1
|
Starrett GJ, Baikie BC, Stoff BK, Grossniklaus HE, Van Buren I, Berry EG, Novoa RA, Rieger KE, Sarin KY, Lynch CF, Royer MC, Piaskowski ML, Brownell I, Chu EY, Godse R, Chen SC, Yu KJ, Goldstein AM, Engels EA, Sargen MR. Multiomics Profiling Distinguishes Sebaceous Carcinoma from Benign Sebaceous Neoplasms and Provides Insight into the Genetic Evolution of Sebaceous Carcinogenesis. Clin Cancer Res 2024; 30:4887-4899. [PMID: 39287419 PMCID: PMC11530307 DOI: 10.1158/1078-0432.ccr-24-1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Sebaceous carcinoma is the third most common nonkeratinocyte skin cancer in the United States with 1,000 cases per year. The clinicopathologic features of sebaceous carcinoma and benign sebaceous neoplasms (adenomas, sebaceomas) can overlap, highlighting the need for molecular biomarkers to improve classification. This study describes the genomic and transcriptomic landscape of sebaceous neoplasms in order to understand tumor etiology and biomarkers relevant for diagnosis and treatment. EXPERIMENTAL DESIGN We performed whole-genome sequencing (WGS) and whole-transcriptome sequencing (WTS) of sebaceous neoplasms from six academic and two federal healthcare facilities in the United States diagnosed between January 1, 1999, and December 31, 2021. RESULTS We evaluated 98 sebaceous neoplasms: 64 tumors (32 adenomas, 2 sebaceomas, 5 atypical sebaceous neoplasms, 25 carcinomas) had sufficient material for WGS, 96 tumors (42 adenomas, 11 sebaceomas, 8 atypical sebaceous neoplasms, 35 carcinomas) had sufficient material for WTS, and 62 tumors (31 adenomas, 2 sebaceomas, 5 atypical sebaceous neoplasms, 24 carcinomas) had sufficient material for combined WGS and WTS. Overall, we found decreased cholesterol biosynthesis and increased TP53 mutations, copy number gains (chromosome 6, 8q, and/or 18), and tumor mutation burden-high (>10 mutations/MB) in carcinomas compared to adenomas. Although diminished compared to adenomas, most carcinomas still had higher cholesterol biosynthesis than nonmalignant skin. Multiomics profiling also supported a precancerous model of tumor evolution with sebaceomas and atypical sebaceous neoplasms being likely intermediate lesions. CONCLUSIONS The study findings highlight key diagnostic biomarkers for sebaceous carcinoma and suggest that immunotherapy and modulation of cholesterol biosynthesis could be effective treatment strategies.
Collapse
Affiliation(s)
- Gabriel J. Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brittany C. Baikie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Benjamin K. Stoff
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA
| | - Hans E. Grossniklaus
- Department of Ophthalmology, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Inga Van Buren
- Dignity Health St. Joseph’s Medical Center, Stockton, CA
| | - Elizabeth G. Berry
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Roberto A. Novoa
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Kerri E. Rieger
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Kavita Y. Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Charles F. Lynch
- Iowa Cancer Registry, Department of Epidemiology, The University of Iowa, Iowa City, IA
| | - Michael C. Royer
- Division of Dermatopathology, The Joint Pathology Center, Silver Spring, MD
| | - Mary L. Piaskowski
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Emily Y. Chu
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Rama Godse
- Department of Internal Medicine, Pennsylvania Hospital, Philadelphia, PA
| | - Suephy C. Chen
- Duke Dermatology, Duke University School of Medicine, Durham, NC
| | - Kelly J. Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Eric A. Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Michael R. Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
2
|
González-Montero J, Rojas CI, Burotto M. Predictors of response to immunotherapy in colorectal cancer. Oncologist 2024; 29:824-832. [PMID: 38920285 PMCID: PMC11449076 DOI: 10.1093/oncolo/oyae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths globally. While treatment advancements have improved survival rates, primarily through targeted therapies based on KRAS, NRAS, and BRAF mutations, personalized treatment strategies for CRC remain limited. Immunotherapy, mainly immune checkpoint blockade, has shown efficacy in various cancers but is effective in only a small subset of patients with CRC with deficient mismatch repair (dMMR) proteins or high microsatellite instability (MSI). Recent research has challenged the notion that CRC is immunologically inert, revealing subsets with high immunogenicity and diverse lymphocytic infiltration. Identifying precise biomarkers beyond dMMR and MSI is crucial to expanding immunotherapy benefits. Hence, exploration has extended to various biomarker sources, such as the tumor microenvironment, genomic markers, and gut microbiota. Recent studies have introduced a novel classification system, consensus molecular subtypes, that aids in identifying patients with CRC with an immunogenic profile. These findings underscore the necessity of moving beyond single biomarkers and toward a comprehensive understanding of the immunological landscape in CRC, facilitating the development of more effective, personalized therapies.
Collapse
Affiliation(s)
- Jaime González-Montero
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
- Basic and Clinical Oncology Department, University of Chile, Santiago 838045, Chile
| | - Carlos I Rojas
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
| | | |
Collapse
|
3
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Ozawa R, Nishikawa T, Yamamoto K, Shimoi T, Ishikawa M, Kato T, Yonemori K. The efficacy and safety of lenvatinib plus pembrolizumab therapy in patients with uterine carcinosarcoma. Gynecol Oncol Rep 2024; 55:101479. [PMID: 39224816 PMCID: PMC11366896 DOI: 10.1016/j.gore.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Lenvatinib plus pembrolizumab (LP) therapy is currently used in patients with advanced or recurrent endometrial cancer. However, patients with uterine carcinosarcoma (UCS) were not included in the KEYNOTE-775, and the efficacy of LP therapy for patients with UCS in clinical practice remains unclear. We administered LP therapy to five patients with UCS. We aimed to report our clinical experience with LP therapy in these patients and investigate the genomic characteristics of those who responded to LP therapy. We retrospectively reviewed patients with UCS (n = 5) who underwent LP therapy at our hospital from January 2019 to December 2023. Efficacy was assessed using the response rate according to the Response Evaluation Criteria in Solid Tumors version 1.1. Safety was evaluated in terms of adverse events. The median age was 65 (55-78) years, and the mismatch repair status was proficient in all of the patients. One patient had stage II disease, and four had stage III. The median number of LP therapy courses was 8 (1-35). The overall response rate was 40%. None of the patients experienced adverse events that were grade 3 or higher. The median follow-up duration was 9 (1-26) months, median progression-free survival was 9.1 (0.16 to NA) months, and median overall survival was 10.2 (1.41 to NA) months. LP therapy may be effective for patients with UCS. As this report was based on a limited number of patients, more cases are required to investigate the efficacy of LP therapy in patients with UCS.
Collapse
Affiliation(s)
- Risako Ozawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kasumi Yamamoto
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Proskuriakova E, Shunyakov L, S Hoffmann M. Rare presentation and unconventional treatment of Rosai-Dorfman disease. BMJ Case Rep 2024; 17:e262184. [PMID: 39353669 DOI: 10.1136/bcr-2024-262184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Rosai-Dorfman disease (RDD) is a rare myeloproliferative disorder involving histiocytes, with an incidence of 1:200 000 and approximately 100 new cases diagnosed annually in the USA. The condition presents a diverse range of clinical manifestations, and early recognition and treatment generally result in a favourable prognosis. However, diagnosing RDD poses challenges due to its rarity. The clinical management of RDD lacks a consensus, further complicating its diagnostic and therapeutic approach. We present a case of a man in his late 50s with RDD who experienced worsening cytopenias, including severe neutropenia and respiratory distress, despite an initial positive response to steroids, rituximab and lenalidomide. Genetic testing revealed mutations in POLE, KRAS (G13C), NDE1 and EZH2, suggesting potential new therapeutic targets. Sirolimus was initiated and led to complete radiological remission of the disease. This case adds strength to the growing evidence supporting the efficacy of sirolimus in refractory RDD cases.
Collapse
Affiliation(s)
| | - Leonid Shunyakov
- Oncology/Hematology, Citizens Memorial Hospital, Bolivar, Missouri, USA
| | - Marc S Hoffmann
- Division of Hematologic Malignancies and Cellular Therapeutics, KUMC, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Rodrigues LM, Maistro S, Katayama MLH, Rocha VM, Lopez RVM, Lopes EFDT, Gonçalves FT, Fridman C, Serio PADMP, Barros LRC, Leite LAS, Segatelli V, Estevez-Diz MDP, Guindalini RSC, Ribeiro Junior U, Folgueira MAAK. Prevalence of germline variants in Brazilian pancreatic carcinoma patients. Sci Rep 2024; 14:21083. [PMID: 39256447 PMCID: PMC11387492 DOI: 10.1038/s41598-024-71884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We evaluated the prevalence of pathogenic/likely pathogenic germline variants (PGV) in Brazilian pancreatic adenocarcinoma (PC) patients, that represent a multiethnic population, in a cross-sectional study. We included 192 PC patients unselected for family history of cancer. We evaluated a panel of 113 cancer genes, through genomic DNA sequencing and 46 ancestry-informative markers, through multiplex PCR. The median age was 61 years; 63.5% of the patients presented disease clinical stages III or IV; 8.3% reported personal history of cancer; 4.7% and 16.1% reported first-degree relatives with PC or breast and/or prostate cancer, respectively. Although the main ancestry was European, there was considerable genetic composition admixture. Twelve patients (6.25%) were PGV carriers in PC predisposition genes (ATM, BRCA1, BRCA2, CDKN2A, MSH2, PALB2) and another 25 (13.0%) were PGV carriers in genes with a limited association or not previously associated with PC (ACD, BLM, BRIP1, CHEK2, ERCC4, FANCA, FANCE, FANCM, GALNT12, MITF, MRE11, MUTYH, POLE, RAD51B, RAD51C, RECQL4, SDHA, TERF2IP). The most frequently affected genes were CHEK2, ATM and FANC. In tumor samples from PGV carriers in ACD, BRIP1, MRE11, POLE, SDHA, TERF2IP, which were examined through exome sequencing, the main single base substitutions (SBS) mutational signature was SBS1+5+18, probably associated with age, tobacco smoking and reactive oxygen species. SBS3 associated with homologous repair deficiency was also represented, but on a lower scale. There was no difference in the frequency of PGV carriers between: (a) patients with or without first-degree relatives with cancer; and (b) patients with admixed ancestry versus those with predominantly European ancestry. Furthermore, there was no difference in overall survival between PGV carriers and non-carriers. Therefore, genetic testing should be offered to all Brazilian pancreatic cancer patients, regardless of their ancestry. Genes with limited or previously unrecognized associations with pancreatic cancer should be further investigated to clarify their role in cancer risk.
