1
|
Lee GG, Zeng K, Duffy CM, Sriharsha Y, Yoo S, Park JH. In vivo characterization of the maturation steps of a pigment dispersing factor neuropeptide precursor in the Drosophila circadian pacemaker neurons. Genetics 2023; 225:iyad118. [PMID: 37364299 PMCID: PMC10471210 DOI: 10.1093/genetics/iyad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Pigment dispersing factor (PDF) is a key signaling molecule coordinating the neuronal network associated with the circadian rhythms in Drosophila. The precursor (proPDF) of the mature PDF (mPDF) consists of 2 motifs, a larger PDF-associated peptide (PAP) and PDF. Through cleavage and amidation, the proPDF is predicted to produce cleaved-PAP (cPAP) and mPDF. To delve into the in vivo mechanisms underlying proPDF maturation, we generated various mutations that eliminate putative processing sites and then analyzed the effect of each mutation on the production of cPAP and mPDF by 4 different antibodies in both ectopic and endogenous conditions. We also assessed the knockdown effects of processing enzymes on the proPDF maturation. At the functional level, circadian phenotypes were measured for all mutants and knockdown lines. As results, we confirm the roles of key enzymes and their target residues: Amontillado (Amon) for the cleavage at the consensus dibasic KR site, Silver (Svr) for the removal of C-terminal basic residues from the intermediates, PAP-KR and PDF-GK, derived from proPDF, and PHM (peptidylglycine-α-hydroxylating monooxygenase) for the amidation of PDF. Our results suggest that the C-terminal amidation occurs independently of proPDF cleavage. Moreover, the PAP domain is important for the proPDF trafficking into the secretory vesicles and a close association between cPAP and mPDF following cleavage seems required for their stability within the vesicles. These studies highlight the biological significance of individual processing steps and the roles of the PAP for the stability and function of mPDF which is essential for the circadian clockworks.
Collapse
Affiliation(s)
- Gyunghee G Lee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin Zeng
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cole M Duffy
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yadali Sriharsha
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Siuk Yoo
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Jae H Park
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
- NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
3
|
Effect of Peptides from Plasma of Patients with Coronary Artery Disease on the Vascular Endothelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020238. [PMID: 36837440 PMCID: PMC10003965 DOI: 10.3390/medicina59020238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Background and Objectives: Coronary artery disease (CAD) is the foremost cause of adult disability and mortality. There is an urgent need to focus on the research of new approaches for the prevention and treatment of CAD. Materials and Methods: The effects of peptides isolated from the blood plasma of CAD patients on endothelial cell secretion using the in vitro model have been tested. Human endothelial progenitor cells (HEPCs) were incubated for 24 h with peptides isolated from the plasma of healthy subjects or patients with stable angina, progressive unstable angina, and myocardial infarction. The contents of some soluble anticoagulant as well as procoagulant mediators in HEPC culture treated with peptide pools were then compared. Results and Conclusion: The results show that peptides from the plasma of patients with myocardial infarction promote endothelial cells to release both von Willebrand factor and endothelin-1, increasing vasoconstriction and shifting hemostatic balance toward a prothrombotic state. In contrast, peptides from the plasma of patients with progressive unstable angina suppress the secretion of endothelin-1 by HEPCs, while the secretion of both von Willebrand factor and tissue plasminogen activator was increased. As can be seen from the results obtained, disease derived peptides may contribute to the homeostasis of living organisms or the progression of pathological processes.
Collapse
|
4
|
Bosch JA, Ugur B, Pichardo-Casas I, Rabasco J, Escobedo F, Zuo Z, Brown B, Celniker S, Sinclair DA, Bellen HJ, Perrimon N. Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila. eLife 2022; 11:e82709. [PMID: 36346220 PMCID: PMC9681215 DOI: 10.7554/elife.82709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open-reading frames (smORFs). Here, we describe two peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. Yet, Sloth1 and Sloth2 are not functionally redundant, and loss of either peptide causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. We provide evidence that Sloth1/2 are highly expressed in neurons, imported to mitochondria, and regulate mitochondrial complex III assembly. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnick Institute, Harvard Medical SchoolBostonUnited States
| | - Berrak Ugur
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Israel Pichardo-Casas
- Department of Genetics, Blavatnick Institute, Harvard Medical SchoolBostonUnited States
| | - Jordan Rabasco
- Department of Genetics, Blavatnick Institute, Harvard Medical SchoolBostonUnited States
| | - Felipe Escobedo
- Department of Genetics, Blavatnick Institute, Harvard Medical SchoolBostonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ben Brown
- Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Susan Celniker
- Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - David A Sinclair
- Department of Genetics, Blavatnick Institute, Harvard Medical SchoolBostonUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical InstituteHoustonUnited States
| | - Norbert Perrimon
- Department of Genetics, Blavatnick Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteHoustonUnited States
| |
Collapse
|
5
|
Micropeptides translated from putative long non-coding RNAs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:292-300. [PMID: 35538037 PMCID: PMC9827906 DOI: 10.3724/abbs.2022010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) transcribed in mammals and eukaryotes were thought to have no protein coding capability. However, recent studies have suggested that plenty of lncRNAs are mis-annotated and virtually contain coding sequences which are translated into functional peptides by ribosomal machinery, and these functional peptides are called micropeptides or small peptides. Here we review the rapidly advancing field of micropeptides translated from putative lncRNAs, describe the strategies for their identification, and elucidate their critical roles in many fundamental biological processes. We also discuss the prospects of research in micropeptides and the potential applications of micropeptides.
