1
|
Tanigawa K, Redmond WL. Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy. Oncoimmunology 2025; 14:2452654. [PMID: 39812092 PMCID: PMC11740684 DOI: 10.1080/2162402x.2025.2452654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8+ T cells and NK cells and can generate durable responses in a subset of patients. Moreover, HD IL-2 may have potential efficacy in patients whose disease has progressed following ICB and plays a vital role in expanding tumor-infiltrating lymphocyte (TIL) in TIL therapy. Despite its potential, the use of HD IL-2 is limited by severe toxicities such as hypotension and vascular leak syndrome. Additionally, only a few patients achieve a good outcome after HD IL-2 therapy. To address these challenges, numerous next-generation IL-2 receptor (IL-2 R) agonists have been developed to exhibit treatment effects while minimizing adverse events. This review will explore IL-2 biology, the clinical application of HD IL-2 therapy, and the development of novel IL-2 R agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kengo Tanigawa
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - William L. Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
2
|
Zhang J, Peng Q, Fan J, Liu F, Chen H, Bi X, Yuan S, Jiang W, Pan T, Li K, Tan S, Chen P. Single-cell and spatial transcriptomics reveal SPP1-CD44 signaling drives primary resistance to immune checkpoint inhibitors in RCC. J Transl Med 2024; 22:1157. [PMID: 39736762 DOI: 10.1186/s12967-024-06018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are a cornerstone therapy for advanced renal cell carcinoma (RCC). However, significant rates of primary resistance hinder their efficacy, and the underlying mechanisms remain poorly understood. This study aims to unravel the tumor-immune interactions and signaling pathways driving primary resistance to ICIs in RCC. METHODS We integrated single-cell RNA sequencing, spatial transcriptomics, and clinical sample analysis to investigate the tumor microenvironment and intercellular signaling. Advanced computational methods, including cell-cell communication networks, pseudotime trajectories, and gene set enrichment analysis (GSEA), were employed to uncover the underlying resistance mechanisms. RESULTS Compared to the sensitive group, the primary resistance group exhibited a significant increase in SPP1-CD44 signaling-mediated interactions between tumor cells and immune cells. These interactions disrupted antigen presentation in immune effector cells and suppressed key chemokine and cytokine pathways, thereby impairing effective immune responses. In contrast, the sensitive group showed more active antigen presentation and cytokine signaling, which facilitated stronger immune responses. Furthermore, the interaction between SPP1-secreting tumor cells and CD44-expressing exhausted CD8 + T cells activated the MAPK signaling pathway within CD8 + Tex cells, exacerbating T cell exhaustion and driving the development of ICI resistance in RCC. CONCLUSION Our findings reveal a potential mechanism by which SPP1-CD44 signaling mediates tumor-immune cell interactions leading to ICI resistance, providing a theoretical basis for targeting and disrupting this signaling to overcome primary resistance in RCC.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China
| | - Qingyan Peng
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Jin Fan
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Fuzhong Liu
- Cancer Institute, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China
| | - Hongbo Chen
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Xing Bi
- Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China
| | - Shuai Yuan
- Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China
| | - Wei Jiang
- Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China
| | - Ting Pan
- Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China
| | - Kailing Li
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Sihai Tan
- Department of Pediatric, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Peng Chen
- Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China.
| |
Collapse
|
3
|
Gouda MA, Stephen B, Tian Y, Alshawa A, Onwugaje DOC, Albittar A, Yang Y, Zarifa A, Yilmaz B, Gurses S, Sprenger A, Derbala MH, Brink A, How JA, Moyers J, Piha-Paul SA, Hong DS, Meric-Bernstam F, Patel SP, Oliva IG. A Phase Ib Study of Selinexor in Combination with Pembrolizumab in Patients with Metastatic Melanoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:247-254. [PMID: 39524469 PMCID: PMC11541928 DOI: 10.36401/jipo-24-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have substantially advanced the treatment of patients with malignant melanoma. However, improving therapeutic efficacy requires identifying drug combinations that elicit durable responses without inducing intolerable toxicity. Within that context, selinexor emerges as a possible combination option that has been shown in preclinical studies to enhance the efficacy of ICI therapy. Methods: In this phase 1b study, we investigated selinexor in combination with pembrolizumab in 25 patients with advanced non-uveal melanoma. Patients received selinexor at a dosage of 60 mg taken orally twice weekly, and pembrolizumab intravenously at a dosage of 200 mg every 3 weeks. Results: Despite the high incidence of adverse events (96%), most treatment-related toxicities were manageable with supportive care and dose reductions. The most common adverse events of any grade were nausea (n = 20; 80%), decreased white blood cell count (n = 15; 60%), vomiting (n = 14; 56%), anemia (n = 12; 48%), fatigue (n = 12; 48%), and decreased platelet count (n = 12; 48%). The 10 patients with treatment-naïve evaluable disease had an objective response rate (ORR) of 70% (n = 7, including three patients with complete response), which was significantly higher than that of the 14 patients with prior anti-programmed cell death protein 1 (anti-PD-1) therapy, whose ORR was 7% (n = 1; p = 0.002). Stable disease was observed in two patients (20%) with treatment-naïve disease and seven patients (50%) with prior anti-PD-1 therapy. Conclusion: Selinexor combined with pembrolizumab showed promising antitumor activity in patients with treatment-naïve metastatic melanoma. The toxicity profile of the combination was consistent with that reported for individual agents, with no additional safety concerns.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanyan Tian
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anas Alshawa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dilichukwu O. Chudy Onwugaje
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aya Albittar
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yali Yang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdulrazzak Zarifa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Yilmaz
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Serdar Gurses
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashabari Sprenger
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed H. Derbala
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda Brink
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Andrew How
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin Moyers
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA, USA
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sapna P. Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Liu Z, Zheng Y, Yuan M, Zhang G, Yang G. Association of CTACK, IL-2, and IL-13 with increased risk of lung cancer: A Mendelian randomization study. Cytokine 2024; 181:156680. [PMID: 38885591 DOI: 10.1016/j.cyto.2024.156680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND In recent years, relevant studies have reported that inflammatory cytokines are related to the occurrence of cancer. However, the correlation with lung cancer is not clear. This study used the Mendelian random grouping method to investigate the correlation between inflammatory factors and lung cancer in different populations. METHODS We obtained the single nucleotide polymorphisms (SNPs) of inflammatory cytokines through the open database and the SNPs of lung cancer (European and East Asian) through the IEU OpenGWAS project. Inverse variance-weighted (IVW) MR analyses were used to determine the causalities of exposures and outcomes. Supplementary analyses were also performed using weighted median and MR-Egger regressions. Afterward, sensitivity analyses were performed to test the robustness. Search the ChEMBL database for target drugs and indications for CTACK, IL-2, and IL-13. RESULTS By IVW method, we found that CTACK, IL-2, and IL-13 were associated with an increased risk of lung cancer in the European population (CTACK, OR = 1.098, 95 % CI 1.001-1.204, P = 0.047; IL-2, OR = 1.112, 95 % CI 1.009-1.225, P = 0.032; IL-13, OR = 1.068, 95 % CI 1.007-1.132, P = 0.029), while only IL-13 was associated with an increased risk of lung cancer in the East Asian population (IL-13, OR = 1.110, 95 % CI 1.010-1.220, P = 0.030). The weighted median and MR-Egger regression methods were in the same direction as the IVW effect sizes. Furthermore, no evidence of multidirectionality was detected using the MR-Egger intercept as a sensitivity analysis. Currently, there are no approved or phase III studied indications for CTACK, IL-2, and IL-13 targets in lung cancer. CONCLUSION The study outcomes supported that the inflammatory cytokines CTACK, IL-2, and IL-13 increase the risk of lung cancer. There is a lack of indications for drugs in these three targets. We explored the causal relationship between inflammatory cytokines and lung cancer, providing a basis for future cancer prediction models and targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Zishen Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingying Zheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengqi Yuan
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ganlin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Guowang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Tannir NM, Formiga MN, Penkov K, Kislov N, Vasiliev A, Gunnar Skare N, Hong W, Dai S, Tang L, Qureshi A, Zalevsky J, Tagliaferri MA, George D, Agarwal N, Pal S. Bempegaldesleukin Plus Nivolumab Versus Sunitinib or Cabozantinib in Previously Untreated Advanced Clear Cell Renal Cell Carcinoma: A Phase III Randomized Study (PIVOT-09). J Clin Oncol 2024; 42:2800-2811. [PMID: 38838287 DOI: 10.1200/jco.23.02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE Bempegaldesleukin (BEMPEG) is a pegylated interleukin (IL)-2 cytokine prodrug engineered to provide controlled and sustained activation of the clinically validated IL-2 pathway, with the goal of preferentially activating and expanding effector CD8+ T cells and natural killer cells over immunosuppressive regulator T cells in the tumor microenvironment. The open-label, phase III randomized controlled PIVOT-09 trial investigated the efficacy and safety of BEMPEG plus nivolumab (NIVO) as first-line treatment for advanced/metastatic clear cell renal cell carcinoma (ccRCC) with intermediate-/poor-risk disease. METHODS Patients with previously untreated advanced/metastatic ccRCC were randomly assigned (1:1) to BEMPEG plus NIVO, or investigator's choice of tyrosine kinase inhibitor (TKI; sunitinib or cabozantinib). Coprimary end points were objective response rate (ORR) by blinded independent central review and overall survival (OS) in patients with International Metastatic RCC Database Consortium (IMDC) intermediate-/poor-risk disease. RESULTS Overall, 623 patients were randomly assigned to BEMPEG plus NIVO (n = 311) or TKI (n = 312; sunitinib n = 225, cabozantinib n = 87), of whom 514 (82.5%) had IMDC intermediate-/poor-risk disease. In patients with IMDC intermediate-/poor-risk disease, ORR with BEMPEG plus NIVO versus TKI was 23.0% (95% CI, 18.0 to 28.7) versus 30.6% (95% CI, 25.1 to 36.6; difference, -7.7 [95% CI, -15.2 to -0.2]; P = .0489), and median OS was 29.0 months versus not estimable (hazard ratio, 0.82 [95% CI, 0.61 to 1.10]; P = .192), respectively. More frequent all-grade treatment-related adverse events (TRAEs) with BEMPEG plus NIVO versus TKI included pyrexia (32.6% v 2.0%) and pruritus (31.3% v 8.8%). Grade 3/4 TRAEs were less frequent with BEMPEG plus NIVO (25.8%) versus TKI (56.5%). CONCLUSION First-line BEMPEG plus NIVO for advanced/metastatic ccRCC did not improve efficacy in patients with intermediate-/poor-risk disease but led to fewer grade 3/4 TRAEs versus TKI.
