1
|
Jorgensen MM, de la Puente P. Leukemia Inhibitory Factor: An Important Cytokine in Pathologies and Cancer. Biomolecules 2022; 12:biom12020217. [PMID: 35204717 PMCID: PMC8961628 DOI: 10.3390/biom12020217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a member of the IL-6 cytokine family and is expressed in almost every tissue type within the body. Although LIF was named for its ability to induce differentiation of myeloid leukemia cells, studies of LIF in additional diseases and solid tumor types have shown that it has the potential to contribute to many other pathologies. Exploring the roles of LIF in normal physiology and non-cancer pathologies can give important insights into how it may be dysregulated within cancers, and the possible effects of this dysregulation. Within various cancer types, LIF expression has been linked to hallmarks of cancer, such as proliferation, metastasis, and chemoresistance, as well as overall patient survival. The mechanisms behind these effects of LIF are not well understood and can differ between different tissue types. In fact, research has shown that while LIF may promote malignancy progression in some solid tumors, it can have anti-neoplastic effects in others. This review will summarize current knowledge of how LIF expression impacts cellular function and dysfunction to help reveal new adjuvant treatment options for cancer patients, while also revealing potential adverse effects of treatments targeting LIF signaling.
Collapse
Affiliation(s)
- Megan M Jorgensen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- MD/PhD Program, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| |
Collapse
|
2
|
Li M, Viswanadhapalli S, Santhamma B, Pratap UP, Luo Y, Liu J, Altwegg KA, Tang W, Liu Z, Li X, Ebrahimi B, Yan H, Zou Y, Konda S, Sareddy GR, Xu Z, Chen Y, Rao MK, Brenner AJ, Kaklamani VG, Tekmal RR, Ahmed G, Raj GV, Nickisch KJ, Nair HB, Vadlamudi RK. LIFR inhibition enhances the therapeutic efficacy of HDAC inhibitors in triple negative breast cancer. Commun Biol 2021; 4:1235. [PMID: 34716410 PMCID: PMC8556368 DOI: 10.1038/s42003-021-02741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Hunan, 410008, P.R. China
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | | | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan, 410008, P.R. China
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, P.R. China
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, P.R. China
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Hui Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet K Rao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Hematology & Oncology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Virginia G Kaklamani
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Araki T, Tone Y, Yamamoto M, Kameda H, Ben-Shlomo A, Yamada S, Takeshita A, Yamamoto M, Kawakami Y, Tone M, Melmed S. Two Distinctive POMC Promoters Modify Gene Expression in Cushing Disease. J Clin Endocrinol Metab 2021; 106:e3346-e3363. [PMID: 34061962 PMCID: PMC8372657 DOI: 10.1210/clinem/dgab387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Mechanisms underlying pituitary corticotroph adenoma adrenocorticotropin (ACTH) production are poorly understood, yet circulating ACTH levels closely correlate with adenoma phenotype and clinical outcomes. OBJECTIVE We characterized the 5' ends of proopiomelanocortin (POMC) gene transcripts, which encode the precursor polypeptide for ACTH, in order to investigate additional regulatory mechanisms of POMC gene transcription and ACTH production. METHODS We examined 11 normal human pituitary tissues, 32 ACTH-secreting tumors, as well as 6 silent corticotroph adenomas (SCAs) that immunostain for but do not secrete ACTH. RESULTS We identified a novel regulatory region located near the intron 2/exon 3 junction in the human POMC gene, which functions as a second promoter and an enhancer. In vitro experiments demonstrated that CREB binds the second promoter and regulates its transcriptional activity. The second promoter is highly methylated in SCAs, partially demethylated in normal pituitary tissue, and highly demethylated in pituitary and ectopic ACTH-secreting tumors. In contrast, the first promoter is demethylated in all POMC-expressing cells and is highly demethylated only in pituitary ACTH-secreting tumors harboring the ubiquitin-specific protease 8 (USP8) mutation. Demethylation patterns of the second promoter correlate with clinical phenotypes of Cushing disease. CONCLUSION We identified a second POMC promoter regulated by methylation status in ACTH-secreting pituitary tumors. Our findings open new avenues for elucidating subcellular regulation of the hypothalamic-pituitary-adrenal axis and suggest the second POMC promoter may be a target for therapeutic intervention to suppress excess ACTH production.
