1
|
Ye PP, Yao BF, Yang Y, Yang XM, Li Q, Song LL, Chen KG, Zhou HY, Shi JY, Zhang YH, Zhao FR, Guo ZJ, Xu SS, Chen J, Goh AH, Zhu SW, Zheng Y, Zhao W. Drug-drug interactions of simnotrelvir/ritonavir: an open-label, fixed-sequence, two-period clinical trial. Clin Microbiol Infect 2024:S1198-743X(24)00438-5. [PMID: 39299559 DOI: 10.1016/j.cmi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES Simnotrelvir is a small-molecule highly specific 3C-like protease inhibitor for anti-SARS-CoV-2 and was approved as a combination drug with ritonavir (simnotrelvir/ritonavir) in China. Simnotrelvir is a substrate of cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), and a weak inhibitor of CYP3A. Ritonavir is a substrate and inhibitor of CYP3A and an inhibitor of P-gp. Hence, the drug-drug interaction potential of simnotrelvir/ritonavir should be investigated. METHODS This drug-drug interaction study was an open-label, fixed-sequence, two-period phase I clinical trial in Chinese healthy adult subjects, divided into three cohorts, including simnotrelvir/ritonavir co-administrated with a strong CYP3A and P-gp inhibitor (itraconazole) and inducer (rifampicin), and with a specific CYP3A substrate (midazolam). RESULTS The results demonstrated that compared with administration of simnotrelvir/ritonavir alone, the co-administration with itraconazole increased the geometric least-square mean ratio (GMR) of the expose (area under the plasma concentration-time curve from time zero to the lowest detectable plasma concentration [AUC0-t]) of simnotrelvir by 25% (GMR 125%, 90% CI 114-137%), whereas co-administration with rifampicin significantly decreased the AUC0-t of simnotrelvir by 81.5% (GMR 18.5%, 90% CI 16.4-20.9%). Notably, simnotrelvir/ritonavir increased the AUC0-t of midazolam by 16.69-fold (GMR 1769%, 90% CI 1551-2018%). The co-administration of simnotrelvir/ritonavir and rifampicin caused the increased amount and severity of treatment-emergent adverse events, especially hepatotoxicity. DISCUSSION The co-administration of simnotrelvir/ritonavir with CYP3A and P-gp inhibitors can be safely used, whereas the co-administration with CYP3A and P-gp strong inducer should be avoided to minimize the risk of under-exposure. Co-administration of midazolam with simnotrelvir/ritonavir increased systemic exposure of midazolam. CLINICALTRIALS gov Identifier: NCT05665647.
Collapse
Affiliation(s)
- Pan-Pan Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co. Ltd., Nanjing, China
| | - Xin-Mei Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Qian Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Lin-Lin Song
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ke-Guang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Hai-Yan Zhou
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Jin-Yi Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ye-Hui Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Fu-Rong Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Zi-Jia Guo
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Shan-Sen Xu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Jia Chen
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co. Ltd., Nanjing, China
| | - Aik Han Goh
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Shun-Wei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China; Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Akamatsu H, Kohno Y, Hashizume J, Nakagawa H, Kodama Y, Kawano H, Maemura K, Ohyama K. Effect of rifampicin administration on CYP induction in a dermatomyositis patient with vasospastic angina attributable to nilmatrelvir/ritonavir-induced blood tacrolimus elevation: A case report. J Infect Chemother 2024; 30:928-933. [PMID: 38360184 DOI: 10.1016/j.jiac.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Ritonavir (RTV), which is used in combination with nilmatrelvir (NMV) to treat coronavirus disease 2019 (COVID-19), inhibits cytochrome P450 (CYP) 3A, thereby increasing blood tacrolimus (TAC) levels through a drug-drug interaction (DDI). We experienced a case in which a DDI between the two drugs led to markedly increased blood TAC levels, resulting in vasospastic angina (VSA) and acute kidney injury (AKI). Rifampicin (RFP) was administered to induce CYP3A and promote TAC metabolism. A 60-year-old man with dermatomyositis who was taking 3 mg/day TAC contracted COVID-19. The patient started oral NMV/RTV therapy, and he was admitted to the hospital after 4 days because of chest pain and AKI. On day 5, his blood TAC level increased markedly to 119.8 ng/mL. RFP 600 mg was administered once daily for 3 days, and his blood TAC level decreased to the therapeutic range of 9.6 ng/mL on day 9, leading to AKI improvement. Transient complete atrioventricular block and nonsustained ventricular tachycardia were present during chest pain. In the coronary spasm provocation test, complete occlusion was observed in the right coronary artery, leading to a diagnosis of VSA. VSA and AKI are possible side effects of high blood TAC levels caused by DDI, and attention should be paid to cardiovascular side effects such as VSA and AKI associated with increased blood levels of TAC when it is used together with NMV/RTV. When blood levels of TAC increase, oral RFP can rapidly decrease TAC blood levels and potentially reduce its toxicity.
Collapse
Affiliation(s)
- Hayato Akamatsu
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yusuke Kohno
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; Department of Medical Safety, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kaname Ohyama
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
3
|
Chen J, Li J, Wu J, Song Y, Li L, Zhang J, Dong R. An open-label study to explore the optimal design of CYP3A drug-drug interaction clinical trials in healthy Chinese people. Pharmacol Res Perspect 2024; 12:e1252. [PMID: 39073244 PMCID: PMC11284260 DOI: 10.1002/prp2.1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
A drug-drug interaction (DDI) trial of cytochrome P450 3A (CYP3A) is a necessary part of early-phase trials of drugs mainly metabolized by this enzyme, but CYP3A DDI clinical trials do not have a standard design, especially for Chinese people. We aimed to offer specific recommendations for CYP3A DDI clinical trial design. This was an open, three-cycle, self-controlled study. Healthy subjects were given different administration strategies of CYP3A4 perpetrators. In each cycle, blood samples were collected before and within 24 h after the administration of midazolam, the CYP3A indicator substrate. The plasma concentrations of midazolam and 1-hydroxymidazolam was obtained using liquid chromatography tandem mass spectrometry assay. For CYP3A inhibition, itraconazole exposure with a loading dose could increase the exposure of midazolam by 3.21-fold based on maximum plasma concentration (Cmax), 8.37-fold based on area under the curve Pharmacology Research & Perspectives for review only from zero to the time point (AUC0-t), and 11.22-fold based on area under the curve from zero to infinity (AUC0-∞). The data were similar for itraconazole pretreatment without a loading dose. For CYP3A induction, the exposure of rifampin for 7 days decreased the plasma concentration of midazolam ~0.27-fold based on Cmax, ~0.18-fold based on AUC0-t, and ~0.18-fold based on AUC0-∞. Midazolam exposure did not significantly change when the pretreatment of rifampin increased to 14 days. This study showed that itraconazole pretreatment for 3 days without a loading dose was enough for CYP3A inhibition, and pretreatment with rifampin for 7 days could induce near-maximal CYP3A levels.
Collapse
Affiliation(s)
- Jingcheng Chen
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jiangshuo Li
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jingxuan Wu
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuqin Song
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lijun Li
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jianxiong Zhang
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Ruihua Dong
- Research Ward, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
5
|
Cardona P, Dutta S, Houk B. Effect of Strong CYP3A4 Inhibition, CYP3A4 Induction, and OATP1B1/3 Inhibition on the Pharmacokinetics of a Single Oral Dose of Sotorasib. Clin Pharmacol Drug Dev 2024; 13:810-818. [PMID: 38421129 DOI: 10.1002/cpdd.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Sotorasib is a small molecule that irreversibly inhibits the Kirsten rat sarcoma viral oncogene homolog (KRAS) protein with a G12C amino acid substitution mutant protein. The impact of cytochrome P450 (CYP) 3A4 inhibition and induction on sotorasib pharmacokinetics (PKs) was evaluated in 2 separate studies in healthy volunteers (N = 14/study). The impact of CYP3A4 inhibition was interrogated utilizing repeat doses of 200 mg of itraconazole, a strong CYP3A4 inhibitor, on 360 mg of sotorasib PKs. The impact of CYP3A4 induction was interrogated utilizing multiple doses of 600 mg of rifampin, a strong CYP3A4 inducer. Additionally, the impact of organic anion transporting polypeptide (OATP) 1B1/3 inhibition on 960 mg of sotorasib PKs was interrogated after a single dose of 600 mg of rifampin. CYP3A4 inhibition did not significantly impact sotorasib Cmax but did lead to a 26% increase in sotorasib AUCinf. CYP3A4 induction decreased sotorasib Cmax by 35% and AUCinf by 51%. OATP1B1/3 inhibition decreased sotorasib Cmax and AUCinf by 16% and 23%, respectively. These results support that sotorasib can be given together with strong CYP3A4 and OATP1B1/3 inhibitors but the co-administration of sotorasib and strong CYP3A4 inducers should be avoided.
