1
|
Wróbel MZ, Chodkowski A, Siwek A, Satała G, Bojarski AJ, Dawidowski M. Design and Synthesis of Potential Multi-Target Antidepressants: Exploration of 1-(4-(7-Azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1 H-indol-3-yl)pyrrolidine-2,5-dione Derivatives with Affinity for the Serotonin Transporter. Int J Mol Sci 2024; 25:11276. [PMID: 39457057 PMCID: PMC11508649 DOI: 10.3390/ijms252011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT1A) and dopamine (D2) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds 11 and 4 emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies. Compound 11 displayed a high affinity for the 5-HT1A (Ki = 128.0 nM) and D2 (Ki = 51.0 nM) receptors, and the SERT (Ki = 9.2 nM) and DAT (Ki = 288.0 nM) transporters, whereas compound 4 exhibited the most desirable binding profile to SERT/NET/DAT among the series: Ki = 47.0 nM/167.0 nM/43% inhibition at 1 µM. These results suggest that compounds 4 and 11 represent templates for the future development of multi-target antidepressant drugs.
Collapse
Affiliation(s)
- Martyna Z. Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| |
Collapse
|
2
|
Nguyen H, Cheng MH, Lee JY, Aggarwal S, Mortensen OV, Bahar I. Allosteric modulation of serotonin and dopamine transporters: New insights from computations and experiments. Curr Res Physiol 2024; 7:100125. [PMID: 38836245 PMCID: PMC11148570 DOI: 10.1016/j.crphys.2024.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/06/2024] Open
Abstract
Human monoamine transporters (MATs) are critical to regulating monoaminergic neurotransmission by translocating their substrates from the synaptic space back into the presynaptic neurons. As such, their primary substrate binding site S1 has been targeted by a wide range of compounds for treating neuropsychiatric and neurodegenerative disorders including depression, ADHD, neuropathic pain, and anxiety disorders. We present here a comparative study of the structural dynamics and ligand-binding properties of two MATs, dopamine transporter (DAT) and serotonin transporter (SERT), with focus on the allosteric modulation of their transport function by drugs or substrates that consistently bind a secondary site S2, proposed to serve as an allosteric site. Our systematic analysis of the conformational space and dynamics of a dataset of 50 structures resolved for DAT and SERT in the presence of one or more ligands/drugs reveals the specific residues playing a consistent role in coordinating the small molecules bound to subsites S2-I and S2-II within S2, such as R476 and Y481 in dDAT and E494, P561, and F556 in hSERT. Further analysis reveals how DAT and SERT differ in their two principal modes of structural changes, PC1 and PC2. Notably, PC1 underlies the transition between outward- and inward-facing states of the transporters as well as their gating; whereas PC2 supports the rearrangements of TM helices near the S2 site. Finally, the examination of cross-correlations between structural elements lining the respective sites S1 and S2 point to the crucial role of coupled motions between TM6a and TM10. In particular, we note the involvement of hSERT residues F335 and G338, and E493-E494-T497 belonging to these two respective helices, in establishing the allosteric communication between S1 and S2. These results help understand the molecular basis of the action of drugs that bind to the S2 site of DAT or SERT. They also provide a basis for designing allosteric modulators that may provide better control of specific interactions and cellular pathways, rather than indiscriminately inhibiting the transporter by targeting its orthosteric site.
Collapse
Affiliation(s)
- Hoang Nguyen
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology and, USA
| | - Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
3
|
Strauss MJ, Porter KD, Quizon PM, Davis SE, Lin S, Yuan Y, Martinez-Muniz GA, Sun WL, Zhan CG, Zhu J. Mutations of tyrosine 467 in the human norepinephrine transporter attenuate HIV-1 Tat-induced inhibition of dopamine transport while retaining physiological function. PLoS One 2022; 17:e0275182. [PMID: 36170295 PMCID: PMC9518868 DOI: 10.1371/journal.pone.0275182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.
Collapse
Affiliation(s)
- Matthew J. Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Pamela M. Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Sarah E. Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Gustavo A. Martinez-Muniz
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Wei-Lun Sun
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States of America
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
4
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|
5
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
6
|
Xue W, Fu T, Zheng G, Tu G, Zhang Y, Yang F, Tao L, Yao L, Zhu F. Recent Advances and Challenges of the Drugs Acting on Monoamine Transporters. Curr Med Chem 2020; 27:3830-3876. [DOI: 10.2174/0929867325666181009123218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2023]
Abstract
Background:
The human Monoamine Transporters (hMATs), primarily including hSERT,
hNET and hDAT, are important targets for the treatment of depression and other behavioral disorders
with more than the availability of 30 approved drugs.
Objective:
This paper is to review the recent progress in the binding mode and inhibitory mechanism of
hMATs inhibitors with the central or allosteric binding sites, for the benefit of future hMATs inhibitor
design and discovery. The Structure-Activity Relationship (SAR) and the selectivity for hit/lead compounds
to hMATs that are evaluated by in vitro and in vivo experiments will be highlighted.
Methods:
PubMed and Web of Science databases were searched for protein-ligand interaction, novel
inhibitors design and synthesis studies related to hMATs.