Collapse
Affiliation(s)
- Takako Araki
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yukiko Tone
- Pacific Heart, Lung, & Blood Institute, Los Angeles, California, USA
| | - Masaaki Yamamoto
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hiraku Kameda
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shozo Yamada
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Akira Takeshita
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masahide Tone
- Pacific Heart, Lung, & Blood Institute, Los Angeles, California, USA
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Correspondence: Shlomo Melmed, MD, Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Plaza North, Room 2015, Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Zhu Z, Zhou X, Chen D, Lu K, Lu Y. Effects of feeder cells on proliferation of inducible pluripotent stem cells in chicken. Biotech Histochem 2021; 97:159-167. [PMID: 34024235 DOI: 10.1080/10520295.2021.1918767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although inducible pluripotent stem cells (iPSC) have been identified in poultry, the induction efficiency is low, because different culture media, feeder cells and feeder layer treatments affect the efficiency of somatic cell reprogramming. We investigated improvement of the feeder culture system for induction of chicken iPSC by comparing the effects of different types and treatments of feeder cells on the growth and proliferation of chicken iPSC. Mouse embryo fibroblasts (MEF), but not Sandoz inbred mouse-derived thioguanine-resistant and ouabain-buffalo rat cells, were suitable feeder cells that supported proliferation of chicken iPSC. Institute of Cancer Research (ICR) mice, but not Kunming mice, were suitable for preparing MEF that support cell proliferation. Also, MEF feeder cells that had been inactivated by mitomycin C were effective. Leukemia inhibitory factor was not required for chicken iPSC culture when MEF feeder cells were used. The optimal feeder culture system for growth and proliferation of chicken iPSC consisted of MEF feeder cells derived from ICR mice that were inactivated by mitomycin C combined with embryonic germ cell culture medium.
Collapse
Affiliation(s)
- Ziying Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Xueliang Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Dongyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| |
Collapse
|
5
|
Guo T, Gupta A, Yu J, Granados JZ, Gandhi AY, Evers BM, Iyengar P, Infante RE. LIFR-α-dependent adipocyte signaling in obesity limits adipose expansion contributing to fatty liver disease. iScience 2021; 24:102227. [PMID: 33748712 PMCID: PMC7970148 DOI: 10.1016/j.isci.2021.102227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023] Open
Abstract
The role of chronic adipose inflammation in diet-induced obesity (DIO) and its sequelae including fatty liver disease remains unclear. Leukemia inhibitory factor (LIF) induces JAK-dependent adipocyte lipolysis and altered adipo/cytokine expression, suppressing in vivo adipose expansion in normal and obese mouse models. To characterize LIF receptor (LIFR-α)-dependent cytokine signaling in DIO, we created an adipocyte-specific LIFR knockout mouse model (Adipoq-Cre;LIFRfl/fl). Differentiated adipocytes derived from this model blocked LIF-induced triacylglycerol lipolysis. Adipoq-Cre;LIFRfl/fl mice on a high-fat diet (HFD) displayed reduced adipose STAT3 activation, 50% expansion in adipose, 20% body weight increase, and a 75% reduction in total hepatic triacylglycerides compared with controls. To demonstrate that LIFR-α signals adipocytes through STAT3, we also created an Adipoq-Cre;STAT3fl/fl model that showed similar findings when fed a HFD as Adipoq-Cre;LIFRfl/fl mice. These findings establish the importance of obesity-associated LIFR-α/JAK/STAT3 inflammatory signaling in adipocytes, blocking further adipose expansion in DIO contributing to ectopic liver triacylglyceride accumulation. LIFR-α signaling induces adipocyte lipolysis, restricting adipose expansion in DIO LIFR-α signaling requires STAT3 for adipocyte lipolysis LIFR-α/JAK/STAT3 lipolysis signaling in adipocytes promotes hepatic steatosis
Collapse
Affiliation(s)
- Tong Guo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Gupta
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinhai Yu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jorge Z Granados
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA
| | - Aakash Y Gandhi