Collapse
Affiliation(s)
- Nizar M Tannir
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Konstantin Penkov
- Private Medical Institution Euromedservice, St Petersburg, Russian Federation
| | - Nikolay Kislov
- Regional Clinical Oncology Hospital, Yaroslavl, Russian Federation
| | | | - Nils Gunnar Skare
- Paraná Institute of Oncology, and Hospital Erasto Gaertner, Curitiba, Brazil
| | | | | | - Lily Tang
- Nektar Therapeutics, San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
7
|
Rokade S, Damani AM, Oft M, Emmerich J. IL-2 based cancer immunotherapies: an evolving paradigm. Front Immunol 2024; 15:1433989. [PMID: 39114660 PMCID: PMC11303236 DOI: 10.3389/fimmu.2024.1433989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients. The therapeutic potential of wild type IL-2 is clinically limited by its short half-life and severe vascular toxicity. Moreover, the activation of regulatory T cells and the terminal differentiation of effector T cells on IL-2 pose additional restrictions. To overcome the toxicity of IL-2 in order to realize its full potential for patients, several novel engineering strategies are being developed and IL-2 based immunotherapy for cancer has emerged as a burgeoning field of clinical and experimental research. In addition, combination of IL-2 with PD-1/L1 pathway blockade shows vastly improved anti-tumor efficacy over either monotherapy in preclinical tumor models. In this review we discuss the biological characteristics of IL-2 and its receptors, as well as its efficacy and treatment limiting toxicities in cancer patients. We also explore the efforts aimed at developing novel and safer IL-2 therapies to harness the full therapeutic potential of this cytokine.
Collapse
Affiliation(s)
- Sushama Rokade
- Development Department, Synthekine, Menlo Park, CA, United States
| | | | | | - Jan Emmerich
- Development Department, Synthekine, Menlo Park, CA, United States
| |
Collapse
|
8
|
Gogas H, Ravimohan S, Datta A, Chhibber A, Couselo EM, Diab A, Pereira C, Quéreux G, Sandhu S, Curti B, Khushalani NI, Taylor MH, Daniels GA, Spreafico A, Meniawy T, Van Den Eertwegh AJM, Sun Y, Arriaga Y, Zhou M, Long GV, Lebbé C. Baseline biomarkers of efficacy and on-treatment immune-profile changes associated with bempegaldesleukin plus nivolumab. NPJ Precis Oncol 2024; 8:150. [PMID: 39025948 PMCID: PMC11258232 DOI: 10.1038/s41698-024-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
In PIVOT IO 001 (NCT03635983), the combination of the investigational interleukin-2 agonist bempegaldesleukin (BEMPEG) with nivolumab (NIVO) had no added clinical benefit over NIVO monotherapy in unresectable/metastatic melanoma. Pre-defined baseline and on-treatment changes in selected biomarkers were analyzed to explore the potential mechanisms underlying the clinical observations. In each treatment arm, higher baseline tumor mutational burden or immune infiltration/inflammation was associated with improved efficacy compared with lower levels. On-treatment peripheral biomarker changes showed that BEMPEG + NIVO increased all immune cell subset counts interrogated, including regulatory T cells. This was followed by attenuation of the increase in CD8 + T cells, conventional CD4 + T cells, and systemic interferon gamma levels at later treatment cycles in the combination arm. Changes in tumor biomarkers were comparable between arms. These biomarker results help provide a better understanding of the mechanism of action of BEMPEG + NIVO and may help contextualize the clinical observations from PIVOT IO 001.
Collapse
Affiliation(s)
- Helen Gogas
- National and Kapodistrian University of Athens, Athens, Greece.
| | | | | | | | - Eva Muñoz Couselo
- Vall d'Hebron Barcelona Hospital and Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Adi Diab
- MD Anderson Cancer Center, Houston, TX, USA
| | - Caio Pereira
- Fundação Pio XII - Hospital de Câncer de Barretos, São Paulo, Brazil
| | | | | | - Brendan Curti
- Eerle A. Chiles Research Institute, Providence Cancer Institute of Oregon, Portland, OR, USA
| | | | - Matthew H Taylor
- Eerle A. Chiles Research Institute, Providence Cancer Institute of Oregon, Portland, OR, USA
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tarek Meniawy
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Alfons J M Van Den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Ming Zhou
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Georgina V Long
- The Melanoma Institute Australia, The University of Sydney and Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Céleste Lebbé
- Université Paris Cité, Dermato-Oncology and CIC AP-HP Hôpital Saint Louis, Cancer Institute APHP, Nord-Université Paris Cité, Paris, France
- INSERM U976 HIPI, Paris, France
| |
Collapse
|
9
|
Kaptein P, Slingerland N, Metoikidou C, Prinz F, Brokamp S, Machuca-Ostos M, de Roo G, Schumacher TN, Yeung YA, Moynihan KD, Djuretic IM, Thommen DS. CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool. Cancer Discov 2024; 14:1226-1251. [PMID: 38563969 PMCID: PMC11215409 DOI: 10.1158/2159-8290.cd-23-1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).
Collapse
Affiliation(s)
- Paulien Kaptein
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Nadine Slingerland
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Christina Metoikidou
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Felix Prinz
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Simone Brokamp
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Mercedes Machuca-Ostos
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Guido de Roo
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yik A. Yeung
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | | | | - Daniela S. Thommen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Yang M, Cui M, Sun Y, Liu S, Jiang W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Commun Signal 2024; 22:338. [PMID: 38898505 PMCID: PMC11186190 DOI: 10.1186/s12964-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-programmed death 1/programmed death ligand 1 (anti-PD-1/PD-L1) antibodies exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. However, the emergence of drug resistance causes most patients to respond poorly to these immune checkpoint inhibitors (ICIs). Studies have shown that insufficient T-cell infiltration, lack of PD-1 expression, deficient interferon signaling, loss of tumor antigen presentation, and abnormal lipid metabolism are all considered to be closely associated with immunotherapy resistance. To address drug resistance in tumor immunotherapy, a lot of research has concentrated on developing combination therapy strategies. Currently, ICIs such as anti-PD-1 /PD-L1 antibody combined with chemotherapy and targeted therapy have been approved for clinical treatment. In this review, we analyze the mechanisms of resistance to anti-PD-1/PD-L1 therapy in terms of the tumor microenvironment, gut microbiota, epigenetic regulation, and co-inhibitory immune checkpoint receptors. We also discuss various promising combination therapeutic strategies to address resistance to anti-PD-1/PD-L1 drugs, including combining these therapies with traditional Chinese medicine, non-coding RNAs, targeted therapy, other ICIs, and personalized cancer vaccines. Moreover, we focus on biomarkers that predict resistance to anti-PD-1/PD-L1 therapy as well as combination therapy efficacy. Finally, we suggest ways to further expand the application of immunotherapy through personalized combination strategies using biomarker systems.
