1
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
2
|
Shayesteh S, Guillemin GJ, Rashidian A, Faghir-Ghanesefat H, Mani AR, Tavangar SM, Dehpour AR. 1-Methyl tryptophan, an indoleamine 2,3-dioxygenase inhibitor, attenuates cardiac and hepatic dysfunction in rats with biliary cirrhosis. Eur J Pharmacol 2021; 908:174309. [PMID: 34252442 DOI: 10.1016/j.ejphar.2021.174309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
Kynurenine Pathway (KP) is the dominant metabolic route of tryptophan which is catalyzed by indoleamine-2,3-dioxygenase (IDO). This pathway is upregulated in liver disease where the level of KP metabolites correlates with the severity of disease. Cirrhosis is associated with cardiac dysfunction, which manifests itself during severe physiological challenges such as liver transplantation. Cardiac dysfunction in cirrhosis is linked to systemic inflammation and impaired cardiac beta-adrenergic signaling pathways. The KP pathway is involved in modulation of cardiac signaling and is upregulated by systemic inflammation. Therefore, this study aimed to evaluate the effect of IDO inhibition on development of cardiac dysfunction in an experimental model of cirrhosis. Cirrhosis was induced by bile duct ligation (BDL). Experimental groups were given either 1-methyl tryptophan (1-MT, 1, 3, 9 mg/kg), or saline. 28 days after BDL, cardiac chronotropic response to epinephrine was assessed ex vivo. HPLC was employed to measure hepatic and cardiac levels of tryptophan, kynurenine and kynurenic acid. Cirrhosis in rats was associated with impaired cardiac chronotropic responsiveness to adrenergic stimulation. 1-MT dose-dependently improved cirrhosis-induced chronotropic dysfunction as well as elevated serum levels of CRP and IL-6 in BDL rats. Hepatic and cardiac kynurenine/tryptophan ratio were elevated in cirrhotic rats and were reduced following 1-MT administration. Chronic administration of 1-MT could also reduce hepatic inflammation, fibrosis and ductular proliferation. 1-MT attenuates cardiac dysfunction in rats with biliary cirrhosis. This protective effect is not limited to the cardiac function as liver histopathologic changes were also improved following chronic 1-MT administration.
Collapse
Affiliation(s)
- Sevda Shayesteh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedyeh Faghir-Ghanesefat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali R Mani
- Division of Medicine, University College London, London, UK
| | - Seyed Mohammad Tavangar
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhao C, Wu K, Bao L, Chen L, Feng L, Liu Z, Wang Y, Fu Y, Zhang N, Hu X. Kynurenic acid protects against mastitis in mice by ameliorating inflammatory responses and enhancing blood-milk barrier integrity. Mol Immunol 2021; 137:134-144. [PMID: 34247099 DOI: 10.1016/j.molimm.2021.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mastitis is one of the most serious diseases in humans and animals, especially in the modern dairy industry. Seeking safe and effective mastitis prevention strategies is urgent since food safety and drug residues in milk remain an enormous concern, despite the contribution of antibiotics to control mastitis. Kynurenic acid (KYNA), derived from the kynurenine pathway of tryptophan metabolism, has been shown to exhibit anti-inflammatory and immunomodulatory effects in many diseases. Recently, it was reported that impaired KYNA levels were associated with mastitis. However, the physiological role of KYNA in mastitis has not yet been elucidated. Therefore, the aim of this study was to investigate the protective role of KYNA in pathogen-induced mastitis in mice, as well as the underlying mechanism of this effect. We first evaluated the effects of KYNA on LPS-induced mastitis in mice. Additionally, the underlying anti-inflammatory mechanism of KYNA was investigated in mammary epithelial cells (MMECs). Furthermore, we examined the effects of KYNA on S. aureus and E. coli induced mastitis in mice. Our results demonstrated that KYNA alleviated LPS-induced mastitis by reducing inflammatory responses and enhancing blood-milk barrier integrity. The fundamental mechanisms involved the inhibition of NF-κB and activation of Nrf2/Ho-1, which is probably mediated by G protein-coupled receptor 35 but not aryl hydrocarbon receptor. Notably, KYNA also protected against S. aureus and E. coli induced mastitis in mice. In conclusion, our results highlight the role of KYNA in mastitis and serve as a basis for using endogenous metabolite as a novel preventative or therapeutic strategy for disease intervention.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Luotong Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
4
|
Bądzyńska B, Zakrocka I, Turski WA, Olszyński KH, Sadowski J, Kompanowska-Jezierska E. Kynurenic acid selectively reduces heart rate in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:673-679. [PMID: 31807837 DOI: 10.1007/s00210-019-01771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