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rodney E Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Zheng D, Zhu Y, Shen Y, Xiao S, Yang L, Xiang Y, Dai X, Hu W, Zhou B, Liu Z, Zhao H, Zhao C, Huang X, Wang L. Cynaropicrin Shows Antitumor Progression Potential in Colorectal Cancer Through Mediation of the LIFR/STATs Axis. Front Cell Dev Biol 2021; 8:605184. [PMID: 33505963 PMCID: PMC7829511 DOI: 10.3389/fcell.2020.605184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second deadliest malignant disease in the world and the leukemia inhibitory factor receptor/signal transducers and activators of transcriptions (LIFR/STATs) signaling axis plays an important role in the molecular biology of CRC. METHODS Cell function tests were performed to observe the inhibitory effect of cynaropicrin on human CRC cells (RKO, HCT116, and DLD-1). Expression levels of LIFR, P-STAT3, P-STAT4, and apoptotic proteins were detected by Western blotting. Immunoprecipitation confirmed the presence of LIFR/STAT3/STAT4 complex. Cell immunofluorescence assay was used to observe the subcellular localization of STAT3 and STAT4. In vivo efficacy of cynaropicrin was evaluated by a xenotransplantation model in nude mice. RESULTS Cynaropicrin significantly reduced the survival ability of human CRC cells and promoted apoptosis in a dose-dependent manner. Western blotting results suggested that the antitumor effects of cynaropicrin might be mediated by inhibition of the LIFR/STATs axis. Cynaropicrin reduced the formation of STAT3/STAT4 heterodimers and blocked their entry into the nucleus. Cynaropicrin also suppressed tumor growth in the xenograft model. CONCLUSION The results showed that cynaropicrin exerted a strong inhibitory effect on CRC in vitro and in vivo. Our study concluded that cynaropicrin has potential application prospects in the field of anti-CRC therapy.
Collapse
Affiliation(s)
- Dandan Zheng
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yu Zhu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yili Shen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Sisi Xiao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Youqun Xiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuanxuan Dai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wanle Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bin Zhou
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Santos GC, Silva DN, Fortuna V, Silveira BM, Orge ID, de Santana TA, Sampaio GL, Paredes BD, Ribeiro-Dos-Santos R, Soares MBP. Leukemia Inhibitory Factor (LIF) Overexpression Increases the Angiogenic Potential of Bone Marrow Mesenchymal Stem/Stromal Cells. Front Cell Dev Biol 2020; 8:778. [PMID: 32923442 PMCID: PMC7456813 DOI: 10.3389/fcell.2020.00778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the ability to secrete bioactive molecules, exerting multiple biological effects, such as tissue regeneration, reduction of inflammation, and neovascularization. The therapeutic potential of MSCs can be increased by genetic modification to overexpress cytokines and growth factors. Here we produced mouse MSCs overexpressing human leukemia inhibitory factor (LIF) to assess their proangiogenic potential in vitro and in vivo. Mouse bone marrow-derived MSCs were transduced by using a second-generation lentiviral system to express human LIF. Leukemia inhibitory factor expression was confirmed by RT-qPCR and by ELISA, allowing the quantification of the transcript and secreted protein, respectively. Flow cytometry analysis and trilineage differentiation assay showed that the MSC_LIF cell line maintained the immunophenotype and a multipotency characteristic of MSCs. The immunosuppressive activity of MSC_LIF was confirmed using a lymphoproliferation assay. Moreover, gene expression analysis demonstrated upregulation of genes coding for strategic factors in the neovascularization process, such as angiogenin, IL-8, MCP-1, and VEGF, and for the perivascular cell markers αSMA, Col4a1, SM22, and NG2. To evaluate the pro-angiogenic potential of MSC_LIF, we first tested its effects on endothelial cells obtained from umbilical vein in a scratch wound healing assay. Conditioned medium (CM) from MSC_LIF promoted a significant increase in cell migration compared to CM from control MSC. Additionally, in vitro tube formation of endothelial cells was increased by the presence of MSC_LIF, as shown in microvessel sprouting in aortic ring cultures. Finally, an in vivo Matrigel plug assay was performed, showing that MSC_LIF were more potent in promoting in vivo angiogenesis and tissue vascularization than control MSCs. In conclusion, LIF overexpression is a promising strategy to increase the proangiogenic potential of MSCs and sets precedents for future investigations of their potential applications for the treatment of ischemic diseases and tissue repair.
