora
- Department of Cellular Pathology, University College London NHS Trust, 60 Whitfield Street, London W1T 4E, UK
| | | | | | - Rebecca Bowen
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Lynn Buckley
- Beverley Counselling & Psychotherapy, 114 Holme Church Lane, Beverley, East Yorkshire HU17 0PY, UK
| | - Nikos Burbos
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital Colney Lane, Norwich NR4 7UY, UK
| | | | - Richard Edmondson
- Saint Mary's Hospital, Manchester and University of Manchester, M13 9WL, UK
| | - Mona El-Bahrawy
- Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | | | - Jonathan Frost
- Gynaecological Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Bath BA1 3NG, UK; University of Exeter, Exeter, UK
| | - Raji Ganesan
- Department of Cellular Pathology, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | | | - Louise Hanna
- Department of Oncology, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, UK
| | - Baljeet Kaur
- North West London Pathology (NWLP), Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London and Barts Health NHS Trust, UK
| | - Hillary Maxwell
- Dorset County Hospital, Williams Avenue, Dorchester, Dorset DT1 2JY, UK
| | - Agnieszka Michael
- Royal Surrey NHS Foundation Trust, Guildford GU2 7XX and University of Surrey, School of Biosciences, GU2 7WG, UK
| | - Tracey Miles
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Claire Newton
- Gynaecology Oncology Department, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Shibani Nicum
- Department of Oncology, University College London Cancer Institute, London, UK
| | | | - Neil Ryan
- The Centre for Reproductive Health, Institute for Regeneration and Repair (IRR), 4-5 Little France Drive, Edinburgh BioQuarter City, Edinburgh EH16 4UU, UK
| | - Sudha Sundar
- Institute of Cancer and Genomic Sciences, University of Birmingham and Pan Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham B18 7QH, UK
| | - Katherine Vroobel
- Department of Cellular Pathology, Royal Marsden Foundation NHS Trust, London SW3 6JJ, UK
| | - Axel Walther
- Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | - Jason Wong
- Department of Histopathology, East Suffolk and North Essex NHS Foundation Trust, Ipswich Hospital, Heath Road, Ipswich IP4 5PD, UK
| | - Jo Morrison
- University of Exeter, Exeter, UK; Department of Gynaecological Oncology, GRACE Centre, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton TA1 5DA, UK.
| |
Collapse
|
18
|
Mahat DB, Kumra H, Castro SA, Metcalf E, Nguyen K, Morisue R, Ho WW, Chen I, Sullivan B, Yim LK, Singh A, Fu J, Waterton SK, Cheng YC, Roberge S, Moiso E, Chauhan VP, Silva HM, Spranger S, Jain RK, Sharp PA. Mutant p53 Exploits Enhancers to Elevate Immunosuppressive Chemokine Expression and Impair Immune Checkpoint Inhibitors in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609802. [PMID: 39257788 PMCID: PMC11383995 DOI: 10.1101/2024.08.28.609802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood. Here, we show that p53R172H establishes an immunosuppressive TME, diminishes the efficacy of immune checkpoint inhibitors (ICIs), and enhances tumor growth. Our findings reveal that the upregulation of the immunosuppressive chemokine Cxcl1 mediates these pro-tumorigenic functions of p53R172H. Mechanistically, we show that p53R172H associates with the distal enhancers of the Cxcl1 gene, increasing enhancer activity and Cxcl1 expression. p53R172H occupies these enhancers in an NF-κB-pathway-dependent manner, suggesting NF-κB's role in recruiting p53R172H to the Cxcl1 enhancers. Our work uncovers how a common mutation in a tumor-suppressor transcription factor appropriates enhancers, stimulating chemokine expression and establishing an immunosuppressive TME that diminishes ICI efficacy in PDAC.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah A Castro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily Metcalf
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kim Nguyen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryo Morisue
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ivy Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Brandon Sullivan
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Leon K Yim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundeep Singh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sean K Waterton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Chi Cheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vikash P Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hernandez Moura Silva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
| |
Collapse
|
19
|
Foulkes WD, Polak P. Probing the relevance of BRCA1 and BRCA2 germline pathogenic variants beyond breast and ovarian cancer. J Natl Cancer Inst 2024:djae184. [PMID: 39172658 DOI: 10.1093/jnci/djae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Specialised Medicine, McGill University Health Centre, Montreal, QC, Canada
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Paz Polak
- Quest Diagnostics, Secaucus, NJ, USA
| |
Collapse
|
20
|
Liu W, Cao H, Wang J, Elmusrati A, Han B, Chen W, Zhou P, Li X, Keysar S, Jimeno A, Wang CY. Histone-methyltransferase KMT2D deficiency impairs the Fanconi anemia/BRCA pathway upon glycolytic inhibition in squamous cell carcinoma. Nat Commun 2024; 15:6755. [PMID: 39117659 PMCID: PMC11310337 DOI: 10.1038/s41467-024-50861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Histone lysine methyltransferase 2D (KMT2D) is the most frequently mutated epigenetic modifier in head and neck squamous cell carcinoma (HNSCC). However, the role of KMT2D in HNSCC tumorigenesis and whether its mutations confer any therapeutic vulnerabilities remain unknown. Here we show that KMT2D deficiency promotes HNSCC growth through increasing glycolysis. Additionally, KMT2D loss decreases the expression of Fanconi Anemia (FA)/BRCA pathway genes under glycolytic inhibition. Mechanistically, glycolytic inhibition facilitates the occupancy of KMT2D to the promoter/enhancer regions of FA genes. KMT2D loss reprograms the epigenomic landscapes of FA genes by transiting their promoter/enhancer states from active to inactive under glycolytic inhibition. Therefore, combining the glycolysis inhibitor 2-DG with DNA crosslinking agents or poly (ADP-ribose) polymerase (PARP) inhibitors preferentially inhibits tumor growth of KMT2D-deficient mouse HNSCC and patient-derived xenografts (PDXs) harboring KMT2D-inactivating mutations. These findings provide an epigenomic basis for developing targeted therapies for HNSCC patients with KMT2D-inactivating mutations.
Collapse
Affiliation(s)
- Wei Liu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hongchao Cao
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jing Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Areeg Elmusrati
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bing Han
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Chen
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ping Zhou
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiyao Li
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
da Costa GG, Neves K, Amaral O. Estimating the replicability of highly cited clinical research (2004-2018). PLoS One 2024; 19:e0307145. [PMID: 39110675 PMCID: PMC11305584 DOI: 10.1371/journal.pone.0307145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Previous studies about the replicability of clinical research based on the published literature have suggested that highly cited articles are often contradicted or found to have inflated effects. Nevertheless, there are no recent updates of such efforts, and this situation may have changed over time. METHODS We searched the Web of Science database for articles studying medical interventions with more than 2000 citations, published between 2004 and 2018 in high-impact medical journals. We then searched for replications of these studies in PubMed using the PICO (Population, Intervention, Comparator and Outcome) framework. Replication success was evaluated by the presence of a statistically significant effect in the same direction and by overlap of the replication's effect size confidence interval (CIs) with that of the original study. Evidence of effect size inflation and potential predictors of replicability were also analyzed. RESULTS A total of 89 eligible studies, of which 24 had valid replications (17 meta-analyses and 7 primary studies) were found. Of these, 21 (88%) had effect sizes with overlapping CIs. Of 15 highly cited studies with a statistically significant difference in the primary outcome, 13 (87%) had a significant effect in the replication as well. When both criteria were considered together, the replicability rate in our sample was of 20 out of 24 (83%). There was no evidence of systematic inflation in these highly cited studies, with a mean effect size ratio of 1.03 [95% CI (0.88, 1.21)] between initial and subsequent effects. Due to the small number of contradicted results, our analysis had low statistical power to detect predictors of replicability. CONCLUSION Although most studies did not have eligible replications, the replicability rate of highly cited clinical studies in our sample was higher than in previous estimates, with little evidence of systematic effect size inflation. This estimate is based on a very select sample of studies and may not be generalizable to clinical research in general.
