1
|
Klatt OC, de Brouwer L, Hendriks F, Dehne EM, Ataç Wagegg B, Jennings P, Wilmes A. Human and rat renal proximal tubule in vitro models for ADME applications. Arch Toxicol 2025; 99:1613-1641. [PMID: 40032686 DOI: 10.1007/s00204-025-03987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The kidney is a major organ dictating excretion rates of chemicals and their metabolites from the body and thus renal clearance is frequently a major component of pharmaco-(toxico)-kinetic profiles. Within the nephron, the proximal tubule is the major site for xenobiotic reabsorption from glomerular filtrate and xenobiotic secretion from the blood into the lumen via the expression of multiple inward (lumen to interstitium) and outward transport systems (interstitium to lumen). While there exist several human proximal tubular cell culture options that could be utilized for modelling the proximal tubule component of renal clearance, they do not necessarily represent the full complement of xenobiotic transport processes of their in vivo counterparts. Here, we review available human and rat renal proximal tubule in vitro models, including subcellular fractions, immortalized cell lines, primary cell cultures, induced pluripotent stem cell (iPSC)-derived models and also consider more organotypic cell culture environments such as microporous growth supports, organoids and microfluidic systems. This review focuses on expression levels and function of human and rat renal transporters and phase I and II metabolizing enzymes in these models in order to critically assess their usefulness and to identify potential solutions to overcome identified limitations.
Collapse
Affiliation(s)
- Olivia C Klatt
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lenya de Brouwer
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Femke Hendriks
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Paul Jennings
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Lechtenberg M, Chéneau C, Riquin K, Koenig L, Mota C, Halary F, Dehne EM. A perfused iPSC-derived proximal tubule model for predicting drug-induced kidney injury. Toxicol In Vitro 2025; 105:106038. [PMID: 40020762 DOI: 10.1016/j.tiv.2025.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The kidney is frequently exposed to high levels of drugs and their metabolites, which can injure the kidney and the proximal tubule (PT) in particular. In order to detect nephrotoxicity early during drug development, relevant in vitro models are essential. Here, we introduce a robust and versatile cell culture insert-based iPSC-derived PT model, which can be maintained in a microphysiological system for at least ten days. We demonstrate the model's ability to predict drug-induced PT injury using polymyxin B, cyclosporin A, and cisplatin, and observe that perfusion distinctly impacts our model's response to xenobiotics. We observe that the upregulation of metallothioneins that is described in vivo after treatment with these drugs is reliably detected in dynamic, but not static in vitro PT models. Finally, we use our model to alleviate polymyxin-induced nephrotoxicity by supplementing the antioxidant curcumin. Together, these findings illustrate that our perfused iPSC-derived PT model is versatile and well-suited for in vitro studies investigating nephrotoxicity and its prevention. Reliable and user-friendly in vitro models like this enable the early detection of nephrotoxic potential, thereby minimizing adverse effects and reducing drug attrition.
Collapse
Affiliation(s)
| | - Coraline Chéneau
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Kevin Riquin
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Franck Halary
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | |
Collapse
|
3
|
Merrick BA, Brooks AM, Foley JF, Martin NP, Fannin RD, Gladwell W, Gerrish KE. hTERT and SV40LgT Renal Cell Lines Adjust Their Transcriptional Responses After Copy Number Changes from the Parent Proximal Tubule Cells. Int J Mol Sci 2025; 26:3607. [PMID: 40332109 PMCID: PMC12027150 DOI: 10.3390/ijms26083607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Primary mouse renal proximal tubule epithelial cells (moRPTECs) were immortalized by lentivirus transduction to create hTERT or SV40LgT (LgT) cell lines. Prior work showed a more pronounced injury and repair response in LgT versus hTERT cells after chemical challenge. We hypothesized that unique genomic changes occurred after immortalization, altering critical genes and pathways. RNA-seq profiling and whole-genome sequencing (WGS) of parent, hTERT, and LgT cells showed that 92.5% of the annotated transcripts were shared, suggesting a conserved proximal tubule expression pattern. However, the cell lines exhibited unique transcriptomic and genomic profiles different from the parent cells. Three transcript classes were quite relevant for chemical challenge response-Cyps, ion channels, and metabolic transporters-each important for renal function. A pathway analysis of the hTERT cells suggested alterations in intermediary and energy metabolism. LgT cells exhibited pathway activation in cell cycle and DNA repair that was consistent with replication stress. Genomic karyotyping by combining WGS and RNA-seq data showed increased gene copy numbers in chromosome 5 for LgT cells, while hTERT cells displayed gene copy losses in chromosomes 4 and 9. These data suggest that the exaggerated transcriptional responses of LgT cells versus hTERT cells result from differences in gene copy numbers, replication stress, and the unique selection processes underlying LgT or hTERT immortalization.
Collapse
Affiliation(s)
- Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| | - Wesley Gladwell
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| |
Collapse
|
4
|
Arakawa H, Matsushita K, Ishiguro N. Advanced in vitro evaluation of drug-induced kidney injury using microphysiological systems in drug discovery and development. Drug Metab Pharmacokinet 2025; 61:101056. [PMID: 40088574 DOI: 10.1016/j.dmpk.2025.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
Drug-induced kidney injury (DIKI) is a major cause of acute kidney injury (AKI). Given concerns about animal welfare and the need for more accurate prediction of human events, there is an urgent need to develop an in vitro evaluation method for DIKI using human cells. Renal proximal tubular epithelial cells (RPTECs) are the main targets of DIKI in drug discovery and development because of their abundant expression of drug transporters that contribute to renal-specific drug distribution. In general, physiological kidney function is significantly reduced in primary cell monolayer culture systems. However, with recent advances in cell engineering and regenerative medicine, human kidney-derived cell culture systems, with higher kidney function compared to conventional systems, have been established. For example, three-dimensional cultured RPTECs show enhanced expression of drug transporters and higher predictive performance than monolayer culture systems. The use of organs-on-a-chip with liver and kidney co-cultures also allows the detection of drug metabolite-induced nephrotoxicity. Kidney organoids differentiated from induced pluripotent stem cells (iPS) have also been established. In this review, we introduce a recently established renal cell culture system that includes a microphysiological system, and review the in vitro methods used to evaluate DIKI in RPTECs.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| |
Collapse
|
5
|
Sakolish C, Tsai HHD, Lin HC, Bajaj P, Villenave R, Ferguson SS, Stanko JP, Becker RA, Hewitt P, Chiu WA, Rusyn I. Comparative Analysis of Proximal Tubule Cell Sources for In Vitro Studies of Renal Proximal Tubule Toxicity. Biomedicines 2025; 13:563. [PMID: 40149543 PMCID: PMC11940618 DOI: 10.3390/biomedicines13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The kidneys are essential for eliminating drugs and chemicals from the human body and renal epithelial cells are particularly vulnerable to damage caused by xenobiotics and their metabolites. Drug-induced kidney toxicity is a major cause of drug attrition during preclinical and clinical development and the ability to predict renal toxicity remains a pressing challenge, necessitating more predictive in vitro models. However, the abundance of commercially available renal proximal tubule epithelial cell (RPTEC) sources complicates the selection of the most predictive cell types. Methods: This study compared a wide range of RPTEC sources, including primary cells (Lonza) and various RPTEC lines from different vendors, such as ciPTECs (Cell4Pharma), TERT1/RPTECs (ATCC), and HEK293 (GenoMembrane), including OAT1-overexpressing variants. HepG2 cells were included for a comparison of organ specificity. The different cells were cultured in 96- or 384-well plates and exposed to 12 drugs for 72 h at a concentration yielding a response (0.3-300 µM) to evaluate their ability to predict clinical outcomes. The CellTiterGlo® assay was used to measure cell viability, and transcriptome data from unexposed cells was analyzed using the TempO-seq® S1500+ platform. Results: Gene expression data showed that the primary kidney cells most closely matched the transcriptome of the human kidney medulla, followed by the TERT1 and ciPTEC lines, with the HEK lines showing the lowest similarity. The RPTEC sources showed clustering by cell type, with OAT1 overexpression driving changes in metabolic, detoxification, and immune pathways, especially in TERT1 cells. Cell viability data were used to determine points of departure (PODs) which were compared to human serum Cmax values to assess safety margins. The TERT1 and ciPTEC RPTEC lines demonstrated the highest predictive performance for nephrotoxicity, with OAT1 overexpression significantly enhancing sensitivity, accuracy, and overall predictive power (MCC scores: 0.764 and 0.667, respectively). In contrast, HepG2 cells showed the lowest performance across all metrics, highlighting the critical role of cell type and transporter expression in nephrotoxicity prediction. Conclusions: This study highlights important differences among RPTEC sources and their utility in drug safety studies of the renal proximal tubule. We show that while improved cell options for renal proximal tubule are needed, OAT1-overexpressing RPTECs are a superior model to the background cell type.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Han-Hsuan D. Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, USA;
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Stephen S. Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.S.F.); (J.P.S.)
| | - Jason P. Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.S.F.); (J.P.S.)
| | | | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany;
| | - Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| |
Collapse
|
6
|
Arakawa H, Higuchi D, Takahashi E, Matsushita K, Nedachi S, Peng H, Kadoguchi M, Morimura K, Araki A, Kondo M, Ishiguro N, Jimbo Y, Tamai I. Three-dimensional culture of human proximal tubular epithelial cells for an in vitro evaluation of drug-induced kidney injury. J Pharm Sci 2024; 113:3255-3264. [PMID: 39153661 DOI: 10.1016/j.xphs.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Drug-induced kidney injury (DIKI) is the major cause of acute kidney injury (AKI). Renal proximal tubular epithelial cells (RPTECs) are the primary target sites of DIKI and express transporters involved in renal drug disposition. In the present study, we focused on three-dimensionally cultured human RPTECs (3D-RPTECs) with elevated expression of drug transporters to investigate their utility in DIKI evaluation. Intracellular ATP levels in 3D-RPTECs are reduced by tenofovir and cisplatin that are substrates of an organic anion transporter 1 and an organic cation transporter 2, respectively. In addition, 3D-RPTECs were exposed to 17 and 15 drugs that are positive and negative to RPTEC toxicity, respectively, for up to 28 d. The 20 % decreasing concentration of drugs for ATP amount (EC20) was obtained, and the ratio of EC20 values and clinical maximum concentration (Cmax) ≤100 were used as cut-off value to evaluate potential of DIKI. The sensitivities of 3D-RPTECs were 82.4 % and 88.2 % after 7 d and 28 d of drug exposure, respectively, and the specificities were 100 % and 93.3 %, respectively. The predictive performance of 3D-RPTECs was higher than that of two-dimensional cultured RPTECs and the kidney cell line HK-2. In conclusion, 3D-RPTECs are useful for in vitro evaluation of RPTEC injury by measuring intracellular ATP levels.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Daichi Higuchi
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Etsushi Takahashi
- R &D Department, Precision Engineering Center, Industrial Division, Nikkiso Co. Ltd, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Shiho Nedachi
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hanwei Peng
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Moeno Kadoguchi
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kaoru Morimura
- R &D Department, Precision Engineering Center, Industrial Division, Nikkiso Co. Ltd, Japan
| | - Ayano Araki
- R &D Department, Precision Engineering Center, Industrial Division, Nikkiso Co. Ltd, Japan
| | - Masayuki Kondo
- R &D Department, Precision Engineering Center, Industrial Division, Nikkiso Co. Ltd, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Yoichi Jimbo
- R &D Department, Precision Engineering Center, Industrial Division, Nikkiso Co. Ltd, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
7
|
Ma C, Banan Sadeghian R, Negoro R, Fujimoto K, Araoka T, Ishiguro N, Takasato M, Yokokawa R. Efficient proximal tubule-on-chip model from hiPSC-derived kidney organoids for functional analysis of renal transporters. iScience 2024; 27:110760. [PMID: 39286490 PMCID: PMC11403423 DOI: 10.1016/j.isci.2024.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Renal transporters play critical roles in predicting potential drug-drug interactions. However, current in vitro models often fail to adequately express these transporters, particularly solute carrier proteins, including organic anion transporters (OAT1/3), and organic cation transporter 2 (OCT2). Here, we developed a hiPSC-derived kidney organoids-based proximal tubule-on-chip (OPTC) model that emulates in vivo renal physiology to assess transporter function. Compared to chips based on immortalized cells, OPTC derived from the two most commonly used differentiation protocols exhibited significant improvement in expression level and polarity of OAT1/3 and OCT2. Hence, the OPTC demonstrates enhanced functionality in efflux and uptake assessments, and nephrotoxicity. Furthermore, these functionalities are diminished upon adding inhibitors during substrate-inhibitor interactions, which were closer to in vivo observations. Overall, these results support that OPTC can reliably assess the role of renal transporters in drug transport and nephrotoxicity, paving the way for personalized models to assess renal transport and disease modeling.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | | | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd, Kobe, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
8
|
Tan SPF, Tillmann A, Murby SJ, Rostami-Hodjegan A, Scotcher D, Galetin A. Albumin-Mediated Drug Uptake by Organic Anion Transporter 1/3 Is Real: Implications for the Prediction of Active Renal Secretion Clearance. Mol Pharm 2024; 21:4603-4617. [PMID: 39166754 PMCID: PMC11372837 DOI: 10.1021/acs.molpharmaceut.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the in vitro-to-in vivo extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, fu,inc). In the presence of 4% HSA, the unbound intrinsic active uptake clearance (CLint,u,active) of six highly protein-bound substrates increased substantially relative to the HSA-free control (3.5- to 122-fold for the OAT1 CLint,u,active, and up to 28-fold for the OAT3 CLint,u,active). The albumin-mediated uptake effect (fold increase in CLint,u,active) was more pronounced with highly bound substrates compared to no effect seen for weakly protein-bound substrates adefovir (OAT1-specific) and oseltamivir carboxylate (OAT3-specific). The relationship between OAT1/3 CLint,u,active and fu,inc agreed with the facilitated-dissociation model; a relationship was established between the albumin-mediated fold change in CLint,u,active and fu,inc for both the OAT1 and OAT3, with implications for IVIVE modeling. The relative activity factor and the relative expression factor based on global proteomic quantification of in vitro OAT1/3 expression were applied for IVIVE of renal clearance. The inclusion of HSA improved the bottom-up prediction of the level of OAT1/3-mediated secretion and renal clearance (CLsec and CLr), in contrast to the underprediction observed with the control (HSA-free) scenario. For the first time, this study confirmed the presence of the albumin-mediated uptake effect with renal OAT1/3 transporters; the extent of the effect was more pronounced for highly protein-bound substrates. We recommend the inclusion of HSA in routine in vitro OAT1/3 assays due to considerable improvements in the IVIVE of CLsec and CLr.
Collapse
Affiliation(s)
- Shawn Pei Feng Tan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Annika Tillmann
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Susan J Murby
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
- Certara Predictive Technologies (CPT), Certara Inc., 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
9
|
Meijer T, da Costa Pereira D, Klatt OC, Buitenhuis J, Jennings P, Wilmes A. Characterization of Organic Anion and Cation Transport in Three Human Renal Proximal Tubular Epithelial Models. Cells 2024; 13:1008. [PMID: 38920639 PMCID: PMC11202273 DOI: 10.3390/cells13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.
Collapse
Affiliation(s)
- Tamara Meijer
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Olivia C. Klatt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Joanne Buitenhuis
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Paul Jennings
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Hsiao HY, Yen TH, Wu FY, Cheng CM, Liu JW, Fan YT, Huang JJ, Nien CY. Delivery and Transcriptome Assessment of an In Vitro Three-Dimensional Proximal Tubule Model Established by Human Kidney 2 Cells in Clinical Gelatin Sponges. Int J Mol Sci 2023; 24:15547. [PMID: 37958530 PMCID: PMC10650118 DOI: 10.3390/ijms242115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023] Open
Abstract
The high prevalence of kidney diseases and the low identification rate of drug nephrotoxicity in preclinical studies reinforce the need for representative yet feasible renal models. Although in vitro cell-based models utilizing renal proximal tubules are widely used for kidney research, many proximal tubule cell (PTC) lines have been indicated to be less sensitive to nephrotoxins, mainly due to altered expression of transporters under a two-dimensional culture (2D) environment. Here, we selected HK-2 cells to establish a simplified three-dimensional (3D) model using gelatin sponges as scaffolds. In addition to cell viability and morphology, we conducted a comprehensive transcriptome comparison and correlation analysis of 2D and 3D cultured HK-2 cells to native human PTCs. Our 3D model displayed stable and long-term growth with a tubule-like morphology and demonstrated a more comparable gene expression profile to native human PTCs compared to the 2D model. Many missing or low expressions of major genes involved in PTC transport and metabolic processes were restored, which is crucial for successful nephrotoxicity prediction. Consequently, we established a cost-effective yet more representative model for in vivo PTC studies and presented a comprehensive transcriptome analysis for the systematic characterization of PTC lines.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Center for Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Nephrology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fang-Yu Wu
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300193, Taiwan;
| | - Jia-Wei Liu
- Center for Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Yu-Ting Fan
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| | - Jung-Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chung-Yi Nien
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| |
Collapse
|
11
|
Ishiguro N, Takahashi E, Arakawa H, Saito A, Kitagawa F, Kondo M, Morinaga G, Takatani M, Takahashi R, Kudo T, Mae SI, Kadoguchi M, Higuchi D, Nakazono Y, Tamai I, Osafune K, Jimbo Y. Improvement of Protein Expression Profile in Three-Dimensional Renal Proximal Tubular Epithelial Cell Spheroids Selected Based on OAT1 Gene Expression: A Potential In Vitro Tool for Evaluating Human Renal Proximal Tubular Toxicity and Drug Disposition. Drug Metab Dispos 2023; 51:1177-1187. [PMID: 37385755 DOI: 10.1124/dmd.122.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.
Collapse
Affiliation(s)
- Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Etsushi Takahashi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Hiroshi Arakawa
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Asami Saito
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Fumihiko Kitagawa
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Masayuki Kondo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Gaku Morinaga
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Masahito Takatani
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Ryo Takahashi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Shin-Ichi Mae
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Moeno Kadoguchi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Daichi Higuchi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Yuya Nakazono
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Ikumi Tamai
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Kenji Osafune
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Yoichi Jimbo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| |
Collapse
|
12
|
Faria J, Ahmed S, Stamatialis D, Verhaar MC, Masereeuw R, Gerritsen KGF, Mihăilă SM. Bioengineered Kidney Tubules Efficiently Clear Uremic Toxins in Experimental Dialysis Conditions. Int J Mol Sci 2023; 24:12435. [PMID: 37569805 PMCID: PMC10419568 DOI: 10.3390/ijms241512435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with end-stage kidney disease (ESKD) suffer from high levels of protein-bound uremic toxins (PBUTs) that contribute to various comorbidities. Conventional dialysis methods are ineffective in removing these PBUTs. A potential solution could be offered by a bioartificial kidney (BAK) composed of porous membranes covered by proximal tubule epithelial cells (PTECs) that actively secrete PBUTs. However, BAK development is currently being hampered by a lack of knowledge regarding the cytocompatibility of the dialysis fluid (DF) that comes in contact with the PTECs. Here, we conducted a comprehensive functional assessment of the DF on human conditionally immortalized PTECs (ciPTECs) cultured as monolayers in well plates, on Transwell® inserts, or on hollow fiber membranes (HFMs) that form functional units of a BAK. We evaluated cell viability markers, monolayer integrity, and PBUT clearance. Our results show that exposure to DF did not affect ciPTECs' viability, membrane integrity, or function. Seven anionic PBUTs were efficiently cleared from the perfusion fluid containing a PBUTs cocktail or uremic plasma, an effect which was enhanced in the presence of albumin. Overall, our findings support that the DF is cytocompatible and does not compromise ciPTECs function, paving the way for further advancements in BAK development and its potential clinical application.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| | - Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| | - Dimitrios Stamatialis
- Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center, 3508 GA Utrecht, The Netherlands; (M.C.V.); (K.G.F.G.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center, 3508 GA Utrecht, The Netherlands; (M.C.V.); (K.G.F.G.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.F.); (S.A.); (R.M.)