Collapse
Affiliation(s)
- Girlaine Café Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Vitor Fortuna
- Health Sciences Institute, Federal University of Bahia, Salvador, Brazil
| | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | | | | | - Ricardo Ribeiro-Dos-Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
An J, Li L, Zhang X, Liu L, Wang L, Zhang X. A clinical and basic study of optimal endometrial preparation protocols for patients with infertility undergoing frozen-thawed embryo transfer. Exp Ther Med 2020; 20:2191-2199. [PMID: 32765695 PMCID: PMC7401479 DOI: 10.3892/etm.2020.8914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/17/2020] [Indexed: 11/05/2022] Open
Abstract
The optimal protocol for endometrial preparation in patients with infertility remains unclear. Due to this, the current study retrospectively analyzed 1,589 patients with infertility and regular menstrual cycles to assess reproductive outcomes per embryo transferred and per embryo transfer (ET) cycle following the transfer of frozen-thawed embryos (FET) in a modified natural cycle (mNC) or hormone therapy cycle (HT) with or without gonadotropin-releasing hormone agonist (GnRHa)-induced pituitary suppression. The molecular mechanisms involved were also studied using tissues from endometrial biopsies. Patients who underwent FET were assigned to 5 groups as follows: Group A underwent a mNC (n=276); group B (n=338) received estradiol (E2) and progesterone (P4); group C received 1 cycle of GnRHa, E2 and P4 (n=323); group D received 2 cycles of GnRHa, E2 and P4 (n=329); and group E received 3 cycles of GnRHa, E2 and P4 (n=323). Tissues from endometrial biopsies of 91 patients performed on the day of ET were tested for endometrial receptivity marker mRNA expression and microRNA (miR)-223-3p mRNA. Furthermore, endometrial stromal cells (ESCs) were used for an in-depth study of the molecular mechanisms involved. Among the 5 groups of patients, implantation rates, clinical pregnancy rates and live birth rates were not significantly different. However, endometrial receptivity was enhanced in group E when compared with groups A-D, which was associated with endometrial leukemia inhibitory factor (LIF), osteopontin, vascular endothelial growth factor, integrin β3 and homeobox gene 10 and 11 mRNA upregulation, and miR-223-3p miRNA downregulation. Transfection of ESCs with an miR-223-3p mimic significantly reduced levels of LIF mRNA and protein. In addition, pre-treating ESCs with GnRHa upregulated mRNA and protein expression of the decidualization markers prolactin and insulin-like growth factor binding protein-1 in a time-dependent manner. In conclusion, these results indicated that HT with GnRHa may be a potential endometrial preparation protocol for FET.