Collapse
Affiliation(s)
- Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yang Sun
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
11
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
12
|
Villani A, Potestio L, Lallas A, Apalla Z, Scalvenzi M, Martora F. Unaddressed Challenges in the Treatment of Cutaneous Melanoma? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:884. [PMID: 38929501 PMCID: PMC11205306 DOI: 10.3390/medicina60060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: While the management of noninvasive cutaneous melanoma (CM) is typically limited to a secondary excision to reduce recurrence risk and periodic follow-up, treating patients with advanced melanoma presents ongoing challenges. Materials and Methods: This review provides a comprehensive examination of both established and emerging pharmacologic strategies for advanced CM management, offering an up-to-date insight into the current therapeutic milieu. The dynamic landscape of advanced CM treatment is explored, highlighting the efficacy of immune checkpoint inhibitors and targeted therapies, either in monotherapy or combination regimens. Additionally, ongoing investigations into novel treatment modalities are thoroughly discussed, reflecting the evolving nature of melanoma management. Results: The therapeutic landscape for melanoma management is undergoing significant transformation. Although various treatment modalities exist, there remains a critical need for novel therapies, particularly for certain stages of melanoma or cases resistant to current options. Conclusions: Consequently, further studies are warranted to identify new treatment avenues and optimize the utilization of existing drugs.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Aimilios Lallas
- First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece;
| | - Zoe Apalla
- Second Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| |
Collapse
|
13
|
Brand CL, Hunger RE, Seyed Jafari SM. Eosinophilic granulocytes as a potential prognostic marker for cancer progression and therapeutic response in malignant melanoma. Front Oncol 2024; 14:1366081. [PMID: 38756652 PMCID: PMC11096470 DOI: 10.3389/fonc.2024.1366081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
The importance of eosinophilic granulocytes in cancer has been widely discussed in recent years. The current study reviews the evidence on the role of eosinophilic granulocytes in melanoma as a prognostic marker for cancer progression and the efficacy of treatment with modern immune checkpoint inhibitors. A total of 33 human clinical studies were included in the review, with heterogeneous data due to differences in patients populations, study design and inclusion of small study groups. However, 28 of the 33 studies suggested that eosinophilic granulocytes could be used as a prognostic biomarker for outcome and/or potential response to systemic treatment and/or occurrence of adverse events in melanoma patients. Nevertheless, the exact role of eosinophils remains to be elucidated. Further prospective, larger and better controlled studies are warranted to clarify the significance of eosinophilic granulocytes in patients with melanoma, in more details.
Collapse
Affiliation(s)
| | | | - Seyed Morteza Seyed Jafari
- Department of Dermatology and Venerology, University Hospital of Bern, University Bern, Bern, Switzerland
| |
Collapse
|
14
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Fishman J, Buchbinder EI. Is There a Current Role for Combination Chemotherapy or High-Dose Interleukin 2 in Melanoma? Cancer J 2024; 30:120-125. [PMID: 38527266 DOI: 10.1097/ppo.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Immune checkpoint inhibition and targeted therapies have revolutionized the treatment of melanoma. However, chemotherapy and interleukin 2 (IL-2) therapy may still have a role in the later-line treatment of patients who do not have durable responses to other treatments. Chemotherapy can work transiently in patients whose disease has progressed on immune checkpoint inhibitors and for whom there are no appropriate targeted therapy options. High-dose IL-2 therapy can still be effective for a very small number of patients following progression on other therapies. In addition, modified IL-2 agents and IL-2 in combination with tumor-infiltrating lymphocyte therapy may play a role in future treatments for melanoma.
Collapse
|
16
|
Jin WJ, Jagodinsky JC, Vera JM, Clark PA, Zuleger CL, Erbe AK, Ong IM, Le T, Tetreault K, Berg T, Rakhmilevich AL, Kim K, Newton MA, Albertini MR, Sondel PM, Morris ZS. NK cells propagate T cell immunity following in situ tumor vaccination. Cell Rep 2023; 42:113556. [PMID: 38096050 PMCID: PMC10843551 DOI: 10.1016/j.celrep.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
We report an in situ vaccination, adaptable to nearly any type of cancer, that combines radiotherapy targeting one tumor and intratumoral injection of this site with tumor-specific antibody and interleukin-2 (IL-2; 3xTx). In a phase I clinical trial, administration of 3xTx (with an immunocytokine fusion of tumor-specific antibody and IL-2, hu14.18-IL2) to subjects with metastatic melanoma increases peripheral CD8+ T cell effector polyfunctionality. This suggests the potential for 3xTx to promote antitumor immunity against metastatic tumors. In poorly immunogenic syngeneic murine melanoma or head and neck carcinoma models, 3xTx stimulates CD8+ T cell-mediated antitumor responses at targeted and non-targeted tumors. During 3xTx treatment, natural killer (NK) cells promote CTLA4+ regulatory T cell (Treg) apoptosis in non-targeted tumors. This is dependent on NK cell expression of CD86, which is upregulated downstream of KLRK1. NK cell depletion increases Treg infiltration, diminishing CD8+ T cell-dependent antitumor response. These findings demonstrate that NK cells sustain and propagate CD8+ T cell immunity following 3xTx.
Collapse
Affiliation(s)
- Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Jessica M Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul A Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cindy L Zuleger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Amy K Erbe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kaitlin Tetreault
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Tracy Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A Newton
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Mark R Albertini
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; The Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
17
|
Niederlova V, Tsyklauri O, Kovar M, Stepanek O. IL-2-driven CD8 + T cell phenotypes: implications for immunotherapy. Trends Immunol 2023; 44:890-901. [PMID: 37827864 PMCID: PMC7615502 DOI: 10.1016/j.it.2023.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
18
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
19
|
Shen K, Song W, Wang H, Wang L, Yang Y, Hu Q, Ren M, Gao Z, Wang Q, Zheng S, Zhu M, Yang Y, Zhang Y, Wei C, Gu J. Decoding the metastatic potential and optimal postoperative adjuvant therapy of melanoma based on metastasis score. Cell Death Discov 2023; 9:397. [PMID: 37880239 PMCID: PMC10600209 DOI: 10.1038/s41420-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Metastasis is a formidable challenge in the prognosis of melanoma. Accurately predicting the metastatic potential of non-metastatic melanoma (NMM) and determining effective postoperative adjuvant treatments for inhibiting metastasis remain uncertain. In this study, we conducted comprehensive analyses of melanoma metastases using bulk and single-cell RNA sequencing data, enabling the construction of a metastasis score (MET score) through diverse machine-learning algorithms. The reliability and robustness of the MET score were validated using various in vitro assays and in vivo models. Our findings revealed a distinct molecular landscape in metastatic melanoma characterized by the enrichment of metastasis-related pathways, intricate cell-cell communication, and heightened infiltration of pro-angiogenic tumor-associated macrophages compared to NMM. Importantly, patients in the high MET score group exhibited poorer prognoses and an immunosuppressive microenvironment, featuring increased infiltration of regulatory T cells and decreased infiltration of CD8+ T cells, compared to the low MET score patient group. Expression of PD-1 was markedly higher in patients with low MET scores. Anti-PD-1 (aPD-1) therapy profoundly affected antitumor immunity activation and metastasis inhibition in these patients. In summary, our study demonstrates the effectiveness of the MET score in predicting melanoma metastatic potential. For patients with low MET scores, aPD-1 therapy may be a potential treatment strategy to inhibit metastasis. Patients with high MET scores may benefit from combination therapies.
Collapse
Affiliation(s)
- Kangjie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenyu Song
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongye Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianrong Hu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Ren
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiangcheng Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaoluan Zheng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Ming Zhu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| |
Collapse
|
20
|
Diab A, Gogas H, Sandhu S, Long GV, Ascierto PA, Larkin J, Sznol M, Franke F, Ciuleanu TE, Pereira C, Muñoz Couselo E, Bronzon Damian F, Schenker M, Perfetti A, Lebbe C, Quéreux G, Meier F, Curti BD, Rojas C, Arriaga Y, Yang H, Zhou M, Ravimohan S, Statkevich P, Tagliaferri MA, Khushalani NI. Bempegaldesleukin Plus Nivolumab in Untreated Advanced Melanoma: The Open-Label, Phase III PIVOT IO 001 Trial Results. J Clin Oncol 2023; 41:4756-4767. [PMID: 37651676 PMCID: PMC10602507 DOI: 10.1200/jco.23.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE Despite marked advances in the treatment of unresectable or metastatic melanoma, the need for novel therapies remains. Bempegaldesleukin (BEMPEG), a pegylated interleukin-2 (IL-2) cytokine prodrug, demonstrated efficacy in the phase II PIVOT-02 trial. PIVOT IO 001 (ClinicalTrials.gov identifier: NCT03635983) is a phase III, randomized, open-label study that builds on the PIVOT-02 results in first-line melanoma. METHODS Patients with previously untreated, unresectable, or metastatic melanoma were randomly assigned 1:1 to receive BEMPEG plus nivolumab (NIVO) or NIVO monotherapy. Primary end points were objective response rate (ORR) and progression-free survival (PFS) by blinded independent central review and overall survival (OS). Secondary and exploratory end points included additional efficacy measures, safety, and pharmacokinetics (PKs) and pharmacodynamics analyses. RESULTS In 783 patients (n = 391, BEMPEG plus NIVO; n = 392, NIVO monotherapy), the median follow-up was 11.6 months in the intent-to-treat population. The ORR with BEMPEG plus NIVO was 27.7% versus 36.0% with NIVO (two-sided P = .0311). The median PFS with BEMPEG plus NIVO was 4.17 months (95% CI, 3.52 to 5.55) versus 4.99 months (95% CI, 4.14 to 7.82) with NIVO (hazard ratio [HR], 1.09; 97% CI, 0.88 to 1.35; P = .3988). The median OS was 29.67 months (95% CI, 22.14 to not reached [NR]) with BEMPEG plus NIVO versus 28.88 months (95% CI, 21.32 to NR) with NIVO (HR, 0.94; 99.929% CI, 0.59 to 1.48; P = .6361). Grade 3-4 treatment-related adverse events (AEs) and serious AE rates were higher with the combination (21.7% and 10.1%, respectively) versus NIVO (11.5% and 5.5%, respectively). BEMPEG PK exposure and absolute lymphocyte count changes after BEMPEG plus NIVO were comparable between PIVOT IO 001 and PIVOT-02. CONCLUSION The PIVOT IO 001 study did not meet its primary end points of ORR, PFS, and OS. Increased toxicity was observed with BEMPEG plus NIVO versus NIVO.