Results:
Literature data indicate that since the first crystal structure determinations of the homologous
bacterial Leucine Transporter (LeuT) complexed with clomipramine, a sizable database of over 100 experimental
structures or computational models has been accumulated that now defines a substantial degree
of structural variability hMATs-ligands recognition. In the meanwhile, a number of novel hMATs
inhibitors have been discovered by medicinal chemistry with significant help from computational models.
Conclusion:
The reported new compounds act on hMATs as well as the structures of the transporters
complexed with diverse ligands by either experiment or computational modeling have shed light on the
poly-pharmacology, multimodal and allosteric regulation of the drugs to transporters. All of the studies
will greatly promote the Structure-Based Drug Design (SBDD) of structurally novel scaffolds with high
activity and selectivity for hMATs.
Collapse
Affiliation(s)
- Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Yang Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Leyrer-Jackson JM, Piña JA, McCallum J, Foster Olive M, Gipson CD. Direct administration of ifenprodil and citalopram into the nucleus accumbens inhibits cue-induced nicotine seeking and associated glutamatergic plasticity. Brain Struct Funct 2020; 225:1967-1978. [PMID: 32591928 DOI: 10.1007/s00429-020-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Nicotine use disorder has been associated with glutamatergic alterations within the basal ganglia that might contribute to relapse. Specifically, initiation of cue-induced nicotine seeking produces rapid, transient synaptic potentiation (t-SP) in nucleus accumbens core (NAcore) medium spiny neurons (MSNs), defined as increases in spine head diameter and AMPA to NMDA current ratios (A/N). Ifenprodil, which inhibits nicotine reinstatement when administered systemically, antagonizes GluN2B-containing NMDA receptors, has affinity for serotonin receptors, and blocks serotonin transporters (SERT). The mechanisms underlying its therapeutic efficacy, however, remain unknown. Using pharmacological and genetic approaches, the current study examined the role of NAcore GluN2B receptors as well as SERT in mediating cue-induced nicotine seeking and associated MSN structure and physiology. Prior to reinstatement, rats received intra-NAcore injections of either ifenprodil, citalopram or artificial cerebral spinal fluid (15 min prior), or GluN2B or control siRNAs (3 consecutive days prior). Rats were sacrificed after a 15-min cue-induced reinstatement session for dendritic spine analysis, western blotting or whole-cell electrophysiology. Intra-NAcore ifenprodil blocked nicotine-seeking behavior and promoted a higher frequency of shorter spines on MSN dendrites. However, a decrease in membrane-bound GluN2B receptor expression did not prevent cue-induced nicotine seeking or associated MSN cell physiology. Interestingly, intra-NAcore citalopram, an SSRI, prevented cue-induced nicotine seeking. Together, these results indicate that the therapeutic effects of ifenprodil on cue-induced nicotine seeking may, in part, be due to its actions at SERT rather than GluN2B, which may be specific to nicotine-seeking as opposed to other drugs of abuse.
Collapse
Affiliation(s)
| | - Jose A Piña
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Joseph McCallum
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB Room 363, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Zhang Y, Zheng G, Fu T, Hong J, Li F, Yao X, Xue W, Zhu F. The binding mode of vilazodone in the human serotonin transporter elucidated by ligand docking and molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:5132-5144. [PMID: 32073004 DOI: 10.1039/c9cp05764a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vilazodone is a novel antidepressant used for the treatment of major depressive disorder (MDD) with a primary action mechanism of inhibiting the human serotonin reuptake transporter (hSERT) and acting as a 5-HT1A receptor partial agonist. The interaction between vilazodone and the 5-HT1A receptor has been reported, however, the binding mode of vilazodone in the hSERT remains elusive. In the current study, to elucidate the molecular mechanism of vilazodone binding in the hSERT, the drug and its five analogs were docked into the hSERT crystal structure as initial conformations and were sampled by 400 ns molecular dynamics (MD) simulations. Through the analysis of the profiles of protein-ligand binding free energies, interaction fingerprints, and conformational rearrangements, the binding mode of vilazodone in the hSERT was revealed. As a result, unlike the classical antidepressants located in the S1 site of the hSERT, vilazodone adopted a linear pose in the binding pocket. Its arylpiperazine fragment occupies the central site (S1) and interacts with Y95, D98, I172, Y176, F335, F341, S438, and T439, while the indole fragment extends to the allosteric site (S2) via interacting with the ionic switch (R104/E403) between the two sites. The new insights obtained are not only helpful in understanding the binding mode of vilazodone in the hSERT, but also provide valuable guidance to the discovery of novel antidepressant drugs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
10
|
Mutational effects of human dopamine transporter at tyrosine88, lysine92, and histidine547 on basal and HIV-1 Tat-inhibited dopamine transport. Sci Rep 2019; 9:3843. [PMID: 30846720 PMCID: PMC6405875 DOI: 10.1038/s41598-019-39872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 01/06/2023] Open
Abstract
Dysregulation of dopaminergic system induced by HIV-1 Tat protein-mediated direct inhibition of the dopamine transporter (DAT) has been implicated as a mediating factor of HIV-1 associated neurocognitive disorders. We have reported that single point mutations on human DAT (hDAT) at tyrosine88 (Y88F), lysine92 (K92M), and histidine547 (H547A) differentially regulate basal dopamine uptake but diminish Tat-induced inhibition of dopamine uptake by changing dopamine transport process. This study evaluated the effects of double (Y88F/H547A) and triple (Y88F/K92M/H547A) mutations on basal dopamine uptake, Tat-induced inhibition of DAT function, and dynamic transport process. Compared to wild-type hDAT, the Vmax values of [3H]Dopamine uptake were increased by 96% in Y88F/H547A but decreased by 97% in Y88F/K92M/H547A. [3H]WIN35,428 binding sites were not altered in Y88F/H547A but decreased in Y88F/K92M/H547A. Y88F/H547A mutant attenuated Tat-induced inhibition of dopamine uptake observed in wild-type hDAT. Y88F/H547A displayed an attenuation of zinc-augmented [3H]WIN35,428 binding, increased basal dopamine efflux, and reduced amphetamine-induced dopamine efflux, indicating this mutant alters transporter conformational transitions. These findings further demonstrate that both tyrosine88 and histidine547 on hDAT play a key role in stabilizing basal dopamine transport and Tat-DAT integration. This study provides mechanistic insights into developing small molecules to block multiple sites in DAT for Tat binding.