Collapse
Affiliation(s)
- Junxia An
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lifei Li
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiang Zhang
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lin Liu
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Liyan Wang
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xuehong Zhang
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
9
|
Marceca GP, Londhe P, Calore F. Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options. Front Oncol 2020; 10:298. [PMID: 32195193 PMCID: PMC7064558 DOI: 10.3389/fonc.2020.00298] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome characterized by systemic inflammation, uncontrolled weight loss and dramatic metabolic alterations. This includes myofibrillar protein breakdown, increased lipolysis, insulin resistance, elevated energy expediture, and reduced food intake, hence impairing the patient's response to anti-cancer therapies and quality of life. While a decade ago the syndrome was considered incurable, over the most recent years much efforts have been put into the study of such disease, leading to the development of potential therapeutic strategies. Several important improvements have been reached in the management of CC from both the diagnostic-prognostic and the pharmacological viewpoint. However, given the heterogeneity of the disease, it is impossible to rely only on single variables to properly treat patients presenting this metabolic syndrome. Moreover, the cachexia symptoms are strictly dependent on the type of tumor, stage and the specific patient's response to cancer therapy. Thus, the attempt to translate experimentally effective therapies into the clinical practice results in a great challenge. For this reason, it is of crucial importance to further improve our understanding on the interplay of molecular mechanisms implicated in the onset and progression of CC, giving the opportunity to develop new effective, safe pharmacological treatments. In this review we outline the recent knowledge regarding cachexia mediators and pathways involved in skeletal muscle (SM) and adipose tissue (AT) loss, mainly from the experimental cachexia standpoint, then retracing the unimodal treatment options that have been developed to the present day.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Viswanadhapalli S, Luo Y, Sareddy GR, Santhamma B, Zhou M, Li M, Ma S, Sonavane R, Pratap UP, Altwegg KA, Li X, Chang A, Chávez-Riveros A, Dileep KV, Zhang KYJ, Pan X, Murali R, Bajda M, Raj GV, Brenner AJ, Manthati V, Rao MK, Tekmal RR, Nair HB, Nickisch KJ, Vadlamudi RK. EC359: A First-in-Class Small-Molecule Inhibitor for Targeting Oncogenic LIFR Signaling in Triple-Negative Breast Cancer. Mol Cancer Ther 2019; 18:1341-1354. [PMID: 31142661 DOI: 10.1158/1535-7163.mct-18-1258] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patient-derived primary TNBC explants. EC359 exhibits distinct pharmacologic advantages, including oral bioavailability, and in vivo stability. Collectively, these data support EC359 as a novel targeted therapeutic that inhibits LIFR oncogenic signaling.See related commentary by Shi et al., p. 1337.
Collapse
Affiliation(s)
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Department of General Surgery, Xiangya Hospital, Hunan, China
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Gastroenterology, Second Xiangya Hospital, Hunan, China
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Hunan, China
| | - Shihong Ma
- UT Southwestern Medical Center, Dallas, Texas
| | | | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | | | - Kalarickal V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa, Japan
| | - Xinlei Pan
- Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Marek Bajda
- Jagiellonian University Medical College, Krakow, Poland
| | | | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Manjeet K Rao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | | | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Guizhi Decoction () Inhibits Cholinergic Transdifferentiation by Regulating Imbalance of NGF and LIF in Salt-Sensitive Hypertensive Heart Failure Rats. Chin J Integr Med 2019; 26:188-196. [PMID: 31111424 DOI: 10.1007/s11655-019-2706-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To observe the imbalance of anatomical and functional innervation factors of sympathetic nerves, nerve growth factor (NGF) and leukemia inhibitory factor (LIF), in salt-sensitive hypertensive heart failure rats and to explore the effects of treatment with Guizhi Decoction () on sympathetic remodeling by inhibiting cholinergic transdifferentiation. METHODS SS-13BN and Dahl salt-sensitive (DS) rats were divided into 3 groups: SS-13BN group (control group, n=9), DS group (model group, n=9) and GS group (Guizhi Decoction, n=9). After 10 weeks of a high-salt diet, the GS group rats were given Guizhi Decoction and other two groups were given saline at an equal volume as a vehicle. After 4 weeks' intragastric administration, rats were executed to detect the relevant indicators. Echocardiography and plasma n-terminal pro-B type natriuretic peptide (NT-proBNP) levels were used to assess cardiac function. Noradrenaline (NA) levels in the plasma and myocardium were detected to evaluate the sympathetic function. NGF and LIF expression were detected in the myocardium by Western blot or quantitative real-time PCR. Double immunofluorescence or Western blot was used to detect tyrosine hydroxylase (TH), choline acetyltransferase (CHAT) and growth associated protein 43 (GAP43) in order to reflect anatomical and functional changes of sympathetic nerves. RESULTS DS group had anatomical and functional deterioration of sympathetic nerves in the decompensation period of heart failure compared with SS-13BN group. Compared with the DS group, Guizhi Decoction significantly decreased the expression of LIF mRNA/protein (P<0.01), increased the expression of NGF (P<0.05 or P<0.01), enhanced the levels of TH+/GAP43+ and TH+/CHAT+ positive nerve fibers (P<0.01), and improved the protein expression of TH and GAP43 in left ventricle, but had no effect on CHAT (P>0.05). Guizhi Decoction inhibited inflammatory infiltration and collagen deposition of myocardial injury, increased the content of myocardial NA (P<0.05), reduced the plasma NA level (P<0.01), improved cardiac function (P<0.01), and improved weight and blood pressure to some extent (P<0.05), compared with DS group. CONCLUSIONS Guizhi Decoction could inhibit cholinergic transdifferentiation of sympathetic nerves, improve the anatomical and functional denervation of sympathetic nerves, and delay the progression of decompensated heart failure. The mechanism may be associated with the correction of the imbalance of NGF and LIF.