Collapse
Affiliation(s)
- Lívia Munhoz Rodrigues
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Maria Lucia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Vinícius Marques Rocha
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Rossana Veronica Mendoza Lopez
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Edia Filomena di Tullio Lopes
- Registro Hospitalar de Cancer, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, São Paulo, SP, Brazil
| | - Fernanda Toledo Gonçalves
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Luciana Rodrigues Carvalho Barros
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Luiz Antonio Senna Leite
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Vanderlei Segatelli
- Departamento de Patologia Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Maria Del Pilar Estevez-Diz
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Ulysses Ribeiro Junior
- Division of Digestive Surgery, Department of Gastroenterology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo FMUSP, Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
7
|
Mosalem O, Coston TW, Imperial R, Mauer E, Thompson C, Yilma B, Bekaii-Saab TS, Stoppler MC, Starr JS. A comprehensive analysis of POLE/POLD1 genomic alterations in colorectal cancer. Oncologist 2024; 29:e1224-e1227. [PMID: 38776551 PMCID: PMC11379631 DOI: 10.1093/oncolo/oyae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Pathogenic mutations in POLE/POLD1 lead to decreased fidelity of DNA replication, resulting in a high tumor mutational burden (TMB-H), defined as TMB ≥ 10 mut/Mb, independent of deficient mismatch repair (dMMR) and microsatellite instability high (MSI-H) status. METHODS De-identified records of patients with colorectal cancer (CRC) profiled with the Tempus xT assay (DNA-seq of 595-648 genes at 500×) were identified from the Tempus Database. RESULTS Among 9136 CRC samples profiled, the frequency of POLE/POLD1 genomic alterations was 2.4% (n = 217). Copy number loss was the most common genomic alteration (64%, n = 138) of POLE/POLD1, followed by copy number amplifications (18%, n = 40) and short variant mutations (18%, n = 39). The POLE/POLD1 mutated group presented with a higher frequency of TMB-H phenotype relative to wild type (WT; 22% vs. 9%, P < .001), with a median TMB of 127 mut/Mb in the TMB-H POLE/POLD1 subset. The TMB showed a dramatic contrast between POLE/POLD1 short variant mutations as compared to the group with copy number alterations, with a TMB of 159 mut/Mb vs 15 mut/Mb, respectively. Thus, the short variant mutations represented the so-called ultra-hypermutated phenotype. The POLE/POLD1 mutated group, as compared to WT, exhibited a higher rate of coexisting mutations, including APC, ALK, ATM, BRCA2, and RET mutations. CONCLUSION Patients with POLE/POLD1 mutations exhibited significant differences across immunological markers (ie, TMB, MMR, and MSI-H) and molecular co-alterations. Those with short variant mutations represented 18% of the POLE/POLD1 cohort and 0.4% of the total cohort examined. This group of patients had a median TMB of 159 mut/Mb (range 34-488), representing the ultra-hypermutated phenotype. This group of patients is important to identify given the potential for exceptional response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Osama Mosalem
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Tucker W Coston
- Department of Medicine, Division of Medical Oncology, Duke Cancer Center, Raleigh, NC, USA
| | - Robin Imperial
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Tanios S Bekaii-Saab
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Jason S Starr
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
8
|
Jin Y, Huang RJ, Guan WL, Wang ZQ, Mai ZJ, Li YH, Xiao J, Zhang X, Zhao Q, Chen SF, Liu M, Shi YX, Wang F, Xu RH. A phase II clinical trial of toripalimab in advanced solid tumors with polymerase epsilon/polymerase delta (POLE/POLD1) mutation. Signal Transduct Target Ther 2024; 9:227. [PMID: 39218995 PMCID: PMC11366758 DOI: 10.1038/s41392-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Patients carrying mutations in polymerase epsilon/polymerase delta have shown positive responses to immune checkpoint inhibitors. Yet, prospective trials exploring the efficacy in those with polymerase epsilon/polymerase delta mutations are still lacking. A phase II clinical trial was initiated to evaluate the efficacy of toripalimab, a humanized IgG4K monoclonal antibody to human PD-1, in patients with advanced solid tumors with unselected polymerase epsilon/polymerase delta mutations but without microsatellite instability-high. A total of 15 patients were enrolled, 14 of whom were assessed for treatment efficacy. There was a 21.4% overall response rate, with a disease control rate of 57.1%. The median overall survival and median progression-free survival were 17.9 (95% CI 13.5-not reach) months and 2.5 (95% CI 1.4-not reach) months, respectively. For patients with exonuclease domain mutations, the objective response rate was 66.7% (2/3), with a disease control rate of 66.7% (2/3). For those with non-exonuclease domain mutations, the rates were 9.1% (1/11) and 54.5% (6/11), respectively. Notably, patients with PBRM1 gene mutations exhibited a high response rate to toripalimab at 75.0% (3/4). This study showed that neither the exonuclease domain mutations nor non-exonuclease domain mutations could fully predict the efficacy of immunotherapy, urging the need for more investigations to clarify potential immune sensitization differences within polymerase epsilon/polymerase delta mutation variants.
Collapse
Affiliation(s)
- Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Run-Jie Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Wen-Long Guan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Zhi-Qiang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Zong-Jiong Mai
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Jian Xiao
- Department of Medical Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, People's Republic of China
| | - Xing Zhang
- Department of Medical Melanoma and Sarcoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Qi Zhao
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
- Bioinformatic Platform, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Shi-Fu Chen
- HaploX Biotechnology, Shenzhen, 518000, People's Republic of China
| | - Ming Liu
- HaploX Biotechnology, Shenzhen, 518000, People's Republic of China
| | - Yan-Xia Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
9
|
Salmon A, Lebeau A, Streel S, Dheur A, Schoenen S, Goffin F, Gonne E, Kridelka F, Kakkos A, Gennigens C. Locally advanced and metastatic endometrial cancer: Current and emerging therapies. Cancer Treat Rev 2024; 129:102790. [PMID: 38972136 DOI: 10.1016/j.ctrv.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Until recently, patients diagnosed with locally advanced and metastatic endometrial cancer faced significant challenges in their treatment due to limited options and poor prognostic outcomes. The sequencing of tumors has been a major advancement in its management. It has led to The Cancer Genome Atlas classification currently used in clinical practice and the initiation of several clinical trials for innovative treatments targeting principally signaling pathways, immune checkpoints, DNA integrity, growth factors, hormonal signaling, and metabolism. Numerous clinical trials are investigating a combinatorial approach of these targeted therapies to counter tumoral resistance, cellular compensatory mechanisms, and tumor polyclonality. This review provides a comprehensive overview of historical, current, and promising therapies in advanced and metastatic endometrial cancer. It particularly highlights clinical research on targeted and hormonal therapies, but also immunotherapy, reflecting the evolving landscape of treatment modalities for this disease.
Collapse
Affiliation(s)
- Alixe Salmon
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Alizée Lebeau
- Department of Medical Oncology, CHU Liège, Liège, Belgium; Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sylvie Streel
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Adriane Dheur
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sophie Schoenen
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Frédéric Goffin
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Elodie Gonne
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | | | | | | |
Collapse
|
10
|
Sandow L, Tsikitis L, Lopez CD, Brinkerhoff B, Kardosh A, Pegna G, Chen EY. Neoadjuvant immunotherapy leads to complete pathologic response in locally advanced colon cancer. Clin Case Rep 2024; 12:e9218. [PMID: 39114842 PMCID: PMC11303659 DOI: 10.1002/ccr3.9218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Immunotherapy is considered first line in patients with dMMR metastatic colorectal cancer (CRC). Recent studies have also shown promising results with neoadjuvant immunotherapy in locally advanced CRC. We report a case in which neoadjuvant immunotherapy with pembrolizumab resulted in complete pathologic response at time of resection as well as saved the patient the morbidity associated with a hepatectomy. We also completed a scoping review of the literature which suggests promising tumor responses with treatment in dMMR CRC. Further randomized control trials to determine the magnitude of response and optimal regimen are needed.