Collapse
Affiliation(s)
- Gabriel Gonçalves da Costa
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kleber Neves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olavo Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Peng X, Huang X, Zhang S, Zhang N, Huang S, Wang Y, Zhong Z, Zhu S, Gao H, Yu Z, Yan X, Tao Z, Dai Y, Zhang Z, Chen X, Wang F, Claret FX, Elkabets M, Ji N, Zhong Y, Kong D. Sequential Inhibition of PARP and BET as a Rational Therapeutic Strategy for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307747. [PMID: 38896791 PMCID: PMC11321613 DOI: 10.1002/advs.202307747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Naixin Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Haiwang Gao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xiaotong Yan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhennan Tao
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Yuxiang Dai
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjin300020China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Francois X. Claret
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Ning Ji
- National Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of PharmacyTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
23
|
Barros AG, Mansinho H, Couto N, Teixeira MR, Tonin FS, Francisco R, Duarte-Ramos F. The Initial Journey of Patients with Metastatic Pancreatic Cancer (PaCTO Project): A Nationwide Survey among Portuguese Specialist Physicians. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2024; 31:262-272. [PMID: 39114325 PMCID: PMC11305690 DOI: 10.1159/000533178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2024]
Abstract
Introduction We aimed to characterize the initial healthcare journey of metastatic pancreatic ductal adenocarcinoma (mPDAC) patients in Portugal, including healthcare provision and factors affecting therapeutic decisions, namely BRCA mutations testing. Methods This is a descriptive cross-sectional, web-based survey using a convenience sampling approach. Portuguese oncologists and pathologists that routinely work with mPDAC patients from the different geographical regions and settings were invited to participate in the study via email (December 2020). Descriptive statistical analyses were performed, with categorical variables reported as absolute and relative frequencies, and continuous variables with non-normal distribution as median and interquartile range (IQR) (Stata v.15.0). Results Seventy physicians participated in the study (43 oncologists, 27 pathologists). According to the responses, a median of 28 patients per center (IQR 12-70) was diagnosed with PDAC in the previous year; 22 of them referring (IQR 8-70) to mPDAC. The pointed median time from patients' first hospital admission until disease diagnosis/staging is between 2 and 4 weeks. Endoscopic ultrasound with fine-needle biopsy is available in most hospitals (86%). Around 50% of physicians request BRCA testing; the assessment of additional biomarkers besides BRCA is requested by 40% of professionals. Half of them stated that BRCA testing should be requested earlier-upon histological diagnosis, especially because the median time for results is of 4.0 weeks (IQR 4-8). PARP inhibitors such as olaparib, when available, would be the therapy of choice for most oncologists (71%) if no disease' progression occurs after 4 months. Treatments' selection is usually grounded on clinical criteria (e.g., performance status, liver function). Around 45% of patients use FOLFIRINOX/mFOLFIRINOX as the first-line therapy. Gemcitabine + nab-paclitaxel is used by 35% of patients as the second-line therapy. Conclusions Physicians in Portugal support the increasing role of patient-tailored treatments in mPDAC, whose selection should be grounded on tumoral subtyping and molecular profiling. Further efforts to develop multidisciplinary teams, standardized clinical practice, and optimize the implementation of new target therapies are needed.
Collapse
Affiliation(s)
- Anabela G. Barros
- Department of Medical Oncology, University Hospital of Coimbra, Coimbra, Portugal
| | - Hélder Mansinho
- Hemato Oncology Department, Garcia de Orta Hospital, Almada, Portugal
| | - Nuno Couto
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Research Centre, Lisbon, Portugal
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Fernanda S. Tonin
- Pharmaceutical Sciences Postgraduate Program, Federal University of Parana, Curitiba, Brazil
- H&TRC–Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | | | - Filipa Duarte-Ramos
- Department of Pharmacy, Pharmacology and Health Technologies, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto (ISPUP), Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
24
|
Hayashi N, Ono M, Fukada I, Yamazaki M, Sato N, Hosonaga M, Wang X, Kaneko K, Arakawa H, Habano E, Kuga A, Kataoka A, Ueki A, Kiyotani K, Tonooka A, Takeuchi K, Kogawa T, Kitano S, Takano T, Watanabe M, Mori S, Takahashi S. Addressing the knowledge gap in the genomic landscape and tailored therapeutic approaches to adolescent and young adult cancers. ESMO Open 2024; 9:103659. [PMID: 39137480 PMCID: PMC11369407 DOI: 10.1016/j.esmoop.2024.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Adolescents and young adults (AYAs) represent a small proportion of patients with cancer. The genomic profiles of AYA patients with cancer are not well-studied, and outcomes of genome-matched therapies remain largely unknown. PATIENTS AND METHODS We investigated differences between Japanese AYA and older adult (OA) patients in genomic alterations, therapeutic evidence levels, and genome-matched therapy usage by cancer type. We also assessed treatment outcomes. RESULTS AYA patients accounted for 8.3% of 876 cases. Microsatellite instability-high and/or tumor mutation burden was less common in AYA patients (1.4% versus 7.7% in OA; P = 0.05). However, BRCA1 alterations were more common in AYA patients with breast cancer (27.3% versus 1.7% in OA; P = 0.01), as were MYC alterations in AYA patients with colorectal cancer (23.5% versus 5.8% in OA; P = 0.02) and sarcoma (31.3% versus 3.4% in OA; P = 0.01). Genome-matched therapy use was similar between groups, with overall survival tending to improve in both. However, in AYA patients, the small number of patients prevented statistical significance. Comprehensive genomic profiling-guided genome-matched therapy yielded encouraging results, with progression-free survival of 9.0 months in AYA versus 3.7 months in OA patients (P = 0.59). CONCLUSION Our study suggests that tailored therapeutic approaches can benefit cancer patients regardless of age.
Collapse
Affiliation(s)
- N Hayashi
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - M Ono
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo.