Collapse
Affiliation(s)
- Adi Diab
- Melanoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, Royal North Shore and Mater Hospitals, The University of Sydney, Sydney, NSW, Australia
| | - Paolo A. Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Department, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - James Larkin
- Medical Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Mario Sznol
- Medical Oncology, Yale Cancer Center, Yale University School of Medicine, Smilow Cancer Hospital Yale New Haven Health, New Haven, CT
| | - Fabio Franke
- Medical Oncology, Oncosite Centro de Pesquisa Clínica, Ijui, Brazil
| | - Tudor E. Ciuleanu
- Medical Oncology, Institutul Prof Dr Ion Chiricuţă, Cluj-Napoca, Romania
| | - Caio Pereira
- Fundação Pio XII, Hospital de Câncer de Barretos, Barretos, Brazil
| | - Eva Muñoz Couselo
- Medical Oncology, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Michael Schenker
- Sf Nectarie Oncology Center, University of Medicine and Pharmacy, Craiova, Romania
| | - Aldo Perfetti
- Clínica Adventista Belgrano, Buenos Aires, Argentina
| | - Celeste Lebbe
- AP-HP Department of Dermato-oncology and CIC, INSERM U976, Cancer Institute APHP, Nord-Université Paris Cite, Université Paris Cité, Paris, France
| | - Gaëlle Quéreux
- Department of Dermatology, CIC 1413, de Cancéro-Dermatologie-CIC Biothérapie Nantes, Nantes University Hospital, Nantes, France
| | - Friedegund Meier
- Skin Cancer Center, National Center for Tumor Diseases, University Cancer Centre Dresden, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Brendan D. Curti
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | - Carlos Rojas
- Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
| | - Yull Arriaga
- Medical Oncology, Bristol Myers Squibb, Princeton, NJ
| | - Haisu Yang
- Medical Oncology, Bristol Myers Squibb, Princeton, NJ
| | - Ming Zhou
- Medical Oncology, Bristol Myers Squibb, Princeton, NJ
| | | | - Paul Statkevich
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ
| | | | | |
Collapse
|
21
|
Drljevic-Nielsen A, Skou N, Mains JR, Pedersen EM, Rasmussen F, Donskov F. Late adverse events to iodinated contrast media in patients treated with IL-2: a safety report from the Danish Renal Carcinoma Group (DaRenCa) study - 1. Acta Radiol 2023; 64:2812-2819. [PMID: 37545176 DOI: 10.1177/02841851231189635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND A higher incidence of late adverse events (LAEs) to iodinated contrast media in interleukin-2 (IL-2)-treated patients has been reported. PURPOSE To assess the incidence of LAEs after administration of iodinated contrast media in patients with metastatic renal cell carcinoma (mRCC) treated with IL-2. MATERIAL AND METHODS Patients were randomized to treatment with IL-2 and interferon-α with/without bevacizumab in the Danish Renal Carcinoma Group study - 1. Patients underwent a computed tomography (CT) scan at baseline, at one month, at three months, and every third month until RECIST 1.1 defined progression. LAEs due to iodinated contrast media were systematically registered according to the Common Terminology Criteria for Adverse Events classification. RESULTS In total, 89 patients were included and underwent a total of 507 contrast-enhanced CT scans. An overall incidence of 46 (9.1%) LAEs was observed in 38 of 89 (42.7%) patients; 3 LAEs at baseline (3.4% of all baseline scans), 39 (13.9%) LAEs during IL-2-based therapies, and 4 (2.9%) LAEs after termination of IL-based therapies. There was no difference in progression-free survival, overall survival, and treatment response in patients experiencing LAEs compared to patients without LAEs (P = 0.2, P = 0.5, and P = 0.6, respectively). CONCLUSION Patients with mRCC demonstrated a higher incidence of LAEs after administration of iodinated contrast during ongoing IL-2 therapy, indicating that iodinated contrast media may cause a recall phenomenon of IL-2 toxicities in patients with mRCC. Treatment with IL-2 should not be a contraindication for contrast-enhanced scans in patients with mRCC but expertise and vigilance are required.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - Nikolaj Skou
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jill R Mains
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Erik M Pedersen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
22
|
Betjes MGH, De Weerd A. Lowering maintenance immune suppression in elderly kidney transplant recipients; connecting the immunological and clinical dots. Front Med (Lausanne) 2023; 10:1215167. [PMID: 37502354 PMCID: PMC10368955 DOI: 10.3389/fmed.2023.1215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
The management of long-term immune suppressive medication in kidney transplant recipients is a poorly explored field in the area of transplant medicine. In particular, older recipients are at an increased risk for side effects and have an exponentially increased risk of infection-related death. In contrast, an aged immune system decreases the risk of acute T-cell-mediated rejection in older recipients. Recent advances in alloimmunity research have shown a rapid and substantial decline in polyfunctional, high-risk CD4+ T cells post-transplantation. This lowers the direct alloreactivity responsible for T-cell-mediated rejection, also known as donor-specific hyporesponsiveness. Chronic antibody-mediated rejection (c-aABMR) is the most frequent cause of kidney graft loss in the long term. However, in older adults, c-aABMR as a cause of graft loss is outnumbered by death with a functioning graft. In addition, DSA development and a diagnosis of c-aABMR plateau ~10 years after transplantation, resulting in a very low risk for rejection thereafter. The intensity of immune suppression regimes could likely be reduced accordingly, but trials in this area are scarce. Tacrolimus monotherapy for 1 year after transplantation seems feasible in older kidney transplant recipients with standard immunological risk, showing the expected benefits of fewer infections and better vaccination responses.
Collapse
|
23
|
Feils AS, Erbe AK, Birstler J, Kim K, Hoch U, Currie SL, Nguyen T, Yu D, Siefker-Radtke AO, Tannir N, Tolaney SM, Diab A, Sondel PM. Associations between KIR/KIR-ligand genotypes and clinical outcome for patients with advanced solid tumors receiving BEMPEG plus nivolumab combination therapy in the PIVOT-02 trial. Cancer Immunol Immunother 2023; 72:2099-2111. [PMID: 36823323 PMCID: PMC10264535 DOI: 10.1007/s00262-023-03383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/22/2023] [Indexed: 02/25/2023]
Abstract
Bempegaldesleukin (BEMPEG), a CD122-preferential IL2 pathway agonist, has been shown to induce proliferation and activation of NK cells. NK activation is dependent on the balance of inhibitory and excitatory signals transmitted by NK receptors, including Fc-gamma receptors (FCγRs) and killer immunoglobulin-like receptors (KIRs) along with their KIR-ligands. The repertoire of KIRs/KIR-ligands an individual inherits and the single-nucleotide polymorphisms (SNPs) of FCγRs can influence NK function and affect responses to immunotherapies. In this retrospective analysis of the single-arm PIVOT-02 trial, 200 patients with advanced solid tumors were genotyped for KIR/KIR-ligand gene status and FCγR SNP status and evaluated for associations with clinical outcome. Patients with inhibitory KIR2DL2 and its ligand (HLA-C1) observed significantly greater tumor shrinkage (TS, median change -13.0 vs. 0%) and increased PFS (5.5 vs. 3.3 months) and a trend toward improved OR (31.2 vs. 19.5%) compared to patients with the complementary genotype. Furthermore, patients with KIR2DL2 and its ligand together with inhibitory KIR3DL1 and its ligand (HLA-Bw4) had improved OR (36.5 vs. 19.6%), greater TS (median change -16.1 vs. 0%), and a trend toward prolonged PFS (8.4 vs. 3.6 months) as compared to patients with the complementary genotype. FCγR polymorphisms did not influence OR/PFS/TS.These data show that clinical response to BEMPEG plus nivolumab treatment in the PIVOT-02 trial may be associated with the repertoire of KIR/KIR-ligands an individual inherits. Further investigation and validation of these results may enable KIR/KIR-ligand genotyping to be utilized prospectively for identifying patients likely to benefit from certain cancer immunotherapy regimens.
Collapse
Affiliation(s)
- A S Feils
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A K Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - K Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - U Hoch
- Nektar Therapeutics, San Francisco, CA, USA
| | | | - T Nguyen
- Nektar Therapeutics, San Francisco, CA, USA
| | - D Yu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | - N Tannir
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - A Diab
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P M Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
24
|
Indini A, Lombardo M, Sidoni A, Gianatti A, Mandalà M, Massi D. Pathology of Immunotherapy-induced Responses in Cutaneous Melanoma: Current Evidences and Future Perspectives. Adv Anat Pathol 2023; 30:218-229. [PMID: 36221225 DOI: 10.1097/pap.0000000000000375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last years, immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor activity and beneficial effects in patients with early and advanced melanoma. However, ICIs provide clinical benefit only in a minority of patients due to primary and/or acquired resistance mechanisms. Immunotherapy resistance is a complex phenomenon relying on genetic and epigenetic factors, which ultimately influence the interplay between cancer cells and the tumor microenvironment. Information is accumulating on the cellular and molecular mechanisms underlying the production of resistance and the resulting diminished therapeutic efficacy. In addition, current knowledge on predictors of response and toxicity to immunotherapy and on biomarkers that reliably identify resistant patients is in progress. In this review, we will focus on the tumor microenvironment changes induced by ICIs in melanoma, summarizing the available evidence of clinical trials in the neoadjuvant and metastatic setting. We will also overview the role of potential biomarkers in predicting disease response to ICIs, providing insight into current and future research in this field.