Collapse
Affiliation(s)
- Lyndsey Sandow
- Department of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Liana Tsikitis
- Division of Gastrointestinal and General Surgery, Department of General SurgeryOregon Health and Science UniversityPortlandOregonUSA
| | - Charles D. Lopez
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| | - Brian Brinkerhoff
- Department of PathologyOregon Health and Science UniversityPortlandOregonUSA
| | - Adel Kardosh
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| | - Guillaume Pegna
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| | - Emerson Y. Chen
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| |
Collapse
|
11
|
Kim M, Shim HS, Kim S, Lee IH, Kim J, Yoon S, Kim HD, Park I, Jeong JH, Yoo C, Cheon J, Kim IH, Lee J, Hong SH, Park S, Jung HA, Kim JW, Kim HJ, Cha Y, Lim SM, Kim HS, Lee CK, Kim JH, Chun SH, Yun J, Park SY, Lee HS, Cho YM, Nam SJ, Na K, Yoon SO, Lee A, Jang KT, Yun H, Lee S, Kim JH, Kim WS. Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP. Cancer Res Treat 2024; 56:721-742. [PMID: 38037319 PMCID: PMC11261187 DOI: 10.4143/crt.2023.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yongjun Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Kim M, Shim HS, Kim S, Lee IH, Kim J, Yoon S, Kim HD, Park I, Jeong JH, Yoo C, Cheon J, Kim IH, Lee J, Hong SH, Park S, Jung HA, Kim JW, Kim HJ, Cha Y, Lim SM, Kim HS, Lee CK, Kim JH, Chun SH, Yun J, Park SY, Lee HS, Cho YM, Nam SJ, Na K, Yoon SO, Lee A, Jang KT, Yun H, Lee S, Kim JH, Kim WS. Clinical practice recommendations for the use of next-generation sequencing in patients with solid cancer: a joint report from KSMO and KSP. J Pathol Transl Med 2024; 58:147-164. [PMID: 39026440 PMCID: PMC11261170 DOI: 10.4132/jptm.2023.11.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 07/20/2024] Open
Abstract
In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yongjun Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Park R, Saeed A. Immunotherapy in Colorectal Cancer - Finding the Achilles' Heel. NEJM EVIDENCE 2024; 3:EVIDra2300353. [PMID: 38804784 DOI: 10.1056/evidra2300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
AbstractColorectal cancer treatment has evolved considerably in the last decade with the development of immunotherapies. Immune checkpoint inhibitor therapies have brisk and durable responses in patients with advanced microsatellite instability-high colorectal cancer, both surgically resectable and unresectable; however, patients with microsatellite stable colorectal cancer in general do not respond to the same therapy. Emerging evidence shows that immune checkpoint inhibitors may elicit responses in subsets of patients with microsatellite stable colorectal cancer, especially when combined with other anticancer agents that can modulate the tumor microenvironment. Therefore, rationally designed therapeutic combinations involving immune checkpoint inhibitors, as well as the development of predictive biomarkers for optimal patient selection, have emerged as two key areas of active research. In addition, other immunotherapeutic agents such as cell-based therapies and bispecific T-cell engagers are beginning to be studied in preclinical and early-phase settings. Although by no means a universal treatment strategy, immunotherapy can elicit responses in microsatellite stable colorectal cancer and further research is needed to extend their benefit to patients with microsatellite stable colorectal cancer. Here, we review the current state of immunotherapeutic regimens for microsatellite stable colorectal cancer.
Collapse
Affiliation(s)
- Robin Park
- Division of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL
- Department of Medicine, University of South Florida, Tampa, FL
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh
- UPMC Hillman Cancer Center, Pittsburgh
| |
Collapse
|
15
|
Gustav M, Reitsam NG, Carrero ZI, Loeffler CML, van Treeck M, Yuan T, West NP, Quirke P, Brinker TJ, Brenner H, Favre L, Märkl B, Stenzinger A, Brobeil A, Hoffmeister M, Calderaro J, Pujals A, Kather JN. Deep learning for dual detection of microsatellite instability and POLE mutations in colorectal cancer histopathology. NPJ Precis Oncol 2024; 8:115. [PMID: 38783059 PMCID: PMC11116442 DOI: 10.1038/s41698-024-00592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
In the spectrum of colorectal tumors, microsatellite-stable (MSS) tumors with DNA polymerase ε (POLE) mutations exhibit a hypermutated profile, holding the potential to respond to immunotherapy similarly to their microsatellite-instable (MSI) counterparts. Yet, due to their rarity and the associated testing costs, systematic screening for these mutations is not commonly pursued. Notably, the histopathological phenotype resulting from POLE mutations is theorized to resemble that of MSI. This resemblance not only could facilitate their detection by a transformer-based Deep Learning (DL) system trained on MSI pathology slides, but also indicates the possibility for MSS patients with POLE mutations to access enhanced treatment options, which might otherwise be overlooked. To harness this potential, we trained a Deep Learning classifier on a large dataset with the ground truth for microsatellite status and subsequently validated its capabilities for MSI and POLE detection across three external cohorts. Our model accurately identified MSI status in both the internal and external resection cohorts using pathology images alone. Notably, with a classification threshold of 0.5, over 75% of POLE driver mutant patients in the external resection cohorts were flagged as "positive" by a DL system trained on MSI status. In a clinical setting, deploying this DL model as a preliminary screening tool could facilitate the efficient identification of clinically relevant MSI and POLE mutations in colorectal tumors, in one go.
Collapse
Affiliation(s)
- Marco Gustav
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | | | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Titus J Brinker
- Digital Biomarkers for Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Loëtitia Favre
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Bruno Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Anaïs Pujals
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Lebedeva A, Kuznetsova O, Ivanov M, Kavun A, Veselovsky E, Belova E, Mileyko V, Yakushina V, Shilo P, Tryakin A, Rumyantsev A, Moiseenko F, Fedyanin M, Nosov D. Evidence blocks for effective presentation of genomic findings at molecular tumor boards: Single institution experience. Heliyon 2024; 10:e30303. [PMID: 38707351 PMCID: PMC11068803 DOI: 10.1016/j.heliyon.2024.e30303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Genomic profiling, or molecular profiling of the tumor, is becoming a key component of therapeutic decision making in clinical oncology, and is typically carried out via next generation sequencing. However, the interpretation of the results and evaluation of rationale for targeting the uncovered alterations is challenging and requires a deep understanding of cancer biology, genetics, genomics and oncology. Multidisciplinary molecular tumor boards represent a promising strategy in the facilitation of molecularly-informed therapeutic decisions, and usually consist of specialists with various fields of expertise. To effectively communicate the biological and clinical significance of genomic findings, as well as to make molecular tumor board discussions more productive, we developed and implemented evidence blocks into case discussions in our center. We found that this approach facilitated clinicians' understanding of the results of genomic profiling, and resulted in shorter yet more efficient case discussions within the molecular tumor board. Here, we discuss our experience with evidence blocks and how their implementation influenced the molecular tumor board practice.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, 119049, Moscow, Russian Federation
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- N.N. Blokhin Russian Cancer Research Center, 119049, Moscow, Russian Federation
| | - Maxim Ivanov
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, 119049, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russian Federation
| | | | - Egor Veselovsky
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, 119049, Moscow, Russian Federation
- Lomonosov Moscow State University, 119991, Moscow, Russian Federation
| | - Vladislav Mileyko
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, 119049, Moscow, Russian Federation
| | - Valentina Yakushina
- OncoAtlas LLC, 119049, Moscow, Russian Federation
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522, Moscow, Russian Federation
| | - Polina Shilo
- Lahta Clinic Medical Center, 197183, St.Petersburg, Russian Federation
| | - Alexey Tryakin
- N.N. Blokhin Russian Cancer Research Center, 119049, Moscow, Russian Federation
| | - Alexey Rumyantsev
- N.N. Blokhin Russian Cancer Research Center, 119049, Moscow, Russian Federation
| | - Fedor Moiseenko
- State Budgetary Healthcare Institution «Saint-Petersburg Clinical Scientific and Practical Center for Specialised Types of Medical Care (oncological)», 197758, Saint-Petersburg, Russian Federation
| | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 119049, Moscow, Russian Federation
- State Budgetary Institution of Healthcare of the City of Moscow “Moscow Multidisciplinary Clinical Center “Kommunarka” of the Department of Health of the City of Moscow, 142770, Kommunarka, Moscow, Russian Federation
- Federal State Budgetary Institution “National Medical and Surgical Center Named after N.I. Pirogov” of the Ministry of Health of the Russian Federation, 105203, Moscow, Russian Federation
| | - Dmitry Nosov
- The Central Clinical Hospital of the Administrative Directorate of the President of the Russian Federation, 121359, Moscow, Russian Federation
| |
Collapse
|
17
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
18
|
Ioffe D, McSweeny M, Hall MJ. Precision Medicine in the Era of Genetic Testing: Microsatellite Instability Evolved. Clin Colon Rectal Surg 2024; 37:157-171. [PMID: 38617845 PMCID: PMC11007599 DOI: 10.1055/s-0043-1770385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The recognized importance of microsatellite instability (MSI) in cancer has evolved considerably in the past 30 years. From its beginnings as a molecular predictor for Lynch syndrome, MSI first transitioned to a universal screening test in all colorectal and endometrial cancers, substantially increasing the identification of patients with Lynch syndrome among cancer patients. More recently, MSI has been shown to be a powerful biomarker of response to immune checkpoint blockade therapy across a diversity of tumor types, and in 2017 was granted Food and Drug Administration approval as the first tumor histology-agnostic biomarker for a cancer therapy. Focusing on colorectal cancer specifically, immune checkpoint blockade therapy has been shown to be highly effective in the treatment of both MSI-high (MSI-H) colon and rectal cancer, with data increasingly suggesting an early role for immune checkpoint blockade therapy in MSI-H colorectal tumors in the neoadjuvant setting, with the potential to avoid more toxic and morbid approaches using traditional chemotherapy, radiation therapy, and surgery. The success of MSI as an immune checkpoint blockade target has inspired ongoing vigorous research to identify new similar targets for immune checkpoint blockade therapy that may help to one day expand the reach of this revolutionary cancer therapy to a wider swath of patients and indications.