We found previously that intravenous kynurenic acid (KYNA), a native broad spectrum glutamate antagonist, increases renal blood flow and induces natriuresis in anesthetized spontaneously hypertensive rats (SHR). Since such changes may affect systemic circulation and can potentially find therapeutic application, in this study we examined long term influence of orally administered KYNA on systemic and renal hemodynamics and renal excretion in conscious SHR. KYNA was administered in drinking water at a dose of 25 mg/kg/day for 3 weeks. Heart rate (HR), systolic (SBP), and mean arterial pressure (MAP) were measured through telemetry. The records were taken at the beginning of the study (control, day 0), and then on day 7, 14, and 21 of treatment. Diuresis (V), total solute excretion (UosmV), and sodium excretion (UNaV) were determined on days 0, 7, and 14. KYNA consistently decreased HR, from 319 ± 8 to 291 ± 5, 299 ± 9 and 284 ± 6 beats/min on day 7, 14, and 21, respectively, (- 9, - 6, and - 11%; p < 0.01-0.0001); HR was stable in the solvent group. SBP, MAP, V, and UNaV were not affected by KYNA, whereas UosmV increased modestly. Chronic oral administration of KYNA to conscious SHR decreased HR without affecting MAP. Since tachycardia is an independent risk factor for cardiovascular disorders, and most drugs used to decrease HR have strong inotropic negative or hypotensive effect, such selective action seems of therapeutic potential. Moreover, food supplementation with KYNA can be considered in the prevention of heart diseases.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Department of Nephrology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Krzysztof H Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Lajkó E, Tuka B, Fülöp F, Krizbai I, Toldi J, Magyar K, Vécsei L, Kőhidai L. Kynurenic acid and its derivatives are able to modulate the adhesion and locomotion of brain endothelial cells. J Neural Transm (Vienna) 2018; 125:899-912. [PMID: 29332257 DOI: 10.1007/s00702-018-1839-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/03/2018] [Indexed: 01/26/2023]
Abstract
The neuroprotective actions of kynurenic acid (KYNA) and its derivatives in several neurodegenerative disorders [characterized by damage to the cerebral endothelium and to the blood-brain barrier (BBB)] are well established. Cell-extracellular matrix (ECM) adhesion is supposedly involved in recovery of impaired cerebral endothelium integrity (endothelial repair). The present work aimed to investigate the effects of KYNA and its synthetic derivatives on cellular behaviour (e.g. adhesion and locomotion) and on morphology of the GP8 rat brain endothelial cell line, modeling the BBB endothelium. The effects of KYNA and its derivatives on cell adhesion were measured using an impedance-based technique, the xCELLigence SP system. Holographic microscopy (Holomonitor™ M4) was used to analyse both chemokinetic responses and morphometry. The GP8 cells proved to be a suitable model cell line for investigating cell adhesion and the locomotion modulator effects of kynurenines. KYNA enhanced cell adhesion and spreading, and also decreased the migration/motility of GP8 cells at physiological concentrations (10-9 and 10-7 mol/L). The derivatives containing an amide side-chain at the C2 position (KYNA-A1 and A2) had lower adhesion inducer effects compared to KYNA. All synthetic analogues (except KYNA-A5) had a time-dependent inhibitory effect on GP8 cell adhesion at a supraphysiological concentration (10-3 mol/L). The immobilization promoting effect of KYNA and the adhesion inducer activity of its derivatives indicate that these compounds could contribute to maintaining or restoring the protective function of brain endothelium; they also suggest that cell-ECM adhesion and related cell responses (e.g. migration/motility) could be potential new targets of KYNA.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, Szeged, 6720, Hungary
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, Szeged, H-6720, Hungary
| | - István Krizbai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - József Toldi
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Kálmán Magyar
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
6
|
Wirthgen E, Hoeflich A, Rebl A, Günther J. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Front Immunol 2018; 8:1957. [PMID: 29379504 PMCID: PMC5770815 DOI: 10.3389/fimmu.2017.01957] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
Tryptophan metabolites are known to participate in the regulation of many cells of the immune system and are involved in various immune-mediated diseases and disorders. Kynurenic acid (KYNA) is a product of one branch of the kynurenine pathway of tryptophan metabolism. The influence of KYNA on important neurophysiological and neuropathological processes has been comprehensively documented. In recent years, the link of KYNA to the immune system, inflammation, and cancer has become more apparent. Given this connection, the anti-inflammatory and immunosuppressive functions of KYNA are of particular interest. These characteristics might allow KYNA to act as a "double-edged sword." The metabolite contributes to both the resolution of inflammation and the establishment of an immunosuppressive environment, which, for instance, allows for tumor immune escape. Our review provides a comprehensive update of the significant biological functions of KYNA and focuses on its immunomodulatory properties by signaling via G-protein-coupled receptor 35 (GPR35)- and aryl hydrocarbon receptor-mediated pathways. Furthermore, we discuss the role of KYNA-GPR35 interaction and microbiota associated KYNA metabolism for gut homeostasis.