Collapse
Affiliation(s)
- Panli Cardona
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, USA
| | - Sandeep Dutta
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, USA
| | - Brett Houk
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
6
|
Li Y, Ang HS, Fatehi P, Htet N. The Roller Coaster of Lamotrigine Levels: Successful Treatment of Massive Lamotrigine Overdose With Continuous Veno-Venous Hemodiafiltration and Rifampin. Cureus 2024; 16:e65637. [PMID: 39205748 PMCID: PMC11351006 DOI: 10.7759/cureus.65637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Lamotrigine is a commonly used anticonvulsant in treating seizures and bipolar disorder, but there is very limited literature on the management of its toxicity. Case reports have been published suggesting the potential role of hemodialysis in lowering serum lamotrigine levels, as well as sodium bicarbonate and lipid emulsion in treating dysrhythmia. After previously reported therapies failed to stabilize the patient's condition, the case presents our successful treatment experience using continuous veno-venous hemodiafiltration (CVVHDF) to stabilize lamotrigine levels, as well as intravenous rifampin as adjunctive therapy to facilitate lamotrigine metabolism. This is a 66-year-old male who was found unresponsive after a lamotrigine overdose. His first lamotrigine level was 42.3 ug/mL. Hemodialysis was started on hospital day 1. Despite hemodialysis sessions, his lamotrigine level rebounded with worsening neurological and cardiac symptoms. On hospital day 3, he developed wide-QRS complex tachyarrhythmia and hemodynamic instability with a lamotrigine level of 66.9 ug/mL. Sodium bicarbonate was given without effect. Lipid emulsion was administered which terminated the arrhythmia. CVVHDF and rifampin were started and lamotrigine levels have continuously downtrended since. He was successfully extubated on day 7. Lamotrigine level became undetectable on day 9. The patient was discharged to a psychiatric facility without any neurological or mobility impairment on day 10. The continuous drug clearance provided by CVVHDF over intermittent hemodialysis may have provided additional benefit in lamotrigine level stabilization, while rifampin use in this case may have further accelerated lamotrigine metabolism. As the first case reporting CVVHDF and rifampin use, our experience suggests their potential roles in managing severe lamotrigine toxicity.
Collapse
Affiliation(s)
- Yi Li
- Critical Care, Stanford University School of Medicine, Stanford, USA
| | - Hans S Ang
- Pharmacy, Stanford University Medical Center, Stanford, USA
| | | | - Natalie Htet
- Emergency Medicine, Stanford University, Stanford, USA
| |
Collapse
|
7
|
Hodges MR, van Marle S, Kramer WG, Ople E, Tawadrous M, Jakate A. Phase 1 drug-drug interaction study to assess the effect of CYP3A4 inhibition and pan-CYP induction on the pharmacokinetics and safety of fosmanogepix in healthy participants. Antimicrob Agents Chemother 2024:e0165023. [PMID: 38757982 DOI: 10.1128/aac.01650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Immunocompromised patients are susceptible to fungal infections, and drug-drug interactions with antifungals may occur due to concomitant medications. Fosmanogepix [FMGX; active moiety manogepix (MGX)] targets glycosylphosphatidylinositol-anchored mannoprotein synthesis and maturation, essential for fungal virulence. This phase 1, fixed-sequence study in healthy participants evaluated the effect of strong CYP3A4 inhibitor itraconazole [Cohort 1 (n = 18); FMGX 500 mg intravenous (IV) twice a day (BID )+ itraconazole 200 mg oral once a day (QD)] and pan-CYP inducer rifampin [Cohort 2 (n = 18); FMGX 1,000 mg IV BID + rifampin 600 mg oral QD] on the pharmacokinetics of FMGX and MGX. In cohort 1, geometric mean (GM) MGX Cmax, AUC0-t, and AUCinf were almost similar with and without itraconazole administration. In Cohort 2, GM MGX Cmax was slightly lower and AUC0-t and AUCinf were significantly lower after rifampin administration, with the least squares GM ratio associated 90% confidence intervals (CIs) below 80 - 125% (no effect window). No deaths, serious adverse events (SAEs), or FMGX-related withdrawals were reported. In both cohorts, a total of 188 AEs (n = 30; 186 mild; two moderate) were reported. In all, 37 of 188 AEs (n = 12) were considered FMGX related (most frequent: headache, nausea, and hot flush). Administration of FMGX alone and with itraconazole or rifampin was safe and well tolerated. A strong CYP3A4 inhibitor had no effect on FMGX or MGX exposure. A strong pan-CYP inducer had no effect on FMGX exposure but demonstrated ~45% decrease in MGX exposure. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT04166669 and with EudraCT as number 2019-003586-17.
Collapse
Affiliation(s)
- Michael R Hodges
- Independent / Former Amplyx and Pfizer, San Diego, California, USA
| | | | | | - Eric Ople
- Independent / Former Amplyx Pharmaceuticals, Inc., San Diego, California, USA
| | | | | |
Collapse
|
8
|
Solan ME, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on human cytochrome P450 (CYP450) enzymes and human hepatocytes: An in vitro study. Curr Res Toxicol 2023; 5:100116. [PMID: 37575337 PMCID: PMC10412865 DOI: 10.1016/j.crtox.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) have been developed as alternatives to legacy long-chain PFAS, but they may still pose risks due to their potential to interact with biomolecules. Cytochrome P450 (CYP450) enzymes are essential for xenobiotic metabolism, and disruptions of these enzymes by PFAS can have significant human health implications. The inhibitory potential of two legacy long-chain (PFOA and PFOS) and five short-chain alternative PFAS (PFBS, PFHxA, HFPO-DA, PFHxS, and 6:2 FTOH) were assessed in recombinant CYP1A2, - 2B6, -2C19, -2E1, and -3A4 enzymes. Most of the short-chain PFAS, except for PFHxS, tested did not result in significant inhibition up to 100 μM. PFOS inhibited recombinant CYP1A2, -2B6, -2C19, and -3A4 enzymes. However, concentrations where inhibition occurred, were all higher than the averages reported in population biomonitoring studies, with IC50 values higher than 10 µM. We also evaluated the activities of CYP1A2 and CYP3A4 in HepaRG monolayers following 48 h exposures of the short-chain PFAS at two concentrations (1 nM or 1 µM) and with or without an inducer (benzo[a]pyrene, BaP, for CYP1A2 and rifampicin for CYP3A4). Our findings suggest that both 1 nM and 1 µM exposures to short-chain PFAS can modulate the CYP1A2 activity induced by BaP. Except for PFHxS, the short-chain PFAS appear to have little effect on CYP3A4 activity. Understanding the effects of PFAS exposure on biotransformation can shed light on the mechanisms of PFAS toxicity and aid in developing effective strategies for managing chemical risks, enabling regulators to make more informed decisions.
Collapse
Affiliation(s)
- Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| |
Collapse
|
9
|
Wang P, Liu J, Tan X, Yang F, McCabe J, Zhang J. Pharmacokinetics and Drug-Drug Interaction of Ocedurenone (KBP-5074) in vitro and in vivo. Eur J Drug Metab Pharmacokinet 2023:10.1007/s13318-023-00837-5. [PMID: 37357226 DOI: 10.1007/s13318-023-00837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Ocedurenone (KBP-5074) is a novel nonsteroidal mineralocorticoid receptor antagonist that has demonstrated safety and efficacy in clinical trials in patients with uncontrolled hypertension and stage 3b/4 chronic kidney disease. This study evaluated the involvement of cytochrome P450 (CYP) isozymes and drug transporters in the biotransformation of ocedurenone, and whether ocedurenone inhibited or induced CYP enzymes and transporters. Clinical pharmacokinetic drug-drug interaction (DDI) of ocedurenone with CYP3A inhibitor and inducer were investigated in healthy volunteers. METHODS In vitro tests were conducted to determine which CYP enzymes were involved in ocedurenone's metabolism and whether ocedurenone inhibited or induced these CYP enzymes; ocedurenone substrate characteristics for efflux and uptake transporters and its inhibitory potential on major drug transporters were also assessed. A clinical DDI study was conducted in healthy volunteers to evaluate the effects of a strong CYP3A inhibitor (itraconazole) and inducer (rifampin) on ocedurenone's pharmacokinetics. RESULTS The in vitro study showed that ocedurenone was primarily metabolized by CYP3A4 and that it did not inhibit CYP enzymes. Ocedurenone appeared to be a substrate of BCRP and P-gp efflux transporters and inhibited BCRP, BSEP, MDR1, MATE1 and 2-K, OATP1B1/3, and OCT1. The clinical DDI study showed that itraconazole reduced ocedurenone's oral clearance by 51% and increased area under the plasma concentration-time curve extrapolated to infinity (AUC0-inf) by 104%, while rifampin increased its oral clearance by 6.4-fold and decreased plasma AUC0-inf by 84%. CONCLUSION Ocedurenone was shown to be a CYP3A substrate, with no inhibition potential on major drug metabolizing CYP enzymes and transporters at clinical efficacious doses. Ocedurenone did not induce CYP1A2 and 3A4 activity in cultured human primary hepatocytes. Clinical DDI study indicated ocedurenone was well tolerated when administered as a single 0.5-mg dose both alone and with itraconazole or rifampin, and while itraconazole had a weak effect on ocedurenone's pharmacokinetics, rifampin had a significant effect reducing systemic exposures.