| |
Collapse
|
13
|
Hoogstraten CA, Jacobs MME, de Boer G, van de Wal MAE, Koopman WJH, Smeitink JAM, Russel FGM, Schirris TJJ. Metabolic impact of genetic and chemical ADP/ATP carrier inhibition in renal proximal tubule epithelial cells. Arch Toxicol 2023; 97:1927-1941. [PMID: 37154957 PMCID: PMC10256673 DOI: 10.1007/s00204-023-03510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Mitochondrial dysfunction is pivotal in drug-induced acute kidney injury (AKI), but the underlying mechanisms remain largely unknown. Transport proteins embedded in the mitochondrial inner membrane form a significant class of potential drug off-targets. So far, most transporter-drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC). Since it remains unknown to what extent AAC contributes to drug-induced mitochondrial dysfunction in AKI, we here aimed to better understand the functional role of AAC in the energy metabolism of human renal proximal tubular cells. To this end, CRISPR/Cas9 technology was applied to generate AAC3-/- human conditionally immortalized renal proximal tubule epithelial cells. This AAC3-/- cell model was characterized with respect to mitochondrial function and morphology. To explore whether this model could provide first insights into (mitochondrial) adverse drug effects with suspicion towards AAC-mediated mechanisms, wild-type and knockout cells were exposed to established AAC inhibitors, after which cellular metabolic activity and mitochondrial respiratory capacity were measured. Two AAC3-/- clones showed a significant reduction in ADP import and ATP export rates and mitochondrial mass, without influencing overall morphology. AAC3-/- clones exhibited reduced ATP production, oxygen consumption rates and metabolic spare capacity was particularly affected, mainly in conditions with galactose as carbon source. Chemical AAC inhibition was stronger compared to genetic inhibition in AAC3-/-, suggesting functional compensation by remaining AAC isoforms in our knockout model. In conclusion, our results indicate that ciPTEC-OAT1 cells have a predominantly oxidative phenotype that was not additionally activated by switching energy source. Genetic inhibition of AAC3 particularly impacted mitochondrial spare capacity, without affecting mitochondrial morphology, suggesting an important role for AAC in maintaining the metabolic spare respiration.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Maaike M E Jacobs
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Guido de Boer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Melissa A E van de Wal
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Werner J H Koopman
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Khondrion BV, Nijmegen, 6525 EX, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
14
|
Ramada DL, de Vries J, Vollenbroek J, Noor N, Ter Beek O, Mihăilă SM, Wieringa F, Masereeuw R, Gerritsen K, Stamatialis D. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat Rev Nephrol 2023:10.1038/s41581-023-00726-9. [PMID: 37277461 DOI: 10.1038/s41581-023-00726-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.
Collapse
Affiliation(s)
- David Loureiro Ramada
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Joost de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Vollenbroek
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- BIOS Lab on a Chip Group, MESA + Institute, University of Twente, Hallenweg 15, 7522, NH Enschede, The Netherlands
| | - Nazia Noor
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Odyl Ter Beek
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fokko Wieringa
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Autonomous Therapeutics, IMEC, Eindhoven, The Netherlands
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands.
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium.
| |
Collapse
|
15
|
Janaszkiewicz A, Tóth Á, Faucher Q, Arnion H, Védrenne N, Barin-Le Guellec C, Marquet P, Di Meo F. Substrate binding and lipid-mediated allostery in the human organic anion transporter 1 at the atomic-scale. Biomed Pharmacother 2023; 160:114342. [PMID: 36739760 DOI: 10.1016/j.biopha.2023.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The Organic Anion Transporter 1 is a membrane transporter known for its central role in drug elimination by the kidney. hOAT1 is an antiporter translocating substrate in exchange for a-ketoglutarate. The understanding of hOAT1 structure and function remains limited due to the absence of resolved structure of hOAT1. Benefiting from conserved structural and functional patterns shared with other Major Facilitator Superfamily transporters, the present study intended to investigate fragments of hOAT1 transport function and modulation of its activity in order to make a step forward the understanding of its transport cycle. μs-long molecular dynamics simulation of hOAT1 were carried out suggesting two plausible binding sites for a typical substrate, adefovir, in line with experimental observations. The well-known B-like motif binding site was observed in line with previous studies. However, we here propose a new inner binding cavity which is expected to be involved in substrate translocation event. Binding modes of hOAT1 co-substrate α-ketoglutarate were also investigated suggesting that it may bind to highly conserved intracellular motifs. We here hypothesise that α-ketoglutarate may disrupt the pseudo-symmetrical intracellular charge-relay system which in turn may participate to the destabilisation of OF conformation. Investigations regarding allosteric communications along hOAT1 also suggest that substrate binding event might modulate the dynamics of intracellular charge relay system, assisted by surrounding lipids as active partners. We here proposed a structural rationalisation of transport impairments observed for two single nucleotide polymorphisms, p.Arg50His and p.Arg454Gln suggesting that the present model may be used to transport dysfunctions arising from hOAT1 mutations.
Collapse
Affiliation(s)
| | - Ágota Tóth
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France
| | - Quentin Faucher
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utre-cht University, 3584 CG Utrecht, The Netherlands
| | - Hélène Arnion
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France
| | - Nicolas Védrenne
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France
| | - Chantal Barin-Le Guellec
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France; CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Pierre Marquet
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France; Department of Pharmacology and Toxicology, CHU Limoges, F-87000 Limoges, France
| | - Florent Di Meo
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France.
| |
Collapse
|
16
|
Peek JL, Wilson MH. Cell and gene therapy for kidney disease. Nat Rev Nephrol 2023:10.1038/s41581-023-00702-3. [PMID: 36973494 DOI: 10.1038/s41581-023-00702-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Kidney disease is a leading cause of morbidity and mortality across the globe. Current interventions for kidney disease include dialysis and renal transplantation, which have limited efficacy or availability and are often associated with complications such as cardiovascular disease and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and gene therapy. However, although there are now several approved gene and cell therapies for inherited diseases that affect other organs, none targets the kidney. Promising recent advances in cell and gene therapy have been made, including in the kidney research field, suggesting that this form of therapy might represent a potential solution for kidney disease in the future. In this Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on recent genetic studies, key advances and emerging technologies, and we describe several crucial considerations for renal genetic and cell therapies.
Collapse
Affiliation(s)
- Jennifer L Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, USA.
| |
Collapse
|
17
|
Yang Y, Mihajlovic M, Janssen MJ, Masereeuw R. The Uremic Toxin Indoxyl Sulfate Accelerates Senescence in Kidney Proximal Tubule Cells. Toxins (Basel) 2023; 15:toxins15040242. [PMID: 37104179 PMCID: PMC10143766 DOI: 10.3390/toxins15040242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Kidney fibrosis is the common final pathway of nearly all chronic and progressive nephropathies. One cause may be the accumulation of senescent cells that secrete factors (senescence associated secretory phenotype, SASP) promoting fibrosis and inflammation. It has been suggested that uremic toxins, such as indoxyl sulfate (IS), play a role in this. Here, we investigated whether IS accelerates senescence in conditionally immortalized proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1), thereby promoting kidney fibrosis. Cell viability results suggested that the tolerance of ciPTEC-OAT1 against IS increased in a time-dependent manner at the same dose of IS. This was accompanied by SA-β-gal staining, confirming the accumulation of senescent cells, as well as an upregulation of p21 and downregulation of laminB1 at different time points, accompanied by an upregulation in the SASP factors IL-1β, IL-6 and IL-8. RNA-sequencing and transcriptome analysis revealed that IS accelerates senescence, and that cell cycle appears to be the most relevant factor during the process. IS accelerates senescence via TNF-α and NF-ĸB signalling early on, and the epithelial-mesenchymal transition process at later time points. In conclusion, our results suggest that IS accelerates cellular senescence in proximal tubule epithelial cells.
Collapse
|
18
|
Hunter K, Larsen JA, Love HD, Evans RC, Roy S, Zent R, Harris RC, Wilson MH, Fissell WH. Inhibition of Transforming Growth Factor-β Improves Primary Renal Tubule Cell Differentiation in Long-Term Culture. Tissue Eng Part A 2023; 29:102-111. [PMID: 36274231 PMCID: PMC10081716 DOI: 10.1089/ten.tea.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Patient-oriented applications of cell culture include cell therapy of organ failure like chronic renal failure. Clinical deployment of a cell-based device for artificial renal replacement requires qualitative and quantitative fidelity of a cultured cell to its in vivo counterpart. Active specific apicobasal ion transport reabsorbs 90-99% of the filtered load of salt and water in the kidney. In a bioengineered kidney, tubular transport concentrates wastes and eliminates the need for hemodialysis, but renal tubule cells in culture transport little or no salt and water due to dedifferentiation that mammalian cells undergo in vitro thereby losing important cell-type specific functions. We previously identified transforming growth factor-β (TGF-β) as a signaling pathway necessary for in vitro differentiation of renal tubule cells. Inhibition of TGF-β receptor-1 led to active and inhibitable electrolyte and water transport by primary human renal tubule epithelial cells in vitro. Addition of metformin increased transport, in the context of a transient effect on 5'-AMP-activated kinase phosphorylation. These data motivated us to examine whether increased transport was an idiosyncratic effect of SB431542, probe pathways downstream of TGF-β receptors possibly responsible for the improved differentiation, evaluate whether TGF-β inhibition induced a range of differentiated tubule functions, and to explore crosstalk between the effects of SB431542 and metformin. In this study, we use multiple small-molecule inhibitors of canonical and noncanonical pathways to confirm that inhibition of canonical TGF-β signaling caused the increased apicobasal transport. Hallmarks of proximal tubule cell function, including sodium reabsorption, para-amino hippurate excretion, and glucose uptake increased with TGF-β inhibition, and the specificity of the response was shown using inhibitors of each transport protein. We did not find any evidence of crosstalk between metformin and SB431542. These data suggest that the TGF-β signaling pathway governs multiple features of differentiation in renal proximal tubule cells in vitro. Inhibition of TGF-β by pharmacologic or genome engineering approaches may be a viable approach to enhancing differentiated function of tubule cells in vitro. Impact statement Cell therapy of renal failure requires qualitative and quantitative fidelity between in vitro and in vivo phenotypes, which has been elusive. We show that control of transforming growth factor-β signaling can promote differentiation of renal tubule cells grown in artificial environments. This is a key enabling step for cell therapy of renal failure.