Collapse
Affiliation(s)
- Elisa Wirthgen
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Alexander Rebl
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
7
|
Kaczorek E, Szarek J, Mikiewicz M, Terech-Majewska E, Schulz P, Małaczewska J, Wójcik R, Siwicki AK. Effect of feed supplementation with kynurenic acid on the morphology of the liver, kidney and gills in rainbow trout (Oncorhynchus mykiss Walbaum, 1792), healthy and experimentally infected with Yersinia ruckeri. JOURNAL OF FISH DISEASES 2017; 40:873-884. [PMID: 27690267 DOI: 10.1111/jfd.12567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Kynurenic acid (KYNA) is an endogenous substance produced on the kynurenine pathway which is primarily known for its neuroactive properties. Recently, it has been proven that KYNA is a selective ligand for G protein-coupled receptor (GPR 35), presented on immunocompetent cells such as T lymphocytes. This opens up new possibilities of its application as an immunostimulating substance in aquaculture. Thus far, no histopathological investigations in fish have been completed to evaluate influence of KYNA supplementation in feed. This study has been undertaken to determine the effect of feed supplementation with KYNA (2.5, 25, 250 mg kg-1 of feed) for 28 days on the liver, gills and kidney in healthy fish and experimentally infected with Yersinia ruckeri. In a control group were observed a fatty liver, which is natural for this fish species in the autumn and winter season. As the dose of the supplement was increased, the fat liver changed, it decreased or completely disappeared. Additionally, inflammatory changes occurred in all the analysed organs, and their intensification was dose dependent. In the fish experimentally infected, KYNA caused aggravation of the signs in the liver, kidneys and gills, and the effect was dose dependent. The results implicate that KYNA may be a stressor for fish.
Collapse
Affiliation(s)
- E Kaczorek
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - J Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - M Mikiewicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - E Terech-Majewska
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - P Schulz
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - J Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - R Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - A K Siwicki
- Department Fish Pathology and Immunology, Inland Fisheries Institute in Olsztyn, Olsztyn, Poland
| |
Collapse
|
8
|
Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci 2017; 74:2899-2916. [PMID: 28314892 DOI: 10.1007/s00018-017-2504-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/26/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Kynurenine pathway (KP) is the primary path of tryptophan (Trp) catabolism in most mammalian cells. The KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and 3-hydroxyanthranilic acid (3-HAA). Increased catabolite concentrations in serum are associated with several cardiovascular diseases (CVD), including heart disease, atherosclerosis, and endothelial dysfunction, as well as their risk factors, including hypertension, diabetes, obesity, and aging. The first catabolic step in KP is primarily controlled by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Following this first step, the KP has two major branches, one branch is mediated by kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU) and is responsible for the formation of 3-HK, 3-HAA, and quinolinic acid (QA); and another branch is controlled by kynurenine amino-transferase (KAT), which generates KA. Uncontrolled Trp catabolism has been demonstrated in distinct CVD, thus, understanding the underlying mechanisms by which regulates KP enzyme expression and activity is paramount. This review highlights the recent advances on the effect of KP enzyme expression and activity in different tissues on the pathological mechanisms of specific CVD, KP is an inflammatory sensor and modulator in the cardiovascular system, and KP catabolites act as the potential biomarkers for CVD initiation and progression. Moreover, the biochemical features of critical KP enzymes and principles of enzyme inhibitor development are briefly summarized, as well as the therapeutic potential of KP enzyme inhibitors against CVD is briefly discussed.