| | - I Fukada
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - M Yamazaki
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - N Sato
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - M Hosonaga
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo
| | - X Wang
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - K Kaneko
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - H Arakawa
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - E Habano
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - A Kuga
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - A Kataoka
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo
| | - A Ueki
- Department of Clinical Genetic Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - K Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Laboratory of Immunogenomics, The Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka
| | - A Tonooka
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - K Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - T Kogawa
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - S Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - T Takano
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo
| | - M Watanabe
- Total Care Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| | - S Mori
- Project for Development of Innovative Research on Cancer Therapeutics, The Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - S Takahashi
- Department of Genomic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo
| |
Collapse
|
25
|
Carballo EV, Kim KH, Penn CA. Trends in estimated PARP inhibitor eligibility and benefit among US epithelial ovarian cancer patients. Gynecol Oncol 2024; 187:204-211. [PMID: 38795509 DOI: 10.1016/j.ygyno.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To estimate the annual percentage of patients with epithelial ovarian cancer (EOC) who could be eligible for and benefit from PARP inhibitor therapy amidst changing US Food and Drug Administration (FDA)-approved indications. METHODS This is a simulated retrospective observational study using publicly available data on patients with advanced-stage EOC. PARPi eligibility is based on FDA approvals and withdrawals from 2014 through 2023, along with published demographic and genomic data. Clinical trial data is used to estimate treatment benefit. PARPi including olaparib, niraparib, and rucaparib are analyzed in aggregate with sub-analyses by molecular classification and treatment timing. Results are reported as the percentage of EOC patients appropriate for any cancer-directed therapy. RESULTS PARPi were approved for 9 different indications in EOC between 2014 and 2021; reduced to 6 indications by 2023. Eligibility increased from 2.0% (95% CI,1.3%-1.6%) in 2014 to a maximum of 93.4% (95% CI,90.1%-94.6%) in 2021. The maximum percentage of patients with 2-year PFS benefit was 22.0% (95% CI, 17.2%-26.8%) in 2021, projected to decrease to 13.0% (95% CI, 9.9%-15.9%) in 2024. Most of this decrease was seen in the homologous recombination deficient, BRCA wild-type population (8.4% to 4.0%). CONCLUSIONS PARPi eligibility increased at a greater rate than benefit resulting in a low population-level benefit-to-eligibility ratio until 2021. Recent FDA withdrawals improved this ratio with an accompanied decrease in the absolute number of patients benefiting. To further optimize population-level benefit-to-eligibility ratio of targeted therapies in ovarian cancer, we need to identify better biomarkers, treatment combinations, and novel therapeutic targets.
Collapse
Affiliation(s)
- Erica V Carballo
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America.
| | - Kenneth H Kim
- Division of Gynecologic Oncology, Cedars-Sinai Medical Center, United States of America
| | - Courtney A Penn
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
26
|
Li X, Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor-induced synthetic lethality. J Clin Invest 2024; 134:e181062. [PMID: 39007266 PMCID: PMC11245158 DOI: 10.1172/jci181062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
Collapse
|
27
|
Ma J, Shah R, Bell AC, McDermott N, Pei X, Selenica P, Haseltine J, Delsite R, Khan AJ, Lok BH, Ellis MJ, Aft RF, Setton J, Reis-Filho JS, Riaz N, Powell SN. Increased Synthetic Cytotoxicity of Combinatorial Chemoradiation Therapy in Homologous Recombination Deficient Tumors. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02946-8. [PMID: 38997095 DOI: 10.1016/j.ijrobp.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Homologous recombination deficient (HRD) tumors are exquisitely sensitive to platinum-based chemotherapy and when combined with radiation therapy (RT), leads to improved overall survival in multiple cancer types. Whether a subset of tumors with distinct molecular characteristics demonstrate increased benefit from cisplatin and RT (c-RT) is unclear. We hypothesized that HRD tumors, whether associated with BRCA mutations or genomic scars of HRD, exhibit exquisite sensitivity to c-RT, and that HRD may be a significant driver of c-RT benefit. METHODS AND MATERIALS Sensitivity to c-RT was examined using isogenic and sporadic breast cancer cell lines. HRD was assessed using 4 assays: RT-induced Rad51 foci, a DR-GFP reporter assay, a genomic scar score (large-scale state transitions [LST]), and clonogenic survival assays. Whole-genome sequencing of 4 breast tumors from a phase 2 clinical trial of neoadjuvant c-RT in triple-negative breast cancer was performed and HRD was defined using HRDetect. RESULTS BRCA1/2 deficient cell lines displayed functional HRD based on the Rad51 functional assay, with c-RT to RT or cisplatin interaction ratios (IR) of 1.11 and 26.84 for the BRCA1 isogenic pair at 2 μM cisplatin and 6 Gy, respectively. The highest LST lines demonstrated HRD and synthetic cytotoxicity to c-RT with IR at 2 Gy and cisplatin 20 μM of 7.50, and the lowest LST line with IR of 0.65. Of 4 evaluable patients in the phase 2 trial, one achieved a pathologic complete response with corresponding HRD based on multiple genomic scar scores including HRDetect and LST scores, compared with patients without a pathologic complete response. CONCLUSIONS HRD breast cancers, whether identified by BRCA1/2 mutation status, functional tests, or mutational signatures, appear to be significantly more sensitive to c-RT compared with isogenic controls or tumors without HRD mutational signatures. HRD tumors may be exquisitely sensitive to c-RT which warrants further clinical investigation to guide a precision oncology approach.
Collapse
Affiliation(s)
- Jennifer Ma
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachna Shah
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew C Bell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niamh McDermott
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Pei
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Haseltine
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Delsite
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J Khan
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin H Lok
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Departments of Radiation Oncology; Medical Biophysics; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Ellis
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca F Aft
- Department of General Surgery, Washington University, St Louis, Missouri
| | - Jeremy Setton
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nadeem Riaz
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Simon N Powell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
28
|
Guida A, Mosillo C, Mammone G, Caserta C, Sirgiovanni G, Conteduca V, Bracarda S. The 5-WS of targeting DNA-damage repair (DDR) pathways in prostate cancer. Cancer Treat Rev 2024; 128:102766. [PMID: 38763054 DOI: 10.1016/j.ctrv.2024.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
DNA-damage repair (DDR) pathways alterations, a growing area of interest in oncology, are detected in about 20% of patient with prostate cancer and are associated with improved sensitivity to poly(ADP ribose) polymerases (PARP) inhibitors. In May 2020, the Food and Drug Administration (FDA) approved two PARP inhibitors (olaparib and rucaparib) for prostate cancer treatment. Moreover, germline aberrations in DDR pathways genes have also been related to familial or hereditary prostate cancer, requiring tailored health-care programs. These emerging scenarios are rapidly changing diagnostic, prognostic and therapeutic approaches in prostate cancer management. The aim of this review is to highlight the five W-points of DDR pathways in prostate cancer: why targeting DDR pathways in prostate cancer; what we should test for genomic profiling in prostate cancer; "where" testing genetic assessment in prostate cancer (germline or somatic, solid or liquid biopsy); when genetic testing is appropriate in prostate cancer; who could get benefit from PARP inhibitors; how improve patients outcome with combinations strategies.
Collapse
|
29
|
Wu J, Jiang L, Wang S, Peng L, Zhang R, Liu Z. TGF β1 promotes the polarization of M2-type macrophages and activates PI3K/mTOR signaling pathway by inhibiting ISG20 to sensitize ovarian cancer to cisplatin. Int Immunopharmacol 2024; 134:112235. [PMID: 38761779 DOI: 10.1016/j.intimp.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The involvement of Interferon-stimulated exonuclease gene 20 (ISG20) has been reported in renal clear cell carcinoma, hepatocellular carcinoma, and cervical cancer. However, its role in ovarian cancer chemotherapy remains unclear. In this study, we conducted a comparative analysis of TGF-β1 and ISG20 in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells and tissues using qRT-PCR and a tissue immunofluorescence analysis. We also investigated the impact of ISG20-targeted drugs (IFN-γ) and TGF-β1 inhibitors on cisplatin response both in vivo and in vitro. Additionally, we assessed the effects of TGF-β1 or ISG20 on the polarization of tumor-associated macrophages through flow cytometry and ELISA analysis. Our findings revealed that ISG20 expression was lower in cisplatin-resistant tissues compared to cisplatin-sensitive tissues; however, overexpression of ISG20 sensitized ovarian cancer to cisplatin treatment. Furthermore, activation of ISG20 expression with IFN-γ or TGF-β1 inhibitors enhanced the sensitivity of ovarian cancer cells to cisplatin therapy. Notably, our results demonstrated that TGF-β1 promoted M2-type macrophage polarization as well as PI3K/mTOR pathway activation by suppressing ISG20 expression both in vivo and in vitro. In conclusion, our study highlights the critical role played by ISG20 within the network underlying cisplatin resistance in ovarian cancer. Targeting ISG20 using IFN-γ or TGF-β1 inhibitors may represent a promising therapeutic strategy for treating ovarian cancer.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lingli Jiang
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Sihong Wang
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lei Peng
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Rong Zhang
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Zhou Liu
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
30
|
Xu C, Li X. Trends and frontiers of maintenance therapy for ovarian cancer over the past 20 years: a bibliometric analysis. Future Oncol 2024; 20:1925-1942. [PMID: 38864301 PMCID: PMC11497917 DOI: 10.1080/14796694.2024.2357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: To summarize and analyze the research trends and frontiers in maintenance therapy for ovarian cancer over the past 20 years.Methods: Relevant articles were identified in Web of Science, and analyzed using CiteSpace and Excel.Results: 1204 articles from 61 countries led by the USA and England were included. 6821 authors, 2345 institutions and 292 journals have participated in the publication of papers, but the collaboration between them was not very close. The annual publication volume has increased significantly since 2015. Drug combination therapy, genetic testing, management of adverse reaction and prognostic factors are research trends and frontiers of this field.Conclusion: This is the first bibliometric research in this field, which can provide some references for researchers.