Collapse
Affiliation(s)
- Dina Ioffe
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michelle McSweeny
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J. Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Voutsadakis IA. Therapeutic opportunities for hypermutated urothelial carcinomas beyond immunotherapy. Oncoscience 2024; 11:36-37. [PMID: 38699226 PMCID: PMC11065098 DOI: 10.18632/oncoscience.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Ioannis A. Voutsadakis
- Correspondence to:Ioannis A. Voutsadakis, Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada and Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, Sudbury, Ontario, Canada email: ,
| |
Collapse
|
20
|
De Rosa C, Iommelli F, De Rosa V, Ercolano G, Sodano F, Tuccillo C, Amato L, Tirino V, Ariano A, Cimmino F, di Guida G, Filosa G, di Liello A, Ciardiello D, Martinelli E, Troiani T, Napolitano S, Martini G, Ciardiello F, Papaccio F, Morgillo F, Della Corte CM. PBMCs as Tool for Identification of Novel Immunotherapy Biomarkers in Lung Cancer. Biomedicines 2024; 12:809. [PMID: 38672164 PMCID: PMC11048624 DOI: 10.3390/biomedicines12040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Lung cancer (LC), including both non-small (NSCLC) and small (SCLC) subtypes, is currently treated with a combination of chemo- and immunotherapy. However, predictive biomarkers to identify high-risk patients are needed. Here, we explore the role of peripheral blood mononuclear cells (PBMCs) as a tool for novel biomarkers searching. METHODS We analyzed the expression of the cGAS-STING pathway, a key DNA sensor that activates during chemotherapy, in PBMCs from LC patients divided into best responders (BR), responders (R) and non-responders (NR). The PBMCs were whole exome sequenced (WES). RESULTS PBMCs from BR and R patients of LC cohorts showed the highest levels of STING (p < 0.0001) and CXCL10 (p < 0.0001). From WES, each subject had at least 1 germline/somatic alteration in a DDR gene and the presence of more DDR gene mutations correlated with clinical responses, suggesting novel biomarker implications. Thus, we tested the effect of the pharmacological DDR inhibitor (DDRi) in PBMCs and in three-dimensional spheroid co-culture of PBMCs and LC cell lines; we found that DDRi strongly increased cGAS-STING expression and tumor infiltration ability of immune cells in NR and R patients. Furthermore, we performed FACS analysis of PBMCs derived from LC patients from the BR, R and NR cohorts and we found that cytotoxic T cell subpopulations displayed the highest STING expression. CONCLUSIONS cGAS-STING signaling activation in PBMCs may be a novel potential predictive biomarker for the response to immunotherapy and high levels are correlated with a better response to treatment along with an overall increased antitumor immune injury.
Collapse
Affiliation(s)
- Caterina De Rosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy;
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy;
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138 Naples, Italy; (G.E.); (F.S.)
| | - Federica Sodano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138 Naples, Italy; (G.E.); (F.S.)
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Luisa Amato
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
- U.P. Diagnostica Citometrica e Mutazionale, A.O.U. Vanvitelli, Università degli Studi della Campania, 80138 Naples, Italy
| | - Annalisa Ariano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Flora Cimmino
- Hospital “Martiri Di Villa Malta”, 84087 Sarno, Italy;
| | - Gaetano di Guida
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Gennaro Filosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Alessandra di Liello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy;
| | - Erika Martinelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Teresa Troiani
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Stefania Napolitano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Giulia Martini
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84084 Baronissi, Italy;
| | - Floriana Morgillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| | - Carminia Maria Della Corte
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (C.D.R.); (C.T.); (L.A.); (A.A.); (G.d.G.); (G.F.); (A.d.L.); (E.M.); (T.T.); (S.N.); (G.M.); (F.C.); (F.M.)
| |
Collapse
|
21
|
Yao X, Feng M, Wang W. The Clinical and Pathological Characteristics of POLE-Mutated Endometrial Cancer: A Comprehensive Review. Cancer Manag Res 2024; 16:117-125. [PMID: 38463556 PMCID: PMC10921942 DOI: 10.2147/cmar.s445055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Endometrial cancer shows high histological and molecular heterogeneity. The POLE mutation is a significant molecular alteration in endometrial cancer, leading to the identification of a specific subtype known as POLE-mutated endometrial cancer. This subtype exhibits a high tumor mutation burden, abundant lymphocyte infiltration, and a favorable prognosis, making it a promising candidate for immune checkpoint inhibitor therapy. This paper presents a comprehensive review of the clinical and pathological characteristics, outcomes, treatment advancements, pathogenic POLE gene detection, and alternative testing methods for POLE-mutated endometrial cancer.
Collapse
Affiliation(s)
- Xiaohong Yao
- Department of Pathology, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, People’s Republic of China
| | - Min Feng
- Department of Pathology, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Szczepanski JM, Rudolf MA, Shi J. Clinical Evaluation of the Pancreatic Cancer Microenvironment: Opportunities and Challenges. Cancers (Basel) 2024; 16:794. [PMID: 38398185 PMCID: PMC10887250 DOI: 10.3390/cancers16040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Advances in our understanding of pancreatic ductal adenocarcinoma (PDAC) and its tumor microenvironment (TME) have the potential to transform treatment for the hundreds of thousands of patients who are diagnosed each year. Whereas the clinical assessment of cancer cell genetics has grown increasingly sophisticated and personalized, current protocols to evaluate the TME have lagged, despite evidence that the TME can be heterogeneous within and between patients. Here, we outline current protocols for PDAC diagnosis and management, review novel biomarkers, and highlight potential opportunities and challenges when evaluating the PDAC TME as we prepare to translate emerging TME-directed therapies to the clinic.
Collapse
Affiliation(s)
| | | | - Jiaqi Shi
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.S.); (M.A.R.)
| |
Collapse
|
23
|
Lehmann U, Stenzinger A. [The biomarker POLE in tumor pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:67-68. [PMID: 38051340 DOI: 10.1007/s00292-023-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Ulrich Lehmann
- Institut für Pathologie, Molekularpathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE5110, 30625, Hannover, Deutschland.
| | - Albrecht Stenzinger
- Molekularpathologisches Zentrum, Pathologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland.
| |
Collapse
|
24
|
Shah SM, Demidova EV, Ringenbach S, Faezov B, Andrake M, Gandhi A, Mur P, Viana-Errasti J, Xiu J, Swensen J, Valle L, Dunbrack RL, Hall MJ, Arora S. Exploring Co-occurring POLE Exonuclease and Non-exonuclease Domain Mutations and Their Impact on Tumor Mutagenicity. CANCER RESEARCH COMMUNICATIONS 2024; 4:213-225. [PMID: 38282550 PMCID: PMC10812383 DOI: 10.1158/2767-9764.crc-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
POLE driver mutations in the exonuclease domain (ExoD driver) are prevalent in several cancers, including colorectal cancer and endometrial cancer, leading to dramatically ultra-high tumor mutation burden (TMB). To understand whether POLE mutations that are not classified as drivers (POLE Variant) contribute to mutagenesis, we assessed TMB in 447 POLE-mutated colorectal cancers, endometrial cancers, and ovarian cancers classified as TMB-high ≥10 mutations/Mb (mut/Mb) or TMB-low <10 mut/Mb. TMB was significantly highest in tumors with "POLE ExoD driver plus POLE Variant" (colorectal cancer and endometrial cancer, P < 0.001; ovarian cancer, P < 0.05). TMB increased with additional POLE variants (P < 0.001), but plateaued at 2, suggesting an association between the presence of these variants and TMB. Integrated analysis of AlphaFold2 POLE models and quantitative stability estimates predicted the impact of multiple POLE variants on POLE functionality. The prevalence of immunogenic neoepitopes was notably higher in the "POLE ExoD driver plus POLE Variant" tumors. Overall, this study reveals a novel correlation between POLE variants in POLE ExoD-driven tumors, and ultra-high TMB. Currently, only select pathogenic ExoD mutations with a reliable association with ultra-high TMB inform clinical practice. Thus, these findings are hypothesis-generating, require functional validation, and could potentially inform tumor classification, treatment responses, and clinical outcomes. SIGNIFICANCE Somatic POLE ExoD driver mutations cause proofreading deficiency that induces high TMB. This study suggests a novel modifier role for POLE variants in POLE ExoD-driven tumors, associated with ultra-high TMB. These data, in addition to future functional studies, may inform tumor classification, therapeutic response, and patient outcomes.