Collapse
Affiliation(s)
| | - Maurizio Lombardo
- Division of Dermatology, Department of Medicine and Surgery, Ospedale di Circolo e Fondazione Macchi, ASST dei Sette Laghi, Varese
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia
| | | | - Mario Mandalà
- Unit of Medical Oncology, Department of Medicine and Surgery, University of Perugia, Perugia
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
26
|
Raeber ME, Sahin D, Karakus U, Boyman O. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine 2023; 90:104539. [PMID: 37004361 PMCID: PMC10111960 DOI: 10.1016/j.ebiom.2023.104539] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The cytokine interleukin-2 (IL-2) can stimulate both effector immune cells and regulatory T (Treg) cells. The ability of selectively engaging either of these effects has spurred interest in using IL-2 for immunotherapy of cancer and autoimmune diseases. Thus, numerous IL-2-based biologic agents with improved bias or delivery towards effector immune cells or Treg cells have been developed. This study systematically reviews clinical results of improved IL-2-based compounds. METHODS We searched the ClinicalTrials.gov database for registered trials using improved IL-2-based agents and different databases for available results of these studies. FINDINGS From 576 registered clinical trials we extracted 36 studies on different improved IL-2-based compounds. Adding another nine agents reported in recent literature reviews and based on our knowledge totalled in 45 compounds. A secondary search for registered clinical trials of each of these 45 compounds resulted in 141 clinical trials included in this review, with 41 trials reporting results. INTERPRETATION So far, none of the improved IL-2-based compounds has gained regulatory approval for the treatment of cancer or autoimmune diseases. NKTR-214 is the only compound completing phase 3 studies. The PIVOT IO-001 trial testing the combination of NKTR-214 plus Pembrolizumab compared to Pembrolizumab monotherapy in metastatic melanoma missed its primary endpoints. Also the PIVOT-09 study, combining NKTR-214 with Nivolumab compared to Sunitinib or Cabozantinib in advanced renal cell carcinoma, missed its primary endpoint. Trials in autoimmune diseases are currently in early stages, thus not allowing definite conclusions on efficacy. FUNDING This work was supported by public funding agencies.
Collapse
|
27
|
Choi Y, Lichterman JN, Coughlin LA, Poulides N, Li W, Del Valle P, Palmer SN, Gan S, Kim J, Zhan X, Gao Y, Evers BM, Hooper LV, Pasare C, Koh AY. Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Sci Immunol 2023; 8:eabo2003. [PMID: 36867675 PMCID: PMC10080670 DOI: 10.1126/sciimmunol.abo2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Gut microbiota, specifically gut bacteria, are critical for effective immune checkpoint blockade therapy (ICT) for cancer. The mechanisms by which gut microbiota augment extraintestinal anticancer immune responses, however, are largely unknown. Here, we find that ICT induces the translocation of specific endogenous gut bacteria into secondary lymphoid organs and subcutaneous melanoma tumors. Mechanistically, ICT induces lymph node remodeling and dendritic cell (DC) activation, which facilitates the translocation of a selective subset of gut bacteria to extraintestinal tissues to promote optimal antitumor T cell responses in both the tumor-draining lymph nodes (TDLNs) and the primary tumor. Antibiotic treatment results in decreased gut microbiota translocation into mesenteric lymph nodes (MLNs) and TDLNs, diminished DC and effector CD8+ T cell responses, and attenuated responses to ICT. Our findings illuminate a key mechanism by which gut microbiota promote extraintestinal anticancer immunity.
Collapse
Affiliation(s)
- Yongbin Choi
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura A. Coughlin
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicole Poulides
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Wenling Li
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Priscilla Del Valle
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Cell and Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX. 75390
| | - Suzette N. Palmer
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical, Dallas, TX 75390
| | - Shuheng Gan
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jiwoong Kim
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaowei Zhan
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yajing Gao
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bret M. Evers
- Department of Pathology, The University of Texas Southwestern Medical, Dallas, TX 75390
| | - Lora V. Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220
| | - Andrew Y. Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
28
|
Silk AW, Curti B, Bryan J, Saunders T, Shih W, Kane MP, Hannon P, Fountain C, Felcher J, Zloza A, Kaufman HL, Mehnert JM, McDermott DF. A phase Ib study of interleukin-2 plus pembrolizumab for patients with advanced melanoma. Front Oncol 2023; 13:1108341. [PMID: 36845705 PMCID: PMC9949373 DOI: 10.3389/fonc.2023.1108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction High-dose interleukin-2 (HD IL-2) and pembrolizumab are each approved as single agents by the U.S. F.D.A. for the treatment of metastatic melanoma. There is limited data using the agents concurrently. The objectives of this study were to characterize the safety profile of IL-2 in combination with pembrolizumab in patients with unresectable or metastatic melanoma. Methods In this Phase Ib study, patients received pembrolizumab (200 mg IV every 3 weeks) and escalating doses of IL-2 (6,000 or 60,000 or 600,000 IU/kg IV bolus every 8 hours up to 14 doses per cycle) in cohorts of 3 patients. Prior treatment with a PD-1 blocking antibody was allowed. The primary endpoint was the maximum tolerated dose (MTD) of IL-2 when co-administered with pembrolizumab. Results Ten participants were enrolled, and 9 participants were evaluable for safety and efficacy. The majority of the evaluable participants (8/9) had been treated with PD-1 blocking antibody prior to enrollment. Patients received a median of 42, 22, and 9 doses of IL-2 in the low, intermediate, and high dose cohorts, respectively. Adverse events were more frequent with increasing doses of IL-2. No dose limiting toxicities were observed. The MTD of IL-2 was not reached. One partial response occurred in 9 patients (11%). The responding patient, who had received treatment with an anti-PD-1 prior to study entry, was treated in the HD IL-2 cohort. Discussion Although the sample size was small, HD IL-2 therapy in combination with pembrolizumab appears feasible and tolerable. Clinical trial registration ClinicalTrials.gov, identifier NCT02748564.
Collapse
Affiliation(s)
- Ann W. Silk
- Dana-Farber Cancer Institute, Boston, MA, United States,Harvard Medical School, Department of Medicine, Boston, MA, United States,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States,Robert Wood Johnson Medical School, New Brunswick, NJ, United States,*Correspondence: Ann W. Silk,
| | - Brendan Curti
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Jennifer Bryan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States,Virginia Mason Cancer Institute, Seattle, WA, United States
| | - Tracie Saunders
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Weichung Shih
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Michael P. Kane
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Phoebe Hannon
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Christopher Fountain
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Jessica Felcher
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States,Robert Wood Johnson Medical School, New Brunswick, NJ, United States,Rush University Medical Center, Department of Internal Medicine, Chicago, IL, United States
| | - Howard L. Kaufman
- Harvard Medical School, Department of Medicine, Boston, MA, United States,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States,Robert Wood Johnson Medical School, New Brunswick, NJ, United States,Ankyra Therapeutics, Boston, MA, United States,Massachusetts General Hospital, Boston, MA, United States
| | - Janice M. Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States,Robert Wood Johnson Medical School, New Brunswick, NJ, United States,Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - David F. McDermott
- Harvard Medical School, Department of Medicine, Boston, MA, United States,Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
29
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Bottoni U, Clerico R, Richetta AG, Panasiti V, Corsetti P, Roberti V, Paolino G, Moliterni E, Grassi S, Calvieri S. Melanoma and immunotherapy: the experience of Sapienza University of Rome. Ital J Dermatol Venerol 2023; 158:1-3. [PMID: 36939498 DOI: 10.23736/s2784-8671.23.07424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Affiliation(s)
- Ugo Bottoni
- Unit of Dermatology, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rita Clerico
- Unit of Dermatology, Sapienza University, Rome, Italy
| | | | | | | | | | - Giovanni Paolino
- Unit of Dermatology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Sara Grassi
- Unit of Dermatology, Sapienza University, Rome, Italy
| | | |
Collapse
|
31
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
32
|
Liu Y, Yu L, Liang Y, Cheng X, Jiang S, Yu H, Zhang Z, Lu L, Qu B, Chen Y, Zhang X. Research landscape and trends of melanoma immunotherapy: A bibliometric analysis. Front Oncol 2023; 12:1024179. [PMID: 36698407 PMCID: PMC9868470 DOI: 10.3389/fonc.2022.1024179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis was intended to present research trends on melanoma immunotherapy. Method On April 1, 2022, the authors identified 2,109 papers on melanoma immunotherapy using the Web of Science and extracted their general information and the total number of citations. The authors then conducted a bibliometric analysis to present the research landscape, clarify the research trends, and determine the most cited papers (top-papers) as well as major journals on melanoma immunotherapy. Subsequently, recent research hotspots were identified by analyzing the latest articles in major journals. Results The total and median number of citations of these 2,109 papers on melanoma immunotherapy was 137,686 and 11, respectively. "Improved survival with ipilimumab in patients with metastatic melanoma" by Hodi et al. was the most cited paper (9,824 citations). Among the journals, the top-paper number (16), average citations per paper (2,510.7), and top-papers rate (100%) of New England Journal of Medicine were the highest. Corresponding authors represented the USA took part in most articles (784). Since 2016, the hottest research area has changed from CTLA-4 to PD-1. Conclusions This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 2,109 relevant publications, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive impression of the research landscape, historical development, and current hotspots in melanoma immunotherapy and can provide inspiration for future research.