Collapse
Affiliation(s)
- Kuniko Hunter
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jaclyn A. Larsen
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Harold D. Love
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel C. Evans
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shuvo Roy
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew H. Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William H. Fissell
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Tomabechi R, Miyasato M, Sato T, Takada T, Higuchi K, Kishimoto H, Shirasaka Y, Inoue K. Identification of 5-Carboxyfluorescein as a Probe Substrate of SLC46A3 and Its Application in a Fluorescence-Based In Vitro Assay Evaluating the Interaction with SLC46A3. Mol Pharm 2023; 20:491-499. [PMID: 36458938 DOI: 10.1021/acs.molpharmaceut.2c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Miki Miyasato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Taeka Sato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| |
Collapse
|
20
|
Slingerland C, Wesseling CMJ, Innocenti P, Westphal KGC, Masereeuw R, Martin NI. Synthesis and Evaluation of Polymyxins Bearing Reductively Labile Disulfide-Linked Lipids. J Med Chem 2022; 65:15878-15892. [PMID: 36399613 PMCID: PMC9743094 DOI: 10.1021/acs.jmedchem.2c01528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymyxins are a class of lipopeptide anti-infective agents with potent and specific activity against Gram-negative bacteria. While toxicity concerns associated with polymyxin B and E (colistin) have historically limited their clinical application, today they are increasingly used as last-resort antibiotics given the rise of multidrug-resistant Gram-negative pathogens. The adverse side effects of polymyxins are well known, particularly as related to their nephrotoxicity. Here, we describe the synthesis and evaluation of a novel series of polymyxin analogues, aimed at reducing their nephrotoxic effects. Using a semisynthetic approach, we explored modifications of the exocyclic part of the polymyxin scaffold, namely, the terminal amino acid and lipophilic tail. By incorporating a reductively labile disulfide linkage in the lipid tail, we obtained novel polymyxins that exhibit potent antibacterial activity on par with polymyxin B but with reduced toxicity toward human renal proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Cornelis
J. Slingerland
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Charlotte M. J. Wesseling
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Koen G. C. Westphal
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands,
| |
Collapse
|
21
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
22
|
Differentiated kidney tubular cell-derived extracellular vesicles enhance maturation of tubuloids. J Nanobiotechnology 2022; 20:326. [PMID: 35841001 PMCID: PMC9284832 DOI: 10.1186/s12951-022-01506-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The prevalence of end-stage kidney disease (ESKD) is rapidly increasing with the need for regenerative therapies. Adult stem cell derived kidney tubuloids have the potential to functionally mimic the adult kidney tubule, but still lack the expression of important transport proteins needed for waste removal. Here, we investigated the potential of extracellular vesicles (EVs) obtained from matured kidney tubular epithelial cells to modulate in vitro tubuloids functional maturation. We focused on organic anion transporter 1 (OAT1), one of the most important proteins involved in endogenous waste excretion. First, we show that EVs from engineered proximal tubule cells increased the expression of several transcription factors and epithelial transporters, resulting in improved OAT1 transport capacity. Next, a more in-depth proteomic data analysis showed that EVs can trigger various biological pathways, including mesenchymal-to-epithelial transition, which is crucial in the tubular epithelial maturation. Moreover, we demonstrated that the combination of EVs and tubuloid-derived cells can be used as part of a bioartificial kidney to generate a tight polarized epithelial monolayer with formation of dense cilia structures. In conclusion, EVs from kidney tubular epithelial cells can phenotypically improve in vitro tubuloid maturation, thereby enhancing their potential as functional units in regenerative or renal replacement therapies.
Collapse
|
23
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
24
|
Ahmed S, Sparidans RW, Lu J, Mihaila SM, Gerritsen KGF, Masereeuw R. A robust, accurate, sensitive LC-MS/MS method to measure indoxyl sulfate, validated for plasma and kidney cells. Biomed Chromatogr 2022; 36:e5307. [PMID: 34978088 PMCID: PMC9285569 DOI: 10.1002/bmc.5307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Proximal tubular damage is an important prognostic determinant in various chronic kidney diseases (CKDs). Currently available diagnostic methods do not allow for early disease detection and are neither efficient. Indoxyl sulfate (IS) is an endogenous metabolite and protein-bound uremic toxin that is eliminated via renal secretion, but accumulates in plasma during tubular dysfunction. Therefore, it may be suitable as a tubular function marker. To evaluate this, a fast bioanalytical method was developed and validated for IS in various species and a kidney cell line using LC-MS/MS. An isotope-labeled IS potassium salt as an internal standard and acetonitrile (ACN) as a protein precipitant were used for sample pretreatment. The analyte was separated on a Polaris 3 C18-A column by gradient elution using 0.1% formic acid in water and ACN, and detected by negative electrospray ionization in selected reaction monitoring mode. The within-day (≤ 4.0%) and between-day (≤ 4.3%) precisions and accuracies (97.7 to 107.3%) were within the acceptable range. The analyte showed sufficient stability at all conditions investigated. Finally, applying this assay, significantly higher plasma and lower urine concentrations of IS were observed in mice with diabetic nephropathy with tubular damage, which encourages validation toward its use as a biomarker.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Rolf W. Sparidans
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Jingyi Lu
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Silvia M. Mihaila
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Karin G. F. Gerritsen
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
25
|
Yang Y, Mihajlovic M, Valentijn F, Nguyen TQ, Goldschmeding R, Masereeuw R. A Human Conditionally Immortalized Proximal Tubule Epithelial Cell Line as a Novel Model for Studying Senescence and Response to Senolytics. Front Pharmacol 2022; 13:791612. [PMID: 35422705 PMCID: PMC9002109 DOI: 10.3389/fphar.2022.791612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence suggests that senescence of kidney tubule epithelial cells leads to fibrosis. These cells secrete senescence-associated secretory phenotype (SASP) factors that are involved in diverse signaling pathways, influencing kidney fibrosis. Here, we investigated whether our previously established conditionally immortalized proximal tubule epithelial cell line overexpressing the organic anion transporter 1 (ciPTEC-OAT1) can be used as a valid in vitro model to study kidney senescence and senolytics response. CiPTEC-OAT1 proliferates rapidly at 33°C and exhibits a “senescence-like” arrest at 37°C, most likely due to suppression of SV40T expression and subsequent reactivation of the p53 and Rb pathways. To understand how permissive (33°C) and non-permissive (37°C) temperatures of the cell culture affect the senescence phenotype, we cultured ciPTEC-OAT1 for up to 12 days and evaluated the apoptosis and SASP markers. Day 0 in both groups is considered as the non-senescence group (control). Further, the potential of navitoclax, dasatinib, quercetin, and the combination of the latter two to clear senescent cells was evaluated. Maturation of ciPTEC-OAT1 at non-permissive temperature affected mRNA and protein levels of senescence markers. A remarkable upregulation in p21 gene expression was found in the non-permissive temperature group, whereas expression of Lamin B1 decreased significantly. SASP factors, including PAI-1A, IL-1β, CTGF, and IL-6 were upregulated, but no significant difference in Bcl-2 and Bcl-xl were found in the non-permissive temperature group. After culturing ciPTEC-OAT1 up to 12 days, cells in the non-permissive temperature group showed an upregulation in the apoptosis-associated proteins Bcl-2, BID, and Bax, and a downregulation in Mcl-1, Bad, Bak, and Bim at various time points. Further, Bcl-xl, Puma, Caspase 3, Caspase 7, and Caspase 9 showed initial upregulations followed by downregulations at later time points. The loss of Lamin B1, upregulation of SA-β-gal expression and increase in its activity, upregulation of p21 levels and downregulation of p53, along with the upregulation of SASP factors, confirmed that maturation at 37°C promotes senescence features. Finally, the senolytics response was evaluated by testing cell viability following exposure to senolytics, to which cells appeared dose-dependently sensitive. Navitoclax was most effective in eliminating senescent cells. In conclusion, culturing ciPTEC-OAT1 at 37°C induces a senescence phenotype characterized by increased expression of cell cycle arrest and anti-apoptosis markers, SASP factors, and responsiveness to senolytics treatment. Therefore, ciPTEC-OAT1 represents a valid model for studying kidney senescence by simply adjusting culture conditions.