Collapse
Affiliation(s)
- Shreya M. Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Science Scholars Program, Temple University, Philadelphia, Pennsylvania
| | - Elena V. Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Salena Ringenbach
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Lewis Katz School of Medicine, Temple University, Bethlehem, Pennsylvania
| | - Bulat Faezov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mark Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Arjun Gandhi
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Roland L. Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J. Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Haynes T, Gilbert MR, Breen K, Yang C. Pathways to hypermutation in high-grade gliomas: Mechanisms, syndromes, and opportunities for immunotherapy. Neurooncol Adv 2024; 6:vdae105. [PMID: 39022645 PMCID: PMC11252568 DOI: 10.1093/noajnl/vdae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Despite rapid advances in the field of immunotherapy, including the success of immune checkpoint inhibition in treating multiple cancer types, clinical response in high-grade gliomas (HGGs) has been disappointing. This has been in part attributed to the low tumor mutational burden (TMB) of the majority of HGGs. Hypermutation is a recently characterized glioma signature that occurs in a small subset of cases, which may open an avenue to immunotherapy. The substantially elevated TMB of these tumors most commonly results from alterations in the DNA mismatch repair pathway in the setting of extensive exposure to temozolomide or, less frequently, from inherited cancer predisposition syndromes. In this review, we discuss the genetics and etiology of hypermutation in HGGs, with an emphasis on the resulting genomic signatures, and the state and future directions of immuno-oncology research in these patient populations.
Collapse
Affiliation(s)
- Tuesday Haynes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Kevin Breen
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| |
Collapse
|
26
|
André T, Berton D, Curigliano G, Sabatier R, Tinker AV, Oaknin A, Ellard S, de Braud F, Arkenau HT, Trigo J, Gravina A, Kristeleit R, Moreno V, Abdeddaim C, Vano YA, Samouëlian V, Miller R, Boni V, Torres AA, Gilbert L, Brown J, Dewal N, Dabrowski C, Antony G, Zografos E, Veneris J, Banerjee S. Antitumor Activity and Safety of Dostarlimab Monotherapy in Patients With Mismatch Repair Deficient Solid Tumors: A Nonrandomized Controlled Trial. JAMA Netw Open 2023; 6:e2341165. [PMID: 37917058 PMCID: PMC10623195 DOI: 10.1001/jamanetworkopen.2023.41165] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 11/03/2023] Open
Abstract
Importance Mismatch repair deficiency (dMMR) occurs in various cancers, and these tumors are attractive candidates for anti-programmed cell death 1 therapies, such as dostarlimab, a recently approved immune checkpoint inhibitor. Objective To assess the antitumor activity and safety of dostarlimab in patients with advanced or recurrent dMMR solid tumors. Design, Setting, And Participants The GARNET trial was a phase 1, open-label, single-group, multicenter study that began enrolling May 8, 2017. Participants had advanced or recurrent dMMR and microsatellite instability-high (MSI-H) or polymerase epsilon (POLE)-altered solid tumors. The data cut for this interim analysis was from November 1, 2021, with median follow-up of 27.7 months. Interventions Patients received 500 mg of dostarlimab intravenously every 3 weeks for 4 doses, then 1000 mg every 6 weeks until disease progression, discontinuation, or withdrawal. Main Outcomes and Measures The primary objective was to evaluate objective response rate and duration of response in patients with dMMR solid tumors by blinded independent central review using Response Evaluation Criteria in Solid Tumors, version 1.1. Results The efficacy population included 327 patients (median [range] age, 63 [24-85] years; 235 [71.9%] female; 7 [2.1%] Asian, 6 [1.8%] Black, and 206 [63.0%] White patients), with 141 patients (43.1%) with dMMR endometrial cancer, 105 patients (32.1%) with dMMR colorectal cancer, and 81 patients (24.8%) with other dMMR tumor types. All patients had at least 1 previous line of therapy. Objective response rate assessed per blinded independent central review for dMMR solid tumors was 44.0% (95% CI, 38.6% to 49.6%). Median duration of response was not reached (range, ≥1.18 to ≥47.21 months); 72.2% of responders (104 of 144) had a response lasting 12 or more months. Median progression-free survival was 6.9 months (95% CI, 4.2 to 13.6 months); probability of progression-free survival at 24 months was 40.6% (95% CI, 35.0% to 46.1%). Median overall survival was not reached (95% CI, 31.6 months to not reached). The most frequent immune-related adverse events were hypothyroidism (25 [6.9%]), alanine aminotransferase increase (21 [5.8%]), and arthralgia (17 [4.7%]). No new safety concerns were identified. Conclusions And Relevance In this nonrandomized controlled trial, dostarlimab was a well-tolerated treatment option with rapid, robust, and durable antitumor activity in patients with diverse dMMR solid tumors. These findings suggest that dostarlimab provides meaningful long-term benefit in a population with high unmet need. Trial Registration ClinicalTrials.gov Identifier: NCT02715284.
Collapse
Affiliation(s)
- Thierry André
- Saint-Antoine Hospital, INSERM, Unité Mixte de Recherche Scientifique 938, and SIRIC CURAMUS, Sorbonne University, Paris, France
| | - Dominique Berton
- GINECO and Institut de Cancerologie de l’Ouest, Centre René Gauducheau, Saint-Herblain, France
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Medical Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Renaud Sabatier
- Department of Medical Oncology, Institut Paoli-Calmettes, CRCM, INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Anna V. Tinker
- BC Cancer–Vancouver, Vancouver, British Columbia, Canada
| | - Ana Oaknin
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Susan Ellard
- BC Cancer–Kelowna, Kelowna, British Columbia, Canada
| | - Filippo de Braud
- Ordinario di Oncologia Medica Direttore Scuola di Specialità in Oncologia Medica Università di Milano, Direttore Dipartimento Oncologia e Ematoncologia Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - José Trigo
- Medical Oncology Department, Hospital Virgen de la Victoria IBIMA, Malaga, Spain
| | - Adriano Gravina
- Clinical Trials Unit, Instituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale,” Naples, Italy
| | | | - Victor Moreno
- START Madrid FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Cyril Abdeddaim
- Centre de Lutte Contre le Cancer–Centre Oscar Lambret, Lille, France
| | - Yann-Alexandre Vano
- Department of Medical Oncology, Hôpital Européen Georges-Pompidou, Institut du Cancer Paris CARPEM, AP-HP Centre–Université Paris Cité, Paris, France
| | - Vanessa Samouëlian
- Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal (CHUM), Centre de Recherche du CHUM, and Université de Montréal, Montreal, Quebec, Canada
| | - Rowan Miller
- University College London, St Bartholomew’s Hospital London, London, United Kingdom
| | - Valentina Boni
- NEXT Oncology Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Antonio Antón Torres
- Department of Medical Oncology, Hospital Universitario Miguel Servet and IIS Aragon, Zaragoza, Spain
| | - Lucy Gilbert
- Division of Gynecologic Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jubilee Brown
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | | | | | | | | | | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
27
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
28
|
Wang D, Elenbaas B, Murugesan K, Shah K, Montesion M, Gounaris I, Scheuenpflug J, Locatelli G, Feng Z. Relationship among DDR gene mutations, TMB and PD-L1 in solid tumour genomes identified using clinically actionable biomarker assays. NPJ Precis Oncol 2023; 7:103. [PMID: 37821580 PMCID: PMC10567713 DOI: 10.1038/s41698-023-00442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
The DNA damage response (DDR) pathway regulates DNA repair and cell survival, and inactivating mutations in DDR genes can increase tumour mutational burden (TMB), a predictive biomarker of treatment benefit from anti-PD-1/PD-L1 immunotherapies. However, a better understanding of the relationship among specific DDR mutations, TMB and PD-L1 expression is needed to improve translational strategies. Here, we determined genomic alteration frequencies in selected DDR genes that are clinically actionable biomarkers and investigated their association with TMB and PD-L1 in bladder, colorectal, non-small cell lung, ovarian and prostate cancers using the FoundationInsights® web portal. Our results not only confirm known associations, such as mismatch repair and POLE gene mutations with high TMB, but also identify significant associations between mutations in the SWI/SNF chromatin remodelling genes ARID1A and SMARCA4 and high TMB in multiple tumour types. Mutations in the ATR gene were associated with high TMB in colorectal and prostate cancers; however, associations between individual DDR mutations and high PD-L1 expression were uncommon and tumour-type specific. Finally, we found that high TMB and high PD-L1 expression were poorly associated, emphasising their independence as predictive biomarkers for immune checkpoint inhibitor use.
Collapse
Affiliation(s)
- Danyi Wang
- Clinical Measurements Sciences, Global Research & Development, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | - Brian Elenbaas
- Research Unit Oncology, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | | | | | | | - Ioannis Gounaris
- Global Clinical Development, Merck Serono Ltd., an affiliate of Merck KGaA, Feltham, UK
| | - Juergen Scheuenpflug
- Clinical Measurements Sciences, Global Research & Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Giuseppe Locatelli
- Clinical Measurements Sciences, Global Research & Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Zheng Feng
- Clinical Measurements Sciences, Global Research & Development, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA.
| |
Collapse
|
29
|
Strauss JD, Pursell ZF. Replication DNA polymerases, genome instability and cancer therapies. NAR Cancer 2023; 5:zcad033. [PMID: 37388540 PMCID: PMC10304742 DOI: 10.1093/narcan/zcad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
It has been over a decade since the initial identification of exonuclease domain mutations in the genes encoding the catalytic subunits of replication DNA polymerases ϵ and δ (POLE and POLD1) in tumors from highly mutated endometrial and colorectal cancers. Interest in studying POLE and POLD1 has increased significantly since then. Prior to those landmark cancer genome sequencing studies, it was well documented that mutations in replication DNA polymerases that reduced their DNA synthesis accuracy, their exonuclease activity or their interactions with other factors could lead to increased mutagenesis, DNA damage and even tumorigenesis in mice. There are several recent, well-written reviews of replication DNA polymerases. The aim of this review is to gather and review in some detail recent studies of DNA polymerases ϵ and δ as they pertain to genome instability, cancer and potential therapeutic treatments. The focus here is primarily on recent informative studies on the significance of mutations in genes encoding their catalytic subunits (POLE and POLD1), mutational signatures, mutations in associated genes, model organisms, and the utility of chemotherapy and immune checkpoint inhibition in polymerase mutant tumors.