Collapse
|
12
|
Liu SC, Hsu T, Chang YS, Chung AK, Jiang SS, OuYang CN, Yuh CH, Hsueh C, Liu YP, Tsang NM. Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling. Nat Commun 2018; 9:5105. [PMID: 30504771 PMCID: PMC6269507 DOI: 10.1038/s41467-018-07660-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
Metastasis remains a clinically unsolved issue in nasopharyngeal carcinoma. Here, we report that higher levels of cytoplasmic leukemia inhibitory factor (LIF) and LIF receptor are correlated with poorer metastasis/recurrence-free survival. Further, single nucleotide variations and signal peptide mutation of LIF are identified in NPC. Cytoplasmic LIF reprograms the invasive mode from collective to mesenchymal migration via acquisition of EMT and invadopodia-associated characteristics. Higher cytoplasmic LIF enhances cancer vascular dissemination and local invasion mechanistically through modulation of YAP1-FAK/PXN signaling. Immunohistochemical analyses of NPC biopsies reveal a positive correlation of cytoplasmic LIF expression with focal adhesion kinases. Pharmaceutical intervention with AZD0530 markedly reverses LIF-mediated cancer dissemination and local invasion through promotion of cytoplasmic accumulation of YAP1 and suppression of focal adhesion kinases. Given the significant role of LIF/YAP1-focal adhesion signaling in cancer dissemination, targeting of this pathway presents a promising opportunity to block metastasis. Molecular pathways regulating nasopharyngeal carcinoma (NPC) metastasis are unclear. Here they report higher levels of cytoplasmic leukemia inhibitory factor (cLIF) and LIF receptor (LIFR) to correlate with higher metastasis in NPC patients, and show cLIF to promote NPC metastasis and vascular dissemination via the YAP1-FAK/PXN axis.
Collapse
Affiliation(s)
- Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, 300, Zhongda Rd., Jhongli Dist., 32001, Taoyuan City, Taiwan.
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300, Zhongda Rd., Jhongli Dist., 32001, Taoyuan City, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, 259, Wenhua 1st Rd., Guishan Dist., 33302, Taoyuan City, Taiwan
| | - An-Ko Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, 259, Wenhua 1st Rd., Guishan Dist., 33302, Taoyuan City, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Rd., Zhunan, 35053, Miaoli County, Taiwan
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, 259, Wenhua 1st Rd., Guishan Dist., 33302, Taoyuan City, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Rd., Zhunan, 35053, Miaoli County, Taiwan
| | - Chuen Hsueh
- Department of Pathology, Chang Gung Memorial Hospital at Lin-Kou, 5 Fuxing St., Guishan Dist., 333, Taoyuan City, Taiwan
| | - Ya-Ping Liu
- Pathology Core of the Molecular Medicine Research Center, Chang Gung University, 5, Fuxing St., Guishan Dist., 333, Taoyuan City, Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, Chang Gung Memorial Hospital and University at Lin-Kou, 5, Fuxing St., Guishan Dist., 333, Taoyuan City, Taiwan.