Collapse
Affiliation(s)
- Yi Yang
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht, Netherlands
| | - Milos Mihajlovic
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht, Netherlands
| | - Floris Valentijn
- University Medical Center Utrecht, Department Pathology, Utrecht, Netherlands
| | - Tri Q Nguyen
- University Medical Center Utrecht, Department Pathology, Utrecht, Netherlands
| | - Roel Goldschmeding
- University Medical Center Utrecht, Department Pathology, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht, Netherlands
| |
Collapse
|
26
|
Hoogstraten CA, Smeitink JAM, Russel FGM, Schirris TJJ. Dissecting Drug-Induced Cytotoxicity and Metabolic Dysfunction in Conditionally Immortalized Human Proximal Tubule Cells. FRONTIERS IN TOXICOLOGY 2022; 4:842396. [PMID: 35295229 PMCID: PMC8915871 DOI: 10.3389/ftox.2022.842396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Fourteen to 26 percent of all hospitalized cases of acute kidney injury are explained by drug-induced toxicity, emphasizing the importance of proper strategies to pre-clinically assess renal toxicity. The MTT assay is widely used as a measure of cell viability, but largely depends on cellular metabolic activity. Consequently, MTT as a single assay may not be the best way to assess cytotoxicity of compounds that reduce mitochondrial function and cellular metabolic activity without directly affecting cell viability. Accordingly, we aim to highlight the limitations of MTT alone in assessing renal toxicity of compounds that interfere with metabolic activity. Therefore, we compared toxic effects observed by MTT with a fluorescent assay that determines compromised plasma membrane permeability. Exposure of proximal tubule epithelial cells to nephrotoxic compounds reduced cellular metabolic activity concentration- and time-dependently. We show that compared to our fluorescence-based approach, assessment of cellular metabolic activity by means of MTT provides a composite readout of cell death and metabolic impairment. An approach independent of cellular metabolism is thus preferable when assessing cytotoxicity of compounds that induce metabolic dysfunction. Moreover, combining both assays during drug development enables a first discrimination between compounds having a direct or indirect mitochondrial toxic potential.
Collapse
Affiliation(s)
- Charlotte A. Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan A. M. Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
- Khondrion BV, Nijmegen, Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom J. J. Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. MICROMACHINES 2021; 13:mi13010003. [PMID: 35056167 PMCID: PMC8780064 DOI: 10.3390/mi13010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.
Collapse
Affiliation(s)
- Pengfei Yu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ivan Pachon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | | | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Correspondence: ; Tel.: +1-336-713-1189
| |
Collapse
|
28
|
Mihajlovic M, Krebber MM, Yang Y, Ahmed S, Lozovanu V, Andreeva D, Verhaar MC, Masereeuw R. Protein-Bound Uremic Toxins Induce Reactive Oxygen Species-Dependent and Inflammasome-Mediated IL-1β Production in Kidney Proximal Tubule Cells. Biomedicines 2021; 9:biomedicines9101326. [PMID: 34680443 PMCID: PMC8533138 DOI: 10.3390/biomedicines9101326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
Protein bound-uremic toxins (PBUTs) are not efficiently removed by hemodialysis in chronic kidney disease (CKD) patients and their accumulation leads to various co-morbidities via cellular dysfunction, inflammation and oxidative stress. Moreover, it has been shown that increased intrarenal expression of the NLRP3 receptor and IL-1β are associated with reduced kidney function, suggesting a critical role for the NLRP3 inflammasome in CKD progression. Here, we evaluated the effect of PBUTs on inflammasome-mediated IL-1β production in vitro and in vivo. Exposure of human conditionally immortalized proximal tubule epithelial cells to indoxyl sulfate (IS) and a mixture of anionic PBUTs (UT mix) increased expression levels of NLRP3, caspase-1 and IL-1β, accompanied by a significant increase in IL-1β secretion and caspase-1 activity. Furthermore, IS and UT mix induced the production of intracellular reactive oxygen species, and caspase-1 activity and IL-1β secretion were reduced in the presence of antioxidant N-acetylcysteine. IS and UT mix also induced NF-κB activation as evidenced by p65 nuclear translocation and IL-1β production, which was counteracted by an IKK inhibitor. In vivo, using subtotal nephrectomy CKD rats, a significant increase in total plasma levels of IS and the PBUTs, kynurenic acid and hippuric acid, was found, as well as enhanced urinary malondialdehyde levels. CKD kidney tissue showed an increasing trend in expression of NLRP3 inflammasome components, and a decreasing trend in superoxide dismutase-1 levels. In conclusion, we showed that PBUTs induce inflammasome-mediated IL-1β production in proximal tubule cells via oxidative stress and NF-κB signaling, suggesting their involvement in disease-associated inflammatory processes.
Collapse
Affiliation(s)
- Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.M.); (Y.Y.); (S.A.); (V.L.); (D.A.)
| | - Merle M. Krebber
- Department Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (M.M.K.); (M.C.V.)
| | - Yi Yang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.M.); (Y.Y.); (S.A.); (V.L.); (D.A.)
| | - Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.M.); (Y.Y.); (S.A.); (V.L.); (D.A.)
| | - Valeria Lozovanu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.M.); (Y.Y.); (S.A.); (V.L.); (D.A.)
| | - Daria Andreeva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.M.); (Y.Y.); (S.A.); (V.L.); (D.A.)
| | - Marianne C. Verhaar
- Department Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (M.M.K.); (M.C.V.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.M.); (Y.Y.); (S.A.); (V.L.); (D.A.)
- Correspondence:
| |
Collapse
|
29
|
King J, Mihaila SM, Ahmed S, Truckenmüller R, Giselbrecht S, Masereeuw R, Carlier A. The Influence of OAT1 Density and Functionality on Indoxyl Sulfate Transport in the Human Proximal Tubule: An Integrated Computational and In Vitro Study. Toxins (Basel) 2021; 13:toxins13100674. [PMID: 34678967 PMCID: PMC8538816 DOI: 10.3390/toxins13100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Research has shown that traditional dialysis is an insufficient long-term therapy for patients suffering from end-stage kidney disease due to the high retention of uremic toxins in the blood as a result of the absence of the active transport functionality of the proximal tubule (PT). The PT’s function is defined by the epithelial membrane transporters, which have an integral role in toxin clearance. However, the intricate PT transporter–toxin interactions are not fully explored, and it is challenging to decouple their effects in toxin removal in vitro. Computational models are necessary to unravel and quantify the toxin–transporter interactions and develop an alternative therapy to dialysis. This includes the bioartificial kidney, where the hollow dialysis fibers are covered with kidney epithelial cells. In this integrated experimental–computational study, we developed a PT computational model that focuses on indoxyl sulfate (IS) transport by organic anionic transporter 1 (OAT1), capturing the transporter density in detail along the basolateral cell membrane as well as the activity of the transporter and the inward boundary flux. The unknown parameter values of the OAT1 density (1.15×107 transporters µm−2), IS uptake (1.75×10−5 µM−1 s−1), and dissociation (4.18×10−4 s−1) were fitted and validated with experimental LC-MS/MS time-series data of the IS concentration. The computational model was expanded to incorporate albumin conformational changes present in uremic patients. The results suggest that IS removal in the physiological model was influenced mainly by transporter density and IS dissociation rate from OAT1 and not by the initial albumin concentration. While in uremic conditions considering albumin conformational changes, the rate-limiting factors were the transporter density and IS uptake rate, which were followed closely by the albumin-binding rate and IS dissociation rate. In summary, the results of this study provide an exciting avenue to help understand the toxin–transporter complexities in the PT and make better-informed decisions on bioartificial kidney designs and the underlining transporter-related issues in uremic patients.
Collapse
Affiliation(s)
- Jasia King
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (J.K.); (R.T.); (S.G.)
| | - Silvia M. Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.M.M.); (S.A.); (R.M.)
| | - Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.M.M.); (S.A.); (R.M.)
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (J.K.); (R.T.); (S.G.)
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (J.K.); (R.T.); (S.G.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.M.M.); (S.A.); (R.M.)
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (J.K.); (R.T.); (S.G.)
- Correspondence:
| |
Collapse
|
30
|
van Groesen E, Slingerland CJ, Innocenti P, Mihajlovic M, Masereeuw R, Martin NI. Vancomyxins: Vancomycin-Polymyxin Nonapeptide Conjugates That Retain Anti-Gram-Positive Activity with Enhanced Potency against Gram-Negative Strains. ACS Infect Dis 2021; 7:2746-2754. [PMID: 34387988 PMCID: PMC8438664 DOI: 10.1021/acsinfecdis.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Vancomycin functions
by binding to lipid II, the penultimate bacterial
cell wall building block used by both Gram-positive and Gram-negative
species. However, vancomycin is generally only able to exert its antimicrobial
effect against Gram-positive strains as it cannot pass the outer membrane
(OM) of Gram-negative bacteria. To address this challenge, we here
describe efforts to conjugate vancomycin to the OM disrupting polymyxin
E nonapeptide (PMEN) to yield the hybrid “vancomyxins”.
In designing these hybrid antibiotics, different spacers and conjugation
sites were explored for connecting vancomycin and PMEN. The vancomyxins
show improved activity against Gram-negative strains compared with
the activity of vancomycin or vancomycin supplemented with PMEN separately.