Collapse
Affiliation(s)
- Juliet D Strauss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| |
Collapse
|
30
|
Kelly RJ, Bever K, Chao J, Ciombor KK, Eng C, Fakih M, Goyal L, Hubbard J, Iyer R, Kemberling HT, Krishnamurthi S, Ku G, Mordecai MM, Morris VK, Paulson AS, Peterson V, Shah MA, Le DT. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J Immunother Cancer 2023; 11:e006658. [PMID: 37286304 PMCID: PMC10254964 DOI: 10.1136/jitc-2022-006658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 06/09/2023] Open
Abstract
Gastrointestinal (GI) cancers, including esophageal, gastroesophageal junction, gastric, duodenal and distal small bowel, biliary tract, pancreatic, colon, rectal, and anal cancer, comprise a heterogeneous group of malignancies that impose a significant global burden. Immunotherapy has transformed the treatment landscape for several GI cancers, offering some patients durable responses and prolonged survival. Specifically, immune checkpoint inhibitors (ICIs) directed against programmed cell death protein 1 (PD-1), either as monotherapies or in combination regimens, have gained tissue site-specific regulatory approvals for the treatment of metastatic disease and in the resectable setting. Indications for ICIs in GI cancer, however, have differing biomarker and histology requirements depending on the anatomic site of origin. Furthermore, ICIs are associated with unique toxicity profiles compared with other systemic treatments that have long been the mainstay for GI cancer, such as chemotherapy. With the goal of improving patient care by providing guidance to the oncology community, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of GI cancer. Drawing from published data and clinical experience, the expert panel developed evidence- and consensus-based recommendations for healthcare professionals using ICIs to treat GI cancers, with topics including biomarker testing, therapy selection, and patient education and quality of life considerations, among others.
Collapse
Affiliation(s)
- Ronan J Kelly
- Charles A. Sammons Cancer Center, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Katherine Bever
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Chao
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Kristen K Ciombor
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Cathy Eng
- Department of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Lipika Goyal
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Joleen Hubbard
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Renuka Iyer
- Department of GI Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Holly T Kemberling
- Department of GI Immunology Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | | | - Geoffrey Ku
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Andrew Scott Paulson
- Department of Medical Oncology, Texas Oncology-Baylor Charles A Sammons Cancer Center, Dallas, Texas, USA
| | - Valerie Peterson
- Department of Thoracic Medical Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Manish A Shah
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
32
|
Bikhchandani M, Amersi F, Hendifar A, Gangi A, Osipov A, Zaghiyan K, Atkins K, Cho M, Aguirre F, Hazelett D, Alvarez R, Zhou L, Hitchins M, Gong J. POLE-Mutant Colon Cancer Treated with PD-1 Blockade Showing Clearance of Circulating Tumor DNA and Prolonged Disease-Free Interval. Genes (Basel) 2023; 14:1054. [PMID: 37239414 PMCID: PMC10218075 DOI: 10.3390/genes14051054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Colon cancer with high microsatellite instability is characterized by a high tumor mutational burden and responds well to immunotherapy. Mutations in polymerase ɛ, a DNA polymerase involved in DNA replication and repair, are also associated with an ultra-mutated phenotype. We describe a case where a patient with POLE-mutated and hypermutated recurrent colon cancer was treated with pembrolizumab. Treatment with immunotherapy in this patient also led to the clearance of circulating tumor DNA (ctDNA). ctDNA is beginning to emerge as a marker for minimal residual disease in many solid malignancies, including colon cancer. Its clearance with treatment suggests that the selection of pembrolizumab on the basis of identifying a POLE mutation on next-generation sequencing may increase disease-free survival in this patient.
Collapse
Affiliation(s)
- Mihir Bikhchandani
- Department of Hematology and Oncology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA 90027, USA
| | - Farin Amersi
- Department of Surgery, Division of Surgical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Hendifar
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA 90048, USA
| | - Alexandra Gangi
- Department of Surgery, Division of Surgical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Arsen Osipov
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA 90048, USA
| | - Karen Zaghiyan
- Department of Surgery, Division of Surgical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Katelyn Atkins
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - May Cho
- Department of Medicine, Division of Hematology and Oncology, University of California Irvine, Irvine, CA 92868, USA
| | - Francesca Aguirre
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Dennis Hazelett
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Rocio Alvarez
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Lisa Zhou
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Megan Hitchins
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Jun Gong
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA 90048, USA
| |
Collapse
|
33
|
Fang B, Wei Y, Pan J, Zhang T, Ye D, Zhu Y. Mismatch repair gene germline mutations in patients with prostate cancer. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:133-138. [PMID: 37283096 PMCID: PMC10409913 DOI: 10.3724/zdxbyxb-2022-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the prevalence of pathogenic germline mutations of mismatch repair (MMR) genes in prostate cancer patients and its relationship with clinicopathological characteristics. METHODS Germline sequencing data of 855 prostate cancer patients admitted in Fudan University Shanghai Cancer Center from 2018 to 2022 were retrospectively analyzed. The pathogenicity of mutations was assessed according to the American College of Medical Genetics and Genomics (ACMG) standard guideline, Clinvar and Intervar databases. The clinicopathological characteristics and responses to castration treatment were compared among patients with MMR gene mutation (MMR+ group), patients with DNA damage repair (DDR) gene germline pathogenic mutation without MMR gene (DDR+MMR- group) and patients without DDR gene germline pathogenic mutation (DDR- group). RESULTS Thirteen (1.52%) MMR+ patients were identified in 855 prostate cancer patients, including 1 case with MLH1 gene mutation, 6 cases with MSH2 gene mutation, 4 cases with MSH6 gene mutation and 2 cases with PMS2 gene mutation. 105 (11.9%) patients were identified as DDR gene positive (except MMR gene), and 737 (86.2%) patients were DDR gene negative. Compared with DDR- group, MMR+ group had lower age of onset (P<0.05) and initial prostate-specific antigen (PSA) (P<0.01), while no significant differences were found between the two groups in Gleason score and TMN staging (both P>0.05). The median time to castration resistance was 8 months (95%CI: 6 months-not achieved), 16 months (95%CI: 12-32 months) and 24 months (95%CI: 21-27 months) for MMR+ group, DDR+MMR- group and DDR- group, respectively. The time to castration resistance in MMR+ group was significantly shorter than that in DDR+MMR- group and DDR- group (both P<0.01), while there was no significant difference between DDR+MMR- group and DDR- group (P>0.05). CONCLUSIONS MMR gene mutation testing is recommended for prostate cancer patients with early onset, low initial PSA, metastasis or early resistance to castration therapy.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China.
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Jiang W, He Y, He W, Zhang X, Chen N, Li Y, Zhong W, Wu G, Zhou X, Hua H, Ye F. Metastatic sites and lesion numbers cooperated to predict efficacy of PD-1 inhibitor-based combination therapy for patients with metastatic colorectal cancer. Cancer Med 2023. [PMID: 37081776 DOI: 10.1002/cam4.5959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Limited data have been used to evaluate the efficacy of immunotherapy in metastatic colorectal cancer (mCRC). Furthermore, potential markers that can be used to identify responding patients and to further improve efficacy have not been fully explored. METHODS AND RESULTS In our study, we included a total of 97 patients with mCRC, who each received programmed death-1 (PD-1) inhibitor-based combination therapy at our center. All 12 hypermutated patients benefited from immunotherapy, with median progression-free survival (mPFS) reaching 28.3 months, regardless of liver metastasis. The objective response rate (ORR) of non-hypermutated patients was 16.5% (14/85), with an mPFS of 4.0 months. For non-hypermutated patients, multivariate analysis revealed that the combination of liver metastasis and baseline lesion number significantly stratified response and survival. The lesion-based analysis indicated that the lymph node was the most responsive, followed by the peritoneum and lung, with liver metastasis being the least responsive. None of the patients (0/7) with negative programmed ligand-1 (PD-L1) expression responded, and positive PD-L1 expression may serve as a biomarker (mPFS 5.7 vs. 2.2 months, p = 0.002) that can be used to further guide treatment in non-hypermutated mCRC with liver metastasis (CRLMs). CONCLUSION Patients with hypermutated mCRC benefited significantly from immunotherapy, whereas the non-hypermutated cohort with liver metastasis and numerous lesions showed less benefit. The lesion sites reflected varying levels of efficacy, among which PD-L1 potentially cooperated to guide the immunotherapy of CRLMs.