Collapse
|
6
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Southey BR, Zhang P, Keever MR, Rymut HE, Johnson RW, Sweedler JV, Rodriguez-Zas SL. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J Integr Neurosci 2021; 20:21-31. [PMID: 33834688 PMCID: PMC8103820 DOI: 10.31083/j.jin.2021.01.332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The prolonged effects of maternal immune activation in response stressors during gestation on the offspring's molecular pathways after birth are beginning to be understood. An association between maternal immune activation and neurodevelopmental and behavior disorders such as autism and schizophrenia spectrum disorders has been detected in long-term gene dysregulation. The incidence of alternative splicing among neuropeptides and neuropeptide receptor genes, critical cell-cell signaling molecules, associated with behavior may compromise the replicability of reported maternal immune activation effects at the gene level. This study aims to advance the understanding of the effect of maternal immune activation on transcript isoforms of the neuropeptide system (including neuropeptide, receptor and connecting pathway genes) underlying behavior disorders later in life. Recognizing the wide range of bioactive peptides and functional receptors stemming from alternative splicing, we studied the effects of maternal immune activation at the transcript isoform level on the hippocampus and amygdala of three-week-old pigs exposed to maternal immune activation due to viral infection during gestation. In the hippocampus and amygdala, 29 and 9 transcript isoforms, respectively, had maternal immune activation effects (P-value < 0.01). We demonstrated that the study of the effect of maternal immune activation on neuropeptide systems at the isoform level is necessary to expose opposite effects among transcript isoforms from the same gene. Genes were maternal immune activation effects have also been associated with neurodevelopmental and behavior disorders. The characterization of maternal immune activation effects at the transcript isoform level advances the understanding of neurodevelopmental disorders and identifies precise therapeutic targets.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Marissa R Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Jonathan V Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| |
Collapse
|
8
|
Oliphant A, Hawkes MKN, Cridge AG, Dearden PK. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. Gen Comp Endocrinol 2020; 292:113443. [PMID: 32097662 DOI: 10.1016/j.ygcen.2020.113443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
We de novo assembled a transcriptome for early life-stages of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus, establishing the first genetic resource for this under-developed aquaculture species and for the Paranephrops genus. Mining of this transcriptome for neuropeptides and their putative cognate G protein-coupled receptors (GPCRs) yielded a comprehensive catalogue of neuropeptides, but few putative neuropeptide GPCRs. Of the neuropeptides commonly identified from decapod transcriptomes, only crustacean female sex hormone and insulin-like peptide were absent from our trinity de novo transcriptome assembly, and also RNA-sequence reads. We identified 63 putative neuropeptide precursors from 43 families, predicted to yield 122 active peptides. Transcripts encoding 26 putative neuropeptide GPCRs were identified but were often incomplete. Putative GPCRs for 15 of the neuropeptides identified here were absent from our transcriptome and RNAseq reads. These data highlight the diverse neuropeptide systems already present at the early development life stages sampled here for P. zealandicus.
Collapse
Affiliation(s)
- Andrew Oliphant
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| | - Mary K N Hawkes
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Andrew G Cridge
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
10
|
Nagasawa K, Matsubara S, Satake H, Osada M. Functional characterization of an invertebrate gonadotropin-releasing hormone receptor in the Yesso scallop Mizuhopecten yessoensis. Gen Comp Endocrinol 2019; 282:113201. [PMID: 31199924 DOI: 10.1016/j.ygcen.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
The neuropeptide control of bivalve reproduction with particular reference to gonadotropin-releasing hormone (invGnRH) is a frontier yet to be investigated. Bivalves are unique because they have two forms of the invGnRH peptide; however, there has been no functional characterization of the peptide-receptor pair. Therefore, the identification of a cognate receptor is a preliminary step toward exploring the biological roles of invGnRHs in bivalves. In this study, we functionally characterize an invGnRH receptor (invGnRHR) of a bivalve, the Yesso scallop Mizuhopecten yessoensis. In the receptor assay, HEK293 cells were transfected to transiently express the M. yessoensis invGnRHR (my-invGnRHR), which was found to be localized on the plasma membrane, confirming that my-invGnRHR, similar to other G-protein-coupled receptors, functions as a membrane receptor. Using both forms of invGnRH as ligands in a function-receptor assay, my-invGnRH11aa-NH2 stimulated intracellular Ca2+ mobilization but not cyclic AMP production, whereas my-invGnRH12aa-OH did not induce increase in Ca2+ levels. Therefore, we concluded that my-invGnRHR is an endogenous receptor specific to my-invGnRH11aa-NH2 which is hypothesized to be the mature peptide. To the best of our knowledge, this is the first study reporting the functional characterization of a bivalve invGnRHR.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
11
|
Hayakawa E, Watanabe H, Menschaert G, Holstein TW, Baggerman G, Schoofs L. A combined strategy of neuropeptide prediction and tandem mass spectrometry identifies evolutionarily conserved ancient neuropeptides in the sea anemone Nematostella vectensis. PLoS One 2019; 14:e0215185. [PMID: 31545805 PMCID: PMC6756747 DOI: 10.1371/journal.pone.0215185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
Neuropeptides are a class of bioactive peptides shown to be involved in various physiological processes, including metabolism, development, and reproduction. Although neuropeptide candidates have been predicted from genomic and transcriptomic data, comprehensive characterization of neuropeptide repertoires remains a challenge owing to their small size and variable sequences. De novo prediction of neuropeptides from genome or transcriptome data is difficult and usually only efficient for those peptides that have identified orthologs in other animal species. Recent peptidomics technology has enabled systematic structural identification of neuropeptides by using the combination of liquid chromatography and tandem mass spectrometry. However, reliable identification of naturally occurring peptides using a conventional tandem mass spectrometry approach, scanning spectra against a protein database, remains difficult because a large search space must be scanned due to the absence of a cleavage enzyme specification. We developed a pipeline consisting of in silico prediction of candidate neuropeptides followed by peptide-spectrum matching. This approach enables highly sensitive and reliable neuropeptide identification, as the search space for peptide-spectrum matching is highly reduced. Nematostella vectensis is a basal eumetazoan with one of the most ancient nervous systems. We scanned the Nematostella protein database for sequences displaying structural hallmarks typical of eumetazoan neuropeptide precursors, including amino- and carboxyterminal motifs and associated modifications. Peptide-spectrum matching was performed against a dataset of peptides that are cleaved in silico from these putative peptide precursors. The dozens of newly identified neuropeptides display structural similarities to bilaterian neuropeptides including tachykinin, myoinhibitory peptide, and neuromedin-U/pyrokinin, suggesting these neuropeptides occurred in the eumetazoan ancestor of all animal species.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Research Group of Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
- Evolutionary Neurobiology Unit, Okinawa Institute of Science & Technology, Okinawa, Japan
- * E-mail:
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science & Technology, Okinawa, Japan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gerben Menschaert
- Faculty of Bioscience Engineering, Laboratory for Bioinformatics and Computational Genomics, Ghent University, Ghent, Belgium
| | - Thomas W. Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Geert Baggerman
- CFP/Ceproma, University Antwerpen, Antwerpen, Belgium
- VITO, Applied Bio & molecular Systems (ABS), Mol, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Delgado-Prudencio G, Possani LD, Becerril B, Ortiz E. The Dual α-Amidation System in Scorpion Venom Glands. Toxins (Basel) 2019; 11:toxins11070425. [PMID: 31330798 PMCID: PMC6669573 DOI: 10.3390/toxins11070425] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Many peptides in scorpion venoms are amidated at their C-termini. This post-translational modification is paramount for the correct biological function of ion channel toxins and antimicrobial peptides, among others. The discovery of canonical amidation sequences in transcriptome-derived scorpion proproteins suggests that a conserved enzymatic α-amidation system must be responsible for this modification of scorpion peptides. A transcriptomic approach was employed to identify sequences putatively encoding enzymes of the α-amidation pathway. A dual enzymatic α-amidation system was found, consisting of the membrane-anchored, bifunctional, peptidylglycine α-amidating monooxygenase (PAM) and its paralogs, soluble monofunctional peptidylglycine α-hydroxylating monooxygenase (PHMm) and peptidyl-α-hydroxyglycine α-amidating lyase (PALm). Independent genes encode these three enzymes. Amino acid residues responsible for ion coordination and enzymatic activity are conserved in these sequences, suggesting that the enzymes are functional. Potential endoproteolytic recognition sites for proprotein convertases in the PAM sequence indicate that PAM-derived soluble isoforms may also be expressed. Sequences potentially encoding proprotein convertases (PC1 and PC2), carboxypeptidase E (CPE), and other enzymes of the α-amidation pathway, were also found, confirming the presence of this pathway in scorpions.