Collapse
|
9
|
Dabrowski W, Kocki T, Pilat J, Parada-Turska J, Malbrain MLNG. Changes in plasma kynurenic acid concentration in septic shock patients undergoing continuous veno-venous haemofiltration. Inflammation 2014; 37:223-34. [PMID: 24043287 PMCID: PMC3929023 DOI: 10.1007/s10753-013-9733-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Kynurenic acid (KYNA) is one of the end products of tryptophan metabolism. The aim of this study was to analyse plasma KYNA concentration in septic shock patients (SSP) with acute kidney injury (AKI) undergoing continuous veno-venous haemofiltration (CVVH). Changes in KYNA content were compared to alterations in the levels of procalcitonin (PCT), C-reactive protein and lactate. Adult SSP with AKI were examined. Measurements were conducted at seven time points: before beginning CVVH and at 6, 12, 24, 48, 72 and 96 h after the beginning of CVVH. Based on clinical outcomes, the data were analysed separately for survivors and non-survivors. Twenty-seven patients were studied. CVVH was associated with reduced plasma KYNA concentration only in survivors. Plasma KYNA concentration correlated with the levels of lactate and PCT only in survivors. (1) CVVH reduced plasma KYNA concentration only in survivors; (2) lack of this reduction may predict fatal outcomes in SSP.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego Street 8, 20-954, Lublin, Poland,
| | | | | | | | | |
Collapse
|
10
|
Baran H, Kepplinger B, Draxler M. Endogenous Kynurenine Aminotransferases Inhibitor is Proposed to Act as "Glia Depressing Factor" (GDF). Int J Tryptophan Res 2010; 3:13-22. [PMID: 22084585 PMCID: PMC3195239 DOI: 10.4137/ijtr.s3682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The endogenous neuroinhibitory amino acid receptor antagonist kynurenic acid (KYNA) has been hypothetically linked to physiological processes and to the pathogenesis of several brain disorders. The aim of this study was to search KYNA metabolism i.e. KYNA levels and enzymes synthesising KYNA kynurenine aminotransferase I and II (KAT I and II) in the central nervous system (CNS) and in the peripheral nervous system. Within the investigated species we found a remarkably low KYNA content (3.4 nM) in piglet's serum compared to rat and human serum. Furthermore, in contrast to high KAT activity present in rat and human livers, a lack of KAT I and KAT II activity was found in piglet liver and other piglet peripheral organs. Therefore we attempted to find a reason for the absence of KYNA formation in piglet peripheral tissue and we researched to find if KYNA formation in rat liver homogenate (measured under standard assay conditions for KAT activity) can be influenced by the application of piglet tissue homogenates and other body fluids. KYNA formation in rat liver homogenate was investigated in the presence of piglet liver, piglet brain, rat brain and human brain homogenates, and also in the presence of cerebrospinal fluid (CSF) of the control and of Multiple Sclerosis patients. We found a significant and dose dependent reduction of rat liver KAT I and KAT II activities in the presence of piglet brain, piglet liver, and human brain, but not in the presence of rat brain homogenate. Interestingly, CSF of the human control subjects significantly lowered rat liver KAT I activity. Furthermore, the inhibitory effect of CSF of Multiple Sclerosis (MS) patients was significantly weaker when compared to the CSF of control subjects. Our data, for the first time, indicated the presence of active component(s)-depressing factor-in the body, which was able to block KYNA formation. Reduced KAT inhibitory effect by CSF of MS patients would suggest a lowered "depressing factor" level in CSF of MS patients and is possibly responsible for an enhancement of KYNA formation and for glia activation and gliosis in the CNS. Subsequently, two fractions obtained after centrifugation of CSF from patients with Neuroborreliosis showed a significantly different ability to block KAT I activity. The CSF-sediment fraction exerts a stronger inhibitory activity than the CSF-supernatant fraction, supporting further the presence of a depressing factor. For the first time, data revealed and demonstrated the ability of endogenous components to block KYNA's synthesis. We propose that a glia depressing factor (GDF), which is abundantly present in the body, might simultaneously control glia cell's KAT activity, respectively KYNA synthesis and also glia proliferation. The mechanism(s) of action, the composition and structure of this factor needs to be further elaborated.