Collapse
Affiliation(s)
- Weiqin Jiang
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinjun He
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenguang He
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Zhang
- First Clinical Medical College of Lanzhou University Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Nan Chen
- Departments of Colorectal Surgery, Yuyao Hospital of Traditional Chinese Medicine, Yuyao, China
| | - Yandong Li
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wu
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xile Zhou
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanju Hua
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Ye
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Narita Y, Muro K. Updated Immunotherapy for Gastric Cancer. J Clin Med 2023; 12:jcm12072636. [PMID: 37048719 PMCID: PMC10094960 DOI: 10.3390/jcm12072636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer treatments are evolving rapidly. For example, immune checkpoint inhibitors, especially those that target PD-1 or PD-L1, have long-term efficacy in a subset of gastric cancer patients, and are currently the first-line therapy. Immunotherapies approved for use in untreated gastric cancer patients include monotherapy and chemotherapy-immunotherapy combinations. Major clinical trials have reported efficacy and safety data suggesting that PD-L1 expression is important for regimen selection, although other biomarkers, clinicopathologic factors, and patient preference might also be relevant in other situations. Currently, several novel biomarkers and therapeutic strategies are being assessed, which might refine the current treatment paradigm. In this review, we describe the current treatment regimens for patients with gastric cancer and detail the approach we use for the selection of first-line immunotherapy regimens.
Collapse
Affiliation(s)
- Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| |
Collapse
|
36
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Zhu LH, Dong J, Li WL, Kou ZY, Yang J. Genotype-Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Dig Dis Sci 2023:10.1007/s10620-023-07890-9. [PMID: 36862359 DOI: 10.1007/s10620-023-07890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Wen-Liang Li
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China.
| |
Collapse
|
38
|
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, Reguera-Puertas P, Fuentes-Mateos R, Ferreiro-Monteagudo R. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers (Basel) 2023; 15:863. [PMID: 36765821 PMCID: PMC9913409 DOI: 10.3390/cancers15030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second most common cause of cancer-related death in Europe. High microsatellite instability (MSI-H) due to a deficient DNA mismatch repair (dMMR) system can be found in 5% of metastatic CRC (mCRC) and has been established as a biomarker of response to immunotherapy in these tumors. Therefore, immune checkpoint inhibitors (ICIs) in mCRC with these characteristics were evaluated with results showing remarkable response rates and durations of response. The majority of mCRC cases have high levels of DNA mismatch repair proteins (pMMR) with consequent microsatellite stability or low instability (MSS or MSI-low), associated with an inherent resistance to ICIs. This review aims to provide a comprehensive analysis of the possible approaches to overcome the mechanisms of resistance and evaluates potential biomarkers to establish the role of ICIs in pMMR/MSS/MSI-L (MSS) mCRC.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Javier Torres-Jiménez
- Medical Oncology Department, Clínico San Carlos University Hospital, 28040 Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | - Jesús Chamorro-Pérez
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Gong J, Tian F, Wang Q, Mu M, Geng S, Hao P, Zhong P, Zhang R, Jiang L, Wang R, Bao P. Case report: Rare epithelioid hemangioendothelioma occurs in both main bronchus and lung. Front Med (Lausanne) 2022; 9:1066870. [PMID: 36590968 PMCID: PMC9799331 DOI: 10.3389/fmed.2022.1066870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Pulmonary epithelioid hemangioendothelioma (PEH) is a rare vascular tumor of endothelial origin with low- to intermediate-grade malignant potentials. Since there is no characteristic clinical or biological marker available for PEH, most cases require a surgical lung biopsy for diagnosis. To date, although some patients with PEH reported in the literature were diagnosed through bronchoscopic biopsy, most of the patients still underwent surgical lung biopsy for confirmation. In this case report, we present a rare case diagnosed as PEH through endobronchial biopsies due to the presence of an intraluminal mass that blocked the trachea and caused atelectasis in the right upper lobe. Moreover, since surgery was not appropriate for this patient with unresectable bilateral multiple nodules, we adopted genetic analysis using NGS to provide a guide for personalized treatment. Then, based on the NGS results, the patient was treated with anti-PD-1 mAb and sirolimus for 1 year and has been stable in a 1-year follow-up examination.
Collapse
Affiliation(s)
- Jiuyu Gong
- Hubei Province Corps Hospital of CAPF, Wuhan, China
| | - Fangfang Tian
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qin Wang
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Mi Mu
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Sijia Geng
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China,Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Pengfei Hao
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China,Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Pengfei Zhong
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China,Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Rui Zhang
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lin Jiang
- Hubei Province Corps Hospital of CAPF, Wuhan, China,*Correspondence: Lin Jiang,
| | - Rentao Wang
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China,Rentao Wang,
| | - Pengtao Bao
- The Eighth Medical Center of Chinese PLA General Hospital, College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China,Pengtao Bao,
| |
Collapse
|
40
|
NGS-based targeted gene mutational profiles in Korean patients with pancreatic cancer. Sci Rep 2022; 12:20937. [PMID: 36463295 PMCID: PMC9719465 DOI: 10.1038/s41598-022-24732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
According to molecular profiling studies, a considerable number of patients with pancreatic cancer harbor potentially actionable mutations. However, there are limited relevant data from the Korean population. We assessed the molecular profiles of patients with pancreatic cancer in Korea. This study collected molecular profiling data from patients with pancreatic cancer who visited Seoul National University Bundang Hospital between March 2018 and August 2020. Formalin-fixed, paraffin-embedded tumor specimens were sequenced using a targeted next-generation sequencing (NGS) platform. Cancer-associated mutations were analyzed, and potentially actionable mutations were identified. Potentially actionable mutations were classified into "highly actionable" and "modifies options" based on the Know Your Tumor registry study. In total, 87 patients with NGS tumor panel data were identified. Sixty-one patients (70.1%) had metastatic disease at the time of tissue acquisition. Tissues were obtained from the primary tumors and metastatic sites in 41 (47.1%) and 46 (52.9%) patients, respectively. At least one pathogenic mutation was reported in 86 patients (98.9%). The frequencies of four common mutations in our cohort were similar to those in The Cancer Genome Atlas data. Potentially actionable mutations were identified in 27 patients (31.0%). Of these, mutations categorized as highly actionable and modifies options were identified in 12 (13.8%) and 18 patients (20.7%), respectively. The most frequent highly actionable mutations were located in DNA damage response genes, such as BRCA1, BRCA2, or ATM (n = 6, 6.9%). Two patients with germline BRCA1 mutations received maintenance poly(adenosine diphosphate-ribose) polymerase inhibitor therapy. One patient has been receiving maintenance treatment for 18 months while remaining in radiologically complete remission. Mutational profiles using targeted NGS in Korean patients with pancreatic cancer were similar to those in Western patients. The present study supports the clinical potential and possible expanded clinical use of genetic profiling.
Collapse
|
41
|
Liquid Biopsy and the Translational Bridge from the TIME to the Clinic. Cells 2022; 11:cells11193114. [PMID: 36231076 PMCID: PMC9563580 DOI: 10.3390/cells11193114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Research and advancing understanding of the tumor immune microenvironment (TIME) is vital to optimize and direct more effective cancer immune therapy. Pre-clinical bench research is vital to better understand the genomic interplay of the TIME and immune therapy responsiveness. However, a vital key to effective translational cancer research is having a bridge of translation to bring that understanding from the bench to the bedside. Without that bridge, research into the TIME will lack an efficient and effective translation into the clinic and cancer treatment decision making. As a clinical oncologist, the purpose of this commentary is to emphasize the importance of researching and improving clinical utility of the bridge, as well as the TIME research itself.
Collapse
|
42
|
Rogers JE, Yamashita K, Sewastjanow Silva M, Ajani JA. Current Immune Checkpoint Inhibitor Genetic Biomarker Exploration in Gastrointestinal Tumors. Cancers (Basel) 2022; 14:4804. [PMID: 36230726 PMCID: PMC9563283 DOI: 10.3390/cancers14194804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/19/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer management. Some patients with gastrointestinal (GI) tract malignancy have experienced remarkable results. Here, in our review, we discuss predictive/prognostic GI tumor biomarkers that appear to correlate with benefits with this strategy. Remarkable progress has been made in certain subsets of patients including the potential for solid tumor patients to avoid local therapies such as radiation and/or surgery (organ preservation), which come with acute and chronic risks that have historically been the only curable strategies for these GI tumors. These results provide new and exciting strategies for solid tumor management. Unfortunately, immune checkpoint inhibitors can correlate with biomarkers, but benefits occur in a small subset of patients with GI malignancies. Most frequently, immune checkpoint inhibitors fail to induce response in GI malignancies due to the "cold" tumor microenvironment that protects cancer. Translational strategies are needed to develop effective combination strategies and novel biomarkers to overcome the intrinsic resistance.