In addition, the vancomyxins maintain the antimicrobial effect of
vancomycin against Gram-positive strains and, in some cases, show
enhanced activity against vancomycin-resistant strains. The hybrid
antibiotics described here have reduced nephrotoxicity when compared
with clinically used polymyxin antibiotics. This study demonstrates
that covalent conjugation to an OM disruptor contributes to sensitizing
Gram-negative strains to vancomycin while retaining anti-Gram-positive
activity.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
31
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Parvez MM, Kalkisim S, Nguyen PTT, Jung JA, Park JK, Ghim JL, Kim EY, Cho YS, Babaoglu MO, Shin JG. Para-aminosalicylic acid significantly reduced tenofovir exposure in human subjects: Mismatched findings from in vitro to in vivo translational research. Br J Clin Pharmacol 2021; 88:1159-1169. [PMID: 34432302 DOI: 10.1111/bcp.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Tenofovir and para-aminosalicylic acid (PAS) may be coprescribed to treat patients with concomitant infections of human immunodeficiency virus and Mycobacterium tuberculosis bacteria. Both drugs are known to have remarkable renal uptake transporter-mediated clearance. Owing to the lack of clinical studies on drug-drug interaction between the 2 drugs, we conducted a translational clinical study to investigate the effect of PAS on tenofovir pharmacokinetics (PK). METHODS Initially, we studied in vitro renal uptake transporter-mediated drug-drug interactions using stably transfected cells with human organic anion transporters (OAT1 and OAT3). Later, we estimated clinical drug interactions using static and physiologically based PK modelling. Finally, we investigated the effects of PAS-calcium formulation (PAS-Ca) on tenofovir disoproxil fumarate PK in healthy male Korean subjects. RESULTS PAS inhibited OAT1- and OAT3-mediated tenofovir uptake in vitro. The physiologically based PK drug-drug interaction model suggested a 1.26-fold increase in tenofovir peak plasma concentration when coadministered with PAS. By contrast, an open-label, randomized, crossover clinical trial evaluating the effects of PAS-Ca on tenofovir PK showed significantly altered geometric mean ratio (90% confidence intervals) of maximum plasma concentration (Cmax ) and area under the curve (AUC0-inf ) by 0.33 (0.28-0.38) and 0.29 (0.26-0.33), respectively. CONCLUSION Our study findings suggest that the PAS-Ca formulation significantly reduced systemic exposure to tenofovir through an unexplained mechanism, which was contrary to the initial prediction. Caution should be exercised while predicting in vivo PK profiles from in vitro data, particularly when there are potential confounders such as pharmaceutical interactions.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Said Kalkisim
- Department of Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Phuong Thi Thu Nguyen
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Vietnam
| | - Jin Ah Jung
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jeong-Kon Park
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jong-Lyul Ghim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Eun-Young Kim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Melih O Babaoglu
- Department of Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
33
|
Schoch S, Sen V, Brenner W, Hartwig A, Köberle B. In Vitro Nephrotoxicity Studies of Established and Experimental Platinum-Based Compounds. Biomedicines 2021; 9:biomedicines9081033. [PMID: 34440237 PMCID: PMC8394219 DOI: 10.3390/biomedicines9081033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most commonly used drugs for the treatment of various solid cancers. However, its efficacy is restricted by severe side effects, especially dose-limiting nephrotoxicity. New platinum-based compounds are designed to overcome this limitation. Previous investigations showed that the platinum(IV)–nitroxyl complex PN149 is highly cytotoxic in various tumor cell lines. In the present study, investigations with PN149 were extended to normal human kidney tubule epithelia. Coincident with higher intracellular platinum accumulation, the cytotoxicity of PN149 in the proximal tubule epithelial cell line ciPTEC was more pronounced compared to the established platinum chemotherapeutics cisplatin, carboplatin and oxaliplatin. Quantitative gene expression profiling revealed the induction of ROS-inducible and anti-oxidative genes, suggesting an oxidative stress response by PN149. However, in contrast to cisplatin, no pro-inflammatory response was observed. Genes coding for distinct DNA damage response factors and genes related to apoptosis were up-regulated, indicating the activation of the DNA damage response system and induction of the apoptotic cascade by PN149. Altogether, a comparable transcriptional response was observed for PN149 and the platinum chemotherapeutics. However, the lack of inflammatory activity, which is a possible cause contributing to toxicity in human renal proximal tubule epithelia, might indicate the reduced nephrotoxic potential of PN149.
Collapse
Affiliation(s)
- Sarah Schoch
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 223 81 Lund, Sweden;
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia;
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstreet 1, 55131 Mainz, Germany;
| | - Andrea Hartwig
- Karlsruhe Institute of Technology, Department of Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany;
| | - Beate Köberle
- Karlsruhe Institute of Technology, Department of Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany;
- Correspondence: ; Tel.: +49-721-608-42933
| |
Collapse
|
34
|
Bondue T, Arcolino FO, Veys KRP, Adebayo OC, Levtchenko E, van den Heuvel LP, Elmonem MA. Urine-Derived Epithelial Cells as Models for Genetic Kidney Diseases. Cells 2021; 10:cells10061413. [PMID: 34204173 PMCID: PMC8230018 DOI: 10.3390/cells10061413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Fanny O. Arcolino
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Koenraad R. P. Veys
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatric Nephrology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Correspondence:
| |
Collapse
|
35
|
Rizki-Safitri A, Traitteur T, Morizane R. Bioengineered Kidney Models: Methods and Functional Assessments. FUNCTION 2021; 2:zqab026. [PMID: 35330622 PMCID: PMC8788738 DOI: 10.1093/function/zqab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023] Open
Abstract
Investigations into bioengineering kidneys have been extensively conducted owing to their potential for preclinical assays and regenerative medicine. Various approaches and methods have been developed to improve the structure and function of bioengineered kidneys. Assessments of functional properties confirm the adequacy of bioengineered kidneys for multipurpose translational applications. This review is to summarize the studies performed in kidney bioengineering in the past decade. We identified 84 original articles from PubMed and Mendeley with keywords of kidney organoid or kidney tissue engineering. Those were categorized into 5 groups based on their approach: de-/recellularization of kidney, reaggregation of kidney cells, kidney organoids, kidney in scaffolds, and kidney-on-a-chip. These models were physiologically assessed by filtration, tubular reabsorption/secretion, hormone production, and nephrotoxicity. We found that bioengineered kidney models have been developed from simple cell cultures to multicellular systems to recapitulate kidney function and diseases. Meanwhile, only about 50% of these studies conducted functional assessments on their kidney models. Factors including cell composition and organization are likely to alter the applicability of physiological assessments in bioengineered kidneys. Combined with recent technologies, physiological assessments importantly contribute to the improvement of the bioengineered kidney model toward repairing and refunctioning the damaged kidney.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tamara Traitteur
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
36
|
Zhao J, Feng WG, Wei Z, Zhou J, Chen XY, Zhang ZL. Follow-Up of Adefovir Dipivoxil Induced Osteomalacia: Clinical Characteristics and Genetic Predictors. Front Pharmacol 2021; 12:636352. [PMID: 33995038 PMCID: PMC8113870 DOI: 10.3389/fphar.2021.636352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Adefovir dipivoxil (ADV) is widely used for chronic hepatitis B therapy in China. To explore the clinical features and prognosis of ADV-induced osteomalacia and to analyze the association between osteomalacia and genetic variants in 51 drug transporters genes. Clinical and follow-up data of the ADV-treated patients were collected. Target capture sequencing was used to identify genetic variations of 51 drug transporter genes. A total of 193 hepatitis B patients treated with ADV were enrolled, of whom 140 had osteomalacia. The other 53 without osteomalacia were included in the control group. The median duration of ADV treatment before the onset of osteomalacia was 6.5 years (range:1.5–7 years). We found that most patients with osteomalacia had hypophosphatemia, high serum alkaline phosphatase levels, hypouricemia, nondiabetic glycosuria, proteinuria. Stopping ADV administration, supplementing calcitriol and calcium were effective treatments. During 3–6 months of follow-up, the clinical symptoms and biochemical indicators of patients with osteomalacia have been significantly improved. There was no significant difference in duration of adefovir treatment in patients with or without osteomalacia (p = 0.791). Through regression analysis, we found that age was a risk factor for osteomalacia [per 1 year, odds ratio (OR), 1.053; 95% confidence interval (95% CI), 1.020–1.087; p = 0.015]. 1992 single nucleotide variants were found using target capture sequencing. However, the associations of genetic variants of 51 drug transporter genes and the risk of osteomalacia were negligible. Osteomalacia is prone to occur in patients with chronic hepatitis B treated with long-term ADV at a therapeutic dose. After standard treatment, the prognosis is mostly good. We failed to find genetic variants that can predict the risk of ADV-induced osteomalacia.
Collapse
Affiliation(s)
- Jiao Zhao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Guang Feng
- Department of Hepatology, The Fourth People's Hospital of Huai'an, Huai'an, China
| | - Zhe Wei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Zhou
- Department of Hepatology, The Fourth People's Hospital of Huai'an, Huai'an, China
| | - Xiao-Yun Chen
- Department of Rheumatology, Shanghai University of Traditional Chinese Medicine Affiliated LongHua Hospital, Shanghai, China
| | - Zhen-Lin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
37
|
Kopec AK, Yokokawa R, Khan N, Horii I, Finley JE, Bono CP, Donovan C, Roy J, Harney J, Burdick AD, Jessen B, Lu S, Collinge M, Sadeghian RB, Derzi M, Tomlinson L, Burkhardt JE. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci 2021; 46:99-114. [PMID: 33642521 DOI: 10.2131/jts.46.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microphysiological systems (MPS) are making advances to provide more standardized and predictive physiologically relevant responses to test articles in living tissues and organ systems. The excitement surrounding the potential of MPS to better predict human responses to medicines and improving clinical translation is overshadowed by their relatively slow adoption by the pharmaceutical industry and regulators. Collaboration between multiorganizational consortia and regulators is necessary to build an understanding of the strengths and limitations of MPS models and closing the current gaps. Here, we review some of the advances in MPS research, focusing on liver, intestine, vascular system, kidney and lung and present examples highlighting the context of use for these systems. For MPS to gain a foothold in drug development, they must have added value over existing approaches. Ideally, the application of MPS will augment in vivo studies and reduce the use of animals via tiered screening with less reliance on exploratory toxicology studies to screen compounds. Because MPS support multiple cell types (e.g. primary or stem-cell derived cells) and organ systems, identifying when MPS are more appropriate than simple 2D in vitro models for understanding physiological responses to test articles is necessary. Once identified, MPS models require qualification for that specific context of use and must be reproducible to allow future validation. Ultimately, the challenges of balancing complexity with reproducibility will inform the promise of advancing the MPS field and are critical for realization of the goal to reduce, refine and replace (3Rs) the use of animals in nonclinical research.