Collapse
Affiliation(s)
- Ping Wang
- KBP Biosciences Co., Ltd, Jinan, Shandong, China
| | - Jinrong Liu
- KBP Biosciences Co., Ltd, Jinan, Shandong, China
| | - Xiaojuan Tan
- KBP Biosciences Co., Ltd, Jinan, Shandong, China
| | - Fred Yang
- KBP Biosciences USA Inc, 116 Village Blvd, Suite, 210, Princeton, NJ, 08540, USA
| | - James McCabe
- KBP Biosciences USA Inc, 116 Village Blvd, Suite, 210, Princeton, NJ, 08540, USA
| | - Jay Zhang
- KBP Biosciences USA Inc, 116 Village Blvd, Suite, 210, Princeton, NJ, 08540, USA.
| |
Collapse
|
10
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
11
|
Hopkins AM, Sorich MJ, McLachlan AJ, Karapetis CS, Miners JO, van Dyk M, Rowland A. Understanding the Risk of Drug Interactions Between Ritonavir-Containing COVID-19 Therapies and Small-Molecule Kinase Inhibitors in Patients With Cancer. JCO Precis Oncol 2023; 7:e2200538. [PMID: 36787507 DOI: 10.1200/po.22.00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
PURPOSE The introduction of COVID-19 therapies containing ritonavir has markedly expanded the scope of use for this medicine. As a strong cytochrome P450 3A4 inhibitor, the use of ritonavir is associated with a high drug interaction risk. There are currently no data to inform clinician regarding the likely magnitude and duration of interaction between ritonavir-containing COVID-19 therapies and small-molecule kinase inhibitors (KIs) in patients with cancer. METHODS Physiologically based pharmacokinetic modeling was used to conduct virtual clinical trials with a parallel group study design in the presence and absence of ritonavir (100 mg twice daily for 5 days). The magnitude and time course of changes in KI exposure when coadministered with ritonavir was evaluated as the primary outcome. RESULTS Dosing of ritonavir resulted in a > 2-fold increase in steady-state area under the plasma concentration-time curve and maximal concentration for six of the 10 KIs. When the KI was coadministered with ritonavir, dose reductions to between 10% and 75% of the original dose were required to achieve an area under the plasma concentration-time curve within 1.25-fold of the value in the absence of ritonavir. CONCLUSION To our knowledge, this study provides the first data to assist clinicians' understanding of the drug interaction risk associated with administering ritonavir-containing COVID-19 therapies to patients with cancer who are currently being treated with KIs. These data may support clinicians to make more informed dosing decisions for patients with cancer undergoing treatment with KIs who require treatment with ritonavir-containing COVID-19 antiviral therapies.
Collapse
Affiliation(s)
- Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, Australia
| | - Christos S Karapetis
- College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Medical Oncology, Flinders Medical Centre, Adelaide, Australia
| | - John O Miners
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
12
|
Nagai H, Shimada T, Takahashi Y, Nishikawa M, Tozuka H, Yamamoto Y, Niwa O, Takahara Y, Fujita A, Nagase K, Kasahara K, Yano S, Sai Y. Evaluation of factors affecting epidermal growth factor receptor tyrosine kinase inhibitor-induced hepatotoxicity in Japanese patients with non-small cell lung cancer: a two-center retrospective study. J Pharm Health Care Sci 2022; 8:28. [DOI: 10.1186/s40780-022-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
Gefitinib and erlotinib, are epidermal growth factor receptor tyrosine kinase inhibitors, and are currently recommended for non-small cell lung cancer stage IV in the elderly and in patients with decreased performance status in the Japanese Lung Cancer Society Guideline, but they occasionally caused severe hepatotoxicity requiring postponement or modification of treatment. However, little is known about the risk factors for hepatotoxicity in patients receiving gefitinib and erlotinib. In this study, we investigated the factors influencing hepatotoxicity in Japanese non-small cell lung cancer (NSCLC) patients treated with gefitinib or erlotinib monotherapy.
Methods
Japanese patients with NSCLC who started gefitinib or erlotinib monotherapy from January 2005 to December 2017 at Kanazawa University Hospital or Kanazawa Medical University Hospital were included in this study. Factors affecting hepatotoxicity were retrospectively investigated by multiple logistic regression analysis.
Results
A total of 102 patients who received gefitinib and 95 patients who received erlotinib were included in the analysis. In the gefitinib group, a body mass index (BMI) ≥ 25 was associated with an increased risk of hepatotoxicity (OR = 4.571, 95% CI = 1.486–14.056, P = 0.008). In the erlotinib group, concomitant use of acid-suppressing medications (AS), namely proton pump inhibitors or histamine-2 receptor antagonists, was associated with a reduced risk of hepatotoxicity (OR = 0.341, 95% CI = 0.129–0.900, P = 0.030).
Conclusions
BMI ≥ 25 in patients treated with gefitinib increased the risk of hepatotoxicity. In contrast, AS combination with erlotinib reduced the risk of hepatotoxicity. Thus, because different factors influence the risk of hepatotoxicity, monitoring for adverse events should take into account patient background factors and concomitant medications.
Collapse
|
13
|
Chen J, Stringer R, Shah B, Gu J, Zhang Y, Hackling M, Prince W, Woessner R. Drug-Drug Interaction Studies to Evaluate the Effect of Inhibition of UGT1A1 and CYP3A4 and Induction of CYP3A4 on the Pharmacokinetics of Tropifexor in Healthy Subjects. Clin Pharmacol Drug Dev 2022; 11:1253-1263. [PMID: 35962468 DOI: 10.1002/cpdd.1140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Tropifexor, a farnesoid X receptor agonist, is currently under clinical development for the treatment of nonalcoholic steatohepatitis. Tropifexor undergoes glucuronidation by uridine 5'-diphosphoglucuronosyltransferase (UGT) 1A1 and oxidation by cytochrome P450 (CYP) 3A4, as reported in in vitro studies. Here, we report the results from 2 drug-drug interaction studies. Study 1 enrolled 20 healthy subjects to investigate the effect of the UGT1A1 inhibitor atazanavir (ATZ) on tropifexor pharmacokinetics (PK). Study 2 had 2 cohorts with 16 healthy subjects each to investigate the effect of the strong CYP3A4 inhibitor itraconazole and strong CYP3A4 inducer rifampin on the PK of tropifexor. Coadministration of ATZ reduced the maximum plasma concentration (Cmax ) of tropifexor by 40%; however, it did not lead to increased exposure of tropifexor (both area under the plasma concentration-time curve [AUC] from time 0 to the last quantifiable concentration [AUClast ] and AUC from time 0 to infinity [AUCinf ] reduced by only 10%), suggesting minor relevance of the UGT1A1 pathway for clearance of tropifexor and no expected drug-drug interactions based on UGT1A1 inhibition. Inhibition of CYP3A4 by itraconazole increased the Cmax of tropifexor by only 9% and exposure (both AUClast and AUCinf ) by 47%, suggesting a weak effect of strong CYP3A4 inhibitors on tropifexor PK. Inducing CYP3A4 with rifampin decreased Cmax (55%) and AUC (AUClast by 79% and AUCinf by 77%). Coadministration of tropifexor with either ATZ, itraconazole, or rifampin was well tolerated.
Collapse
Affiliation(s)
- Jin Chen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Rowan Stringer
- Novartis Institutes for BioMedical Research, PK Sciences, Basel, Switzerland
| | - Bharti Shah
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey, USA
| | - Jessie Gu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Yiming Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Melissa Hackling
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey, USA
| | - William Prince
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Ralph Woessner
- Novartis Institutes for BioMedical Research, PK Sciences, Basel, Switzerland
| |
Collapse
|
14
|
A Physiologically Based Pharmacokinetic Model to Predict the Impact of Metabolic Changes Associated with Metabolic Associated Fatty Liver Disease on Drug Exposure. Int J Mol Sci 2022; 23:ijms231911751. [PMID: 36233052 PMCID: PMC9570165 DOI: 10.3390/ijms231911751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease, with an estimated prevalence of between 20 and 30% worldwide. Observational data supported by in vitro and pre-clinical animal models of MAFLD suggest meaningful differences in drug disposition in MAFLD patients. This study aimed to build a physiologically based pharmacokinetic (PBPK) model reflecting observed changes in physiological and molecular parameters relevant to drug disposition that are associated with MAFLD. A comprehensive literature review and meta-analysis was conducted to identify all studies describing in vivo physiological changes along with in vitro and pre-clinical model changes in CYP 1A2, 2C9, 2C19, 2D6 and 3A4 protein abundance associated with MAFLD. A MAFLD population profile was constructed in Simcyp (version 19.1) by adapting demographic and physiological covariates from the Sim-Healthy population profile based on a meta-analysis of observed data from the published literature. Simulations demonstrated that single dose and steady state area under the plasma concentration time curve (AUC) for caffeine, clozapine, omeprazole, metoprolol, dextromethorphan and midazolam, but not s-warfarin or rosiglitazone, were increased by >20% in the MAFLD population compared to the healthy control population. These findings indicate that MAFLD patients are likely to be experience meaningfully higher exposure to drugs that are primarily metabolized by CYP 1A2, 2C19, 2D6 and 3A4, but not CYP2C9. Closer monitoring of MAFLD patients using drugs primarily cleared by CYP 1A2, 2C19 and 3A4 is warranted as reduced metabolic activity and increased drug exposure are likely to result in an increased incidence of toxicity in this population.