Collapse
Affiliation(s)
- Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
13
|
Smith CL, Mayorova TD. Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell Tissue Res 2019; 377:353-367. [PMID: 31270610 DOI: 10.1007/s00441-019-03057-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/09/2019] [Indexed: 01/01/2023]
Abstract
Trichoplax, a member of the phylum Placozoa, is a tiny ciliated marine animal that glides on surfaces feeding on algae and cyanobacteria. It stands out from other animals in that it lacks an internal digestive system and, instead, digests food trapped under its lower surface. Here we review recent work on the phenotypes of its six cell types and their roles in digestion and feeding behavior. Phylogenomic analyses place Placozoa as sister to Eumetazoa, the clade that includes Cnidaria and Bilateria. Comparing the phenotypes of cells in Trichoplax to those of cells in the digestive epithelia of Eumetazoa allows us to make inferences about the cell types and mode of feeding of their ancestors. From our increasingly mechanistic understanding of feeding in Trichoplax, we get a glimpse into how primitive animals may have hunted and consumed food prior to the evolution of neurons, muscles, and internal digestive systems.
Collapse
Affiliation(s)
- Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tatiana D Mayorova
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
de Araujo CB, Heimann AS, Remer RA, Russo LC, Colquhoun A, Forti FL, Ferro ES. Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules 2019; 9:biom9040150. [PMID: 30995799 PMCID: PMC6523763 DOI: 10.3390/biom9040150] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Butantan Institute, São Paulo SP 05503-900, Brazil.
| | | | | | - Lilian C Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| | - Fábio L Forti
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| |
Collapse
|
15
|
Edwards SL, Mergan L, Parmar B, Cockx B, De Haes W, Temmerman L, Schoofs L. Exploring neuropeptide signalling through proteomics and peptidomics. Expert Rev Proteomics 2018; 16:131-137. [DOI: 10.1080/14789450.2019.1559733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bhavesh Parmar
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bram Cockx
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Wouter De Haes
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
DeAtley KL, Colgrave ML, Cánovas A, Wijffels G, Ashley RL, Silver GA, Rincon G, Medrano JF, Islas-Trejo A, Fortes MRS, Reverter A, Porto-Neto L, Lehnert SA, Thomas MG. Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty. J Proteome Res 2018; 17:1852-1865. [PMID: 29510626 DOI: 10.1021/acs.jproteome.7b00875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.
Collapse
Affiliation(s)
- Kasey L DeAtley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Michelle L Colgrave
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Gene Wijffels
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Ryan L Ashley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gail A Silver
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gonzalo Rincon
- Zoetis Animal Health , Kalamazoo , Michigan 49007 , United States
| | - Juan F Medrano
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Alma Islas-Trejo
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences , University of Queensland , St. Lucia , Queensland 4042 , Australia
- Queensland Alliance for Agriculture and Food Innovation, St. Lucia , Queensland 4072 , Australia
| | - Antonio Reverter
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Laercio Porto-Neto
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Sigrid A Lehnert
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Milton G Thomas
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
17
|
Van Bael S, Zels S, Boonen K, Beets I, Schoofs L, Temmerman L. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:879-889. [PMID: 29299835 DOI: 10.1007/s13361-017-1856-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sven Van Bael
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Sven Zels
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Kurt Boonen
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Leuven, Belgium.
| |
Collapse
|
18
|
Yeasmin F, Yada T, Akimitsu N. Micropeptides Encoded in Transcripts Previously Identified as Long Noncoding RNAs: A New Chapter in Transcriptomics and Proteomics. Front Genet 2018; 9:144. [PMID: 29922328 PMCID: PMC5996887 DOI: 10.3389/fgene.2018.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Integrative analysis using omics-based technologies results in the identification of a large number of putative short open reading frames (sORFs) with protein-coding capacity within transcripts previously identified as long noncoding RNAs (lncRNAs) or transcripts of unknown function (TUFs). sORFs were previously overlooked because of their diminutive size and the difficulty of identification by bioinformatics analyses. There is now growing evidence of the existence of potentially functional micropeptides produced from sORFs within cells of diverse species. Recent characterization of a few of these revealed their significant divergent roles in many fundamental biological processes, where some also show important relationships with pathogenesis. Recent works therefore provide new insights for exploring the wealth of information that may lie within sORF-encoded short proteins. Here, we summarize the current progress and view of micropeptides encoded in sORFs of protein-coding genes.