Collapse
|
11
|
Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain Behav Immun 2018; 70:21-35. [PMID: 29551693 PMCID: PMC5953824 DOI: 10.1016/j.bbi.2018.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
The second-most common neurodegenerative disease, Parkinson's Disease (PD) has three hallmarks: dysfunctional dopamine transmission due, at least in part, to dopamine neuron degeneration; intracellular inclusions of α-synuclein aggregates; and neuroinflammation. The origin and interplay of these features remains a puzzle, as does the underlying mechanism of PD pathogenesis and progression. When viewed in the context of neuroimmunology, dopamine also plays a role in regulating peripheral immune cells. Intriguingly, plasma dopamine levels are altered in PD, suggesting collateral dysregulation of peripheral dopamine transmission. The dopamine transporter (DAT), the main regulator of dopaminergic tone in the CNS, is known to exist in lymphocytes and monocytes/macrophages, but little is known about peripheral DAT biology or how DAT regulates the dopaminergic tone, much less how peripheral DAT alters immune function. Our review is guided by the hypothesis that dysfunctional peripheral dopamine signaling might be linked to the dysfunctional immune responses in PD and thereby suggests a potential bidirectional communication between central and peripheral dopamine systems. This review seeks to foster new perspectives concerning PD pathogenesis and progression.
Collapse
Affiliation(s)
- Phillip Mackie
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joe Lebowitz
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Leila Saadatpour
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Emily Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Peter Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Habibeh Khoshbouei
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
12
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Elrashedy AAE. HIV-Associated Neurocognitive Disorder. BIG DATA ANALYTICS IN HIV/AIDS RESEARCH 2018:171-205. [DOI: 10.4018/978-1-5225-3203-3.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the last two decades, several advancement studies have increased the care of HIV-infected individuals. Specifically, the development for preparation of combination antiretroviral therapy has resulted in a dramatic decline in the rate of deaths from AIDS. The term “HIV-associated neurocognitive disorder” (HAND) has been used to distinguish the spectrum of neurocognitive dysfunction associated with HIV infection. HIV can pass to the CNS during the early stages of infection and last in the CNS. CNS inflammation and infection lead to the development of HAND. The brain can serve as a sanctuary for ongoing HIV replication, even when the systemic viral suppression has been achieved. HAND can remain in patients treated with combination antiretroviral therapy, and its effect on survival, quality of life, and everyday functioning make it a significant unresolved problem. This chapter discusses details of the computational modeling studies on mechanisms and structures of human dopamine transporter (hDAT) and its interaction with HIV-1 trans activator of transcription (Tat).
Collapse
|
14
|
Zheng G, Yang F, Fu T, Tu G, Chen Y, Yao X, Xue W, Zhu F. Computational characterization of the selective inhibition of human norepinephrine and serotonin transporters by an escitalopram scaffold. Phys Chem Chem Phys 2018; 20:29513-29527. [DOI: 10.1039/c8cp06232c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective inhibition of human norepinephrine and serotonin transporters has been studied by computational approaches. 4 warm spots in hNET and 4 in hSERT were found to exert a pronounced effect on inhibition by the studied ligands.