Collapse
|
15
|
Chaivichacharn P, Avihingsanon A, Gatechompol S, Ubolyam S, Punyawudho B. Dose optimization with population pharmacokinetics of ritonavir-boosted lopinavir for Thai people living with HIV with and without active tuberculosis. Drug Metab Pharmacokinet 2022; 47:100478. [DOI: 10.1016/j.dmpk.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
|
16
|
Hoch M, Huth F, Sato M, Sengupta T, Quinlan M, Dodd S, Kapoor S, Hourcade-Potelleret F. Pharmacokinetics of asciminib in the presence of CYP3A or P-gp inhibitors, CYP3A inducers, and acid-reducing agents. Clin Transl Sci 2022; 15:1698-1712. [PMID: 35616006 PMCID: PMC9283742 DOI: 10.1111/cts.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Asciminib is a first‐in‐class inhibitor of BCR::ABL1, specifically targeting the ABL myristoyl pocket. Asciminib is a substrate of CYP3A4 and P‐glycoprotein (P‐gp) and possesses pH‐dependent solubility in aqueous solution. This report summarizes the results of two phase I studies in healthy subjects aimed at assessing the impact of CYP3A and P‐gp inhibitors, CYP3A inducers and acid‐reducing agents (ARAs) on the pharmacokinetics (PK) of asciminib (single dose of 40 mg). Asciminib exposure (area under the curve [AUC]) unexpectedly decreased by ~40% when administered concomitantly with the strong CYP3A inhibitor itraconazole oral solution, whereas maximum plasma concentration (Cmax) decreased by ~50%. However, asciminib exposure was slightly increased in subjects receiving an itraconazole capsule (~3%) or clarithromycin (~35%), another strong CYP3A inhibitor. Macroflux studies showed that cyclodextrin (present in high quantities as excipient [40‐fold excess to itraconazole] in the oral solution formulation of itraconazole) decreased asciminib flux through a lipid membrane by ~80%. The AUC of asciminib was marginally decreased by concomitant administration with the strong CYP3A inducer rifampicin (by ~13–15%) and the strong P‐gp inhibitor quinidine (by ~13–16%). Concomitant administration of the ARA rabeprazole had little or no effect on asciminib AUC, with a 9% decrease in Cmax. The treatments were generally well tolerated. Taking into account the large therapeutic window of asciminib, the observed changes in asciminib PK following multiple doses of P‐gp, CYP3A inhibitors, CYP3A inducers, or ARAs are not considered to be clinically meaningful. Care should be exercised when administering asciminib concomitantly with cyclodextrin‐containing drug formulations.
Collapse
Affiliation(s)
- Matthias Hoch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masahiko Sato
- Novartis Pharma K.K., Novartis Institutes for Biomedical Research, Tokyo, Japan
| | | | | | - Stephanie Dodd
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Shruti Kapoor
- Novartis Pharmaceuticals, East Hanover, New Jersey, USA
| | | |
Collapse
|
17
|
Evaluation of CYP2C19 activity using microdosed oral omeprazole in humans. Eur J Clin Pharmacol 2022; 78:975-987. [PMID: 35238961 PMCID: PMC9107402 DOI: 10.1007/s00228-022-03304-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Purpose To investigate the suitability of microdosed oral omeprazole for predicting CYP2C19 activity in vivo in combination with simultaneous assessment of CYP3A and CYP2D6 activity using both microdosed midazolam and yohimbine. Methods An open, fixed-sequence study was carried out in 20 healthy participants. Single microdosed (100 µg) and therapeutic (20 mg) doses of omeprazole were evaluated without comedication and after administration of established CYP2C19 perpetrators fluconazole (inhibition) and rifampicin (induction). To prevent degradation of the uncoated omeprazole microdose, sodium bicarbonate buffer was administered. The pharmacokinetics of omeprazole and its 5-hydroxy-metabolite were assessed as well as the pharmacokinetics of midazolam and yohimbine to estimate CYP3A4 and CYP2D6 activity. Results Calculated pharmacokinetic parameters after administration of 100 µg and 20 mg omeprazole in healthy subjects suggest dose proportionality. Omeprazole clearance was significantly decreased by fluconazole from 388 [95% CI: 266–565] to 47.2 [42.8–52.0] mL/min after 20 mg omeprazole and even further after 100 µg omeprazole (29.4 [24.5–35.1] mL/min). Rifampicin increased CYP2C19-mediated omeprazole metabolism. The omeprazole hydroxylation index was significantly related to omeprazole clearance for both doses. Both fluconazole and rifampicin altered CYP3A4 activity whereas no change of CYP2D6 activity was observed at all. Conclusions Microdosed oral omeprazole is suitable to determine CYP2C19 activity, also during enzyme inhibition and induction. However, the administration of sodium bicarbonate buffer also had a small influence on all victim drugs used. Trial registration EudraCT: 2017–004270-34. Supplementary information The online version contains supplementary material available at 10.1007/s00228-022-03304-3.
Collapse
|
18
|
Kubitza D, Heckmann M, Distler J, Koechel A, Schwers S, Kanefendt F. Pharmacokinetics, pharmacodynamics and safety of BAY 2433334, a novel activated factor XI inhibitor, in healthy volunteers: A randomized phase 1 multiple-dose study. Br J Clin Pharmacol 2022; 88:3447-3462. [PMID: 35014061 PMCID: PMC9311154 DOI: 10.1111/bcp.15230] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Aim To evaluate BAY 2433334, an oral activated factor XI (FXIa) inhibitor, in volunteers. Methods Phase 1 study of healthy men at a German centre. Part A: randomized, single‐blind, multiple dose‐escalation study of BAY 2433334 (25/50/100 mg once daily [OD]) vs. placebo. Part B: similar design to Part A; evaluated BAY 2433334 25 mg twice daily. Part C: nonrandomized, open‐label study; evaluated potential interactions between BAY 2433334 (25/75 mg OD) and midazolam (7.5 mg), a CYP3A4 index substrate. Primary variables: treatment‐emergent adverse events (TEAEs; Parts A and B); area under the plasma concentration–time curve (AUC) and maximum plasma concentration of midazolam and α‐hydroxymidazolam (Part C). Study period: 18 days plus follow‐up visit. Results Parts A and B: 36 participants randomized to BAY 2433334; 12 to placebo. Part C: 48 participants assigned to BAY 2433334 plus midazolam. BAY 2433334 was well tolerated in all study parts. AUC and maximum plasma concentration of BAY 2433334 in plasma appeared dose proportional over 25–100 mg OD, with low‐to‐moderate variability in pharmacokinetic parameters. Multiple dosing caused minor‐to‐moderate accumulation and a mean terminal half‐life (15.8–17.8 h) supporting once‐daily dosing. Dose‐dependent FXIa activity inhibition and activated partial thromboplastin time prolongation were observed. BAY 2433334 appeared to have a minor effect on AUC for midazolam (ratio [90% confidence interval]: 1.1736 [1.0963–1.2564]) and α‐hydroxymidazolam (0.9864 [0.9169–1.0612]) only for BAY 2433334 75 mg OD on day 10. Conclusion Multiple dosing of BAY 2433334 in healthy volunteers was well tolerated, with a predictable pharmacokinetic/pharmacodynamic profile and no clinically relevant CYP3A4 induction or inhibition.