Collapse
Affiliation(s)
- Fouzia Yeasmin
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Yada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | | |
Collapse
|
19
|
Yang N, Anapindi KDB, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV. Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 2018. [PMID: 29518334 DOI: 10.1021/acs.jproteome.7b00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by receiving input from and projecting to several brain regions. Each habenular nucleus comprises two major asymmetrical subnuclei, the medial and lateral habenula. These subnuclei are associated with different physiological processes and disorders, such as depression, nicotine addiction, and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the functions of the habenular nuclei at the molecular level requires knowledge of their neuropeptide complement. In this work, three mass spectrometry (MS) techniques-liquid chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS-were used to uncover the neuropeptide profiles of the rodent medial and lateral habenula. With the assistance of tissue stabilization and bioinformatics, a total of 262 and 177 neuropeptides produced from 27 and 20 prohormones were detected and identified from the medial and lateral habenula regions, respectively. Among these neuropeptides, 136 were exclusively found in the medial habenula, and 51 were exclusively expressed in the lateral habenula. Additionally, novel sites of sulfation, a rare post-translational modification, on the secretogranin I prohormone are identified. The results demonstrate that these two small brain nuclei have a rich and differentiated peptide repertoire, with this information enabling a range of follow-up studies.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Pingli Wei
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Qing Yu
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lingjun Li
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paul J Kenny
- Department of Pharmacology & Systems Therapeutics , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
20
|
The carboxypeptidase D homolog silver regulates memory formation via insulin pathway in Drosophila. Protein Cell 2018; 7:606-10. [PMID: 27430952 PMCID: PMC4980332 DOI: 10.1007/s13238-016-0291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Rioli V, Ferro ES. Substrate Capture Assay Using Inactive Oligopeptidases to Identify Novel Peptides. Methods Mol Biol 2018; 1719:97-105. [PMID: 29476506 DOI: 10.1007/978-1-4939-7537-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Researchers are always searching for novel biologically active molecules including peptides. With the improvement of equipment for electrospray mass spectrometry, it is now possible to identify hundreds of novel peptides in a single run. However, after identifying the peptide sequences it is expensive to synthesize all the peptides to perform biological activity assays. Here, we describe a substrate capture assay that uses inactive oligopeptidases to identify putative biologically active peptides in complexes peptide mixtures. This methodology can use any crude extracts of biological tissues or cells, with the advantage to introduce a filter (i.e., binding to an inactive oligopeptidase) as a prior step in screening to bioactive peptides.
Collapse
Affiliation(s)
- Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, SP, 05503-000, Brazil.
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, Av. Prof. Lineu Prestes 1524, Sala 317, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
22
|
Suwansa-Ard S, Chaiyamoon A, Talarovicova A, Tinikul R, Tinikul Y, Poomtong T, Elphick MR, Cummins SF, Sobhon P. Transcriptomic discovery and comparative analysis of neuropeptide precursors in sea cucumbers (Holothuroidea). Peptides 2018; 99:231-240. [PMID: 29054501 DOI: 10.1016/j.peptides.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Neuropeptides synthesized and released by neuronal cells play important roles in the regulation of many processes, e.g. growth, feeding, reproduction, and behavior. In the past decade, next-generation sequencing technologies have helped to facilitate the identification of multiple neuropeptide genes in a variety of taxa, including arthropods, molluscs and echinoderms. In this study, we extend these studies to Holothuria scabra, a sea cucumber species that is widely cultured for human consumption. In silico analysis of H. scabra neural and gonadal transcriptomes enabled the identification of 28 transcripts that encode a total of 26 bilaterian and echinoderm-specific neuropeptide precursors. Furthermore, publicly available sequence data from another sea cucumber, Holothuria glaberrima, allowed a more in-depth comparative investigation. Interestingly, two isoforms of a calcitonin-type peptide precursor (CTPP) were deduced from the H. scabra transcriptome - HscCTPP-long and HscCTPP-short, likely the result of alternative splicing. We also identified a sea cucumber relaxin-type peptide precursor, which is of interest because relaxin-type peptides have been shown to act as gonadotropic hormones in starfish. Two neuropeptides that appear to be holothurian-specific are GLRFA, and GN-19. In H. scabra, the expression of GLRFA was restricted to neural tissues, while GN-19 expression was additionally found in the longitudinal muscle and intestinal tissues. In conclusion, we have obtained new insights into the neuropeptide signaling systems of holothurians, which will facilitate physiological studies that may enable advances in the aquaculture of sea cucumbers.
Collapse
Affiliation(s)
- Saowaros Suwansa-Ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Alzbeta Talarovicova
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Tanes Poomtong
- Coastal Fisheries Research and Development Center, Klongwan, Prachuab Khiri Khan 77000, Thailand
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Scott F Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
23
|
Senatore A, Reese TS, Smith CL. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 2017; 220:3381-3390. [PMID: 28931721 PMCID: PMC5612019 DOI: 10.1242/jeb.162396] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.
Collapse
Affiliation(s)
- Adriano Senatore
- University of Toronto Mississauga, Mississauga, ON, Canada L5L 1C6
| | | | | |
Collapse
|
24
|
Abstract
Advances in computational biology and large-scale transcriptome analyses have revealed that a much larger portion of the genome is transcribed than was previously recognized, resulting in the production of a diverse population of RNA molecules with both protein-coding and noncoding potential. Emerging evidence indicates that several RNA molecules have been mis-annotated as noncoding and in fact harbor short open reading frames (sORFs) that encode functional peptides and that have evaded detection until now due to their small size. sORF-encoded peptides (SEPs), or micropeptides, have been shown to have important roles in fundamental biological processes and in the maintenance of cellular homeostasis. These small proteins can act independently, for example as ligands or signaling molecules, or they can exert their biological functions by engaging with and modulating larger regulatory proteins. Given their small size, micropeptides may be uniquely suited to fine-tune complex biological systems.
Collapse
Affiliation(s)
- Catherine A Makarewich
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Mining for Micropeptides. Trends Cell Biol 2017; 27:685-696. [PMID: 28528987 DOI: 10.1016/j.tcb.2017.04.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/23/2022]
Abstract
Advances in computational biology and large-scale transcriptome analyses have revealed that a much larger portion of the genome is transcribed than was previously recognized, resulting in the production of a diverse population of RNA molecules with both protein-coding and noncoding potential. Emerging evidence indicates that several RNA molecules have been mis-annotated as noncoding and in fact harbor short open reading frames (sORFs) that encode functional peptides and that have evaded detection until now due to their small size. sORF-encoded peptides (SEPs), or micropeptides, have been shown to have important roles in fundamental biological processes and in the maintenance of cellular homeostasis. These small proteins can act independently, for example as ligands or signaling molecules, or they can exert their biological functions by engaging with and modulating larger regulatory proteins. Given their small size, micropeptides may be uniquely suited to fine-tune complex biological systems.