Collapse
Affiliation(s)
- Anna K Kopec
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Japan
| | - Nasir Khan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ikuo Horii
- Drug Safety Research & Development, Pfizer, Inc., Japan
| | - James E Finley
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Carol Donovan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Jessica Roy
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Julie Harney
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Bart Jessen
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Shuyan Lu
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Mark Collinge
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Mazin Derzi
- Drug Safety Research & Development, Pfizer, Inc., MA, USA
| | | | | |
Collapse
|
38
|
Vriend J, Vormann MK, Lanz HL, Joore J, Trietsch SJ, Russel FG, Jacobsen B, Roth A, Lu S, Polli JW, Naidoo AA, Masereeuw R, Wilmer MJ, Suter-Dick L. Nephroscreen: A robust and versatile renal tubule-on-a-chip platform for nephrotoxicity assessment. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Vriend J, Pye KR, Brown C. In vitro models for accurate prediction of renal tubular xenobiotic transport in vivo. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Implementation of a Human Renal Proximal Tubule on a Chip for Nephrotoxicity and Drug Interaction Studies. J Pharm Sci 2021; 110:1601-1614. [PMID: 33545187 DOI: 10.1016/j.xphs.2021.01.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022]
Abstract
Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-β-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).
Collapse
|
41
|
Rood JJM, Jamalpoor A, van Hoppe S, van Haren MJ, Wasmann RE, Janssen MJ, Schinkel AH, Masereeuw R, Beijnen JH, Sparidans RW. Extrahepatic metabolism of ibrutinib. Invest New Drugs 2021; 39:1-14. [PMID: 32623551 PMCID: PMC7851014 DOI: 10.1007/s10637-020-00970-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Ibrutinib is a first-in-class Bruton's kinase inhibitor used in the treatment of multiple lymphomas. In addition to CYP3A4-mediated metabolism, glutathione conjugation can be observed. Subsequently, metabolism of the conjugates and finally their excretion in feces and urine occurs. These metabolites, however, can reach substantial concentrations in human subjects, especially when CYP3A4 is inhibited. Ibrutinib has unexplained nephrotoxicity and high metabolite concentrations are also found in kidneys of Cyp3a knockout mice. Here, a mechanism is proposed where the intermediate cysteine metabolite is bioactivated. The metabolism of ibrutinib through this glutathione cycle was confirmed in cultured human renal proximal tubule cells. Ibrutinib-mediated toxicity was enhanced in-vitro by inhibitors of breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and multidrug resistance protein (MRP). This was a result of accumulating cysteine metabolite levels due to efflux inhibition. Finally, through inhibition of downstream metabolism, it was shown now that direct conjugation was responsible for cysteine metabolite toxicity.
Collapse
Affiliation(s)
- Johannes J M Rood
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Benu apotheek Hoorn, Pakhuisstraat 80, 1621 GL, Hoorn, The Netherlands
| | - Amer Jamalpoor
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stephanie van Hoppe
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Charles River Laboratories, Darwinweg 24, 2333 CR, Leiden, The Netherlands
| | - Matthijs J van Haren
- Division of Chemical Biology & Drug Development, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Institute of Biology, Biological Chemistry Group, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roeland E Wasmann
- Department of Pharmacy, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Manoe J Janssen
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rolf W Sparidans
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Division of Chemical Biology & Drug Development, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Mihevc M, Petreski T, Maver U, Bevc S. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 2020; 47:9865-9882. [PMID: 33170426 DOI: 10.1007/s11033-020-05977-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The kidney is a complex organ, comprised primarily of glomerular, tubular, mesangial, and endothelial cells, and podocytes. The fact that renal cells are terminally differentiated at 34 weeks of gestation is the main obstacle in regeneration and treatment of acute kidney injury or chronic kidney disease. Furthermore, the number of chronic kidney disease patients is ever increasing and with it the medical community should aim to improve existing and develop new methods of renal replacement therapy. On the other hand, as polypharmacy is on the rise, thought should be given into developing new ways of testing drug safety. A possible way to tackle these issues is with isolation and culture of renal cells. Several protocols are currently described to isolate the desired cells, of which the most isolated are the proximal tubular epithelial cells. They play a major role in water homeostasis, acid-base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When exposed to ischemic, toxic, septic, or obstructive conditions their death results in what we clinically perceive as acute kidney injury. Additionally, due to renal cells' limited regenerative potential, the profibrotic environment inevitably leads to chronic kidney disease. In this review we will focus on human proximal tubular epithelial cells. We will cover human kidney culture models, cell sources, isolation, culture, immortalization, and characterization subdivided into morphological, phenotypical, and functional characterization.
Collapse
Affiliation(s)
- Matic Mihevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
43
|
Bajaj P, Chung G, Pye K, Yukawa T, Imanishi A, Takai Y, Brown C, Wagoner MP. Freshly isolated primary human proximal tubule cells as an in vitro model for the detection of renal tubular toxicity. Toxicology 2020; 442:152535. [PMID: 32622972 DOI: 10.1016/j.tox.2020.152535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
Drug induced kidney injury (DIKI) is a common reason for compound attrition in drug development pipelines with proximal tubule epithelial cells (PTECs) most commonly associated with DIKI. Here, we investigated freshly isolated human (hPTECs) as an in vitro model for assessing renal tubular toxicity. The freshly isolated hPTECs were first characterized to confirm gene expression of important renal transporters involved in drug handling which was further corroborated by confirming the functional activity of organic cation transporter 2 and organic anion transporter 1 by using transporter specific inhibitors. Additionally, functionality of megalin/cubilin endocytic receptors was also confirmed. A training set of 36 compounds was used to test the ability of the model to classify them using six different endpoints which included three biomarkers (Kidney Injury Molecule-1, Neutrophil gelatinase-associated lipocalin, and Clusterin) and three non-specific injury endpoints (ATP depletion, LDH leakage, and barrier permeability via transepithelial electrical resistance) in a dose-dependent manner across two independent kidney donors. In general, biomarkers showed higher predictivity than non-specific endpoints, with Clusterin showing the highest predictivity (Sensitivity/Specificity - 65.0/93.8 %). By using the thresholds generated from the training set, nine candidate internal Takeda compounds were screened where PTEC toxicity was identified as one of the findings in preclinical animal studies. The model correctly classified four of six true positives and two of three true negatives, showing validation of the in vitro model for detection of tubular toxicants. This work thus shows the potential application of freshly isolated primary hPTECs using translational biomarkers in assessment of tubular toxicity within the drug discovery pipeline.
Collapse
Affiliation(s)
- Piyush Bajaj
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, MA USA
| | | | | | - Tomoya Yukawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, MA USA
| | - Akio Imanishi
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Kanagawa, Japan
| | - Yuichi Takai
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Kanagawa, Japan
| | | | - Matthew P Wagoner
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, MA USA.
| |
Collapse
|
44
|
Mihaila SM, Faria J, Stefens MFJ, Stamatialis D, Verhaar MC, Gerritsen KGF, Masereeuw R. Drugs Commonly Applied to Kidney Patients May Compromise Renal Tubular Uremic Toxins Excretion. Toxins (Basel) 2020; 12:toxins12060391. [PMID: 32545617 PMCID: PMC7354492 DOI: 10.3390/toxins12060391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD), the secretion of uremic toxins is compromised leading to their accumulation in blood, which contributes to uremic complications, in particular cardiovascular disease. Organic anion transporters (OATs) are involved in the tubular secretion of protein-bound uremic toxins (PBUTs). However, OATs also handle a wide range of drugs, including those used for treatment of cardiovascular complications and their interaction with PBUTs is unknown. The aim of this study was to investigate the interaction between commonly prescribed drugs in CKD and endogenous PBUTs with respect to OAT1-mediated uptake. We exposed a unique conditionally immortalized proximal tubule cell line (ciPTEC) equipped with OAT1 to a panel of selected drugs, including angiotensin-converting enzyme inhibitors (ACEIs: captopril, enalaprilate, lisinopril), angiotensin receptor blockers (ARBs: losartan and valsartan), furosemide and statins (pravastatin and simvastatin), and evaluated the drug-interactions using an OAT1-mediated fluorescein assay. We show that selected ARBs and furosemide significantly reduced fluorescein uptake, with the highest potency for ARBs. This was exaggerated in presence of some PBUTs. Selected ACEIs and statins had either no or a slight effect at supratherapeutic concentrations on OAT1-mediated fluorescein uptake. In conclusion, we demonstrate that PBUTs may compete with co-administrated drugs commonly used in CKD management for renal OAT1 mediated secretion, thus potentially compromising the residual renal function.