Collapse
Affiliation(s)
| | | | | | - Annemone Koechel
- CRS Clinical Research Services Wuppertal GmbH, Wuppertal, Germany
| | | | | |
Collapse
|
19
|
Kaushik A, Ammerman NC, Tasneen R, Lachau-Durand S, Andries K, Nuermberger E. Efficacy of Long-Acting Bedaquiline Regimens in a Mouse Model of Tuberculosis Preventive Therapy. Am J Respir Crit Care Med 2021; 205:570-579. [PMID: 34939891 DOI: 10.1164/rccm.202012-4541oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Completion of preventive therapy is a major bottleneck in global tuberculosis control. Long-acting injectable drug formulations would shorten therapy administration and may thereby improve completion rates. Recently, a long-acting formulation of bedaquiline demonstrated anti-tuberculosis activity for up to 12 weeks post-injection in a validated mouse model of preventive therapy. OBJECTIVES The objectives of this study were to (i) determine the total duration of activity following an injection of long-acting bedaquiline, and (ii) evaluate the activity of regimens comprised of long-acting bedaquiline plus short (2-4 week) oral companion courses of bedaquiline, with or without rifapentine, using the validated mouse model of tuberculosis preventive therapy. METHODS After establishment of a stable Mycobacterium tuberculosis lung infection in BCG-immunized BALB/c mice, treatment was initiated with one of 12 randomly assigned regimens. In addition to positive and negative controls, six regimens included 1 or 2 injections of long-acting bedaquiline (alone or with oral bedaquiline +/- rifapentine), and 4 comparator regimens consisted of oral agents only. Lung bacterial burden was measured monthly for up to 28 weeks. MEASUREMENTS AND MAIN RESULTS One injection of long-acting bedaquiline at 160 mg/kg exerted anti-tuberculosis activity for 12 weeks. Compared to the positive control (daily isoniazid-rifapentine for 4 weeks), six regimens had equivalent bactericidal activity (including two all-oral comparator regimens), and two regimens has superior sterilizing activity: one injection with 2 weeks of oral bedaquiline and high-dose rifapentine; and 2 injections with 4 weeks of oral bedaquiline. CONCLUSION Long-acting injectable bedaquiline has significant potential for shortening tuberculosis preventive therapy.
Collapse
Affiliation(s)
- Amit Kaushik
- Johns Hopkins School of Medicine, 1500, Medicine, Baltimore, Maryland, United States
| | - Nicole C Ammerman
- Johns Hopkins School of Medicine, 1500, Medicine, Baltimore, Maryland, United States
| | - Rokeya Tasneen
- Johns Hopkins School of Medicine, 1500, Medicine, Baltimore, Maryland, United States
| | | | - Koen Andries
- Janssen Pharmaceutica NV, 50148, Beerse, Belgium
| | - Eric Nuermberger
- Johns Hopkins School of Medicine, 1500, Medicine, Baltimore, Maryland, United States;
| |
Collapse
|
20
|
Li G, Yi B, Liu J, Jiang X, Pan F, Yang W, Liu H, Liu Y, Wang G. Effect of CYP3A4 Inhibitors and Inducers on Pharmacokinetics and Pharmacodynamics of Saxagliptin and Active Metabolite M2 in Humans Using Physiological-Based Pharmacokinetic Combined DPP-4 Occupancy. Front Pharmacol 2021; 12:746594. [PMID: 34737703 PMCID: PMC8560969 DOI: 10.3389/fphar.2021.746594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
We aimed to develop a physiological-based pharmacokinetic and dipepidyl peptidase 4 (DPP-4) occupancy model (PBPK-DO) characterized by two simultaneous simulations to predict pharmacokinetic (PK) and pharmacodynamic changes of saxagliptin and metabolite M2 in humans when coadministered with CYP3A4 inhibitors or inducers. Ketoconazole, delavirdine, and rifampicin were selected as a CYP3A4 competitive inhibitor, a time-dependent inhibitor, and an inducer, respectively. Here, we have successfully simulated PK profiles and DPP-4 occupancy profiles of saxagliptin in humans using the PBPK-DO model. Additionally, under the circumstance of actually measured values, predicted results were good and in line with observations, and all fold errors were below 2. The prediction results demonstrated that the oral dose of saxagliptin should be reduced to 2.5 mg when coadministrated with ketoconazole. The predictions also showed that although PK profiles of saxagliptin showed significant changes with delavirdine (AUC 1.5-fold increase) or rifampicin (AUC: a decrease to 0.19-fold) compared to those without inhibitors or inducers, occupancies of DPP-4 by saxagliptin were nearly unchanged, that is, the administration dose of saxagliptin need not adjust when there is coadministration with delavirdine or rifampicin.
Collapse
Affiliation(s)
- Gang Li
- Beijing Adamadle Biotech Co, Ltd., Beijing, China
| | - Bowen Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingtong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoquan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haibo Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co, Ltd., Beijing, China
| |
Collapse
|
21
|
Abstract
BACKGROUND AND OBJECTIVE Gilteritinib is a novel, highly selective tyrosine kinase inhibitor approved in the USA, Canada, Europe, Brazil, Korea, and Japan for the treatment of FLT3 mutation-positive acute myeloid leukemia. This article describes the clinical pharmacokinetic profile of gilteritinib. METHODS The pharmacokinetic profile of gilteritinib was assessed from five clinical studies. RESULTS Dose-proportional pharmacokinetics was observed following once-daily gilteritinib administration (dose range 20-450 mg). Median maximum concentration was reached 2-6 h following single and repeat dosing of gilteritinib; mean elimination half-life was 113 h. Elimination was primarily via feces. Exposure to gilteritinib was comparable under fasted and fed conditions. Gilteritinib is primarily metabolized via cytochrome P450 (CYP) 3A4; coadministration of gilteritinib with itraconazole (a strong P-glycoprotein inhibitor and CYP3A4 inhibitor) or rifampicin (a strong P-glycoprotein inducer and CYP3A inducer) significantly affected the gilteritinib pharmacokinetic profile. No clinically relevant interactions were observed when gilteritinib was coadministered with midazolam (a CYP3A4 substrate) or cephalexin (a multidrug and toxin extrusion 1 substrate). Unbound gilteritinib exposure was similar between subjects with hepatic impairment and normal hepatic function. CONCLUSIONS Gilteritinib exhibits a dose-proportional pharmacokinetic profile in healthy subjects and in patients with relapsed/refractory acute myeloid leukemia. Gilteritinib exposure is not significantly affected by food. Moderate-to-strong CYP3A inhibitors demonstrated a significant effect on gilteritinib exposure. Coadministration of gilteritinib with CYP3A4 or multidrug and toxin extrusion 1 substrates did not impact substrate concentrations. Unbound gilteritinib was comparable between subjects with hepatic impairment and normal hepatic function; dose adjustment is not warranted for patients with hepatic impairment. CLINICAL TRIAL REGISTRATION NCT02014558, NCT02456883, NCT02571816.
Collapse
|
22
|
Kapetas AJ, Abuhelwa AY, Sorich MJ, McKinnon RA, Rodrigues AD, Rowland A, Hopkins AM. Evidence-Based Guidelines for Drug Interaction Studies: Model-Informed Time Course of Intestinal and Hepatic CYP3A4 Inhibition by Clarithromycin. AAPS JOURNAL 2021; 23:104. [PMID: 34467456 DOI: 10.1208/s12248-021-00632-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023]
Abstract
Drug-drug interaction (DDI) studies are mandated in drug development; however, protocols for evaluating the impact of cytochrome P450 (CYP) inhibition on new molecular entities are currently inconsistent. This study utilised validated physiologically based pharmacokinetic (PBPK) software to define the optimal dose, frequency, and duration of clarithromycin to achieve optimal characterisation of CYP3A4 inhibition in a study population. The Simcyp® Simulator (Version 19.0) was used to simulate clarithromycin-mediated CYP3A4 inhibition in healthy virtual cohorts. Between trial variability in magnitude and time course of CYP3A4 activity was assessed following clarithromycin dosing strategies obtained from the University of Washington Drug Interaction Database. Heterogeneity in CYP3A4 inhibition was evaluated across sex, race, and age. Literature review identified 500 mg twice daily for 5 days as the most common clarithromycin dosing protocol for CYP3A4 inhibition studies. On simulation, clarithromycin 500 mg twice daily resulted in the largest steady-state inhibition of hepatic (percent mean inhibition [95%CI] = 80 [77-83]) and small intestine (94 [94-95]) CYP3A4 activity (as compared to 500 mg once daily, 400 mg once/twice daily, or 250 mg once/twice daily). Additionally, 500 mg twice daily was associated with the shortest time for 90% of individuals to reach 90% of their minimum hepatic (4 days) and small intestine (1 days) CYP3A4 activity. The study presented herein supports that clarithromycin dosing protocol of 500 mg twice daily for 5 days is sufficient to achieve maximal hepatic and small intestine CYP3A4 inhibition. These findings were consistent between sex, race, and age differences.