Collapse
Affiliation(s)
- Chunju Xu
- Department of Gynecology, Qianjiang Central Hospital of Chongqing, Qianjiang District, Chongqing, China
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xia Li
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
31
|
Shore ND, Broder MS, Barata PC, Crispino T, Fay AP, Lloyd J, Mellado B, Matsubara N, Pfanzelter N, Schlack K, Sieber P, Soares A, Dalglish H, Niyazov A, Shaman S, Zielinski MA, Chang J, Agarwal N. Expert Consensus Recommendations on the Management of Treatment-emergent Adverse Events Among Men with Prostate Cancer Taking Poly-ADP Ribose Polymerase Inhibitor + Novel Hormonal Therapy Combination Therapy. Eur Urol Oncol 2024:S2588-9311(24)00140-8. [PMID: 38866640 DOI: 10.1016/j.euo.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND OBJECTIVE Recent clinical trials have shown improvement in progression-free survival in men with metastatic prostate cancer (mPC) treated with combination poly-ADP ribose polymerase (PARP) inhibitors (PARPi) and novel hormonal therapy (NHT). Regulatory bodies in the USA, Canada, Europe, and Japan have recently approved this combination therapy for mPC. Common adverse events (AEs) include fatigue, nausea and vomiting, and anemia. Nuanced AE management guidance for these combinations is lacking. The panel objective was to develop expert consensus on AE management in patients with mPC treated with the combination PARPi + NHT. METHODS The RAND/University of California Los Angeles modified Delphi Panel method was used. AEs were defined using the Common Terminology Criteria for Adverse Events. Twelve experts (seven medical oncologists, one advanced practice registered nurse, three urologists, and one patient advocate) reviewed the relevant literature; independently rated initial AE management options for the agent suspected of causing the AE for 419 patient scenarios on a 1-9 scale; discussed areas of agreement (AoAs) and disagreement (AoDs) at a March 2023 meeting; and repeated these ratings following the meeting. Second-round ratings formed the basis of guidelines. KEY FINDINGS AND LIMITATIONS AoDs decreased from 41% to 21% between the first and second round ratings, with agreement on at least one management strategy for every AE. AoAs included the following: (1) continue therapy with symptomatic treatment for patients with mild AEs; (2) for moderate fatigue, recommend nonpharmacologic treatment, hold treatment temporarily, and restart at a reduced dose when symptoms resolve; (3) for severe nausea or any degree of vomiting where symptomatic treatment fails, hold treatment temporarily and restart at a reduced dose when symptoms resolve; and (4) for hemoglobin 7.1-8.0 g/dl and symptoms of anemia, hold treatment temporarily and restart at a reduced dose after red blood cell transfusion. CONCLUSIONS AND CLINICAL IMPLICATIONS This expert guidance can support management of AEs in patients with mPC receiving combination PARPi + NHT therapy. PATIENT SUMMARY A panel of experts developed guidelines for adverse event (AE) management in patients with metastatic prostate cancer treated with a combination of poly-ADP ribose polymerase inhibitors and novel hormonal therapy. For mild AEs, continuation of cancer therapy along with symptomatic treatment is recommended. For moderate or severe AEs, cancer therapy should be stopped temporarily and restarted at the same or a reduced dose when AE resolves.
Collapse
Affiliation(s)
- Neal D Shore
- Carolina Urologic Research Center/GenesisCare, Myrtle Beach, SC, USA.
| | - Michael S Broder
- PHAR (Partnership for Health Analytic Research), Beverly Hills, CA, USA
| | - Pedro C Barata
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Tony Crispino
- Southwestern Oncology Group Cancer Research Network, UsTOO Prostate Cancer Support and Education, Las Vegas Chapter, NV, USA
| | - André P Fay
- PUCRS School of Medicine, Porto Alegre, Brazil
| | - Jennifer Lloyd
- Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Katrin Schlack
- Department of Urology, Prostate Center, University of Muenster Medical Center, Muenster, Germany
| | - Paul Sieber
- Keystone Urology Specialists, Lancaster, PA, USA
| | - Andrey Soares
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Centro Paulista de Oncologia/Oncoclínicas, Sao Paulo, Brazil
| | - Hannah Dalglish
- PHAR (Partnership for Health Analytic Research), Beverly Hills, CA, USA
| | | | | | | | | | - Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Chalker C, Chun B, Sokolova AO. Germline and somatic mutations in prostate cancer: Implications for treatment. Curr Probl Cancer 2024; 50:101101. [PMID: 38718711 DOI: 10.1016/j.currproblcancer.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Genetic testing is an integral part of the workup of metastatic prostate cancer, in part, because the results can have a profound impact on the subsequent management of this disease. There are now several Food & Drug Administration (FDA) approved therapeutics available for patients with prostate cancer and certain genetic abnormalities - most notably, mutations in DNA damage repair (DDR) pathways such mismatch repair (MMR) and homologous recombination repair (HRR). In this review of the current literature, we discuss the indications for somatic and germline testing, the genetic changes of particular clinical relevance, the associated therapeutic options, and the clinical data supporting their use. We also highlight select trials-in-progress and future directions for the field.