Collapse
Affiliation(s)
- Silvia M. Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - João Faria
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - Maurice F. J. Stefens
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - Dimitrios Stamatialis
- (Bio)artificial Organs, Department of Biomaterials Science and Technology, University of Twente, 7522 LW Enschede, The Netherlands;
| | - Marianne C. Verhaar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
| | - Karin G. F. Gerritsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
| | - Rosalinde Masereeuw
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
- Correspondence:
| |
Collapse
|
45
|
Huo X, Meng Q, Wang C, Wu J, Wang C, Zhu Y, Ma X, Sun H, Liu K. Protective effect of cilastatin against diclofenac-induced nephrotoxicity through interaction with diclofenac acyl glucuronide via organic anion transporters. Br J Pharmacol 2020; 177:1933-1948. [PMID: 32000294 PMCID: PMC7161545 DOI: 10.1111/bph.14957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/21/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Diclofenac is a widely used nonsteroidal anti-inflammatory drug. However, adverse effects in the kidney limit its clinical application. The present study was aimed to evaluate the potential effect of cilastatin on diclofenac-induced acute kidney injury and to clarify the potential roles of renal organic anion transporters (OATs) in the drug-drug interaction between cilastatin and diclofenac. EXPERIMENTAL APPROACH The effect of cilastatin was evaluated in diclofenac-induced acute kidney injury in mice. Human OAT1/3-transfected HEK293 cells and renal primary proximal tubule cells (RPTCs) were used to investigate OAT1/3-mediated transport and the cytotoxicity of diclofenac. KEY RESULTS Cilastatin treatment decreased the pathological changes, renal dysfunction and elevated renal levels of oxidation products, cytokine production and apoptosis induced by diclofenac in mice. Moreover, cilastatin increased the plasma concentration and decreased the renal distribution of diclofenac and its glucuronide metabolite, diclofenac acyl glucuronide (DLF-AG). Similarly, cilastatin inhibited cytotoxicity and mitochondrial damage in RPTCs but did not change the intracellular accumulation of diclofenac. DLF-AG but not diclofenac exhibited OAT-dependent cytotoxicity and was identified as an OAT1/3 substrate. Cilastatin inhibited the intracellular accumulation and decreased the cytotoxicity of DLF-AG in RPTCs. CONCLUSION AND IMPLICATIONS Cilastatin alleviated diclofenac-induced acute kidney injury in mice by restoring the redox balance, suppressing inflammation, and reducing apoptosis. Cilastatin inhibited OATs and decreased the renal distribution of diclofenac and DLF-AG, which further ameliorated the diclofenac-induced nephrotoxicity in mice. Cilastatin can be potentially used in the clinic as a therapeutic agent to alleviate the adverse renal reaction to diclofenac.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Qiang Meng
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Chong Wang
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Yanna Zhu
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
| | - Huijun Sun
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| | - Kexin Liu
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
- College (Institute) of Integrative MedicineDalian Medical UniversityDalianChina
- Provincial Key Laboratory for Pharmacokinetics and Transport, LiaoningDalian Medical UniversityDalianChina
| |
Collapse
|
46
|
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15:220-236. [PMID: 32373201 PMCID: PMC7193453 DOI: 10.1016/j.ajps.2020.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the continuous occurrence of multi-drug resistance in the clinic has made people pay more attention to the transporter. Changes in the expression and activity of transporters can cause corresponding changes in drug pharmacokinetics and pharmacodynamics. The drug-drug interactions (DDI) caused by transporters can seriously affect drug effectiveness and toxicity. In the development of pharmaceutical preparations, people have increasingly concerned about the effects and regulation of transporters in drug effects. To improve the targeting and physicochemical properties of drugs, the development of targeted agents is very rapid. Among them, novel nano-formulations are the best. With the continuous innovation and development of nano-formulation, its application has become more and more extensive. Nano-formulation has exerted certain advantages in the drug development based on transporters, and is also involved in the combination of targeted transporters. This review focuses on the application of novel nano-agents targeting transporters and the introduction of drug-transporter-based nano-formulations.
Collapse
Affiliation(s)
- Yi Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Vriend J, Hoogstraten CA, Venrooij KR, van den Berge BT, Govers LP, van Rooij A, Huigen MCDG, Schirris TJJ, Russel FGM, Masereeuw R, Wilmer MJ. Organic anion transporters 1 and 3 influence cellular energy metabolism in renal proximal tubule cells. Biol Chem 2020; 400:1347-1358. [PMID: 30653465 DOI: 10.1515/hsz-2018-0446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/29/2018] [Indexed: 12/19/2022]
Abstract
Organic anion transporters (OATs) 1 and 3 are, besides being uptake transporters, key in several cellular metabolic pathways. The underlying mechanisms are largely unknown. Hence, we used human conditionally immortalized proximal tubule epithelial cells (ciPTEC) overexpressing OAT1 or OAT3 to gain insight into these mechanisms. In ciPTEC-OAT1 and -OAT3, extracellular lactate levels were decreased (by 77% and 71%, respectively), while intracellular ATP levels remained unchanged, suggesting a shift towards an oxidative phenotype upon OAT1 or OAT3 overexpression. This was confirmed by increased respiration of ciPTEC-OAT1 and -OAT3 (1.4-fold), a decreased sensitivity to respiratory inhibition, and characterized by a higher demand on mitochondrial oxidative capacity. In-depth profiling of tricarboxylic acid (TCA) cycle metabolites revealed reduced levels of intermediates converging into α-ketoglutarate in ciPTEC-OAT1 and -OAT3, which via 2-hydroxyglutarate metabolism explains the increased respiration. These interactions with TCA cycle metabolites were in agreement with metabolomic network modeling studies published earlier. Further studies using OAT or oxidative phosphorylation (OXPHOS) inhibitors confirmed our idea that OATs are responsible for increased use and synthesis of α-ketoglutarate. In conclusion, our results indicate an increased α-ketoglutarate efflux by OAT1 and OAT3, resulting in a metabolic shift towards an oxidative phenotype.
Collapse
Affiliation(s)
- Jelle Vriend
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands.,Centre for Systems Biology and Bioenergetics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Kevin R Venrooij
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Bartholomeus T van den Berge
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Larissa P Govers
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Arno van Rooij
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Marleen C D G Huigen
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands.,Centre for Systems Biology and Bioenergetics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands.,Centre for Systems Biology and Bioenergetics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, NL-3584CG, Utrecht, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500HB, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Phillips JA, Grandhi TSP, Davis M, Gautier JC, Hariparsad N, Keller D, Sura R, Van Vleet TR. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. LAB ON A CHIP 2020; 20:468-476. [PMID: 31989145 DOI: 10.1039/c9lc00925f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human kidney contains approximately one million nephrons. As the functional unit of the kidney, the nephron affords an opportunity to approximate the kidney at a microphysiological scale. Recent emergence of physiologically accurate human tissue models has radically advanced the possibilities of mimicking organ biology and multi-organ combinations in vitro. Anatomically, the nephron is one of the most complex, sequentially integrated microfluidic units in the body making the miniaturized microfluidic systems excellent candidates for capturing the kidney biology in vitro. While these models are promising, there are a number of considerations for practical implementation into a drug development paradigm. Opportunities for pharmaceutical industry applications of new MPS models often start with drug safety testing. As such, the intent of this article is to focus on safety and ADME applications. This article reviews biological functions of the kidney and options for characterizing known roles in nephrotoxicity. The concept of "context-of-use" is introduced as a framework for describing and verifying the specific features of an MPS platform for use in drug development. Overall, we present a perspective on key attributes of microphysiological kidney models, which the pharmaceutical industry could leverage to improve confident safety and ADME evaluations of experimental therapies.
Collapse
Affiliation(s)
| | - Taraka Sai Pavan Grandhi
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Myrtle Davis
- Bristol-Myers Squibb Company, Province Line Road, Princeton, New Jersey 08648, USA
| | | | | | - Douglas Keller
- Sanofi US, 55 Corporate Drive, Bridgewater, NJ 08807, USA
| | - Radhakrishna Sura
- Preclinical Safety, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| | - Terry R Van Vleet
- Preclinical Safety, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| |
Collapse
|
49
|
Unger MS, Mudunuru J, Schwab M, Hopf C, Drewes G, Nies AT, Zamek-Gliszczynski MJ, Reinhard FBM. Clinically Relevant OATP2B1 Inhibitors in Marketed Drug Space. Mol Pharm 2020; 17:488-498. [PMID: 31834804 DOI: 10.1021/acs.molpharmaceut.9b00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OATP2B1 is an intestinal and hepatic drug uptake transporter. Intestinal OATP2B1 has been elucidated as the mechanism of unexpected clinical drug-drug interactions (DDIs), where drug exposure was unexpectedly decreased with unchanged half-life. Hepatic OATP2B1 may be an understudied clinical DDI mechanism. The aim of the present work was to understand the prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors in marketed drug space. HEK293 cells stably overexpressing human OATP2B1 or vector control were generated and cultured for 72 h in a 96-well format. OATP2B1-mediated uptake of dibromofluorescein (DBF) was found to be optimal at 10 μM concentration and 30 min incubation time. A total of 294 drugs (top 300 marketed drugs, excluding biologics and restricted drugs, supplemented with ∼100 small-molecule drugs) were screened for OATP2B1 inhibition at 10 μM. Drugs demonstrating ≥50% inhibition in this screen were advanced for IC50 determination, which was extrapolated to clinical intestinal and hepatic OATP2B1 inhibition as per 2017 FDA DDI guidance. Of the 294 drugs screened, 67 elicited ≥50% inhibition of OATP2B1-mediated DBF uptake at 10 μM screening concentration. For the 67 drugs flagged in the single-concentration inhibition screen, upon evaluation of a full concentration range, IC50 values could be determined for 58 drugs. OATP2B1 IC50 values established for these 58 drugs were extrapolated as potentially clinically relevant at the intestinal level for 38 orally administered drugs (Igut/IC50 ≥ 10), and 17 were flagged as potential clinical inhibitors of hepatic OATP2B1 uptake (1 + Iin,max,u/IC50 ≥ 1.1). This analysis of 294 drugs demonstrated prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors to be 13 and 6%, respectively. As OATP2B1-inhibitor drugs are not exceedingly rare, these results suggest that clinical OATP2B1 DDIs have been rarely observed because OATP2B1 is uncommonly the predominant determinant of drug disposition.
Collapse
Affiliation(s)
- Melissa S Unger
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Jennypher Mudunuru
- Drug Metabolism and Disposition , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry , University of Tübingen , 72074 Tübingen , Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Gerard Drewes
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany
| | | | | |
Collapse
|
50
|
Abstract
Drug attrition related to kidney toxicity remains a challenge in drug discovery and development. In vitro models established over the past 2 decades to supplement in vivo studies have improved the throughput capacity of toxicity evaluation, but usually suffer from low predictive value. To achieve a paradigm shift in the prediction of drug-induced kidney toxicity, two aspects are fundamental: increased physiological relevance of the kidney model, and use of appropriate toxicity end points. Recent studies have suggested that increasing the physiological relevance of kidney models can improve their sensitivity to drug-induced damage. Here, we discuss how advanced culture models, including modified cell lines, induced pluripotent stem cells, kidney organoid cultures, and microfluidic devices enhance in vivo similarity. To this end, culture models aim to increase the proximal tubule epithelial phenotype, reconstitute multiple tissue compartments and extracellular matrix, allow exposure to fluid shear stress, and enable interaction between multiple cell types. Applying computation-aided end points and novel biomarkers to advanced culture models will further improve sensitivity and clinical relevance of in vitro drug-induced toxicity prediction. Implemented at the right stage of drug discovery and development and coupled to high-content evaluation techniques, these models have the potential to reduce attrition and aid the selection of candidate drugs with an appropriate safety profile.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna-Karin Sjögren
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|