Collapse
Affiliation(s)
- Asha J Kapetas
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ahmad Y Abuhelwa
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - A David Rodrigues
- ADME Science, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
23
|
Useckaite Z, Rodrigues AD, Hopkins AM, Newman LA, Johnson JG, Sorich MJ, Rowland A. Role of extracellular vesicle derived biomarkers in drug metabolism and disposition. Drug Metab Dispos 2021; 49:961-971. [PMID: 34353847 DOI: 10.1124/dmd.121.000411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are small, non-replicating, lipid encapsulated particles that contain a myriad of protein and nucleic acid cargo derived from their tissue of origin. The potential role of EV derived biomarkers to the study of drug metabolism and disposition (DMD) has gained attention in recent years. The key trait that makes EVs an attractive biomarker source is their capacity to provide comparable insights to solid organ biopsy through an appreciably less invasive collection procedure. Blood-derived EVs exist as a heterogenous milieu of biologically distinct particles originating from different sources through different biogenesis pathways. Furthermore, blood (plasma and serum) contains an array of vesicular and non-vesicular contaminants such as apoptotic bodies, plasma proteins and lipoproteins that are routinely co-isolated with EVs albeit to a different extent depending on the isolation technique. The following mini-review summarises current studies reporting DMD biomarkers and addresses elements of EV isolation and quantification relevant to the application of EV derived DMD biomarkers. Evidence based best practice guidance aligned to Minimum Information for the Study of Extracellular Vesicles (MISEV) and EV Track reporting standards are summarised in the context of DMD studies. Significance Statement Extracellular vesicle (EV) derived protein and nucleic acid cargo represent a potentially game changing source of novel DMD biomarkers with the capacity to define within- and between- individual variability in drug exposure irrespective of aetiology. However, robust translation of EV-derived biomarkers requires the generation of transparent reproducible evidence. This review outlines the critical elements of data generation and reporting relevant to achieving this evidence in a drug metabolism and disposition context.
Collapse
|
24
|
Fahmy A, Hopkins AM, Sorich MJ, Rowland A. Evaluating the utility of therapeutic drug monitoring in the clinical use of small molecule kinase inhibitors: a review of the literature. Expert Opin Drug Metab Toxicol 2021; 17:803-821. [PMID: 34278936 DOI: 10.1080/17425255.2021.1943357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Orally administered small molecule kinase inhibitors (KI) are a key class of targeted anti-cancer medicines that have contributed substantially to improved survival outcomes in patients with advanced disease. Since the introduction of KIs in 2001, there has been a building body of evidence that the benefit derived from these drugs may be further enhanced by individualizing dosing on the basis of concentration.Areas covered: This review considers the rationale for individualized KI dosing and the requirements for robust therapeutic drug monitoring (TDM). Current evidence supporting TDM-guided KI dosing is presented and critically evaluated, and finally potential approaches to address translational challenges for TDM-guided KI dosing and alternate approaches to support individualization of KI dosing are discussed.Expert opinion: Intuitively, the individualization of KI dosing through an approach such as TDM-guided dosing has great potential to enhance the effectiveness and tolerability of these drugs. However, based on current literature evidence it is unrealistic to propose that TDM-guided KI dosing should be routinely implemented into clinical practice.
Collapse
Affiliation(s)
- Alia Fahmy
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Courlet P, Guidi M, Alves Saldanha S, Cavassini M, Stoeckle M, Buclin T, Marzolini C, Decosterd LA, Csajka C. Population pharmacokinetic modelling to quantify the magnitude of drug-drug interactions between amlodipine and antiretroviral drugs. Eur J Clin Pharmacol 2021; 77:979-987. [PMID: 33452585 PMCID: PMC8184532 DOI: 10.1007/s00228-020-03060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 10/26/2022]
Abstract
PURPOSE Drug-drug interactions (DDIs) with antiretroviral drugs (ARVs) represent an important issue in elderly people living with HIV (PLWH). Amlodipine is a commonly prescribed antihypertensive drug metabolized by CYP3A4, thus predisposed to a risk of DDIs. Guidance on the management of DDIs is mostly based on theoretical considerations derived from coadministration with other CYP3A4 inhibitors. This study aimed at characterizing the magnitude of DDIs between amlodipine and ARV drugs in order to establish dosing recommendations. METHODS A population pharmacokinetic analysis was developed using non-linear mixed effect modelling (NONMEM) and included 163 amlodipine concentrations from 55 PLWH. Various structural and error models were compared to characterize optimally the concentration-time profile of amlodipine. Demographic and clinical characteristics as well as comedications were tested as potential influential covariates. Model-based simulations were performed to compare amlodipine exposure (i.e. area under the curve, AUC) between coadministered ARV drugs. RESULTS Amlodipine concentration-time profile was best described using a one-compartment model with first-order absorption and a lag-time. Amlodipine apparent clearance was influenced by both CYP3A4 inhibitors and efavirenz (CYP3A4 inducer). Model-based simulations revealed that amlodipine AUC increased by 96% when coadministered with CYP3A4 inhibitors, while efavirenz decreased drug exposure by 59%. CONCLUSION Coadministered ARV drugs significantly impact amlodipine disposition in PLWH. Clinicians should adjust amlodipine dosage accordingly, by halving the dosage in PLWH receiving ARV with inhibitory properties (mainly ritonavir-boosted darunavir), whereas they should double amlodipine doses when coadministering it with efavirenz, under appropriate monitoring of clinical response and tolerance.
Collapse
Affiliation(s)
- Perrine Courlet
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Susana Alves Saldanha
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marcel Stoeckle
- Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Catia Marzolini
- Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Laurent A Decosterd
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chantal Csajka
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. .,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland. .,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Ou YC, Tang Z, Novotny W, Tawashi M, Li TK, Coleman HA, Sahasranaman S. Evaluation of drug interaction potential of zanubrutinib with cocktail probes representative of CYP3A4, CYP2C9, CYP2C19, P-gp and BCRP. Br J Clin Pharmacol 2021; 87:2926-2936. [PMID: 33336408 PMCID: PMC8359458 DOI: 10.1111/bcp.14707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Aim This study aims to assess the potential effects of zanubrutinib on the activity of cytochrome P450 (CYP) enzymes and drug transporter proteins using a cocktail probe approach. Methods Patients received single oral doses of probe drugs alone and after at least 8 days of treatment with zanubrutinib 160 mg twice daily in a single‐sequence study in 18 healthy male volunteers. Simultaneous doses of 10 mg warfarin (CYP2C9) and 2 mg midazolam (CYP3A) were administered on Day 1 and Day 14, 0.25 mg digoxin (P‐glycoprotein [P‐gp]) and 10 mg rosuvastatin (breast cancer resistance protein [BCRP]) on Day 3 and Day 16, and 20 mg omeprazole (CYP2C19) on Day 5 and Day 18. Pharmacokinetic (PK) parameters were estimated from samples obtained up to 12 h post dose for zanubrutinib; 24 h for digoxin, omeprazole and midazolam; 48 h for rosuvastatin; and 144 h for warfarin. Results The ratios (%) of geometric least squares means (90% confidence intervals) for the area under the concentration–time curve from time zero to the last quantifiable concentration in the presence/absence of zanubrutinib were 99.80% (97.41–102.2%) for S‐warfarin; 52.52% (48.49–56.88%) for midazolam; 111.3% (103.8–119.3%) for digoxin; 89.45% (78.73–101.6%) for rosuvastatin; and 63.52% (57.40–70.30%) for omeprazole. Similar effects were observed for maximum plasma concentrations. Conclusions Zanubrutinib 320 mg total daily dose had minimal or no effect on the activity of CYP2C9, BCRP and P‐gp, but decreased the systemic exposure of CYP3A and CYP2C19 substrates (mean reduction <50%).
Collapse
Affiliation(s)
- Ying C Ou
- BeiGene USA, Inc., San Mateo, CA, USA
| | | | | | | | - Ta-Kai Li
- BeiGene USA, Inc., San Mateo, CA, USA
| | | | | |
Collapse
|
27
|
Lee S, Lee Y, Kim AH, Yoon S, Lee J, Ji SC, Yoon SH, Lee S, Yu KS, Jang IJ, Cho JY. Urinary metabolic markers reflect on hepatic, not intestinal, CYP3A activity in healthy subjects. Drug Metab Pharmacokinet 2020; 36:100374. [PMID: 33348239 DOI: 10.1016/j.dmpk.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/25/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Intestinal cytochrome P450 3A (CYP3A) plays an important role in oral drug metabolism, but only endogenous metabolic markers for measuring hepatic CYP3A activity were identified. Our study evaluated whether hepatic CYP3A markers reflected intestinal CYP3A activity. An open-label, three-period, six-treatment, one-sequence clinical trial was performed in 16 healthy Korean males. In the control phase, all subjects received a single dose of intravenous (IV) and oral midazolam (1 mg and 5 mg, respectively). Clarithromycin (500 mg) was administered twice daily for 4 days to inhibit hepatic and intestinal CYP3A, and 500 mL of grapefruit juice was given to inhibit intestinal CYP3A. Clarithromycin significantly inhibited total CYP3A activity, and the clearance of IV and apparent clearance of oral midazolam decreased by 0.15- and 0.32-fold, respectively. Grapefruit juice only reduced the apparent clearance of oral midazolam by 0.84-fold, which indicates a slight inhibition of intestinal CYP3A activity. Urinary markers, including 6β-OH-cortisol/cortisol and 6β-OH-cortisone/cortisone, were significantly decreased 0.5-fold after clarithromycin administration but not after grapefruit juice. The fold changes in 6β-OH-cortisol/cortisol and 6β-OH-cortisone/cortisone did not correlate to changes in intestinal availability but did correlate to hepatic availability. In conclusion, endogenous metabolic markers are only useful to measure hepatic, but not intestinal, CYP3A activity.