Collapse
|
26
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
27
|
Hauser KF, Knapp PE. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System. Front Pediatr 2017; 5:294. [PMID: 29410949 PMCID: PMC5787058 DOI: 10.3389/fped.2017.00294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
28
|
Van Camp KA, Baggerman G, Blust R, Husson SJ. Peptidomics of the zebrafish Danio rerio : In search for neuropeptides. J Proteomics 2017; 150:290-296. [DOI: 10.1016/j.jprot.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
|
29
|
Saidi M, Kamali S, Beaudry F. Characterization of Substance P processing in mouse spinal cord S9 fractions using high-resolution Quadrupole-Orbitrap mass spectrometry. Neuropeptides 2016; 59:47-55. [PMID: 27344070 DOI: 10.1016/j.npep.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 11/17/2022]
Abstract
Tachykinins are a family of pronociceptive neuropeptides with a specific role in pain and inflammation. Several mechanisms regulate endogenous tachykinins and Substance P (SP) levels, including the differential expression of protachykinin mRNA and the controlled secretion of tachykinins from neurons. Proteolysis is suspected to regulate extracellular SP concentrations but few studies were conducted on the metabolism of proneuropeptides and neuropeptides. Here, we provide evidence that proteolysis controls SP levels in the spinal cord leading to the formation of active C-terminal fragments. Using high-resolution mass spectrometry, specific tachykinins fragments were characterized and quantified. The metabolic stability of β-Tachykinin58-71 and SP were very short resulting in half-life of 5.7 and 3.5min respectively. Several C-terminal fragments were identified, including SP3-11, SP5-11 and SP8-11, which conserve affinity for the Neurokinin 1 receptor. Interestingly, the metabolic stability of C-terminal fragments was significantly superior. Two specific Prolyl endopeptidase inhibitors were used and showed a significant reduction in the rate of formation of SP3-11 and SP5-11 providing strong evidence that Prolyl endopeptidase is involved into N-terminal processing of SP in the spinal cord.
Collapse
Affiliation(s)
- Mouna Saidi
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Soufiane Kamali
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
30
|
Kruchinina AD, Gamzin SS, Tengin MT. Effects of Single Administration of Bupropion on Carboxypeptidase E Activity in Structures of Rat Brain. Bull Exp Biol Med 2016; 161:788-791. [DOI: 10.1007/s10517-016-3511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Indexed: 11/30/2022]
|
31
|
Suwansa-Ard S, Zhao M, Thongbuakaew T, Chansela P, Ventura T, Cummins SF, Sobhon P. Gonadotropin-releasing hormone and adipokinetic hormone/corazonin-related peptide in the female prawn. Gen Comp Endocrinol 2016; 236:70-82. [PMID: 27401259 DOI: 10.1016/j.ygcen.2016.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/02/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
Abstract
Crustacean neuropeptides (NPs) play important roles in the regulation of most physiological activities, including growth, molting and reproduction. In this study, we have performed an in silico analysis of female prawn (Macrobrachium rosenbergii) neural transcriptomes to identify NPs not previously identified. We predict that approximately 1309 proteins are destined for the secretory pathway, many of which are likely post-translationally processed to generate active peptides. Within this neural secretome, we identified a gene transcript that encoded a precursor protein with striking similarity to a gonadotropin-releasing hormone (GnRH). We additionally identified another GnRH NP superfamily member, the adipokinetic hormone/corazonin-related peptide (ACP). M. rosenbergii GnRH and ACP were widespread throughout the nervous tissues, implicating them as potential neuromodulators. Furthermore, GnRH was found in non-neural tissues, including the stomach, gut, heart, testis and ovary, in the latter most prominently within secondary oocytes. The GnRH/corazonin receptor-like gene is specific to the ovary, whereas the receptor-like gene expression is more widespread. Administration of GnRH had no effect on ovarian development and maturation, nor any effect on total hemolymph lipid levels, while ACP administration decreased oocyte proliferation (at high dose) and stimulated a significant increase in total hemolymph lipids. In conclusion, our targeted analysis of the M. rosenbergii neural secretome has revealed the decapod GnRH and ACP genes. We propose that ACP in crustaceans plays a role in the lipid metabolism and the inhibition of oocyte proliferation, while the role of the GnRH remains to be clearly defined, possibly through experiments involving gene silencing.
Collapse
Affiliation(s)
- Saowaros Suwansa-Ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Piyachat Chansela
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Tomer Ventura
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Scott F Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia.
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
32
|
Preparation and preliminary characterization of recombinant neurolysin for in vivo studies. J Biotechnol 2016; 234:105-115. [PMID: 27496565 DOI: 10.1016/j.jbiotec.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022]
Abstract
The goal of this study was to produce milligram quantities of pure, catalytically active, endotoxin-free recombinant neurolysin (rNln) in standard laboratory conditions for use as a research tool. To this end, we transformed E. coli cells with a plasmid construct for polyhistidine-tagged rNln, selected a high-expressing clone and determined the optimal time-point for translation of rNln. rNln was purified to homogeneity from the soluble pool of the cell lysate using Ni-NTA affinity and size-exclusion chromatography, followed by removal of endotoxins. Using this protocol ∼3mg pure, catalytically active and nearly endotoxin-free (≈0.003EU/μg protein) rNln was reproducibly obtained from 1l of culture. Lack of cytotoxicity of rNln preparation was documented in cultured mouse cells, whereas stability in whole mouse blood. Intraperitonealy administered rNln in mice reached the systemic circulation in intact and enzymatically active form with Tmax of 1h and T1/2 of ∼30min. Administration of rNln (2 and 10mg/kg) did not alter arterial blood pressure, heart rate, body temperature and blood glucose levels in mice. These studies demonstrate that the rNln preparation is suitable for cell culture and in vivo studies and can serve as a research tool to investigate the (patho)physiological function of this peptidase.
Collapse
|
33
|
Proteomic analysis of the secretome of HepG2 cells indicates differential proteolytic processing after infection with dengue virus. J Proteomics 2016; 151:106-113. [PMID: 27427332 DOI: 10.1016/j.jprot.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023]
Abstract
Secretome analysis can be described as a subset of proteomics studies consisting in the analysis of the molecules secreted by cells or tissues. Dengue virus (DENV) infection can lead to a broad spectrum of clinical manifestations, with the severe forms of the disease characterized by hemostasis abnormalities and liver injury. The hepatocytes are a relevant site of viral replication and a major source of plasma proteins. Until now, we had limited information on the small molecules secreted by hepatic cells after infection by DENV. In the present study, we analysed a fraction of the secretome of mock- and DENV-infected hepatic cells (HepG2 cells) containing molecules with <10kDa, using different proteomic approaches. We identified 175 proteins, with 57 detected only in the samples from mock-infected cells, 59 only in samples from DENV-infected cells, and 59 in both conditions. Most of the peptides identified were derived from proteins larger than 10kDa, suggesting a proteolytic processing of the secreted molecules. Using in silico analysis, we predicted consistent differences between the proteolytic processing occurring in mock and DENV-infected samples, raising, for the first time, the hypothesis that differential proteolysis of secreted molecules would be involved in the pathogenesis of dengue. BIOLOGICAL SIGNIFICANCE Since the liver, one of the targets of DENV infection, is responsible for producing molecules involved in distinct biological processes, the identification of proteins and peptides secreted by hepatocytes after infection would help to a better understanding of the physiopathology of dengue. Proteomic analyses of molecules with <10kDa secreted by HepG2 cells after infection with DENV revealed differential proteolytic processing as an effect of DENV infection.