Collapse
Affiliation(s)
- Guoxun Zheng
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Fengyuan Yang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Tingting Fu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Gao Tu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Yuzong Chen
- Bioinformatics and Drug Design Group
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
- Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
- Chongqing University
- Chongqing 401331
- China
| | - Feng Zhu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| |
Collapse
|
15
|
Abstract
The dopamine (DAT), serotonin (SERT), and norepinephrine (NET) transporters, which are collectively referred to as monoamine transporters (MATs), play significant roles in regulating the neuronal response to these neurotransmitters. MATs terminate the action of these neurotransmitters by translocating them from the synaptic space into the presynaptic neurons. These three transmitters are responsible for controlling a number of physiological, emotional, and behavioral functions, with their transporters being the site of action of drugs employed for the treatment of a variety of conditions, including depression, anxiety, ADHD, schizophrenia, and psychostimulant abuse. Provided in this unit is information on the localization and regulation of MATs and the structural components of these proteins most responsible for the translocation process. Also included is a brief description of the evolution of ligands that interact with these transporters, as well as current theories concerning the pharmacological effects of substances that interact with these sites, including the molecular mechanisms of action of uptake inhibitors and allosteric modulators. Data relating to the presence, structure, and functions of allosteric modulators are included as well. The aim of this review is to provide background information on MATs to those who are new to this field, with a focus on the therapeutic potential of compounds that interact with these substrate transport sites. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Pennsylvania
| | - Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Pennsylvania
| |
Collapse
|
16
|
Abstract
HIV-associated neurocognitive disorder (HAND) remains highly prevalent in HIV infected individuals and represents a special group of neuropathological disorders, which are associated with HIV-1 viral proteins, such as transactivator of transcription (Tat) protein. Cocaine abuse increases the incidence of HAND and exacerbates its severity by enhancing viral replication. Perturbation of dopaminergic transmission has been implicated as a risk factor of HAND. The presynaptic dopamine (DA) transporter (DAT) is essential for DA homeostasis and dopaminergic modulation of the brain function including cognition. Tat and cocaine synergistically elevate synaptic DA levels by acting directly on human DAT (hDAT), ultimately leading to dysregulation of DA transmission. Through integrated computational modeling and experimental validation, key residues have been identified in hDAT that play a critical role in Tat-induced inhibition of DAT and induce transporter conformational transitions. This review presents current information regarding neurological changes in DAT-mediated dopaminergic system associated with HIV infection, DAT-mediated adaptive responses to Tat as well as allosteric modulatory effects of novel compounds on hDAT. Understanding the molecular mechanisms by which Tat induces DAT-mediated dysregulation of DA system is of great clinical interest for identifying new targets for an early therapeutic intervention for HAND.
Collapse
|
17
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Jean B, Surratt CK, Madura JD. Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes. J Mol Graph Model 2017; 76:143-151. [PMID: 28734204 DOI: 10.1016/j.jmgm.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/26/2022]
Abstract
The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor's DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design.
Collapse
Affiliation(s)
- Bernandie Jean
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - Christopher K Surratt
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Jeffry D Madura
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| |
Collapse
|
19
|
Erol I, Aksoydan B, Kantarcioglu I, Salmas RE, Durdagi S. Identification of novel serotonin reuptake inhibitors targeting central and allosteric binding sites: A virtual screening and molecular dynamics simulations study. J Mol Graph Model 2017; 74:193-202. [DOI: 10.1016/j.jmgm.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 10/19/2022]
|
20
|
Recombinant Adeno-Associated Virus-mediated rescue of function in a mouse model of Dopamine Transporter Deficiency Syndrome. Sci Rep 2017; 7:46280. [PMID: 28417953 PMCID: PMC5394687 DOI: 10.1038/srep46280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Dopamine Transporter Deficiency Syndrome (DTDS) is a rare autosomal recessive disorder caused by loss-of-function mutations in dopamine transporter (DAT) gene, leading to severe neurological disabilities in children and adults. DAT-Knockout (DAT-KO) mouse is currently the best animal model for this syndrome, displaying functional hyperdopaminergia and neurodegenerative phenotype leading to premature death in ~36% of the population. We used DAT-KO mouse as model for DTDS to explore the potential utility of a novel combinatorial adeno-associated viral (AAV) gene therapy by expressing DAT selectively in DA neurons and terminals, resulting in the rescue of aberrant striatal DA dynamics, reversal of characteristic phenotypic and behavioral abnormalities, and prevention of premature death. These data indicate the efficacy of a new combinatorial gene therapy aimed at rescuing DA function and related phenotype in a mouse model that best approximates DAT deficiency found in DTDS.
Collapse
|
21
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
22
|
Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport. Sci Rep 2016; 6:39048. [PMID: 27966610 PMCID: PMC5155291 DOI: 10.1038/srep39048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission.
Collapse
|
23
|
Kim MS, Yu JH, Kim CH, Choi JY, Seo JH, Lee MY, Yi CH, Choi TH, Ryu YH, Lee JE, Lee BH, Kim H, Cho SR. Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J Cereb Blood Flow Metab 2016; 36:2122-2133. [PMID: 26661218 PMCID: PMC5363660 DOI: 10.1177/0271678x15613525] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
Environmental enrichment (EE) with a complex combination of physical, cognitive and social stimulations enhances synaptic plasticity and behavioral function. However, the mechanism remains to be elucidated in detail. We aimed to investigate dopamine-related synaptic plasticity underlying functional improvement after EE. For this, six-week-old CD-1 mice were randomly allocated to EE or standard conditions for two months. EE significantly enhanced behavioral functions such as rotarod and ladder walking tests. In a [18F]FPCIT positron emission tomography scan, binding values of striatal DAT were significantly decreased approximately 18% in the EE mice relative to the control mice. DAT inhibitor administrated to establish the relationship of the DAT down-regulation to the treatment effects also improved rotarod performances, suggesting that DAT inhibition recapitulated EE-mediated treatment benefits. Next, EE-induced internalization of DAT was confirmed using a surface biotinylation assay. In situ proximity ligation assay and immunoprecipitation demonstrated that EE significantly increased the phosphorylation of striatal DAT as well as the levels of DAT bound with protein kinase C (PKC). In conclusion, we suggest that EE enables phosphorylation of striatal DAT via a PKC-mediated pathway and causes DAT internalization. This is the first report to suggest an EE-mediated mechanism of synaptic plasticity by internalization of striatal DAT.