Collapse
Affiliation(s)
- Halina Baran
- Neurochemical Laboratory, Karl Landsteiner Research Institute for Pain Treatment and Neurorehabilitation, LKM Mauer-Amstetten
- Division of Neurophysiology, Institute of Physiology and Pathophysiology, Department of Biomedical Sciences, Veterinary Medical University Vienna, Vienna
| | - Berthold Kepplinger
- Neurochemical Laboratory, Karl Landsteiner Research Institute for Pain Treatment and Neurorehabilitation, LKM Mauer-Amstetten
- Department of Neurology, Neuropsychiatric Hospital LKM Mauer, Amstetten-Mauer
- Department of Neurology, General Hospital LKM Amstetten, Amstetten, Austria
| | - Markus Draxler
- Neurochemical Laboratory, Karl Landsteiner Research Institute for Pain Treatment and Neurorehabilitation, LKM Mauer-Amstetten
- Division of Neurophysiology, Institute of Physiology and Pathophysiology, Department of Biomedical Sciences, Veterinary Medical University Vienna, Vienna
| |
Collapse
|
11
|
Han Q, Cai T, Tagle DA, Li J. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol Life Sci 2010; 67:353-68. [PMID: 19826765 PMCID: PMC2867614 DOI: 10.1007/s00018-009-0166-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 01/12/2023]
Abstract
Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Tao Cai
- OIIB, NIDCR, National Institutes of Health, Bethesda MD, 20892-4322 USA
| | - Danilo A. Tagle
- Neuroscience Center, NINDS, National Institutes of Health, Bethesda, MD 2089-29525 USA
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
12
|
Inhibitory effects of kynurenic acid, a tryptophan metabolite, and its derivatives on cytosolic sulfotransferases. Biochem J 2009; 422:455-62. [DOI: 10.1042/bj20090168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
KYNA (kynurenic acid) is an endogenous metabolite of tryptophan in the kynurenine pathway and has been characterized as an antagonist of ionotropic glutamate receptors. In addition, we have reported this endogenous compound as a potent inhibitor of SULTs (cytosolic sulfotransferases). In the present study we characterized the inhibitory effects of KYNA on several human (h) and mouse (m) recombinant SULTs. No sulfate metabolite of KYNA was detected with mouse and human SULTs examined under the conditions used, suggesting that it is a bona fide inhibitor of SULTs. Among the mouse enzymes examined, KYNA exhibited selective inhibitory effects on Sult1b1-mediated sulfation of various compounds with IC50 values in the low micromolar range (2.9–4.9 μM). KYNA also exerted an inhibitory activity towards hSULT1A1 and hSULT1B1. The inhibitory potency of KYNA for mSult1b1 was stronger than that of 2,6-dichloro-4-nitrophenol, a known non-specific SULT inhibitor, whereas the potencies of these two inhibitors for hSULT1B1 were comparable. The inhibitory characteristics of KYNA were clearly distinct from those of mefenamic acid, a selective inhibitor of SULT1A enzymes. The KYNA derivatives 5,7-dichlorokynurenic acid and L689,560 exhibited preferential inhibitory effects on hSULT1A1 and hSULT1B1 respectively. Interestingly, gavestinel, another KYNA derivative, was found to be an extremely potent inhibitor of hSULT1B1. Finally, we have demonstrated that the mechanism underlying the KYNA inhibition varied depending on the enzyme and substrate involved. Taken together, the present results unveil another distinct aspect of KYNA and its derivatives as an inhibitor of SULTs.