Collapse
|
34
|
Saidi M, Kamali S, Ruiz AO, Beaudry F. Tachykinins Processing is Significantly Impaired in PC1 and PC2 Mutant Mouse Spinal Cord S9 Fractions. Neurochem Res 2015; 40:2304-16. [DOI: 10.1007/s11064-015-1720-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/18/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
35
|
Nagasawa K, Osugi T, Suzuki I, Itoh N, Takahashi KG, Satake H, Osada M. Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis. Peptides 2015; 71:202-10. [PMID: 26238596 DOI: 10.1016/j.peptides.2015.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022]
Abstract
There is yet no firm experimental evidence that the evolutionary ancient gonadotropin-releasing hormone GnRH (i.e., GnRH1) also acts in invertebrate gametogenesis. The objective of this paper is to characterize candidate invGnRH peptides of Yesso scallop Patinopecten yessoensis (i.e., peptide identification, immunohistochemical localization, and immunoquantification) in order to reveal their bioactive form in bivalves. Using mass spectrometry (MS), we identified two invGnRH (py-GnRH) peptides from the scallop nerve ganglia: a precursor form of py-GnRH peptide (a non-amidated dodecapeptide; py-GnRH12aa-OH) and a mature py-GnRH peptide (an amidated undecapeptide; py-GnRH11aa-NH2). Immunohistochemical staining allowed the localization of both py-GnRH peptides in the neuronal cell bodies and fibers of the cerebral and pedal ganglia (CPG) and the visceral ganglion (VG). We found that the peptides showed a dimorphic distribution pattern. Notably, the broad distribution of mature py-GnRH in neuronal fibers elongating to peripheral organs suggests that it is multi-functional. Time-resolved fluorescent immunoassays (TR-FIA) enabled the quantification of each py-GnRH form in the single CPG or VG tissue obtained from one individual. In addition, we observed greater abundance of mature py-GnRH in VG compared with its level in CPG, suggesting that VG is the main producing organ of mature py-GnRH peptide and that py-GnRH may play a central regulatory role in neurons of scallops. Our study provides evidence, for the first time, for the presence of precursor and mature forms of invGnRH peptides in the nerve ganglia of an invertebrate.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Tomohiro Osugi
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Iwao Suzuki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke G Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Honoo Satake
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan.
| |
Collapse
|
36
|
Nagasawa K, Oouchi H, Itoh N, Takahashi KG, Osada M. In Vivo Administration of Scallop GnRH-Like Peptide Influences on Gonad Development in the Yesso Scallop, Patinopecten yessoensis. PLoS One 2015; 10:e0129571. [PMID: 26030928 PMCID: PMC4451010 DOI: 10.1371/journal.pone.0129571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Existing research on the role of gonadotropin-releasing hormone (GnRH) in bivalve reproduction is inadequate, even though a few bivalve GnRH orthologs have been cloned. The objective of this paper was to elucidate the in vivo effect of GnRH administration in Yesso scallop reproduction. We performed in vivo administration of scallop GnRH (py-GnRH) synthetic peptide into the developing gonad, and analyzed its effect on gonad development for 6 weeks during the reproductive season. The resulting sex ratio in the GnRH administered (GnRH(+)) group might be male biased, whereas the control (GnRH(-)) group had an equal sex ratio throughout the experiment. The gonad index (GI) of males in the GnRH(+) group increased from week 2 to 24.8% at week 6. By contrast the GI of the GnRH(-) group peaked in week 4 at 16.6%. No significant difference was seen in female GI between the GnRH(+) and GnRH(-) groups at any sampling point. Oocyte diameter in the GnRH(+) group remained constant (about 42–45 μm) throughout the experiment, while in the GnRH(-) group it increased from 45 to 68 μm i.e. normal oocyte growth. The number of spermatogonia in the germinal acini of males in the GnRH(+) group increased from week 4 to 6. Hermaphrodites appeared in the GnRH(+) group in weeks 2 and 4. Their gonads contained many apoptotic cells including oocytes. In conclusion, this study suggests that py-GnRH administration could have a potential to accelerate spermatogenesis and cause an inhibitory effect on oocyte growth in scallops.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Hitoshi Oouchi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keisuke G. Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
37
|
Lee KY. A common immunopathogenesis mechanism for infectious diseases: the protein-homeostasis-system hypothesis. Infect Chemother 2015; 47:12-26. [PMID: 25844259 PMCID: PMC4384454 DOI: 10.3947/ic.2015.47.1.12] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
It was once believed that host cell injury in various infectious diseases is caused solely by pathogens themselves; however, it is now known that host immune reactions to the substances from the infectious agents and/or from the injured host cells by infectious insults are also involved. All biological phenomena in living organisms, including biochemical, physiological and pathological processes, are performed by the proteins that have various sizes and shapes, which in turn are controlled by an interacting network within the living organisms. The author proposes that this network is controlled by the protein homeostasis system (PHS), and that the immune system is one part of the PHS of the host. Each immune cell in the host may recognize and respond to substances, including pathogenic proteins (PPs) that are toxic to target cells of the host, in ways that depend on the size and property of the PPs. Every infectious disease has its own set of toxic substances, including PPs, associated with disease onset, and the PPs and the corresponding immune cells may be responsible for the inflammatory processes that develop in those infectious diseases.
Collapse
Affiliation(s)
- Kyung-Yil Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea. ; Department of Pediatrics, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon, Korea
| |
Collapse
|
38
|
Tanco S, Gevaert K, Van Damme P. C-terminomics: Targeted analysis of natural and posttranslationally modified protein and peptide C-termini. Proteomics 2014; 15:903-14. [PMID: 25316308 DOI: 10.1002/pmic.201400301] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
The C-terminus (where C is carboxyl) of a protein can serve as a recognition signature for a variety of biological processes, including protein trafficking and protein complex formation. Hence, the identity of the in vivo protein C-termini provides valuable information about biological processes. Analysis of protein C-termini is also crucial for the study of C-terminal PTMs, particularly for monitoring proteolytic processing by endopeptidases and carboxypeptidases. Although technical difficulties have limited the study of C-termini, a range of technologies have been proposed in the last couple of years. Here, we review the current proteomics technologies for C-terminal analysis, with a focus on the biological information that can be derived from C-terminomics studies.