Collapse
Affiliation(s)
- Yanhao Liu
- *Correspondence: Xiaotao Zhang, ; Yanhao Liu,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Díaz-Hernández M, Chang-Calderón J, Álvarez MA, Ramírez IR, Saez OLF, Medinilla AL, Castillo CYG, Borges CD, Chang SLL, León K, Carmenate T. PEGylation Strategy for Improving the Pharmacokinetic and Antitumoral Activity of the IL-2 No-alpha Mutein. Curr Pharm Des 2023; 29:3579-3588. [PMID: 38083887 DOI: 10.2174/0113816128279062231204110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In a previous work, an IL-2Rβγ biased mutant derived from human IL-2 and called IL-2noα, was designed and developed. Greater antitumor effects and lower toxicity were observed compared to native IL-2. Nevertheless, mutein has some disadvantages, such as a very short half-life of about 9-12 min, propensity for aggregation, and solubility problems. OBJECTIVE In this study, PEGylation was employed to improve the pharmacokinetic and antitumoral properties of the novel protein. METHODS Pegylated IL-2noα was characterized by polyacrylamide gel electrophoresis, size exclusion chromatography, in vitro cell proliferation and in vivo cell expansion bioassays, and pharmacokinetic and antitumor studies. RESULTS IL-2noα-conjugates with polyethylene glycol (PEG) of 1.2 kDa, 20 kDa, and 40 kDa were obtained by classical acylation. No significant changes in the secondary and tertiary structures of the modified protein were detected. A decrease in biological activity in vitro and a significant improvement in half-life were observed, especially for IL-2noα-PEG20K. PEGylation of IL-2noα with PEG20K did not affect the capacity of the mutant to induce preferential expansion of T effector cells over Treg cells. This pegylated IL-2noα exhibited a higher antimetastatic effect compared to unmodified IL-2noα in the B16F0 experimental metastases model, even when administered at lower doses and less frequently. CONCLUSION PEG20K was selected as the best modification strategy, to improve the blood circulation time of the IL-2noα with a superior antimetastatic effect achieved with lower doses.
Collapse
Affiliation(s)
| | - Janoi Chang-Calderón
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Miguel Angel Álvarez
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Ingrid Ruiz Ramírez
- Department of Quality Control, Center of Molecular Immunology (Cuba), Havana, Cuba
| | | | | | | | - Claudia Diaz Borges
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Sum Lai Lozada Chang
- Department of Product Development, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Kalet León
- Department of Research, Development and Bussines Direction, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Tania Carmenate
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| |
Collapse
|
34
|
Mercurio AC, Maniar AB, Wei AZ, Carvajal RD. Targeting the IL-2 pathway for the treatment of mucosal melanoma. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ann C. Mercurio
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
- New York Medical College, School of Medicine, 40 Sunshine Cottage Road, 10595, Valhalla, NY, USA
| | - Ashray B. Maniar
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| | - Alexander Z. Wei
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| | - Richard D. Carvajal
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| |
Collapse
|
35
|
Sirokay J, Mauch C. [Melanoma microenvironment-impact of modern therapies]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:907-914. [PMID: 36394589 DOI: 10.1007/s00105-022-05078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A considerable proportion of patients with advanced melanoma succumb to metastatic disease despite the initial success of modern therapies. OBJECTIVES An overview of the melanoma tumor microenvironment with special focus on approved therapies and new innovative strategies is given. METHODS Current clinical trials and scientific insights concerning the impact of the tumor microenvironment on progression and therapy of advanced melanoma are reviewed and discussed. RESULTS The tumor microenvironment with its manifold components and interactions plays a major role in the treatment of malignant melanoma. CONCLUSION Innovative new strategies that target an immunosuppressive microenvironment may improve the therapeutic efficacy of current treatment of advanced melanoma.
Collapse
Affiliation(s)
- Judith Sirokay
- Klinik und Poliklinik für Dermatologie und Allergologie, Universitätsklinikum Bonn, Gebäude 11, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - Cornelia Mauch
- Klinik für Dermatologie und Venerologie, Universitätsklinikum Köln, Köln, Deutschland
| |
Collapse
|
36
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
37
|
Pan Y, Hao Y, Han H, Chen T, Ding H, Labbe KE, Shum E, Guidry K, Hu H, Sherman F, Geng K, Stephens J, Chafitz A, Tang S, Huang HY, Peng C, Almonte C, Lopes JE, Losey HC, Winquist RJ, Velcheti V, Zhang H, Wong KK. Nemvaleukin alfa, a novel engineered IL-2 fusion protein, drives antitumor immunity and inhibits tumor growth in small cell lung cancer. J Immunother Cancer 2022; 10:jitc-2022-004913. [PMID: 36472839 PMCID: PMC9462379 DOI: 10.1136/jitc-2022-004913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a deadly disease with a 5-year survival of less than 7%. The addition of immunotherapy to chemotherapy was recently approved as first-line treatment; however, the improved clinical benefit is modest, highlighting an urgent need for new treatment strategies. Nemvaleukin alfa, a novel engineered interleukin-2 fusion protein currently in phase I-III studies, is designed to selectively expand cytotoxic natural killer (NK) cells and CD8+ T cells. Here, using a novel SCLC murine model, we investigated the effects of a mouse version of nemvaleukin (mNemvaleukin) on tumor growth and antitumor immunity. METHODS A novel Rb1 -/- p53 -/- p130 -/- SCLC model that mimics human disease was generated. After confirming tumor burden by MRI, mice were randomized into four treatment groups: vehicle, mNemvaleukin alone, chemotherapy (cisplatin+etoposide) alone, or the combination of mNemvaleukin and chemotherapy. Tumor growth was measured by MRI and survival was recorded. Tumor-infiltrating lymphocytes and peripheral blood immune cells were analyzed by flow cytometry. Cytokine and chemokine secretion were quantified and transcriptomic analysis was performed to characterize the immune gene signatures. RESULTS mNemvaleukin significantly inhibited SCLC tumor growth, which was further enhanced by the addition of chemotherapy. Combining mNemvaleukin with chemotherapy provided the most significant survival benefit. Profiling of tumor-infiltrating lymphocytes revealed mNemvaleukin expanded the total number of tumor-infiltrating NK and CD8+ T cells. Furthermore, mNemvaleukin increased the frequencies of activated and proliferating NK and CD8+ T cells in tumors. Similar immune alterations were observed in the peripheral blood of mNemvaleukin-treated mice. Of note, combining mNemvaleukin with chemotherapy had the strongest effects in activating effector and cytotoxic CD8+ T cells. mNemvaleukin alone, and in combination with chemotherapy, promoted proinflammatory cytokine and chemokine production, which was further confirmed by transcriptomic analysis. CONCLUSIONS mNemvaleukin, a novel cytokine-based immunotherapy, significantly inhibited murine SCLC tumor growth and prolonged survival, which was further enhanced by the addition of chemotherapy. mNemvaleukin alone, and in combination with chemotherapy, drove a strong antitumor immune program elicited by cytotoxic immune cells. Our findings support the evaluation of nemvaleukin alone or in combination with chemotherapy in clinical trials for the treatment of SCLC.
Collapse
Affiliation(s)
- Yuanwang Pan
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York, USA
| | - Han Han
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Hailin Ding
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Kristen E Labbe
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Elaine Shum
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Kayla Guidry
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Hai Hu
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Ke Geng
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Janaye Stephens
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Alison Chafitz
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sittinon Tang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Hsin-Yi Huang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Chengwei Peng
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Christina Almonte
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | | | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
38
|
Treatment of Metastatic Melanoma at First Diagnosis: Review of the Literature. Life (Basel) 2022; 12:life12091302. [PMID: 36143339 PMCID: PMC9505710 DOI: 10.3390/life12091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Metastatic melanoma (MM) is a pathological entity with a very poor prognosis that, until a few decades ago, had a low response rate to systemic treatments. Fortunately, in the last few years, new therapies for metastatic melanoma have emerged. Currently, targeted therapy and immunotherapy are the mainstays of the therapeutic arsenal available for patients with unresectable or metastatic melanoma. However, both clinical evolution and drug efficacy in melanoma patients are very different depending on the stage at which it is diagnosed. In fact, the aggressiveness of melanoma is different depending on whether it debuts directly as metastatic disease or if what occurs is a relapse after a first diagnosis at an early stage, although the biological determinants are largely unknown. Another key aspect in the clinical management of metastatic melanoma at first diagnosis strives in the different prognosis of melanoma of unknown primary (MUP) compared to melanoma of known primary (MPK). Understanding the mechanisms behind this, and the repercussion of implementing targeted and immune therapies in this specific form is crucial for designing diagnosis and treatment decision algorithms that optimize the current strategies. In this review article, we recapitulate the information available thus far regarding the epidemiology and response to immunotherapy treatments or targeted therapy in patients diagnosed with metastatic melanoma as a first diagnosis, with especial emphasis on the emerging specific information of the subpopulation formed by MUP patients.