Collapse
Affiliation(s)
- Myung-Sun Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Stem Cell Center, Avison Biomedical Research Center, Seoul, Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Medical Science, The Graduate School, Yonsei University, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Chul Hoon Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Yong Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Min-Young Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Stem Cell Center, Avison Biomedical Research Center, Seoul, Korea
| | - Chi Hoon Yi
- Department of Molecular Imaging, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Tae Hyun Choi
- Department of Molecular Imaging, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Bae Hwan Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyongbum Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea .,Yonsei Stem Cell Center, Avison Biomedical Research Center, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Yuan Y, Huang X, Zhu J, Zhan CG. Computational modeling of human dopamine transporter structures, mechanism and its interaction with HIV-1 transactivator of transcription. Future Med Chem 2016; 8:2077-2089. [PMID: 27739323 PMCID: PMC6113701 DOI: 10.4155/fmc-2016-0138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/20/2016] [Indexed: 11/17/2022] Open
Abstract
This is a brief review of computational modeling studies on the detailed structures and mechanism of human dopamine transporter (hDAT), as well as its interaction with HIV-1 transactivator of transcription (Tat). Extensive molecular modeling, docking and dynamics simulations have resulted in reasonable structural models of hDAT in three typical conformational states, its dopamine uptake mechanism and its interaction with Tat. The obtained hDAT models in different conformational states and their complexes with dopamine and Tat have provided novel structural and mechanistic insights concerning how hDAT uptakes dopamine and how Tat affects the dopamine uptake by hDAT. The computational insights, that are consistent with available experimental data, should be valuable for future rational design of novel therapeutic strategies for treatment of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Yaxia Yuan
- Molecular Modeling & Biopharmaceutical Center, Center for Pharmaceutical Research & Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Xiaoqin Huang
- Molecular Modeling & Biopharmaceutical Center, Center for Pharmaceutical Research & Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Jun Zhu
- Department of Drug Discovery & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Chang-Guo Zhan
- Molecular Modeling & Biopharmaceutical Center, Center for Pharmaceutical Research & Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
25
|
Illiano P, Lanzo A, Leo D, Paglione M, Zampi G, Gainetdinov RR, Di Schiavi E. ACaenorhabditis elegansmodel to study dopamine transporter deficiency syndrome. Eur J Neurosci 2016; 45:207-214. [DOI: 10.1111/ejn.13366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Placido Illiano
- Department of Neuroscience and Brain Technologies; Fondazione Istituto Italiano di Tecnologia; Via Morego 30 16163 Genova Italy
| | - Ambra Lanzo
- Department of Biology, Agriculture and Food Science - National Research Council, CNR; Institute of Biosciences and BioResources, IBBR; Via Pietro Castellino 111 80131 Naples Italy
| | - Damiana Leo
- Department of Neuroscience and Brain Technologies; Fondazione Istituto Italiano di Tecnologia; Via Morego 30 16163 Genova Italy
| | - Maria Paglione
- Department of Biology, Agriculture and Food Science - National Research Council, CNR; Institute of Biosciences and BioResources, IBBR; Via Pietro Castellino 111 80131 Naples Italy
| | - Giuseppina Zampi
- Department of Biology, Agriculture and Food Science - National Research Council, CNR; Institute of Biosciences and BioResources, IBBR; Via Pietro Castellino 111 80131 Naples Italy
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine; St. Petersburg State University; 199034 St. Petersburg Russia
- Skolkovo Institute of Science and Technology; Skolkovo 143025 Moscow Russia
| | - Elia Di Schiavi
- Department of Biology, Agriculture and Food Science - National Research Council, CNR; Institute of Biosciences and BioResources, IBBR; Via Pietro Castellino 111 80131 Naples Italy
| |
Collapse
|
26
|
Asciutto EK, Gedeon PC, General IJ, Madura JD. Structure and Dynamics Study of LeuT Using the Markov State Model and Perturbation Response Scanning Reveals Distinct Ion Induced Conformational States. J Phys Chem B 2016; 120:8361-8. [PMID: 27311999 DOI: 10.1021/acs.jpcb.6b02053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial leucine transporter (LeuT), a close homologue of the eukaryote monoamine transporters (MATs), currently serves as a powerful template for computer simulations of MATs. Transport of the amino acid leucine through the membrane is made possible by the sodium electrochemical potential. Recent reports indicate that the substrate transport mechanism is based on structural changes such as hinge movements of key transmembrane domains. In order to further investigate the role of sodium ions in the uptake of leucine, here we present a Markov state model analysis of atomistic simulations of lipid embedded LeuT in different environments, generated by varying the presence of binding pocket sodium ions and substrate. Six metastable conformations are found, and structural differences between them along with transition probabilities are determined. We complete the analysis with the implementation of perturbation response scanning on our system, determining the most sensitive and influential regions of LeuT, in each environment. Our results show that the occupation of sites Na1 and Na2, along with the presence of the substrate, selectively influences the geometry of LeuT. In particular, the occupation of each site Na1/Na2 has strong effects (in terms of changes in influence and/or sensitivity, as compared to the case without ions) in specific regions of LeuT, and the effects are different for simultaneous occupation. Our results strengthen the rationale and provide a conformational mechanism for a putative transport mechanism in which Na2 is necessary, but may not be sufficient, to initiate and stabilize extracellular substrate access to the binding pocket.