Collapse
Affiliation(s)
- Sebastian Tanco
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
39
|
Crappé J, Van Criekinge W, Menschaert G. Little things make big things happen: A summary of micropeptide encoding genes. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Pineda SS, Sollod BL, Wilson D, Darling A, Sunagar K, Undheim EAB, Kely L, Antunes A, Fry BG, King GF. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genomics 2014; 15:177. [PMID: 24593665 PMCID: PMC4029134 DOI: 10.1186/1471-2164-15-177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. RESULTS Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. CONCLUSIONS Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bryan G Fry
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072, Australia.
| | | |
Collapse
|
41
|
Çelikbıçak Ö, Atakay M, Güler Ü, Salih B. A Trypsin Immobilized Sol-Gel for Protein Indentification in MALDI-MS Applications. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.831423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Hayakawa E, Menschaert G, De Bock PJ, Luyten W, Gevaert K, Baggerman G, Schoofs L. Improving the identification rate of endogenous peptides using electron transfer dissociation and collision-induced dissociation. J Proteome Res 2013; 12:5410-21. [PMID: 24032530 DOI: 10.1021/pr400446z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tandem mass spectrometry (MS/MS) combined with bioinformatics tools have enabled fast and systematic protein identification based on peptide-to-spectrum matches. However, it remains challenging to obtain accurate identification of endogenous peptides, such as neuropeptides, peptide hormones, peptide pheromones, venom peptides, and antimicrobial peptides. Since these peptides are processed at sites that are difficult to predict reliably, the search of their MS/MS spectra in sequence databases needs to be done without any protease setting. In addition, many endogenous peptides carry various post-translational modifications, making it essential to take these into account in the database search. These characteristics of endogenous peptides result in a huge search space, frequently leading to poor confidence of the peptide characterizations in peptidomics studies. We have developed a new MS/MS spectrum search tool for highly accurate and confident identification of endogenous peptides by combining two different fragmentation methods. Our approach takes advantage of the combination of two independent fragmentation methods (collision-induced dissociation and electron transfer dissociation). Their peptide spectral matching is carried out separately in both methods, and the final score is built as a combination of the two separate scores. We demonstrate that this approach is very effective in discriminating correct peptide identifications from false hits. We applied this approach to a spectral data set of neuropeptides extracted from mouse pituitary tumor cells. Compared to conventional MS-based identification, i.e., using a single fragmentation method, our approach significantly increased the peptide identification rate. It proved also highly effective for scanning spectra against a very large search space, enabling more accurate genome-wide searches and searches including multiple potential post-translational modifications.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Research Group of Functional Genomics and Proteomics, KU Leuven , Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Hayakawa E, Landuyt B, Baggerman G, Cuyvers R, Lavigne R, Luyten W, Schoofs L. Peptidomic analysis of human reflex tear fluid. Peptides 2013; 42:63-9. [PMID: 23228955 DOI: 10.1016/j.peptides.2012.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 12/19/2022]
Abstract
Tear fluid is a complex mixture of biological compounds, including carbohydrates, lipids, electrolytes, proteins, and peptides. Despite the physiological importance of tear fluid, little is known about the identity of its endogenous peptides. In this study, we analyzed and identified naturally occurring peptide molecules in human reflex tear fluid by means of LC-MALDI-TOF-TOF. Tandem MS analyses revealed 30 peptides, most of which have not been identified before. Twenty-six peptides are derived from the proline-rich protein 4 and 4 peptides are derived from the polymeric immunoglobulin receptor. Based on their structural characteristics, we suggest that the identified tear fluid peptides contribute to the protective environment of the ocular surface.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Research Group of Functional Genomics and Proteomics, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
44
|
Sasaki K, Osaki T, Minamino N. Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2013; 12:700-9. [PMID: 23250050 PMCID: PMC3591662 DOI: 10.1074/mcp.m112.017400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 10/10/2012] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry-based unbiased analysis of the full complement of secretory peptides is expected to facilitate the identification of unknown biologically active peptides. However, tandem MS sequencing of endogenous peptides in their native form has proven difficult because they show size heterogeneity and contain multiple internal basic residues, the characteristics not found in peptide fragments produced by in vitro digestion. Endogenous peptides remain largely unexplored by electron transfer dissociation (ETD), despite its widespread use in bottom-up proteomics. We used ETD, in comparison to collision induced dissociation (CID), to identify endogenous peptides derived from secretory granules of a human endocrine cell line. For mass accuracy, both MS and tandem MS were analyzed on an Orbitrap. CID and ETD, performed in different LC-MS runs, resulted in the identification of 795 and 569 unique peptides (ranging from 1000 to 15000 Da), respectively, with an overlap of 397. Peptides larger than 3000 Da accounted for 54% in CID and 46% in ETD identifications. Although numerically outperformed by CID, ETD provided more extensive fragmentation, leading to the identification of peptides that are not reached by CID. This advantage was demonstrated in identifying a new antimicrobial peptide from neurosecretory protein VGF (non-acronymic), VGF[554-577]-NH2, or in differentiating nearly isobaric peptides (mass difference less than 2 ppm) that arise from alternatively spliced exons of the gastrin-releasing peptide gene. CID and ETD complemented each other to add to our knowledge of the proteolytic processing sites of proteins implicated in the regulated secretory pathway. An advantage of the use of both fragmentation methods was also noted in localization of phosphorylation sites. These findings point to the utility of ETD mass spectrometry in the global study of endogenous peptides, or peptidomics.
Collapse
Affiliation(s)
- Kazuki Sasaki
- From the ‡Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565–8565, Japan
| | - Tsukasa Osaki
- From the ‡Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565–8565, Japan
| | - Naoto Minamino
- From the ‡Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565–8565, Japan
| |
Collapse
|
45
|
Lone AM, Kim YG, Saghatelian A. Peptidomics methods for the identification of peptidase-substrate interactions. Curr Opin Chem Biol 2013; 17:83-9. [PMID: 23332665 DOI: 10.1016/j.cbpa.2012.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/30/2012] [Indexed: 11/26/2022]
Abstract
Peptidases have important roles in controlling physiological signaling through their regulation of bioactive peptides. Understanding and controlling bioactive peptide regulation is of great biomedical interest and approaches that elucidate the interplay between peptidases and their substrates are vital for achieving this goal. Here, we highlight the utility of recent peptidomics approaches in identifying endogenous substrates of peptidases. These approaches reveal bioactive substrates and help characterize the biochemical functions of the enzyme. Most recently, peptidomics approaches have been applied to address the challenging question of identifying the peptidases responsible for regulating specific bioactive peptides. Since peptidases are of great biomedical interest, these approaches will begin to impact our ability to identify new drug targets that regulate important bioactive peptides.