Collapse
|
13
|
Barth MC, Ahluwalia N, Anderson TJT, Hardy GJ, Sinha S, Alvarez-Cardona JA, Pruitt IE, Rhee EP, Colvin RA, Gerszten RE. Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 2009; 284:19189-95. [PMID: 19473985 PMCID: PMC2740542 DOI: 10.1074/jbc.m109.024042] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that kynurenic acid (KYNA), a compound produced endogenously by the interferon-gamma-induced degradation of tryptophan by indoleamine 2,3-dioxygenase, activates the previously orphaned G protein-coupled receptor, GPR35. This receptor is expressed in immune tissues, although its potential function in immunomodulation remains to be explored. We determined that GPR35 was most highly expressed on human peripheral monocytes. In an in vitro vascular flow model, KYNA triggered the firm arrest of monocytes to both fibronectin and ICAM-1, via beta(1) integrin- and beta(2) integrin-mediated mechanisms, respectively. Incubation of monocytes with pertussis toxin prior to use in flow experiments significantly reduced the KYNA-induced monocyte adhesion, suggesting that adhesion is triggered by a G(i)-mediated process. Furthermore, KYNA-triggered adhesion of monocytic cells was reduced by short hairpin RNA-mediated silencing of GPR35. Although GPR35 is expressed at slightly lower levels on neutrophils, KYNA induced firm adhesion of these cells to an ICAM-1-expressing monolayer as well. KYNA also elicited neutrophil shedding of surface L-selectin, another indicator of leukocyte activation. Taken together, these data suggest that KYNA could be an important early mediator of leukocyte recruitment.
Collapse
Affiliation(s)
- Marita C. Barth
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Neil Ahluwalia
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Thomas J. T. Anderson
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Gregory J. Hardy
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Sumita Sinha
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Jose A. Alvarez-Cardona
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Ivy E. Pruitt
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Eugene P. Rhee
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Richard A. Colvin
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| | - Robert E. Gerszten
- From the Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
14
|
Baran H, Kepplinger B. Cerebrolysin lowers kynurenic acid formation--an in vitro study. Eur Neuropsychopharmacol 2009; 19:161-8. [PMID: 19008081 DOI: 10.1016/j.euroneuro.2008.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 11/24/2022]
Abstract
The therapeutic effect of Cerebrolysin in the treatment of dementia and brain injury has been proposed because of neurotrophic properties of this compound. Since an increased kynurenine metabolism has been documented in several brain pathologies including dementia the aim of the present study was to investigate the biochemical properties of Cerebrolysin with respect to kynurenic acid (KYNA) formation in an in vitro study. KYNA is an endogenous metabolite of the kynurenine pathway of tryptophan degradation and is an antagonist of the glutamate ionotropic excitatory amino acid and of the nicotine cholinergic receptors. The activities of the KYNA synthesizing enzymes kynurenine aminotransferases I, II and III (KAT I, KAT II and KAT III) in rat liver, and rat and human brain homogenates were analysed in the presence of Cerebrolysin. KAT I, II and III activities were measured using a radio-enzymatic method in the presence of 1 mM pyruvate and 100 microM [H(3)]L-kynurenine. Cerebrolysin, dose-dependently and significantly reduced KAT I, KAT II and KAT III activities of rat liver homogenate. Furthermore, Cerebrolysin exerted a dose-dependent inhibition of rat and human brain KAT I, KAT II and KAT III activities, too. The inhibitory effect of Cerebrolysin was more pronounced for KAT I than for KAT II and KAT III. The present study for the first time demonstrates the ability of Cerebrolysin to lower KYNA formation in rat liver as well as in rat and human brain homogenates. We propose Cerebrolysin as a compound susceptible of therapeutic exploitation in some disorders associated with elevated KYNA metabolism in the brain and/or other tissues. We suggest that the anti-dementia effect of Cerebrolysin observed in Alzheimer patients could be in part due to Cerebrolysin induced reduction of KYNA levels, thus modulating the cholinergic and glutamatergic neurotransmissions.
Collapse
Affiliation(s)
- Halina Baran
- Neurophysiology, Institute of Physiology, Department for Biomedical Sciences, Veterinary Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
15
|
Biochemical and structural properties of mouse kynurenine aminotransferase III. Mol Cell Biol 2008; 29:784-93. [PMID: 19029248 DOI: 10.1128/mcb.01272-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60 degrees C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.