Collapse
Affiliation(s)
- Soyoung Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Andrew HyoungJin Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Sumin Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Jieon Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Park JE, Shitara Y, Lee W, Morita S, Sahi J, Toshimoto K, Sugiyama Y. Improved Prediction of the Drug-Drug Interactions of Pemafibrate Caused by Cyclosporine A and Rifampicin via PBPK Modeling: Consideration of the Albumin-Mediated Hepatic Uptake of Pemafibrate and Inhibition Constants With Preincubation Against OATP1B. J Pharm Sci 2020; 110:517-528. [PMID: 33058894 DOI: 10.1016/j.xphs.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Pemafibrate (PMF) is highly albumin-bound (>99.8%) and a substrate for hepatic uptake transporters (OATP1B) and CYP enzymes. Here, we developed a PBPK model of PMF to capture drug-drug interactions (DDI) incurred by cyclosporine (CsA) and rifampicin (RIF), the two OATP1B inhibitors. Initial PBPK modeling of PMF utilized in vitro hepatic uptake clearance (PSinf) obtained in the absence of albumin, but failed in capturing the blood PMF pharmacokinetic (PK) profiles. Based on the results that in vitro PSinf of unbound PMF was enhanced in the presence of albumin, we applied the albumin-facilitated dissociation model and the resulting PSinf parameters improved the prediction of the blood PMF PK profiles. In refining our PBPK model toward improved prediction of the observed DDI data (PMF co-administered with single dosing of CsA or RIF; PMF following multiple RIF dosing), we adjusted the previously obtained in vivo OATP1B inhibition constants (Ki,OATP1B) of CsA or RIF for pitavastatin by correcting for substrate-dependency. We also incorporated the induction of OATP1B and CYP enzymes after multiple RIF dosing. Sensitivity analysis informed that the higher gastrointestinal absorption rate constant could further improve capturing the observed DDI data, suggesting the possible inhibition of intestinal ABC transporter(s) by CsA or RIF.
Collapse
Affiliation(s)
- Ji Eun Park
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshihisa Shitara
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Bldg 21 Rm 309, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, S. Korea
| | - Shigemichi Morita
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jasminder Sahi
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi China, 1228 Yan'an Middle Road, Jing'an District, Shanghai, China
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
29
|
de Jong J, Mitselos A, Jurczak W, Cordoba R, Panizo C, Wrobel T, Dlugosz-Danecka M, Jiao J, Sukbuntherng J, Ouellet D, Hellemans P. Ibrutinib does not have clinically relevant interactions with oral contraceptives or substrates of CYP3A and CYP2B6. Pharmacol Res Perspect 2020; 8:e00649. [PMID: 32945596 PMCID: PMC7506988 DOI: 10.1002/prp2.649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Ibrutinib may inhibit intestinal CYP3A4 and induce CYP2B6 and/or CYP3A. Secondary to potential induction, ibrutinib may reduce the exposure and effectiveness of oral contraceptives (OCs). This phase I study evaluated the effect of ibrutinib on the pharmacokinetics of the CYP2B6 substrate bupropion, CYP3A substrate midazolam, and OCs ethinylestradiol (EE) and levonorgestrel (LN). Female patients (N = 22) with B‐cell malignancies received single doses of EE/LN (30/150 μg) and bupropion/midazolam (75/2 mg) during a pretreatment phase on days 1 and 3, respectively (before starting ibrutinib on day 8), and again after ibrutinib 560 mg/day for ≥ 2 weeks. Intestinal CYP3A inhibition was assessed on day 8 (single‐dose ibrutinib plus single‐dose midazolam). Systemic induction was assessed at steady‐state on days 22 (EE/LN plus ibrutinib) and 24 (bupropion/midazolam plus ibrutinib). The geometric mean ratios (GMRs; test/reference) for maximum plasma concentration (Cmax) and area under the plasma concentration‐time curve (AUC) were derived using linear mixed‐effects models (90% confidence interval within 80%‐125% indicated no interaction). On day 8, the GMR for midazolam exposure with ibrutinib coadministration was ≤ 20% lower than the reference, indicating lack of intestinal CYP3A4 inhibition. At ibrutinib steady‐state, the Cmax and AUC of EE were 33% higher than the reference, which was not considered clinically relevant. No substantial changes were noted for LN, midazolam, or bupropion. No unexpected safety findings were observed. A single dose of ibrutinib did not inhibit intestinal CYP3A4, and repeated administration did not induce CYP3A4/2B6, as assessed using EE, LN, midazolam, and bupropion.
Collapse
Affiliation(s)
- Jan de Jong
- Clinical Pharmacology, Janssen Research & Development LLC, San Diego, CA, USA
| | - Anna Mitselos
- Clinical Research Oncology, Janssen Research & Development LLC, Beerse, Belgium
| | - Wojciech Jurczak
- Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland
| | - Raul Cordoba
- Lymphoma Unit, Department of Hematology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain.,Health Research Institute IIS-FJD, Madrid, Spain.,START Madrid, Phase 1 Clinical Trials Unit, Madrid, Spain
| | - Carlos Panizo
- Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Tomasz Wrobel
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | | | - James Jiao
- Clinical Pharmacology, Janssen Research & Development LLC, Raritan, NJ, USA
| | | | - Daniele Ouellet
- Clinical Pharmacology, Janssen Research & Development LLC, Spring House, PA, USA
| | - Peter Hellemans
- Clinical Research Oncology, Janssen Research & Development LLC, Beerse, Belgium
| |
Collapse
|
30
|
Wiebe ST, Huennemeyer A, Kadus W, Goettel M, Jambrecina A, Schultz A, Vinisko R, Schlieker L, Herich L, Mikus G. Midazolam microdosing applied in early clinical development for drug-drug interaction assessment. Br J Clin Pharmacol 2020; 87:178-188. [PMID: 32436239 DOI: 10.1111/bcp.14389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023] Open
Abstract
AIMS We aimed to incorporate a pharmacologically inactive midazolam microdose into early clinical studies for the assessment of CYP3A drug-drug interaction liability. METHODS Three early clinical studies were conducted with substances (Compounds A, B and C) which gave positive CYP3A perpetrator signals in vitro. A 75 μg dose of midazolam was administered alone (baseline CYP3A activity) followed by administration with the highest dose groups tested for each compound on Day 1/3 and Day 14 or Day 17. Midazolam exposure (AUC0-∞ , Cmax ) during administration with the test substances was compared to baseline data via an analysis of variance on log-transformed data. Partial AUC2-4 ratios were also compared to AUC0-∞ ratios using linear regression on log-transformed data. RESULTS Test compound Cmax values exceeded relevant thresholds for drug-drug interaction liability. Midazolam concentrations were quantifiable over the full profiles for all subjects in all studies. Point estimates of the midazolam AUC0-∞ gMean ratios ranged from 108.3 to 127.1% for Compound A, from 93.3 to 114.5% for Compound B, and from 92.0 to 96.7% for the two highest dose groups of Compound C. Cmax gMean ratios were in the same range. Thus, no relevant drug-drug interactions were evident, based on the results of midazolam microdosing. AUC2-4 ratios from these studies were comparable to the AUC0-∞ ratios. CONCLUSION Midazolam microdosing incorporated into early clinical studies is a feasible tool for reducing dedicated drug-drug interaction studies, meaning reduced subject burden. Limited sampling could further reduce subject burden, costs and needed resources.
Collapse
Affiliation(s)
- Sabrina T Wiebe
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Werner Kadus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Markus Goettel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Alen Jambrecina
- CTC North GmbH & Co KG, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Laura Schlieker
- Staburo GmbH, München, Germany on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG
| | - Lena Herich
- Staburo GmbH, München, Germany on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
George J. Metabolism and interactions of antileprosy drugs. Biochem Pharmacol 2020; 177:113993. [PMID: 32339493 DOI: 10.1016/j.bcp.2020.113993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 01/29/2023]
Abstract
Leprosy is a chronic infectious disease caused my Mycobacterium leprae that primarily affects peripheral nervous system and extremities and is prevalent in tropical countries. Treatment for leprosy with multidrug regimens is very effective compared to monotherapy especially in multibacillary cases. The three major antileprosy drugs currently in use are 4, 4'-diaminodiphenyl sulfone (DDS, dapsone), rifampicin, and clofazimine. During multidrug therapy, the potent antibiotic rifampicin induces the metabolism of dapsone, which results in decreased plasma half-life of dapsone and its metabolites. Furthermore, rifampicin induces its own metabolism and decreases its half-life during monotherapy. Rifampicin upregulates several hepatic microsomal drug-metabolizing enzymes, especially cytochrome P450 (CYP) family that in turn induce the metabolism of dapsone. Clofazimine lacks significant induction of any drug-metabolizing enzyme including CYP family and does not interact with dapsone metabolism. Rifampicin does not induce clofazimine metabolism during combination treatment. Administration of dapsone in the acetylated form (acedapsone) can release the drug slowly into circulation up to 75 days and could be useful for the effective treatment of paucibacillary cases along with rifampicin. This review summarizes the major aspects of antileprosy drug metabolism and drug interactions and the role of cytochrome P450 family of drug metabolizing enzymes, especially CYP3A4 during multidrug regimens for the treatment of leprosy.