Collapse
Affiliation(s)
- Anna Mari Lone
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
46
|
Hou X, Xie F, Sweedler JV. Relative quantitation of neuropeptides over a thousand-fold concentration range. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2083-93. [PMID: 22993045 PMCID: PMC3515743 DOI: 10.1007/s13361-012-0481-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 05/23/2023]
Abstract
Neuropeptides are essential cell-to-cell signaling molecules that influence diverse regulatory and behavioral functions within biological systems. Differing in their amino acid sequences and post-translational modifications, hundreds of neuropeptides are produced via a series of enzymatic processing steps, and their levels vary with location, time, and physiological condition. Due to their wide range of endogenous concentrations and inherent chemical complexity, using mass spectrometry (MS) to accurately quantify changes in peptide levels can be challenging. Here we evaluate three different MS systems for their ability to accurately measure neuropeptide levels: capillary liquid chromatography-electrospray ionization-ion trap (CapLC-ESI-IT) MS, ultraperformance liquid chromatography-electrospray ionization-quadrupole-time-of-flight (UPLC-LC-ESI-Q-TOF) MS, and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS. Specifically, eight sample mixtures composed of five neuropeptide standards, with four technical replicates of each, were labeled with H(4)/D(4)-succinic anhydride, followed by relative peptide quantitation using the three MS platforms. For these samples, the CapLC-ESI-IT MS platform offered the most robust ability to accurately quantify peptides over a concentration range of 1200-fold, although it required larger sample sizes than the other two platforms. Both the UPLC-ESI-Q-TOF MS and the MALDI-TOF MS systems had lower limits of quantification, with the MALDI-TOF having the lowest. By implementing several data acquisition schemes and optimizing the data analysis approaches, we were able to accurately quantify peptides over a three orders of magnitude concentration range using either the UPLC or MALDI-TOF platforms. Overall these results increase our understanding of both the capabilities and limits of using MS-based approaches to measure peptides.
Collapse
Affiliation(s)
| | | | - Jonathan V. Sweedler
- Address reprint requests to: Jonathan V. Sweedler, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, 63-5, Urbana, Il 61801, Ph: 217-244-7359, Fax: 217-265-6290,
| |
Collapse
|
47
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
48
|
Porter KI, Southey BR, Sweedler JV, Rodriguez-Zas SL. First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genomics 2012; 13:582. [PMID: 23153308 PMCID: PMC3499383 DOI: 10.1186/1471-2164-13-582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 11/18/2022] Open
Abstract
Background The pig is a biomedical model to study human and livestock traits. Many of these traits are controlled by neuropeptides that result from the cleavage of prohormones by prohormone convertases. Only 45 prohormones have been confirmed in the pig. Sequence homology can be ineffective to annotate prohormone genes in sequenced species like the pig due to the multifactorial nature of the prohormone processing. The goal of this study is to undertake the first complete survey of prohormone and prohormone convertases genes in the pig genome. These genes were functionally annotated based on 35 gene expression microarray experiments. The cleavage sites of prohormone sequences into potentially active neuropeptides were predicted. Results We identified 95 unique prohormone genes, 2 alternative calcitonin-related sequences, 8 prohormone convertases and 1 cleavage facilitator in the pig genome 10.2 assembly and trace archives. Of these, 11 pig prohormone genes have not been reported in the UniProt, UniGene or Gene databases. These genes are intermedin, cortistatin, insulin-like 5, orexigenic neuropeptide QRFP, prokineticin 2, prolactin-releasing peptide, parathyroid hormone 2, urocortin, urocortin 2, urocortin 3, and urotensin 2-related peptide. In addition, a novel neuropeptide S was identified in the pig genome correcting the previously reported pig sequence that is identical to the rabbit sequence. Most differentially expressed prohormone genes were under-expressed in pigs experiencing immune challenge relative to the un-challenged controls, in non-pregnant relative to pregnant sows, in old relative to young embryos, and in non-neural relative to neural tissues. The cleavage prediction based on human sequences had the best performance with a correct classification rate of cleaved and non-cleaved sites of 92% suggesting that the processing of prohormones in pigs is similar to humans. The cleavage prediction models did not find conclusive evidence supporting the production of the bioactive neuropeptides urocortin 2, urocortin 3, torsin family 2 member A, tachykinin 4, islet amyloid polypeptide, and calcitonin receptor-stimulating peptide 2 in the pig. Conclusions The present genomic and functional characterization supports the use of the pig as an effective animal model to gain a deeper understanding of prohormones, prohormone convertases and neuropeptides in biomedical and agricultural research.
Collapse
Affiliation(s)
- Kenneth I Porter
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
49
|
Miller LK, Hou X, Rodriguiz RM, Gagnidze K, Sweedler JV, Wetsel WC, Devi LA. Mice deficient in endothelin-converting enzyme-2 exhibit abnormal responses to morphine and altered peptide levels in the spinal cord. J Neurochem 2011; 119:1074-85. [PMID: 21972895 DOI: 10.1111/j.1471-4159.2011.07513.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing body of evidence suggests that endothelin-converting enzyme-2 (ECE-2) is a non-classical neuropeptide processing enzyme. Similar to other neuropeptide processing enzymes, ECE-2 exhibits restricted neuroendocrine distribution, intracellular localization, and an acidic pH optimum. However, unlike classical neuropeptide processing enzymes, ECE-2 exhibits a non-classical cleavage site preference for aliphatic and aromatic residues. We previously reported that ECE-2 cleaves a number of neuropeptides at non-classical sites in vitro; however its role in peptide processing in vivo is poorly understood. Given the recognized roles of neuropeptides in pain and opiate responses, we hypothesized that ECE-2 knockout (KO) mice might show altered pain and morphine responses compared with wild-type mice. We find that ECE-2 KO mice show decreased response to a single injection of morphine in hot-plate and tail-flick tests. ECE-2 KO mice also show more rapid development of tolerance with prolonged morphine treatment and fewer signs of naloxone-precipitated withdrawal. Peptidomic analyses revealed changes in the levels of a number of spinal cord peptides in ECE-2 KO as compared to wild-type mice. Taken together, our findings suggest a role for ECE-2 in the non-classical processing of spinal cord peptides and morphine responses; however, the precise mechanisms through which ECE-2 influences morphine tolerance and withdrawal remain unclear.
Collapse
Affiliation(s)
- Lydia K Miller
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wegener C, Herbert H, Kahnt J, Bender M, Rhea JM. Deficiency of prohormone convertase dPC2 (AMONTILLADO) results in impaired production of bioactive neuropeptide hormones in Drosophila. J Neurochem 2011; 118:581-95. [PMID: 21138435 DOI: 10.1111/j.1471-4159.2010.07130.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christian Wegener
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany.
| | | | | | | | | |
Collapse
|