Collapse
Affiliation(s)
- Eliana K Asciutto
- School of Science and Technology, Universidad Nacional de San Martín, CONICET , San Martín, Buenos Aires, Argentina
| | - Patrick C Gedeon
- Department of Biomedical Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Ignacio J General
- School of Science and Technology, Universidad Nacional de San Martín, CONICET , San Martín, Buenos Aires, Argentina
| | - Jeffry D Madura
- Center for Computational Sciences & Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania 15208, United States
| |
Collapse
|
27
|
Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake. Sci Rep 2016; 6:27314. [PMID: 27250920 PMCID: PMC4890318 DOI: 10.1038/srep27314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND.
Collapse
|
28
|
Grouleff J, Søndergaard S, Koldsø H, Schiøtt B. Properties of an inward-facing state of LeuT: conformational stability and substrate release. Biophys J 2016; 108:1390-1399. [PMID: 25809252 DOI: 10.1016/j.bpj.2015.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/12/2023] Open
Abstract
The leucine transporter (LeuT) is a bacterial homolog of the human monoamine transporters, which are important pharmaceutical targets. There are no high-resolution structures of the human transporters available; however, LeuT has been crystallized in several different conformational states. Recently, an inward-facing conformation of LeuT was solved revealing an unexpectedly large movement of transmembrane helix 1a (TM1a). We have performed molecular dynamics simulations of the mutated and wild-type transporter, with and without the cocrystallized Fab antibody fragment, to investigate the properties of this inward-facing conformation in relation to transport by LeuT within the membrane environment. In all of the simulations, local conformational changes with respect to the crystal structure are consistently observed, especially in TM1a. Umbrella sampling revealed a soft potential for TM1a tilting. Furthermore, simulations of inward-facing LeuT with Na(+) ions and substrate bound suggest that one of the Na(+) ion binding sites is fully disrupted. Release of alanine and the second Na(+) ion is also observed, giving insight into the final stage of the translocation process in atomistic detail.
Collapse
Affiliation(s)
- Julie Grouleff
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Siri Søndergaard
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Heidi Koldsø
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
29
|
Grouleff J, Ladefoged LK, Koldsø H, Schiøtt B. Monoamine transporters: insights from molecular dynamics simulations. Front Pharmacol 2015; 6:235. [PMID: 26528185 PMCID: PMC4607855 DOI: 10.3389/fphar.2015.00235] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 01/31/2023] Open
Abstract
The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson's disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na(+) symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors.
Collapse
Affiliation(s)
- Julie Grouleff
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University Aarhus, Denmark
| | - Lucy Kate Ladefoged
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University Aarhus, Denmark
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford Oxford, UK
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University Aarhus, Denmark
| |
Collapse
|
30
|
Mortensen OV, Kortagere S. Designing modulators of monoamine transporters using virtual screening techniques. Front Pharmacol 2015; 6:223. [PMID: 26483692 PMCID: PMC4586420 DOI: 10.3389/fphar.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
The plasma-membrane monoamine transporters (MATs), including the serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homolog of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and non-competitive inhibitors have been determined. In addition, several structures of the Drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, PA, USA
| |
Collapse
|
31
|
Nolan TL, Geffert LM, Kolber BJ, Madura JD, Surratt CK. Discovery of novel-scaffold monoamine transporter ligands via in silico screening with the S1 pocket of the serotonin transporter. ACS Chem Neurosci 2014; 5:784-92. [PMID: 25003748 PMCID: PMC4176318 DOI: 10.1021/cn500133b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
![]()
Discovery of new inhibitors of the
plasmalemmal monoamine transporters
(MATs) continues to provide pharmacotherapeutic options for depression,
addiction, attention deficit disorders, psychosis, narcolepsy, and
Parkinson’s disease. The windfall of high-resolution MAT structural
information afforded by X-ray crystallography has enabled the construction
of credible computational models. Elucidation of lead compounds, creation
of compound structure–activity series, and pharmacologic testing
are staggering expenses that could be reduced by using a MAT computational
model for virtual screening (VS) of structural libraries containing
millions of compounds. Here, VS of the PubChem small molecule structural
database using the S1 (primary substrate) ligand pocket of a serotonin
transporter homology model yielded 19 prominent “hit”
compounds. In vitro pharmacology of these VS hits revealed four structurally
unique MAT substrate uptake inhibitors with high nanomolar affinity
at one or more of the three MATs. In vivo characterization of three
of these hits revealed significant activity in a mouse model of acute
depression at doses that did not elicit untoward locomotor effects.
This constitutes the first report of MAT inhibitor discovery using
exclusively the primary substrate pocket as a VS tool. Novel-scaffold
MAT inhibitors offer hope of new medications that lack the many classic
adverse effects of existing antidepressant drugs.