Collapse
|
39
|
Liu SV, Nagasaka M, Stefaniak V, Gruver K, Lin Y, Ferry D, Socinski MA, Zhang L. The Applicability of the Results in the Asian Population of ORIENT-11 to a Western Population According to the ICH-E5 Framework. Front Oncol 2022; 12:859892. [PMID: 35756655 PMCID: PMC9226396 DOI: 10.3389/fonc.2022.859892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Sintilimab combined with pemetrexed and platinum met the primary endpoint of improving progression-free survival (PFS) as a first-line therapy for nonsquamous non-small cell lung cancer (NSCLC) in the phase 3 trial ORIENT-11 (NCT03607539). As seen in similar trials, the addition of sintilimab, a PD-1 inhibitor, to chemotherapy improved the PFS without significantly worsening the toxicity, with improvements in response rate and duration of response. In contrast to previous trials, the ORIENT-11 trial was conducted completely in China. Both intrinsic and extrinsic factors are important to consider when reviewing foreign clinical trial data, as they may influence the efficacy and the safety outcomes. Here we discuss the applicability of ORIENT-11 clinical results to a Western population.
Collapse
Affiliation(s)
- Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Misako Nagasaka
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA, United States
| | | | - Kristi Gruver
- Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Yong Lin
- Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - David Ferry
- Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Mark A Socinski
- Hematology and Oncology, AdventHealth Cancer Institute, Orlando, FL, United States
| | - Li Zhang
- Medical Oncology Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
40
|
Villani A, Potestio L, Fabbrocini G, Troncone G, Malapelle U, Scalvenzi M. The Treatment of Advanced Melanoma: Therapeutic Update. Int J Mol Sci 2022; 23:ijms23126388. [PMID: 35742834 PMCID: PMC9223461 DOI: 10.3390/ijms23126388] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cutaneous melanoma is the main cause of death for skin cancer. The majority of patients with a diagnosis of melanoma have localized disease, which can be successfully treated with surgical treatment. However, the surgical approach is not curative for advanced melanoma (AM). Indeed, the management of AM is still challenging, since melanoma is the solid tumor with the highest number of mutations and cancer cells have the capacity to evade the immune system. In the past, the treatment of AM relied on chemotherapeutic agents, without showing efficacy data. Recent knowledge on melanoma pathogenesis as well as the introduction of immunotherapies, targeted therapies vaccines, small molecules, and combination therapies has revolutionized AM management, showing promising results in terms of effectiveness and safety. The aim of this review is to assess and to discuss the role of emerging therapies for AM management in order to obtain a complete overview of the currently available treatment options and future perspectives.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
- Correspondence: ; Tel.: +39-081-7462457; Fax: +39-081-7462442
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy; (G.T.); (U.M.)
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy; (G.T.); (U.M.)
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
| |
Collapse
|
41
|
Dimitriou F, Hauschild A, Mehnert JM, Long GV. Double Trouble: Immunotherapy Doublets in Melanoma-Approved and Novel Combinations to Optimize Treatment in Advanced Melanoma. Am Soc Clin Oncol Educ Book 2022; 42:1-22. [PMID: 35658500 DOI: 10.1200/edbk_351123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune checkpoint inhibitors, particularly anti-PD-1-based immune checkpoint inhibitors, have dramatically improved outcomes for patients with advanced melanoma and are currently deemed a standard of care. Ipilimumab/nivolumab is the first combination of immune checkpoint inhibitors to improve progression-free survival and overall survival in the first-line setting, with durable responses and the longest median overall survival, 72.1 months, of any drug therapy approved for advanced melanoma. However, its use is limited by the high rate of severe (grade 3-4) treatment-related adverse events. More recently, the novel immune checkpoint inhibitor combination of nivolumab/relatlimab (anti-PD-1/anti-LAG3) showed improved progression-free survival compared with nivolumab alone in the first-line setting and was well tolerated; thus, it is likely this combination will be added to the armamentarium as a first-line treatment for advanced melanoma. These changes in the treatment landscape have several treatment implications for decision-making. The choice of first-line systemic drug therapy, and the decision between immune checkpoint inhibitor monotherapy or combination therapy, requires a comprehensive assessment of disease-related factors and patient characteristics. Despite this striking progress, many patients' disease still progresses. Several new agents and therapeutic approaches are under investigation in clinical trials. Intralesional treatments hold promise for accessible metastases, although their broad application in the clinic will be limited. Prognostic and predictive biomarkers, as well as strategies to reduce treatment-related toxicities and overcome resistance, are required and are now the focus of clinical and translational research.
Collapse
Affiliation(s)
- Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Janice M Mehnert
- NYU Grossman School of Medicine and Perlmutter Cancer Center, New York, NY
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, Australia
| |
Collapse
|
42
|
Indini A, Massi D, Pirro M, Roila F, Grossi F, Sahebkar A, Glodde N, Bald T, Mandalà M. Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Semin Cancer Biol 2022; 86:477-490. [DOI: 10.1016/j.semcancer.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 10/31/2022]
|
43
|
Betof-Warner A, Sullivan RJ, Sarnaik A. Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View. Am Soc Clin Oncol Educ Book 2022; 42:1-8. [PMID: 35561301 DOI: 10.1200/edbk_351114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past four decades, cancer immunotherapy for melanoma has evolved from single-agent, type-I cytokine therapy to combination immune checkpoint inhibition. Along the way, breakthroughs in the fields of cell therapy and cancer vaccination have been made as well. The early data from adoptive cell therapy, involving the delivery of tumor infiltrating lymphocytes harvested from resected tumors, was generated at the National Cancer Institute. Subsequently, a limited number of centers across the globe have developed programs to deliver these therapies. Recently, more widespread availability of this therapy has been made possible by centralizing the growth and expansion of tumor infiltrating lymphocyte products, then distributing the products for delivery of therapy at numerous academic medical centers. Work is ongoing to optimize these treatments with additional cell types and/or modified cell products, and to determine the best ways of combining these treatments with immune checkpoint inhibition. Similarly, tumor vaccination strategies are undergoing dramatic changes, transitioning the field from peptide-based vaccines to next-generation sequencing and T-cell receptor sequencing. These changes help improve the selection of targeted antigens by finding more immunogenic options, and they help with the development of lipid nanoparticles and mRNA delivery. In short, evolution of the approaches that are revolutionizing infectious disease vaccination has been ongoing, and there are promising preliminary data in patients with melanoma.
Collapse
|
44
|
Siefker-Radtke AO, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, Puente E, Tang L, Chien D, Hoch U, Choudhury A, Yu D, Currie SL, Tagliaferri MA, Zalevsky J, Hurwitz ME, Tannir NM. Bempegaldesleukin plus Nivolumab in First-line Metastatic Urothelial Carcinoma: Results from PIVOT-02. Eur Urol 2022; 82:365-373. [DOI: 10.1016/j.eururo.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
|
45
|
Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing Metastatic Melanoma in 2022: A Clinical Review. JCO Oncol Pract 2022; 18:335-351. [PMID: 35133862 PMCID: PMC9810138 DOI: 10.1200/op.21.00686] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cutaneous melanoma remains the most lethal of the primary cutaneous neoplasms, and although the incidence of primary melanoma continues to rise, the mortality from metastatic disease remains unchanged, in part through advances in treatment. Major developments in immunomodulatory and targeted therapies have provided robust improvements in response and survival trends that have transformed the clinical management of patients with metastatic melanoma. Additional advances in immunologic and cancer cell biology have contributed to further optimization in (1) risk stratification, (2) prognostication, (3) treatment, (4) toxicity management, and (5) surveillance approaches for patients with an advanced melanoma diagnosis. In this review, we provide a comprehensive overview of the historical and future advances regarding the translational and clinical implications of advanced melanoma and share multidisciplinary recommendations to aid clinicians in the navigation of current treatment approaches for a variety of patient cohorts.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Joseph J. Skitzki
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Lamya Hamad
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Marc S. Ernstoff
- ImmunoOncology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD,Marc S. Ernstoff, MD, National Cancer Institute, Rockville, MD 20850; e-mail:
| |
Collapse
|
46
|
Liu Y, Xu Y, Cheng X, Lin Y, Jiang S, Yu H, Zhang Z, Lu L, Zhang X. Research Trends and Most Influential Clinical Studies on Anti-PD1/PDL1 Immunotherapy for Cancers: A Bibliometric Analysis. Front Immunol 2022; 13:862084. [PMID: 35493449 PMCID: PMC9044908 DOI: 10.3389/fimmu.2022.862084] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, a bibliometric analysis was carried out to identify the most influential clinical studies and research trends on anti-programmed cell death 1/programmed cell death 1 ligand 1 (anti-PD1/PDL1) immunotherapy. On January 1, 2022, we used Web of Science to identify the 100 most frequently cited papers on clinical studies investigating anti-PD1/PDL1 immunotherapy, and extracted the following data: publication year, source title, country/region, institution, and the total number of citations. The research design and area were classified independently by the authors. Subsequently, we carried out a bibliometric analysis to determine the trends and identify the major journals on anti-PD1/PDL1 immunotherapy. The authors analyzed the current research hotspots based on papers published in major journals from 2020 to 2021. These 100 papers were cited a total of 138,840 times, and the median number of citations was 899.5 (range: 341–7,983). “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer” by Topalian et al. had the highest number of citations (7,983 times). New England Journal of Medicine had the highest number of top-cited papers (40 papers), average citations per paper (1,558.3 citations), and rate of top-cited papers (65.6%). Authors from the USA contributed most of the papers (76 papers). Lung cancer (30 papers, 46,422 citations) and melanoma (20 papers, 30,881 citations) were the most cited research areas. In summary, anti-PD1/PDL1 has become standard treatment for various cancer, while adjuvant anti-PD1/PDL1 therapy is currently a research hotspot. New England Journal of Medicine was identified as the most influential journal in this area. Non-small cell lung cancer and melanoma are the most well-studied cancers, while nivolumab and pembrolizumab are the most commonly investigated anti-PD1/PDL1 antibodies. Further studies are warranted to identify effective predictive biomarkers or models, clarify the molecular mechanism of combined therapy, and establish optimal therapeutic strategies. This study may assist researchers in obtaining a comprehensive impression of the landscape and current trends in anti-PD1/PDL1 immunotherapy and gain inspiration to conduct further studies.