Collapse
Affiliation(s)
- Cameron Chalker
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239.
| | - Brie Chun
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Alexandra O Sokolova
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| |
Collapse
|
33
|
Liu Y, Cao Y, Liu P, Zhai S, Liu Y, Tang X, Lin J, Shi M, Qi D, Deng X, Zhu Y, Wang W, Shen B. ATF3-induced activation of NF-κB pathway results in acquired PARP inhibitor resistance in pancreatic adenocarcinoma. Cell Oncol (Dordr) 2024; 47:939-950. [PMID: 38097870 DOI: 10.1007/s13402-023-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Debin Qi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Srkalovic G, Rothe M, Mangat PK, Garrett-Mayer E, Ahn ER, Brouse G, Chan J, Mehmi I, Khalil M, Duvivier HL, Gaba A, Leuva H, Thota R, Yost KJ, Grantham GN, Gregory A, Hinshaw DC, Halabi S, Schilsky RL. Talazoparib in Patients With Solid Tumors With BRCA1/ 2 Mutation: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2400026. [PMID: 38865672 DOI: 10.1200/po.24.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
PURPOSE The Targeted Agent and Profiling Utilization Registry Study is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results of a cohort of patients with various solid tumors with germline or somatic BRCA1/2 mutations treated with talazoparib are reported. METHODS Eligible patients had advanced solid tumors, measurable disease (RECIST), Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options. Patients with germline BRCA-mutated human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer were not eligible for this study. Primary end point was disease control (DC) determined by investigator assessment of objective response (OR) or stable disease (SD) of at least 16 weeks duration (SD16+). The results were evaluated on the basis of a one-sided exact binomial test with a null DC rate of 15% versus 35% (power = 0.82; α = .10). Secondary end points were OR, progression-free survival, overall survival, duration of response, duration of SD, and safety. RESULTS Twenty-eight patients (20 cancer types) with BRCA1/2 mutations were enrolled from December 2019 to September 2021 and collapsed into a single histology pooled cohort for analysis. All patients were evaluable for efficacy. One complete response, nine partial response, and six SD16+ were observed for DC and OR rates of 57% (one-sided 90% CI, 43 to 100) and 36% (95% CI, 19 to 56), respectively. The null hypothesis of a 15% DC rate was rejected (P < .001). Patients with OR had the following tumor types: breast (2), nonmelanoma skin, mesothelioma, stomach, uterus, non-small cell lung cancer, ovary, hepatocellular carcinoma, and pancreas. Thirteen patients had at least one grade 3-5 adverse event (AE) or serious AE at least possibly related to talazoparib. All were consistent with the drug label except bilirubin increase and hyponatremia (both grade 3 AEs). CONCLUSION Talazoparib demonstrated antitumor activity in patients with advanced solid tumors and BRCA1/2 mutations, including cancer types for which poly ADP-ribose polymerase inhibitors are not yet US Food and Drug Administration-approved.
Collapse
Affiliation(s)
- Gordan Srkalovic
- Herbert-Herman Cancer Center, Lansing, MI
- Michigan Cancer Research Consortium, Ypsilanti, MI
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | - John Chan
- Sutter Cancer Research Consortium, San Francisco, CA
| | - Inderjit Mehmi
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | - Maya Khalil
- O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | | | | | | | | | - Kathleen J Yost
- Cancer Research Consortium of West Michigan, Grand Rapids, MI
| | | | | | | | | | | |
Collapse
|
35
|
Arends CM, Kopp K, Hablesreiter R, Estrada N, Christen F, Moll UM, Zeillinger R, Schmitt WD, Sehouli J, Kulbe H, Fleischmann M, Ray-Coquard I, Zeimet A, Raspagliesi F, Zamagni C, Vergote I, Lorusso D, Concin N, Bullinger L, Braicu EI, Damm F. Dynamics of clonal hematopoiesis under DNA-damaging treatment in patients with ovarian cancer. Leukemia 2024; 38:1378-1389. [PMID: 38637689 PMCID: PMC11147769 DOI: 10.1038/s41375-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Clonal hematopoiesis (CH) driven by mutations in the DNA damage response (DDR) pathway is frequent in patients with cancer and is associated with a higher risk of therapy-related myeloid neoplasms (t-MNs). Here, we analyzed 423 serial whole blood and plasma samples from 103 patients with relapsed high-grade ovarian cancer receiving carboplatin, poly(ADP-ribose) polymerase inhibitor (PARPi) and heat shock protein 90 inhibitor (HSP90i) treatment within the phase II EUDARIO trial using error-corrected sequencing of 72 genes. DDR-driven CH was detected in 35% of patients and was associated with longer duration of prior PARPi treatment. TP53- and PPM1D-mutated clones exhibited substantially higher clonal expansion rates than DNMT3A- or TET2-mutated clones during treatment. Expansion of DDR clones correlated with HSP90i exposure across the three study arms and was partially abrogated by the presence of germline mutations related to homologous recombination deficiency. Single-cell DNA sequencing of selected samples revealed clonal exclusivity of DDR mutations, and identified DDR-mutated clones as the origin of t-MN in two investigated cases. Together, these results provide unique insights into the architecture and the preferential selection of DDR-mutated hematopoietic clones under intense DNA-damaging treatment. Specifically, PARPi and HSP90i therapies pose an independent risk for the expansion of DDR-CH in a dose-dependent manner.
Collapse
Affiliation(s)
- Christopher Maximilian Arends
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klara Kopp
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Hablesreiter
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Estrada
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Christen
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Martha Moll
- Department of Pathology, Stony Brook University Cancer Center, Stony Brook, NY, 11794, USA
| | - Robert Zeillinger
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Daniel Schmitt
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Maximilian Fleischmann
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Isabelle Ray-Coquard
- Centre Anticancereux Léon Bérard, University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Alain Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | | | - Claudio Zamagni
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | | | - Nicole Concin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Ioana Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Feng Z, Chen S, An N, Xiu Z, Ju X, Chen X, Bi R, Wang J, Zhu S, Wu X, Wen H. Germline Mutational Landscape and Novel Targetable RAD51D Variant in Chinese Patients With Ovarian Cancer. JCO Glob Oncol 2024; 10:e2300454. [PMID: 38905575 DOI: 10.1200/go.23.00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE Genetic variants of ovarian cancer (OV) show ethnic differences, but data from the Chinese population are still insufficient. Here, we elucidate the inheritance landscape in Chinese patients with OV and examine the functional implications of a Chinese-enriched RAD51D variant. METHODS Between 2015 and 2018, 373 consecutive patients with OV were prospectively enrolled. Variants of BRCA1/2, other homologous recombination repair (HRR) genes, and DNA mismatch repair (MMR) genes were analyzed using next-generation sequencing. An enriched RAD51D variant was identified, and its functional effects were examined using Cell Counting Kit-8, colony formation, transwell migration, and drug sensitivity assays. RESULTS Overall, 31.1% (116/373) of patients had at least one pathogenic or likely pathogenic germline variant. BRCA1 and BRCA2 accounted for 16.09% and 5.36%, respectively, with one patient having both variants. In addition, 32 (8.58%) patients carried other HRR gene variants, whereas three (0.8%) patients had MMR gene variants. The RAD51D variant ranked third (8/373, 2.1%), and its rate was much higher than that in other populations. Remarkably, all eight patients harbored the RAD51D K91fs variant (c.270_271dup, p.Lys91Ilefs*13) and demonstrated satisfactory platinum response and favorable prognosis. This variant confers enhanced sensitivity to poly (ADP-ribose) polymerase inhibitors in OV cells. However, the effects on platinum sensitivity were inconsistent across different cell lines. Against the background of the TP53 variant, RAD51D K91fs variant showed increased sensitivity to cisplatin. CONCLUSION Our study revealed the inheritance landscape of OV and identified an enriched RAD51D variant in Chinese patients with OV. This can serve as an important reference for OV management and a potential therapeutic target.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siyu Chen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na An
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xingzhu Ju
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Bi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jie Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shida Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Wen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Fazekas T, Széles ÁD, Teutsch B, Csizmarik A, Vékony B, Kói T, Ács N, Hegyi P, Hadaschik B, Nyirády P, Szarvas T. Poly (ADP-ribose) Polymerase Inhibitors Have Comparable Efficacy with Platinum Chemotherapy in Patients with BRCA-positive Metastatic Castration-resistant Prostate Cancer. A Systematic Review and Meta-analysis. Eur Urol Oncol 2024; 7:365-375. [PMID: 37722977 DOI: 10.1016/j.euo.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
CONTEXT Testing for mutations in Breast Cancer Gene 1/2 (BRCA) has emerged as a novel decision-making tool for clinicians. Patients with metastatic castration-resistant prostate cancer (mCRPC) harboring pathogenic BRCA mutations can benefit from poly (ADP-ribose) polymerase inhibitor (PARPi) and platinum treatments, whereas the impact of the mutation on sensitivity to cabazitaxel and prostate-specific membrane antigen (PSMA)-ligand therapy is currently unknown. OBJECTIVE To assess the efficacy of PARPi, platinum, cabazitaxel, and PSMA-ligand therapies in BRCA-positive mCRPC. EVIDENCE ACQUISITION Databases were queried in February 2022. We performed data synthesis by using both proportional and individual patient data. For prostate-specific antigen (PSA) response rate (≥50% decrease from baseline [PSA50]) evaluation, we pooled event rates with 95% confidence intervals (CIs). Progression-free (PFS) and overall (OS) survival analyses with individual patient data were performed with the mixed-effect Cox proportional hazard model and single-arm random-effect analysis, providing pooled medians. EVIDENCE SYNTHESIS We included 23 eligible studies with 901 BRCA-positive mCRPC patients. PSA50 response rates for PARPi and platinum were 69% (CI: 53-82%), and 74% (CI: 49-90%), respectively. Analyses of OS data showed no difference between PARPi and platinum treatments (hazard ratio: 0.86; CI: 0.49-1.52; p = 0.6). The single-arm OS and PFS analyses revealed similarities among different PARPis; pooled PFS and OS medians were 9.7 mo (CI: 8.1-12.5) and 17.4 mo (CI: 12.7-20.1), respectively. CONCLUSIONS Our data revealed that different PARPis were similarly effective in terms of PFS and OS. Moreover, we found that PARPi and platinum therapy were comparable in terms of PSA50 response rate and OS, highlighting that platinum is a valid treatment option for BRCA-positive mCRPC patients. However, prospective interventional studies comparing these agents are essential to provide a higher level of evidence. PATIENT SUMMARY In this report, we found that different poly (ADP-ribose) polymerase inhibitors had similar efficacy, and platinum was a valid treatment option in BRCA-positive metastatic castration-resistant prostate cancer patients.