Collapse
Affiliation(s)
- Tammy L. Nolan
- Division of Pharmaceutical Sciences,
Mylan School of Pharmacy, ‡Departments of Chemistry
and Biochemistry, Center for Computational Sciences,
and §Department of Biological
Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Laura M. Geffert
- Division of Pharmaceutical Sciences,
Mylan School of Pharmacy, ‡Departments of Chemistry
and Biochemistry, Center for Computational Sciences,
and §Department of Biological
Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Benedict J. Kolber
- Division of Pharmaceutical Sciences,
Mylan School of Pharmacy, ‡Departments of Chemistry
and Biochemistry, Center for Computational Sciences,
and §Department of Biological
Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jeffry D. Madura
- Division of Pharmaceutical Sciences,
Mylan School of Pharmacy, ‡Departments of Chemistry
and Biochemistry, Center for Computational Sciences,
and §Department of Biological
Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Christopher K. Surratt
- Division of Pharmaceutical Sciences,
Mylan School of Pharmacy, ‡Departments of Chemistry
and Biochemistry, Center for Computational Sciences,
and §Department of Biological
Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
32
|
Heal DJ, Gosden J, Smith SL. Dopamine reuptake transporter (DAT) "inverse agonism"--a novel hypothesis to explain the enigmatic pharmacology of cocaine. Neuropharmacology 2014; 87:19-40. [PMID: 24953830 DOI: 10.1016/j.neuropharm.2014.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
Abstract
The long held view is cocaine's pharmacological effects are mediated by monoamine reuptake inhibition. However, drugs with rapid brain penetration like sibutramine, bupropion, mazindol and tesofensine, which are equal to or more potent than cocaine as dopamine reuptake inhibitors, produce no discernable subjective effects such as drug "highs" or euphoria in drug-experienced human volunteers. Moreover they are dysphoric and aversive when given at high doses. In vivo experiments in animals demonstrate that cocaine's monoaminergic pharmacology is profoundly different from that of other prescribed monoamine reuptake inhibitors, with the exception of methylphenidate. These findings led us to conclude that the highly unusual stimulant profile of cocaine and related compounds, eg methylphenidate, is not mediated by monoamine reuptake inhibition alone. We describe the experimental findings which suggest cocaine serves as a negative allosteric modulator to alter the function of the dopamine reuptake transporter (DAT) and reverse its direction of transport. This results in a firing-dependent, retro-transport of dopamine into the synaptic cleft. The proposed mechanism of cocaine is, therefore, different from other small molecule negative allostereric modulators of the monoamine reuptake transporters, eg SoRI-6238, which merely reduce the rate of inward transport. Because the physiological role of DAT is to remove dopamine from the synapse and the action of cocaine is the opposite of this, we have postulated that cocaine's effect is analogous to an inverse agonist. If this hypothesis is validated then cocaine is the prototypical compound that exemplifies a new class of monoaminergic drugs; DAT "inverse agonists". This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- David J Heal
- RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK.
| | - Jane Gosden
- RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Sharon L Smith
- RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK.
| |
Collapse
|
33
|
Immadisetty K, Geffert LM, Surratt CK, Madura JD. New design strategies for antidepressant drugs. Expert Opin Drug Discov 2013; 8:1399-414. [PMID: 23991860 DOI: 10.1517/17460441.2013.830102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION In spite of research efforts spanning six decades, the most prominent antidepressant drugs to date still carry several adverse effects, often serious enough to warrant discontinuation of the drug. Molecular mechanisms of depression are now better understood such that some of the specific receptors responsible can be targeted for activation or inhibition. This advance, coupled with the recent availability of crystal structures of relevant drug targets or their homologs, has opened the door for new antidepressant therapeutic compounds. AREAS COVERED The authors review the evolution of monoamine-based antidepressant drugs, up to the selective serotonin reuptake inhibitors (SSRIs). The authors discuss classic and contemporary antidepressant drug design strategies, with a focus on virtual screening and fragment-based drug design methods. Furthermore, they discuss the recent advancements in the understanding of the serotonin transporter (SERT) structure/function relationship in the context of recognition of SSRIs and outline a strategy for the use of computational approaches in producing new SSRI lead compounds. EXPERT OPINION The authors suggest that given the long-awaited availability of credible three-dimensional structures for the SERT and related monoamine transporter proteins, cutting-edge computational methods should be the linchpin of future drug discovery efforts regarding monoamine-based antidepressant lead compounds. Because these transporter inhibitors cause a ubiquitous increase in extraneuronal neurotransmitter levels leading to side and adverse therapeutic effects, the drug discovery should extend to appropriate manipulation of the 'downstream' receptors affected by the neurotransmitter boost. Efficient use of new computational strategies will accelerate the drug discovery process and reduce its economic burden.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Duquesne University, Center for Computational Sciences, Department of Chemistry and Biochemistry , 600 Forbes Ave, 308 Mellon Hall, Pittsburgh, PA 15282 , USA +1 412 396 4129 ; +1 412 396 5683 ;
| | | | | | | |
Collapse
|
34
|
Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 2013; 34:489-96. [PMID: 23968642 DOI: 10.1016/j.tips.2013.07.005] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/17/2022]
Abstract