Collapse
|
16
|
Stazka J, Luchowski P, Urbanska EM. Homocysteine, a risk factor for atherosclerosis, biphasically changes the endothelial production of kynurenic acid. Eur J Pharmacol 2005; 517:217-23. [PMID: 15961072 DOI: 10.1016/j.ejphar.2005.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/26/2005] [Accepted: 04/29/2005] [Indexed: 01/07/2023]
Abstract
Increased serum level of homocysteine is an independent risk factor for vascular disease. The effect of DL-homocysteine on the endothelial production of kynurenic acid, an antagonist of alpha7-nicotinic and N-methyl-D-aspartate (NMDA) glutamate receptors, has been evaluated in vitro and in vivo. In rat aortic rings, DL-homocysteine at 40-100 microM enhanced, whereas at >or=400 microM decreased the synthesis of kynurenic acid. S-adenosylhomocysteine mimicked the biphasic action of DL-homocysteine. On the contrary, thiol-containing compounds, L-cysteine and L-methionine, were only inhibiting kynurenic acid production. L-kynurenine uptake blockers, L-phenylalanine and L-leucine, reversed the stimulatory effect of S-adenosylhomocysteine. L-glycine, co-agonist of NMDA receptor, and cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755), an antagonist of NMDA receptor, have not influenced kynurenic acid formation. In vivo, DL-homocysteine (1.3 mmol, i.p.) increased the level of kynurenic acid in rat serum from 23.7+/-7.1 to 60.7+/-14.2 (15 min, P<0.01) and 55.7+/-13.6 (60 min, P<0.01) pmol/ml, respectively; the endothelial content of kynurenic acid was also increased (51.6+/-5.8 vs. 73.2+/-9.4 fmol/microg of protein; 15 min; P<0.01). DL-homocysteine seems to modulate the production of kynurenic acid both directly and indirectly, possibly following the conversion to S-adenosylhomocysteine. The obtained data suggest a potential contribution of altered formation of kynurenic acid to the endothelial changes induced by hyperhomocysteinemia.
Collapse
Affiliation(s)
- Janusz Stazka
- Department of Cardiosurgery, Skubiszewski Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | | | | |
Collapse
|
17
|
Baran H, Staniek K, Kepplinger B, Stur J, Draxler M, Nohl H. Kynurenines and the respiratory parameters on rat heart mitochondria. Life Sci 2003; 72:1103-15. [PMID: 12505541 DOI: 10.1016/s0024-3205(02)02365-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown recently that the L-kynurenine metabolite kynurenic acid lowers the efficacy of mitochondria ATP synthesis by significantly increasing state IV, and reducing respiratory control index and ADP/oxygen ratio of glutamate/malate-consuming heart mitochondria. In the present study we investigated the effect of L-tryptophan (1.25 microM to 5 mM) and other metabolites of L-kynurenine as 3-hydroxykynurenine (1.25 microM to 2.5 mM), anthranilic acid (1.25 microM to 5 mM) and 3-hydroxyanthranilic acid (1.25 microM to 5 mM) on the heart mitochondria function. Mitochondria were incubated with saturating concentrations of respiratory substrates glutamate/malate (5 mM), succinate (10 mM) or NADH (1 mM) in the presence or absence of L-tryptophan metabolites. Among tested substances, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and anthranilic acid but not tryptophan affected the respiratory parameters dose-dependently, however at a high concentration, of a micro molar range. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid lowered respiratory control index and ADP/oxygen ratio in the presence of glutamate/malate and succinate but not with NADH. While, anthranilic acid reduced state III oxygen consumption rate and lowered the respiratory control index only of glutamate/malate-consuming heart mitochondria. Co-application of anthranilic acid and kynurenic acid (125 or 625 microM each) to glutamate/malate-consuming heart mitochondria caused a non-additive deterioration of the respiratory parameters determined predominantly by kynurenic acid. Accumulated data indicate that within L-tryptophan metabolites kynurenic acid is the most effective, followed by anthranilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid to influence the respiratory parameters of heart mitochondria. Present data allow to speculate that changes of kynurenic acid and/or anthranilic acid formation in heart tissue mitochondria due to fluctuation of L-kynurenine metabolism may be of functional importance for cardiovascular processes. On the other hand, beside the effect of 3-hydroxyanthranilic acid and 3-hydroxykynurenine on respiratory parameters, their oxidative reactivity may contribute to impairment of mitochondria function, too.