Collapse
Affiliation(s)
- Joseph George
- Department of Biochemistry, Central Leprosy Teaching and Research Institute, Chengalpattu 603001, Tamil Nadu, India.
| |
Collapse
|
32
|
Van Der Werf TS, Barogui YT, Converse PJ, Phillips RO, Stienstra Y. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol 2020; 13:391-401. [PMID: 32310683 DOI: 10.1080/17512433.2020.1752663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pharmacological treatment of Buruli ulcer (Mycobacterium ulcerans infection; BU) is highly effective, as shown in two randomized trials in Africa. AREAS COVERED We review BU drug treatment - in vitro, in vivo and clinical trials (PubMed: '(Buruli OR (Mycobacterium AND ulcerans)) AND (treatment OR therapy).' We also highlight the pathogenesis of M. ulcerans infection that is dominated by mycolactone, a secreted exotoxin, that causes skin and soft tissue necrosis, and impaired immune response and tissue repair. Healing is slow, due to the delayed wash-out of mycolactone. An array of repurposed tuberculosis and leprosy drugs appears effective in vitro and in animal models. In clinical trials and observational studies, only rifamycins (notably, rifampicin), macrolides (notably, clarithromycin), aminoglycosides (notably, streptomycin) and fluoroquinolones (notably, moxifloxacin, and ciprofloxacin) have been tested. EXPERT OPINION A combination of rifampicin and clarithromycin is highly effective but lesions still take a long time to heal. Novel drugs like telacebec have the potential to reduce treatment duration but this drug may remain unaffordable in low-resourced settings. Research should address ulcer treatment in general; essays to measure mycolactone over time hold promise to use as a readout for studies to compare drug treatment schedules for larger lesions of Buruli ulcer.
Collapse
Affiliation(s)
- Tjip S Van Der Werf
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands.,Pulmonary Diseases & Tuberculosis, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| | - Yves T Barogui
- Ministère De La Sante ́, Programme National Lutte Contre La Lèpre Et l'Ulcère De Buruli , Cotonou, Benin
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research , Baltimore, Maryland, USA
| | - Richard O Phillips
- Kumasi, Ghana And Kwame Nkrumah University of Science and Technology, Komfo Anokye Teaching Hospital , Kumasi, Ghana
| | - Ymkje Stienstra
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| |
Collapse
|
33
|
Wang C, Zhou Y, Gong X, Zheng L, Li Y. In vitro and in situ study on characterization and mechanism of the intestinal absorption of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside. BMC Pharmacol Toxicol 2020; 21:7. [PMID: 31969193 PMCID: PMC6977318 DOI: 10.1186/s40360-020-0384-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/13/2020] [Indexed: 01/29/2023] Open
Abstract
Background 2,3,5,4′-tetrahydroxystilbence-2-O-β-D-glucoside (TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such as anti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis. However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods This study used Caco-2 cell monolayer model and single-pass intestinal perfusion model to explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography. The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro and in situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions It was concluded that the gastrointestinal absorption the most unique active ingredient and considered as the mechanisms of TSG involved processes passive transport and the participation of efflux transporters.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Li Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. .,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China. .,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
34
|
van Dyk M, Kapetas AJ, Hopkins AM, Rodrigues AD, Vourvahis M, Sorich MJ, Rowland A. Validation of a 3-h Sampling Interval to Assess Variability in Cytochrome P450 3A Phenotype and the Impact of Induction and Mechanism-Based Inhibition Using Midazolam as a Probe Substrate. Front Pharmacol 2019; 10:1120. [PMID: 31611799 PMCID: PMC6777419 DOI: 10.3389/fphar.2019.01120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Drug probe phenotyping is used extensively in academic and industry research to evaluate cytochrome P450 (CYP) phenotype in order to account for sources of between- and within- subject variability in metabolic clearance. In terms of application, CYP3A is the most important drug metabolizing enzyme the most frequently studied. Currently, phenotyping studies for CYP3A involve the administration of midazolam and collection of timed blood samples up to 24-48 hours in order to determine an area under the plasma concentration time curve (AUC). The key challenge that limits the use of midazolam-based phenotyping for CYP3A in academic research settings and preclude the use of this approach in a clinical setting is the logistical burden of collecting frequent blood samples for up to 48 h post dose following the administration of a probe drug ± an interacting drug. Aim: The current study sought to validate if a reduced sampling interval could be used to accurately define both between-subject variability in CYP3A phenotype and the magnitude of changes in CYP3A activity due to either induction or mechanism-based inhibition. Methods: The area under the curve (AUC) for midazolam was assessed under baseline, induction (7 days rifampin, 300 mg daily) and, following a washout period of 4 days, mechanism based inhibition (3 days clarithromycin, 250 mg daily) conditions in a cohort of 30 health males. The capacity of normalized reduced sampling interval AUCs measured over 0 to 1, 0 to 2, 0 to 3, and 0 to 4 h to accurately define the AUC0-6 was evaluated with respect to precision (R2 for correlation), bias (slope of normalized correlation), agreement (Bland Altman analysis) and proportional bias (linear regression of Bland Altman parameters). Results: Robust concordance was observed between the AUC calculated from PK collection intervals of 0 to 3 and 0 to 6 h in terms of both the measurement of between-subject variability in midazolam AUC and changes in midazolam AUC due to induction and mechanism-based inhibition of CYP3A4. Conclusion: On this basis, it is proposed that a 3-h assessment of midazolam AUC (AUC0-3) represents a viable strategy to reduce the logistical burden associated with the assessment of CYP3A phenotype.
Collapse
Affiliation(s)
- Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Asha J Kapetas
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - A David Rodrigues
- ADME Sciences, Medicine Design, Pfizer Inc, Groton, CT, United States
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, NY, United States
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
35
|
Ramsden D, Fung C, Hariparsad N, Kenny JR, Mohutsky M, Parrott NJ, Robertson S, Tweedie DJ. Perspectives from the Innovation and Quality Consortium Induction Working Group on Factors Impacting Clinical Drug-Drug Interactions Resulting from Induction: Focus on Cytochrome 3A Substrates. Drug Metab Dispos 2019; 47:1206-1221. [PMID: 31439574 DOI: 10.1124/dmd.119.087270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
A recent publication from the Innovation and Quality Consortium Induction Working Group collated a large clinical data set with the goal of evaluating the accuracy of drug-drug interaction (DDI) prediction from in vitro data. Somewhat surprisingly, comparison across studies of the mean- or median-reported area under the curve ratio showed appreciable variability in the magnitude of outcome. This commentary explores the possible drivers of this range of outcomes observed in clinical induction studies. While recommendations on clinical study design are not being proposed, some key observations were informative during the aggregate analysis of clinical data. Although DDI data are often presented using median data, individual data would enable evaluation of how differences in study design, baseline expression, and the number of subjects contribute. Since variability in perpetrator pharmacokinetics (PK) could impact the overall DDI interpretation, should this be routinely captured? Maximal induction was typically observed after 5-7 days of dosing. Thus, when the half-life of the inducer is less than 30 hours, are there benefits to a more standardized study design? A large proportion of CYP3A4 inducers were also CYP3A4 inhibitors and/or inactivators based on in vitro data. In these cases, using CYP3A selective substrates has limitations. More intensive monitoring of changes in area under the curve over time is warranted. With selective CYP3A substrates, the net effect was often inhibition, whereas less selective substrates could discern induction through mechanisms not susceptible to inhibition. The latter included oral contraceptives, which raise concerns of reduced efficacy following induction. Alternative approaches for modeling induction, such as applying biomarkers and physiologically based pharmacokinetic modeling (PBPK), are also considered. SIGNIFICANCE STATEMENT: The goal of this commentary is to stimulate discussion on whether there are opportunities to optimize clinical drug-drug interaction study design. The overall aim is to reduce, understand and contextualize the variability observed in the magnitude of induction across reported clinical studies. A large clinical CYP3A induction dataset was collected and further analyzed to identify trends and gaps. Reporting individual victim PK data, characterizing perpetrator PK and including additional PK assessments for mixed-mechanism perpetrators may provide insights into how these factors impact differences observed in clinical outcomes. The potential utility of biomarkers and PBPK modeling are discussed in considering future directions.
Collapse
Affiliation(s)
- Diane Ramsden
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Conrad Fung
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Niresh Hariparsad
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Jane R Kenny
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Michael Mohutsky
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Neil J Parrott
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Sarah Robertson
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Donald J Tweedie
- Alnylam Pharmaceuticals, Cambridge, Massachusetts (D.R.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H., S.R.); Genentech, South San Francisco, California (J.R.K.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Roche Innovation Center, Basel, Switzerland (N.J.P.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| |
Collapse
|