Collapse
Affiliation(s)
- Tamás Fazekas
- Department of Urology, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám D Széles
- Department of Urology, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Bálint Vékony
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nándor Ács
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary; Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
38
|
Evans DG, Green K, Burghel GJ, Forde C, Lalloo F, Schlecht H, Woodward ER. Cascade screening in HBOC and Lynch syndrome: guidelines and procedures in a UK centre. Fam Cancer 2024; 23:187-195. [PMID: 38478259 PMCID: PMC11153258 DOI: 10.1007/s10689-024-00360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/25/2024] [Indexed: 06/06/2024]
Abstract
In the 33 years since the first diagnostic cancer predisposition gene (CPG) tests in the Manchester Centre for Genomic Medicine, there has been substantial changes in the identification of index cases and cascade testing for at-risk family members. National guidelines in England and Wales are usually determined from the National Institute of healthcare Evidence and these have impacted on the thresholds for testing BRCA1/2 in Hereditary Breast Ovarian Cancer (HBOC) and in determining that all cases of colorectal and endometrial cancer should undergo screening for Lynch syndrome. Gaps for testing other CPGs relevant to HBOC have been filled by the UK Cancer Genetics Group and CanGene-CanVar project (web ref. https://www.cangene-canvaruk.org/ ). We present time trends (1990-2020) of identification of index cases with germline CPG variants and numbers of subsequent cascade tests, for BRCA1, BRCA2, and the Lynch genes (MLH1, MSH2, MSH6 and PMS2). For BRCA1/2 there was a definite increase in the proportion of index cases with ovarian cancer only and pre-symptomatic index tests both doubling from 16 to 32% and 3.2 to > 8% respectively. A mean of 1.73-1.74 additional family tests were generated for each BRCA1/2 index case within 2 years. Overall close to one positive cascade test was generated per index case resulting in > 1000 risk reducing surgery operations. In Lynch syndrome slightly more cascade tests were performed in the first two years potentially reflecting the increased actionability in males with 42.2% of pre-symptomatic tests in males compared to 25.8% in BRCA1/2 (p < 0.0001).
Collapse
Affiliation(s)
- D Gareth Evans
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK.
- Division of Evolution Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK.
| | - Kate Green
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Claire Forde
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine and North-West Genomics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
- Division of Evolution Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
39
|
Li X, Poire A, Jeong KJ, Zhang D, Ozmen TY, Chen G, Sun C, Mills GB. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer. Nat Commun 2024; 15:4485. [PMID: 38802355 PMCID: PMC11130309 DOI: 10.1038/s41467-024-48637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tugba Yildiran Ozmen
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
40
|
Andrikopoulou A, Bletsa G, Rouvalis A, Tsakogiannis D, Kaparelou M, Papatheodoridi A, Haidopoulos D, Liontos M, Dimopoulos MA, Zagouri F. The Prognostic Role of BRD4 Expression in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2024; 16:1962. [PMID: 38893083 PMCID: PMC11171195 DOI: 10.3390/cancers16111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Bromodomain and extra-terminal (BET) domain proteins that bind to acetylated lysine residues of histones serve as the "readers" of DNA acetylation. BRD4 is the most thoroughly studied member of the BET family and regulates the expression of key oncogenes. BRD4 gene amplification has been identified in ovarian cancer (~18-19%) according to The Cancer Genome Atlas (TCGA) analysis. BET inhibitors are novel small molecules that displace BET proteins from acetylated histones and are currently tested in Phase I/II trials. We here aim to explore the prognostic role of the BRD4 gene and protein expression in the ascitic fluid of patients with advanced FIGO III/IV high-grade serous ovarian carcinoma (HGSC). METHODS Ascitic fluid was obtained from 28 patients with advanced stage (FIGO III/IV) HGSC through diagnostic/therapeutic paracentesis or laparoscopy before the initiation of chemotherapy. An amount of ~200 mL of ascitic fluid was collected from each patient and peripheral blood mononuclear cells (PBMCs) were isolated. Each sample was evaluated for BRD4 and GAPDH gene expression through RT-qPCR and BRD4 protein levels through enzyme-linked immunosorbent assay (ELISA). The study protocol was approved by the Institutional Review Board of Alexandra University Hospital and the Committee on Ethics and Good Practice (CEGP) of the National and Kapodistrian University of Athens (NKUA). RESULTS Low BRD4 gene expression was associated with worse prognosis at 12 months compared to intermediate/high expression (95% CI; 1.75-30.49; p = 0.008). The same association was observed at 24 months although this association was not statistically significant (95% CI; 0.96-9.2; p = 0.065). Progression-free survival was shorter in patients with low BRD4 gene expression at 12 months (5.6 months; 95% CI; 2.6-8.6) compared to intermediate/high expression (9.8 months; 95% CI; 8.3-11.3) (95% CI; 1.2-16.5; p = 0.03). The same association was confirmed at 24 months (6.9 months vs. 13.1 months) (95% CI; 1.1-8.6; p = 0.048). There was a trend for worse prognosis in patients with high BRD4 protein levels versus intermediate/low BRD4 protein expression both at 12 months (9.8 months vs. 7.6 months; p = 0.3) and at 24 months (14.2 months vs. 16.6 months; p = 0.56) although not statistically significant. Again, there was a trend for shorter PFS in patients with high BRD4 protein expression although not statistically significant both at 12 months (p = 0.29) and at 24 months (p = 0.47). CONCLUSIONS There are contradictory data in the literature over the prognostic role of BRD4 gene expression in solid tumors. In our study, intermediate/high BRD4 gene expression was associated with a favorable prognosis in terms of overall survival and progression-free survival compared to low BRD4 gene expression.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.K.); (A.P.); (M.L.); (M.-A.D.); (F.Z.)