Collapse
Affiliation(s)
- H Baran
- Institute of Pharmacology and Toxicology, Veterinary University Vienna, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
18
|
Stazka J, Luchowski P, Wielosz M, Kleinrok Z, Urbańska EM. Endothelium-dependent production and liberation of kynurenic acid by rat aortic rings exposed to L-kynurenine. Eur J Pharmacol 2002; 448:133-7. [PMID: 12144932 DOI: 10.1016/s0014-2999(02)01943-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rat aortic slices produced and liberated the endogenous antagonist of glutamate receptors, kynurenic acid, upon exposure to L-kynurenine. Endothelium-denuded slices did not synthesize any measurable amount of kynurenic acid, indicating its endothelial origin. Aortic kynurenic acid production was diminished by modification of the ionic milieu, hypoxia and hypoglycemia, as well as by L-glutamate and L-aspartate, endogenous glutamate receptor agonists, and aminooxyacetic acid, a non-selective inhibitor of aminotransferases and mitochondrial respiration. These data pave the way for future research aimed to clarify the role of kynurenic acid in the physiology and pathology of the endothelium and vasculature.
Collapse
Affiliation(s)
- Janusz Stazka
- Department of Cardiosurgery, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | | | | | | | | |
Collapse
|
19
|
Milart P, Urbanska EM, Turski WA, Paszkowski T, Sikorski R. Kynurenine aminotransferase I activity in human placenta. Placenta 2001; 22:259-61. [PMID: 11170833 DOI: 10.1053/plac.2000.0611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the study was to detect and characterize placental kynurenine aminotransferase I (KAT I) activity in physiological pregnancy at term. Placental KAT I was inhibited by l -glutamine, l -tryptophan, and l -phenylalanine and reached optimum activity at pH 9.8. When pyruvate was used as a co-factor, the KAT I activity was significantly higher than the activity of this enzyme in the presence of 2-oxoglutarate. In the light of our findings placental KAT I seems to have biochemical characteristics of KAT I detected in human brain.
Collapse
Affiliation(s)
- P Milart
- Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL-20090 Lublin, Poland.
| | | | | | | | | |
Collapse
|
20
|
Holmes EW. Expression and regulation of interferon-gamma-induced tryptophan catabolism in cultured skin fibroblasts. J Interferon Cytokine Res 1998; 18:509-20. [PMID: 9712367 DOI: 10.1089/jir.1998.18.509] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma)-induced, indoleamine dioxygenase-catalyzed tryptophan catabolism was studied in cultured human foreskin fibroblasts using the increase in cellular kynurenine synthesis as an index of gene expression. The time courses of the inhibition of IFN-gamma-induced kynurenine synthesis by actinomycin D and cycloheximide showed that the indoleamine dioxygenase gene was transcribed as early as 2 h and translated as early as 5 h after initiation of IFN treatment. Expression was completely inhibited by the Ser/Thr kinase inhibitor, H-7 (66 microM), during the first 2 h after IFN-gamma treatment. Prolonged pretreatment of cells with high concentrations of staurosporine (380 nM) or genestein (610 microM) inhibited expression by 38% and 53%, respectively. Genestein also inhibited expression when it was added to cultures between 8 and 24 h after IFN-gamma treatment. The expression of kynurenine synthesis was inhibited by A23817 during the first 4 h after IFN treatment by mechanisms that were independent of cyclooxygenase, calmodulin, and calcineurin. Exogenous gangliosides (bovine brain gangliosides and purified GM1) inhibited IDO expression throughout the first 24 h after IFN-gamma treatment by mechanisms that did not involve effects on Ca2+ channels. Other biologic response modifiers, including phorbol myristic acetate, arachidonic acid, lipopolysaccharide, analogs of cAMP and cGMP, W-7, and sphingosine, did not induce IDO in the absence of IFN-gamma, nor did they modulate IFN-gamma-induced expression. These results indicate that the expression of kynurenine synthesis is modulated at the transcriptional and posttranscriptional levels by protein tyrosine kinase and by a Ser/Thr kinase with properties distinctly different from those of conventional protein kinase C. The capacity for attenuation of this IFN-gamma-induced response over its entire time course by many effectors and through multiple cellular signaling pathways may represent a mechanism for fine-tuning the level of oxidative tryptophan metabolism to meet the needs of a particular cytostatic or antiproliferative response.
Collapse
Affiliation(s)
- E W Holmes
- Department of Pathology, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|