The dopamine (DA) transporter (DAT) controls the spatial and temporal dynamics of DA neurotransmission by driving reuptake of extracellular transmitter into presynaptic neurons. Many diseases such as depression, bipolar disorder, Parkinson's disease (PD), and attention deficit hyperactivity disorder (ADHD) are associated with abnormal DA levels, implicating DAT as a factor in their etiology. Medications used to treat these disorders and many addictive drugs target DAT and enhance dopaminergic signaling by suppressing transmitter reuptake. We now understand that the transport and binding properties of DAT are regulated by complex and overlapping mechanisms that provide neurons with the ability to modulate DA clearance in response to physiological demands. These processes are controlled by endogenous signaling pathways and affected by exogenous transporter ligands, demonstrating their importance for normal neurotransmission, drug abuse, and disease treatments. Increasing evidence supports the disruption of these mechanisms in DA disorders, implicating dysregulation of transport in disease etiologies and suggesting these processes as potential points for therapeutic manipulation of DA availability.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| | | |
Collapse
|
35
|
Kortagere S, Fontana ACK, Rose DR, Mortensen OV. Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action. Neuropharmacology 2013; 72:282-90. [PMID: 23632081 DOI: 10.1016/j.neuropharm.2013.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/22/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Serotonin transporters (SERTs) play an essential role in the termination and regulation of serotonin signaling in the brain. SERT is also the target of antidepressants and psychostimulants. Molecules with novel activities and modes of interaction with regard to SERT function are of great scientific and clinical interest. We explored structural regions outside the putative serotonin translocation pathway to identify potential binding sites for allosteric transporter modulators (ATMs). Mutational studies revealed a pocket of amino acids outside the orthosteric substrate binding sites located in the interface between extracellular loops 1 and 3 that when mutated affect transporter function. Using the structure of the bacterial transporter homolog leucine transporter as a template, we developed a structural model of SERT. We performed molecular dynamics simulations to further characterize the allosteric pocket that was identified by site-directed mutagenesis studies and employed this pocket in a virtual screen for small-molecule modulators of SERT function. In functional transport assays, we found that one of the identified molecules, ATM7, increased the reuptake of serotonin, possibly by facilitating the interaction of serotonin with transport-ready conformations of SERT when concentrations of serotonin were low and rate limiting. In addition, ATM7 potentiates 3,4-methylenedioxy-N-methylamphetamine (MDMA, "Ecstasy")-induced reversed transport by SERT. Taking advantage of a conformationally sensitive residue in transmembrane domain 6, we demonstrate that ATM7 mechanistically stabilizes an outward-facing conformation of SERT. Taken together these observations demonstrate that ATM7 acts through a novel mechanism that involves allosteric modulation of SERT function.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Institute for Molecular Medicine, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
36
|
Koldsø H, Christiansen AB, Sinning S, Schiøtt B. Comparative modeling of the human monoamine transporters: similarities in substrate binding. ACS Chem Neurosci 2013; 4:295-309. [PMID: 23421681 PMCID: PMC3582297 DOI: 10.1021/cn300148r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/24/2012] [Indexed: 11/30/2022] Open
Abstract
The amino acid compositions of the substrate binding pockets of the three human monoamine transporters are compared as is the orientation of the endogenous substrates, serotonin, dopamine, and norepinephrine, bound in these. Through a combination of homology modeling, induced fit dockings, molecular dynamics simulations, and uptake experiments in mutant transporters, we propose a common binding mode for the three substrates. The longitudinal axis of the substrates is similarly oriented with these, forming an ionic interaction between the ammonium group and a highly conserved aspartate, Asp98 (serotonin transporter, hSERT), Asp79 (dopamine transporter, hDAT), and Asp75 (norepinephrine transporter, hNET). The 6-position of serotonin and the para-hydroxyl groups of dopamine and norepinephrine were found to face Ala173 in hSERT, Gly153 in hDAT, and Gly149 in hNET. Three rotations of the substrates around the longitudinal axis were identified. In each mode, an aromatic hydroxyl group of the substrates occupied equivalent volumes of the three binding pockets, where small changes in amino acid composition explains the differences in selectivity. Uptake experiments support that the 5-hydroxyl group of serotonin and the meta-hydroxyl group norepinephrine and dopamine are placed in the hydrophilic pocket around Ala173, Ser438, and Thr439 in hSERT corresponding to Gly149, Ser419, Ser420 in hNET and Gly153 Ser422 and Ala423 in hDAT. Furthermore, hDAT was found to possess an additional hydrophilic pocket around Ser149 to accommodate the para-hydroxyl group. Understanding these subtle differences between the binding site compositions of the three transporters is imperative for understanding the substrate selectivity, which could eventually aid in developing future selective medicines.
Collapse
Affiliation(s)
- Heidi Koldsø
- Center for Insoluble Protein
Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus
C, Denmark
| | - Anja B. Christiansen
- Laboratory of
Molecular Neurobiology,
Centre for Psychiatric Research, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark
| | - Steffen Sinning
- Laboratory of
Molecular Neurobiology,
Centre for Psychiatric Research, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein
Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus
C, Denmark
| |
Collapse
|