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece; (G.B.); (D.T.)
| | - Angeliki Rouvalis
- Obstetrics and Gynecology, 1st Obstetrics and Gynecology Clinic, National and Kapodistrian University of Athens, 10509 Athens, Greece; (A.R.); (D.H.)
| | - Dimitris Tsakogiannis
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece; (G.B.); (D.T.)
| | - Maria Kaparelou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.K.); (A.P.); (M.L.); (M.-A.D.); (F.Z.)
| | - Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.K.); (A.P.); (M.L.); (M.-A.D.); (F.Z.)
| | - Dimitrios Haidopoulos
- Obstetrics and Gynecology, 1st Obstetrics and Gynecology Clinic, National and Kapodistrian University of Athens, 10509 Athens, Greece; (A.R.); (D.H.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.K.); (A.P.); (M.L.); (M.-A.D.); (F.Z.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.K.); (A.P.); (M.L.); (M.-A.D.); (F.Z.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.K.); (A.P.); (M.L.); (M.-A.D.); (F.Z.)
| |
Collapse
|
41
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
42
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
43
|
Shi Y, Wang H, Golijanin B, Amin A, Lee J, Sikov M, Hyams E, Pareek G, Carneiro BA, Mega AE, Lagos GG, Wang L, Wang Z, Cheng L. Ductal, intraductal, and cribriform carcinoma of the prostate: Molecular characteristics and clinical management. Urol Oncol 2024; 42:144-154. [PMID: 38485644 DOI: 10.1016/j.urolonc.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/15/2024]
Abstract
Prostatic acinar adenocarcinoma accounts for approximately 95% of prostate cancer (CaP) cases. The remaining 5% of histologic subtypes of CaP are known to be more aggressive and have recently garnered substantial attention. These histologic subtypes - namely, prostatic ductal adenocarcinoma (PDA), intraductal carcinoma of the prostate (IDC-P), and cribriform carcinoma of the prostate (CC-P) - typically exhibit distinct growth characteristics, genomic features, and unique oncologic outcomes. For example, PTEN mutations, which cause uncontrolled cell growth, are frequently present in IDC-P and CC-P. Germline mutations in homologous DNA recombination repair (HRR) genes (e.g., BRCA1, BRCA2, ATM, PALB2, and CHEK2) are discovered in 40% of patients with IDC-P, while only 9% of patients without ductal involvement had a germline mutation. CC-P is associated with deletions in common tumor suppressor genes, including PTEN, TP53, NKX3-1, MAP3K7, RB1, and CHD1. Evidence suggests abiraterone may be superior to docetaxel as a first-line treatment for patients with IDC-P. To address these and other critical pathological attributes, this review examines the molecular pathology, genetics, treatments, and oncologic outcomes associated with CC-P, PDA, and IDC-P with the objective of creating a comprehensive resource with a centralized repository of information on PDA, IDC-P, and CC-P.
Collapse
Affiliation(s)
- Yibo Shi
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT
| | - Borivoj Golijanin
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Joanne Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Mark Sikov
- Department of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI
| | - Elias Hyams
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Gyan Pareek
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Anthony E Mega
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Galina G Lagos
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Lisha Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Peng S, Huang H, Zhu X, Chen J, Ding X, Wang F, Chen L, Lu Z. Anlotinib plus tislelizumab for recurrent metastatic pancreas ductal adenocarcinoma with germline BRCA2 mutation: A case report. Exp Ther Med 2024; 27:178. [PMID: 38515651 PMCID: PMC10952340 DOI: 10.3892/etm.2024.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
While combined immunotherapy and anti-angiogenic therapy have demonstrated efficacy in renal cell carcinoma, non-small cell lung cancer and hepatocellular carcinoma, the efficacy of first-line treatment for pancreatic ductal adenocarcinoma (PDAC) with germline BRCA2 mutation remains unproven. We described a BRCA2-mutated patient with PDAC who presented with posterior cardiac metastasis 8 months after surgery. After receiving four cycles of anlotinib combined with tislelizumab, abdominal CT scans indicated a complete response. The patient sustained this response for over 14 months on the combination regimen, with no reported adverse events. In conclusion, the combination of tislelizumab and anlotinib may offer a viable therapeutic option for recurrent metastatic BRCA2-mutated PDAC.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Fen Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
45
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
46
|
Muthusamy S, Smith SC. Contemporary Diagnostic Reporting for Prostatic Adenocarcinoma: Morphologic Aspects, Molecular Correlates, and Management Perspectives. Adv Anat Pathol 2024; 31:188-201. [PMID: 38525660 DOI: 10.1097/pap.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The diagnosis and reporting of prostatic adenocarcinoma have evolved from the classic framework promulgated by Dr Donald Gleason in the 1960s into a complex and nuanced system of grading and reporting that nonetheless retains the essence of his remarkable observations. The criteria for the "Gleason patterns" originally proposed have been continually refined by consensuses in the field, and Gleason scores have been stratified into a patient-friendly set of prognostically validated and widely adopted Grade Groups. One product of this successful grading approach has been the opportunity for pathologists to report diagnoses that signal carefully personalized management, placing the surgical pathologist's interpretation at the center of patient care. At one end of the continuum of disease aggressiveness, personalized diagnostic care means to sub-stratify patients with more indolent disease for active surveillance, while at the other end of the continuum, reporting histologic markers signaling aggression allows sub-stratification of clinically significant disease. Whether contemporary reporting parameters represent deeper nuances of more established ones (eg, new criteria and/or quantitation of Gleason patterns 4 and 5) or represent additional features reported alongside grade (intraductal carcinoma, cribriform patterns of carcinoma), assessment and grading have become more complex and demanding. Herein, we explore these newer reporting parameters, highlighting the state of knowledge regarding morphologic, molecular, and management aspects. Emphasis is made on the increasing value and stakes of histopathologists' interpretations and reporting into current clinical risk stratification and treatment guidelines.
Collapse
Affiliation(s)
| | - Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, Division of Urology, VCU School of Medicine, Richmond, VA
- Richmond Veterans Affairs Medical Center, Richmond, VA
- Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
47
|
Ceyhan-Birsoy O, Stadler ZK. Tumor-Only Sequencing: A Story Only Half Told. JCO Precis Oncol 2024; 8:e2400226. [PMID: 38810205 DOI: 10.1200/po.24.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Germline testing and tumor sequencing are often both necessary for optimal cancer treatment and management.