Collapse
Affiliation(s)
- Jane E. Rogers
- U.T. M.D. Anderson Cancer Center Pharmacy Clinical Programs, Houston, TX 77030, USA
| | - Kohei Yamashita
- U.T. M.D. Anderson Cancer Center Department of Gastrointestinal Medical Oncology, Houston, TX 77030, USA
| | - Matheus Sewastjanow Silva
- U.T. M.D. Anderson Cancer Center Department of Gastrointestinal Medical Oncology, Houston, TX 77030, USA
| | - Jaffer A. Ajani
- U.T. M.D. Anderson Cancer Center Department of Gastrointestinal Medical Oncology, Houston, TX 77030, USA
| |
Collapse
|
43
|
Prieto-Potin I, Idrovo F, Suárez-Gauthier A, Díaz-Blázquez M, Astilleros-Blanco de Córdova L, Chamizo C, Zazo S, Carvajal N, López-Sánchez A, Pérez-Buira S, Aúz-Alexandre CL, Manso R, Plaza-Sánchez J, de Lucas-López V, Pérez-González N, Martín-Valle S, Cristóbal I, Casado V, García-Foncillas J, Rojo F. Comprehensive Approach to Genomic and Immune Profiling: Insights of a Real-World Experience in Gynecological Tumors. Diagnostics (Basel) 2022; 12:diagnostics12081903. [PMID: 36010253 PMCID: PMC9406465 DOI: 10.3390/diagnostics12081903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Gynecological cancer accounts for an elevated incidence worldwide requiring responsiveness regarding its care. The comprehensive genomic approach agrees with the classification of certain tumor types. We evaluated 49 patients with gynecological tumors undergoing high-throughput sequencing to explore whether identifying alterations in cancer-associated genes could characterize concrete histological subtypes. We performed immune examination and analyzed subsequent clinical impact. We found 220 genomic aberrations mostly distributed as single nucleotide variants (SNV, 77%). Only 3% were classified as variants of strong clinical significance in BRCA1 and BRCA2 of ovarian high-grade serous (HGSC) and uterine endometrioid carcinoma. TP53 and BRCA1 occurred in 72% and 28% of HGSC. Cervical squamous cell carcinoma was entirely HPV-associated and mutations occurred in PIK3CA (60%), as well as in uterine serous carcinoma (80%). Alterations were seen in PTEN (71%) and PIK3CA (60%) of uterine endometrioid carcinoma. Elevated programmed death-ligand 1 (PD-L1) was associated with high TILs. Either PD-L1 augmented in deficient mis-matched repair (MMR) proteins or POLE mutated cases when compared to a proficient MMR state. An 18% received genotype-guided therapy and a 4% immunotherapy. The description of tumor subtypes is plausible through high-throughput sequencing by recognizing clinically relevant alterations. Additional concomitant assessment of immune biomarkers identifies candidates for immunotherapy.
Collapse
Affiliation(s)
- Iván Prieto-Potin
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Franklin Idrovo
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Ana Suárez-Gauthier
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - María Díaz-Blázquez
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | | | - Cristina Chamizo
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Sandra Zazo
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Nerea Carvajal
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Almudena López-Sánchez
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Sandra Pérez-Buira
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Carmen Laura Aúz-Alexandre
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Rebeca Manso
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Jenifer Plaza-Sánchez
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Virginia de Lucas-López
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Nuria Pérez-González
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Sara Martín-Valle
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Victoria Casado
- Translational Oncology Division, Oncohealth Institute, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
- Translational Oncology Division, Oncohealth Institute, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
| | - Federico Rojo
- Department of Pathology, CIBERONC, UAM, Fundación Jiménez Díaz University Hospital Health Research Institute, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
44
|
Swift BE, Gien LT. Incorporating Molecular Diagnostics into Treatment Paradigms for Endometrial Cancer. Curr Treat Options Oncol 2022; 23:1121-1134. [DOI: 10.1007/s11864-022-00993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/27/2022]
|
45
|
Ma X, Dong L, Liu X, Ou K, Yang L. POLE/POLD1 mutation and tumor immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:216. [PMID: 35780178 PMCID: PMC9250176 DOI: 10.1186/s13046-022-02422-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
POLE and POLD1 encode the catalytic and proofreading subunits of DNA polymerase ε and polymerase δ, and play important roles in DNA replication and proofreading. POLE/POLD1 exonuclease domain mutations lead to loss of proofreading function, which causes the accumulation of mutant genes in cells. POLE/POLD1 mutations are not only closely related to tumor formation, but are also a potential molecular marker for predicting the efficacy of immunotherapy in pan-carcinomatous species. The association of POLE/POLD1 mutation, ultra-high mutation load, and good prognosis have recently become the focus of clinical research. This article reviews the function of POLE/POLD1, its relationship with deficient mismatch repair/high microsatellite instability, and the role of POLE/POLD1 mutation in the occurrence and development of various tumors.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiu Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kai Ou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
46
|
Rousseau B, Bieche I, Pasmant E, Hamzaoui N, Leulliot N, Michon L, de Reynies A, Attignon V, Foote MB, Masliah-Planchon J, Svrcek M, Cohen R, Simmet V, Augereau P, Malka D, Hollebecque A, Pouessel D, Gomez-Roca C, Guimbaud R, Bruyas A, Guillet M, Grob JJ, Duluc M, Cousin S, de la Fouchardiere C, Flechon A, Rolland F, Hiret S, Saada-Bouzid E, Bouche O, Andre T, Pannier D, El Hajbi F, Oudard S, Tournigand C, Soria JC, Champiat S, Gerber DG, Stephens D, Lamendola-Essel MF, Maron SB, Diplas BH, Argiles G, Krishnan AR, Tabone-Eglinger S, Ferrari A, Segal NH, Cercek A, Hoog-Labouret N, Legrand F, Simon C, Lamrani-Ghaouti A, Diaz LA, Saintigny P, Chevret S, Marabelle A. PD-1 Blockade in Solid Tumors with Defects in Polymerase Epsilon. Cancer Discov 2022; 12:1435-1448. [PMID: 35398880 PMCID: PMC9167784 DOI: 10.1158/2159-8290.cd-21-0521] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Missense mutations in the polymerase epsilon (POLE) gene have been reported to generate proofreading defects resulting in an ultramutated genome and to sensitize tumors to checkpoint blockade immunotherapy. However, many POLE-mutated tumors do not respond to such treatment. To better understand the link between POLE mutation variants and response to immunotherapy, we prospectively assessed the efficacy of nivolumab in a multicenter clinical trial in patients bearing advanced mismatch repair-proficient POLE-mutated solid tumors. We found that only tumors harboring selective POLE pathogenic mutations in the DNA binding or catalytic site of the exonuclease domain presented high mutational burden with a specific single-base substitution signature, high T-cell infiltrates, and a high response rate to anti-PD-1 monotherapy. This study illustrates how specific DNA repair defects sensitize to immunotherapy. POLE proofreading deficiency represents a novel agnostic biomarker for response to PD-1 checkpoint blockade therapy. SIGNIFICANCE POLE proofreading deficiency leads to high tumor mutational burden with high tumor-infiltrating lymphocytes and predicts anti-PD-1 efficacy in mismatch repair-proficient tumors. Conversely, tumors harboring POLE mutations not affecting proofreading derived no benefit from PD-1 blockade. POLE proofreading deficiency is a new tissue-agnostic biomarker for cancer immunotherapy. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, CARPEM, Paris, France
| | - Eric Pasmant
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, CARPEM, Paris, France
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, AP-HP.Centre-Université de Paris, Paris, France
| | - Nadim Hamzaoui
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, CARPEM, Paris, France
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, AP-HP.Centre-Université de Paris, Paris, France
| | - Nicolas Leulliot
- Cibles Thérapeutiques et Conception de Médicaments, CNRS UMR8015, Université de Paris, UFR de Pharmacie de Paris, Paris, France
| | - Lucas Michon
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Aurelien de Reynies
- Université de Paris, Centre de Recherche des Cordeliers, UMRS1138, AP-HP, SeqOIA-IT, Paris, France
| | | | - Michael B. Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Magali Svrcek
- Pathology department, Saint Antoine Hospital
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, F-75012 Paris, France
| | - Romain Cohen
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, F-75012 Paris, France
- Medical Oncology Department, Hôpital Saint-Antoine, Paris, France
| | - Victor Simmet
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest (ICO), Angers, France
| | - Paule Augereau
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest (ICO), Angers, France
| | - David Malka
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Hollebecque
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Damien Pouessel
- Department of Medical Oncology, Institut Claudius Regaud / IUCT Oncopole, Toulouse, France
| | - Carlos Gomez-Roca
- Department of Medical Oncology, Institut Claudius Regaud / IUCT Oncopole, Toulouse, France
| | | | - Amandine Bruyas
- Department of Medical Oncology, Hôpital de la Croix-Rousse, Lyon, France
| | - Marielle Guillet
- Department of Gastroenterology and Digestive Oncology, Hôpital de la Croix-Rousse, Lyon, France
| | | | - Muriel Duluc
- Dermatology and Oncology, Hôpital de la Timone, Marseille, France
| | | | | | - Aude Flechon
- Department of medical Oncology, Centre Leon Berard, Lyon, France
| | - Frederic Rolland
- Department of Medical Oncology, ICO Institut de Cancerologie de l’Ouest René Gauducheau, Saint-Herblain, France
| | - Sandrine Hiret
- Department of Medical Oncology, ICO Institut de Cancerologie de l’Ouest René Gauducheau, Saint-Herblain, France
| | - Esma Saada-Bouzid
- Medical Oncology, Centre Anticancer Antoine Lacassagne, Nice, France
| | - Olivier Bouche
- Gastroenterology and Digestive Oncology, CHU de Reims - Hôpital Robert Debré, Reims, France
| | - Thierry Andre
- Medical Oncology Department, Hôpital Saint-Antoine, Paris, France
| | | | | | - Stephane Oudard
- Oncology, Hopital Europeen Georges Pompidou, AP-HP, Paris, France
| | | | - Jean-Charles Soria
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Stephane Champiat
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Drew G. Gerber
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis Stephens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Steven B. Maron
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bill H. Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guillem Argiles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Asha R. Krishnan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anthony Ferrari
- Platform of Bioinformatics Gilles Thomas-Synergie Lyon Cancer, Centre Léon Bérard, Lyon
| | - Neil H. Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Frederic Legrand
- Research and Innovation, Institut National du Cancer, Boulogne-Billancourt, France
| | | | | | - Luis A. Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of medical Oncology, Centre Leon Berard, Lyon, France
| | | | - Aurelien Marabelle
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- U1015 & CIC1428, Institut national de la santé et de la recherche médicale (INSERM), Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicetre, France
| |
Collapse
|