Collapse
Affiliation(s)
- Yanhao Liu
- *Correspondence: Xiaotao Zhang, ; Yanhao Liu,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tannir NM, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, Puente E, Tang L, Chien D, Hoch U, Choudhury A, Yu D, Currie SL, Tagliaferri MA, Zalevsky J, Siefker-Radtke AO, Hurwitz ME. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. J Immunother Cancer 2022; 10:jitc-2021-004419. [PMID: 35444058 PMCID: PMC9021810 DOI: 10.1136/jitc-2021-004419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
Background Immune checkpoint inhibitor-based combinations have expanded the treatment options for patients with renal cell carcinoma (RCC); however, tolerability remains challenging. The aim of this study was to evaluate the safety and efficacy of the immunostimulatory interleukin-2 cytokine prodrug bempegaldesleukin (BEMPEG) plus nivolumab (NIVO) as first-line therapy in patients with advanced clear-cell RCC. Methods This was an open-label multicohort, multicenter, single-arm phase 1/2 study; here, we report results from the phase 1/2 first-line RCC cohort (N=49). Patients received BEMPEG 0.006 mg/kg plus NIVO 360 mg intravenously every 3 weeks. The primary objectives were safety and objective response rate (ORR; patients with measurable disease at baseline and at least one postbaseline tumor response assessment). Secondary objectives included overall survival (OS) and progression-free survival (PFS). Exploratory biomarker analyses: association between baseline biomarkers and ORR. Results At a median follow-up of 32.7 months, the ORR was 34.7% (17/49 patients); 3/49 patients (6.1%) had a complete response. Of the 17 patients with response, 14 remained in response for >6 months, and 6 remained in response for >24 months. Median PFS was 7.7 months (95% CI 3.8 to 13.9), and median OS was not reached (95% CI 37.3 to not reached). Ninety-eight per cent (48/49) of patients experienced ≥1 treatment-related adverse event (TRAE) and 38.8% (19/49) had grade 3/4 TRAEs, most commonly syncope (8.2%; 4/49) and increased lipase (6.1%; 3/49). No association between exploratory biomarkers and ORR was observed. Limitations include the small sample size and single-arm design. Conclusions BEMPEG plus NIVO showed preliminary antitumor activity as first-line therapy in patients with advanced clear-cell RCC and was well tolerated. These findings warrant further investigation.
Collapse
Affiliation(s)
- Nizar M Tannir
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel C Cho
- New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| | - Adi Diab
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mario Sznol
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Arjun V Balar
- New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Turin, Italy
| | - Erika Puente
- Nektar Therapeutics, San Francisco, California, USA
| | - Lily Tang
- Nektar Therapeutics, San Francisco, California, USA
| | - David Chien
- Nektar Therapeutics, San Francisco, California, USA
| | - Ute Hoch
- Nektar Therapeutics, San Francisco, California, USA
| | | | - Danni Yu
- Nektar Therapeutics, San Francisco, California, USA
| | - Sue L Currie
- Nektar Therapeutics, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
48
|
Fukuda K. Networks of CD8+ T Cell Response Activation in Melanoma and Vitiligo. Front Immunol 2022; 13:866703. [PMID: 35432377 PMCID: PMC9011047 DOI: 10.3389/fimmu.2022.866703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Melanoma is an aggressive skin cancer derived from melanocyte, which shows high response rate to cancer immunotherapy, such as immune checkpoint inhibitors (ICIs). Vitiligo is an autoimmune skin disease resulting from the destruction of melanocytes by autoreactive CD8+ T cells. Vitiligo induced by cancer immunotherapy is a favorable prognostic factor in patients with melanoma, and growing evidence supports the fact that melanocyte/melanoma-shared antigen (MSA)-specific CD8+ T cells infiltrated in the tumor (melanoma) and skin (vitiligo) microenvironment play pivotal roles in the prognosis of both diseases. Thus, cellular communications that promote MSA-specific CD8+ T cells recruitment, proliferation, and effector functions are now seen as key targets to enhance the efficacy of current therapies for both diseases. Here, we discussed recent advancements in illustrating immune signaling pathways and immune cell types that regulate migration, proliferation, and function of MSA-specific CD8+ T cells in melanoma and vitiligo; and future immunotherapeutic approaches that may enhance clinical outcomes of both diseases.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- *Correspondence: Keitaro Fukuda,
| |
Collapse
|
49
|
Ritter N, Peeken L, Schultz ES, Debus D. Die Systemtherapie des malignen Melanoms. AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1700-9298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungIn den vergangenen 10 Jahren wurde die Systemtherapie des malignen Melanoms durch die Zulassung neuer Substanzen revolutioniert. In der vorliegenden Übersicht werden zunächst die aktuellen adjuvanten Therapiemöglichkeiten beschrieben, anschließend werden der Kenntnisstand zur neoadjuvanten Therapie dargestellt und schließlich die Behandlungsoptionen im inoperablen Stadium beleuchtet.
Collapse
Affiliation(s)
- Nathalie Ritter
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Lucia Peeken
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Erwin S. Schultz
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Dirk Debus
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| |
Collapse
|
50
|
Eggermont AM, Ascierto PA, Khushalani NI, Schadendorf D, Boland G, Weber J, Lewis KD, Johnson D, Rivalland G, Khattak A, Majem M, Gogas H, Long GV, Currie SL, Chien D, Tagliaferri MA, Carlino MS, Diab A. PIVOT-12: a phase III study of adjuvant bempegaldesleukin plus nivolumab in resected stage III/IV melanoma at high risk for recurrence. Future Oncol 2022; 18:903-913. [PMID: 35073733 DOI: 10.2217/fon-2021-1286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bempegaldesleukin (BEMPEG: NKTR-214) is an immunostimulatory IL-2 cytokine prodrug engineered to deliver a controlled, sustained and preferential IL-2 pathway signal. Nivolumab (NIVO), a PD-1 inhibitor, has been shown to prolong survival in patients with advanced melanoma and recurrence-free survival in the adjuvant setting. PIVOT-02 showed that BEMPEG plus NIVO was well-tolerated and demonstrated clinical activity as first-line therapy in metastatic melanoma. PIVOT-12 is a randomized, phase III, global, multicenter, open-label study comparing adjuvant therapy with BEMPEG plus NIVO versus NIVO alone in adult and adolescent patients with completely resected cutaneous stage III/IV melanoma at high risk of recurrence. The primary objective is to compare the efficacy, as measured by recurrence-free survival, of BEMPEG plus NIVO versus NIVO.
Collapse
Affiliation(s)
- Alexander Mm Eggermont
- Princess Máxima Center for Pediatric Oncology & University Medical Center Utrecht, Utrecht, Netherlands
| | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione G Pascale, Naples, Italy
| | | | - Dirk Schadendorf
- West German Cancer Center at the University Hospital Essen, Essen, Germany
| | | | - Jeffrey Weber
- Perlmutter Cancer Center at NYU Langone Health, New York, NY 10016, USA
| | - Karl D Lewis
- University of Colorado Cancer Center, Aurora, CO 80045, USA
| | | | - Gareth Rivalland
- University of Auckland & Auckland City Hospital, Auckland, New Zealand
| | - Adnan Khattak
- Hollywood Private Hospital, Edith Cowan University, Perth, Australia
| | | | - Helen Gogas
- National & Kapodistrian University of Athens, Athens, Greece
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, & Royal North Shore & Mater Hospitals, Sydney, Australia
| | - Sue L Currie
- Nektar Therapeutics, San Francisco, CA 94158, USA
| | - David Chien
- Nektar Therapeutics, San Francisco, CA 94158, USA
| | | | - Matteo S Carlino
- Westmead & Blacktown Hospitals & Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Adi Diab
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|