Collapse
Affiliation(s)
- Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
48
|
Peleg Hasson S, Shachar E, Brezis MR, Saad A, Toledano B, Michaan N, Laskov I, Grisaru D, Goldstein J, Nutman A, Safra T. Medical cannabis and its effect on oncological outcomes in patients with ovarian cancer treated with PARP inhibitors. Int J Gynecol Cancer 2024; 34:559-565. [PMID: 38242547 DOI: 10.1136/ijgc-2023-004953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) play a pivotal role in ovarian cancer management. With medical cannabis emerging as a novel component of supportive care, this study investigated the impact of medical cannabis use on oncological outcomes in patients with ovarian cancer undergoing PARPi therapy. METHODS The study included patients from a single institution database treated for ovarian cancer between January 2014 and January 2020 who received PARPi maintenance therapy in a first-line or recurrent disease setting after a confirmed response to platinum-based treatment. The study categorized patients as cannabis users and cannabis-naïve. Univariate and multivariate Cox regression analysis and the Kaplan-Meier method were used to assess the effects of medical cannabis use on the duration of PARPi therapy, progression-free survival, and overall survival. RESULTS Among the eligible patients (n=93), most were cannabis-naïve (69%, n=64) while the rest used medical cannabis (31%, n=29). Medical cannabis use rates were comparable for patients receiving PARPi therapy post-primary treatment or for recurrence (42%, n=9, vs 27%, n=20; p=0.1). Both groups exhibited similar median duration for PARPi therapy (12.1 vs 9.5 months; p=0.89) and progression-free survival (20 vs 21 months; p=0.83). Kaplan-Meier analysis detected no differences in progression-free survival associated with cannabis use. Although cannabis users had an extended overall survival compared with the cannabis-naïve group (129.3 vs 99 months; p=0.03), cannabis use was insignificant for overall survival on multivariate analysis (p=0.10). Multivariate analysis showed stage IV at diagnosis (p=0.02) to be the sole factor associated with progression-free survival (p=0.02). CONCLUSION Medical cannabis usage in patients receiving PARPi treatment showed no association with duration of PARPi therapy, progression-free survival, or overall survival.
Collapse
Affiliation(s)
- Shira Peleg Hasson
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eliya Shachar
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Miriam R Brezis
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Akram Saad
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Center and Institute of Oncology, Tel Hashomer, Tel Aviv, Israel
| | - Bar Toledano
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Michaan
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gynecologic Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ido Laskov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gynecologic Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Grisaru
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gynecologic Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jeffrey Goldstein
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amir Nutman
- Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Safra
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
49
|
Balmaña J, Fasching PA, Couch FJ, Delaloge S, Labidi-Galy I, O'Shaughnessy J, Park YH, Eisen AF, You B, Bourgeois H, Gonçalves A, Kemp Z, Swampillai A, Jankowski T, Sohn JH, Poddubskaya E, Mukhametshina G, Aksoy S, Timcheva CV, Park-Simon TW, Antón-Torres A, John E, Baria K, Gibson I, Gelmon KA. Clinical effectiveness and safety of olaparib in BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: final analysis of LUCY. Breast Cancer Res Treat 2024; 204:237-248. [PMID: 38112922 PMCID: PMC10948524 DOI: 10.1007/s10549-023-07165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The interim analysis of the phase IIIb LUCY trial demonstrated the clinical effectiveness of olaparib in patients with germline BRCA-mutated (gBRCAm), human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (mBC), with median progression-free survival (PFS) of 8.11 months, which was similar to that in the olaparib arm of the phase III OlympiAD trial (7.03 months). This prespecified analysis provides final overall survival (OS) and safety data. METHODS The open-label, single-arm LUCY trial of olaparib (300 mg, twice daily) enrolled adults with gBRCAm or somatic BRCA-mutated (sBRCAm), HER2-negative mBC. Patients had previously received a taxane or anthracycline for neoadjuvant/adjuvant or metastatic disease and up to two lines of chemotherapy for mBC. RESULTS Of 563 patients screened, 256 (gBRCAm, n = 253; sBRCAm, n = 3) were enrolled. In the gBRCAm cohort, median investigator-assessed PFS (primary endpoint) was 8.18 months and median OS was 24.94 months. Olaparib was clinically effective in all prespecified subgroups: hormone receptor status, previous chemotherapy for mBC, previous platinum-based chemotherapy (including by line of therapy), and previous cyclin-dependent kinase 4/6 inhibitor use. The most frequent treatment-emergent adverse events (TEAEs) were nausea (55.3%) and anemia (39.2%). Few patients (6.3%) discontinued olaparib owing to a TEAE. No deaths associated with AEs occurred during the study treatment or 30-day follow-up. CONCLUSION The LUCY patient population reflects a real-world population in line with the licensed indication of olaparib in mBC. These findings support the clinical effectiveness and safety of olaparib in patients with gBRCAm, HER2-negative mBC. CLINICAL TRIAL REGISTRATION Clinical trials registration number: NCT03286842.
Collapse
Affiliation(s)
- Judith Balmaña
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Suzette Delaloge
- Breast Cancer Unit, Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospital, Department of Medicine, Division of Oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology and US Oncology, Dallas, TX, USA
| | - Yeon Hee Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Andrea F Eisen
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benoit You
- Department of Medical Oncology, Hospices Civils of Lyon Cancer Institute, Centre for Therapeutic Investigation in Oncology and Haematology of Lyon, Lyon Sud Hospital Centre, Lyon, France
- Faculty of Medicine of Lyon Sud, Claude Bernard Lyon 1 University, Lyon, France
- GINECO-GINEGEPS, Paris, France
| | - Hughes Bourgeois
- Medical Oncology Department, Victor Hugo Clinic-Jean Bernard Center, Le Mans, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Cancer Research Center of Marseille, Aix-Marseille University, French National Centre for Scientific Research, National Institute for Health and Medical Research, Marseille, France
| | - Zoe Kemp
- Breast Cancer Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Angela Swampillai
- Department of Clinical Oncology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Breast Cancer Now Research Unit, Guy's Hospital, King's College London, London, UK
| | - Tomasz Jankowski
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Joo Hyuk Sohn
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Sercan Aksoy
- Medical Oncology Department, Hacettepe University Cancer Institute, Ankara, Turkey
| | | | | | - Antonio Antón-Torres
- Department of Medical Oncology, Miguel Servet University Hospital and Aragon Health Research Institute, Zaragoza, Spain
| | | | | | | | - Karen A Gelmon
- Department of Medical Oncology, BC Cancer, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
50
|
Batson M, Goldblatt LG, Pundock S, Arutyunov A, McKenna D, Haggerty A, Symecko H, Shah PD. Electronic medical record documentation of germline genetic evaluations in patients with ovarian cancer. J Genet Couns 2024; 33:314-321. [PMID: 37183564 DOI: 10.1002/jgc4.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Germline genetic evaluation is indicated for all patients with epithelial ovarian cancer (EOC). For testing to have clinical utility, results must be documented within the electronic medical record (EMR) and accessible to providers at the point of care, which can be challenging in the context of current EMR limitations and genetic testing processes. We examined the receipt of genetics services and EMR capture of genetic testing results in patients with EOC. We conducted a retrospective chart review to examine germline genetic evaluations among patients with EOC seen by a gynecologic or medical oncologist at the University of Pennsylvania in 2016. EMRs were reviewed to determine: (1) if patients were referred for genetic evaluation; (2) if genetic testing was performed; (3) if results were documented in office notes, scanned third-party test reports, and/or the EMR problem list; (4) if provider notes correctly listed the variant classification. Overall, 413 (62%) of patients had documented genetic testing. Genetic testing was documented in almost all provider notes (96%) and the majority of scanned EMR reports (64%). Pathogenic variants were found in 119 (29%) individuals; the majority (70%) had genetic testing documented within EMR problem lists. Provider notes were highly accurate in describing variant classification. In this study, genetic testing was performed and documented in the EMR for most EOC patients. Approximately one-third of those tested did not have scanned test reports specifying variant found, limiting the utility of test results for cascade testing and therapeutic decisions.
Collapse
Affiliation(s)
- Melissa Batson
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lindsay G Goldblatt
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stacy Pundock
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Arutyunov
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danielle McKenna
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley Haggerty
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heather Symecko
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Payal D Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basser Center for BRCA at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|