| |
Collapse
|
13
|
Huang C, Sun H, Wang Z, Liu Y, Cheng X, Liu J, Jiang R, Zhang X, Zhen X, Zhou J, Chen L, Ding L, Yan G, Jiang Y. Increased Krüppel-like factor 12 impairs embryo attachment via downregulation of leukemia inhibitory factor in women with recurrent implantation failure. Cell Death Discov 2018; 4:23. [PMID: 30109142 PMCID: PMC6079092 DOI: 10.1038/s41420-018-0088-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent implantation failure (RIF) caused by various etiological factors remains a challenge for fertility clinicians using assisted reproductive technology (ART) worldwide. Dysregulation of leukemia inhibitory factor (LIF) in the endometria of women with RIF is involved in impaired endometrial receptivity and embryo adhesion. However, the mechanism through which LIF expression is regulated in women with RIF is still poorly understood. Our previous study noted that the abnormally increased endometrial Krüppel-like factor 12 (KLF12) in RIF women led to impaired decidualization and embryo implantation. Here, we further found that KLF12 inhibited embryo adhesion in vivo and in vitro by repressing LIF expression. Mechanistically, KLF12 bound to conserved sites (CAGTGGG, −6771 to −6765 and −7115 to −7109) within the LIF promoter region and repressed LIF transcription directly. Exogenous LIF significantly reversed the KLF12-mediated repression of BeWo spheroid adhesion. KLF12 expression was reduced significantly in Ishikawa cells treated with progestogen, which was due to the activation of Akt signaling. These findings may provide novel potential therapeutic regimens for patients with RIF and disrupted endometrial receptivity.
Collapse
Affiliation(s)
- Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Yang Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xi Cheng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xindong Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Linjun Chen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| |
Collapse
|
14
|
Arora GK, Gupta A, Narayanan S, Guo T, Iyengar P, Infante RE. Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. JCI Insight 2018; 3:121221. [PMID: 30046014 DOI: 10.1172/jci.insight.121221] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
Cachexia syndrome consists of adipose and muscle loss, often despite normal food intake. We hypothesized that cachexia-associated adipose wasting is driven in part by tumor humoral factors that induce adipocyte lipolysis. We developed an assay to purify secreted factors from a cachexia-inducing colon cancer line that increases lipolysis in adipocytes and identified leukemia inhibitory factor (LIF) by mass spectrometry. Recombinant LIF induced lipolysis in vitro. Peripheral LIF administered to mice caused >50% loss of adipose tissue and >10% reduction in body weight despite only transient hypophagia due to decreasing leptin. LIF-injected mice lacking leptin (ob/ob) resulted in persistent hypophagia and loss of adipose tissue and body weight. LIF's peripheral role of initiating lipolysis in adipose loss was confirmed in pair-fed ob/ob mouse studies. Our studies demonstrate that (a) LIF is a tumor-secreted factor that promotes cachexia-like adipose loss when administered peripherally, (b) LIF directly induces adipocyte lipolysis, (c) LIF has the ability to sustain adipose and body weight loss through an equal combination of peripheral and central contributions, and (d) LIF's central effect is counterbalanced by decreased leptin signaling, providing insight into cachexia's wasting, despite normophagia.
Collapse
Affiliation(s)
- Gurpreet K Arora
- Department of Molecular Genetics.,Department of Radiation Oncology
| | | | | | - Tong Guo
- Department of Molecular Genetics
| | - Puneeth Iyengar
- Department of Radiation Oncology.,Harold C. Simmons Comprehensive Cancer Center
| | - Rodney E Infante
- Department of Molecular Genetics.,Department of Internal Medicine, and.,Center for Human Nutrition, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Cheng J, Rosario G, Cohen TV, Hu J, Stewart CL. Tissue-Specific Ablation of the LIF Receptor in the Murine Uterine Epithelium Results in Implantation Failure. Endocrinology 2017; 158:1916-1928. [PMID: 28368537 PMCID: PMC5460932 DOI: 10.1210/en.2017-00103] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
The cytokine leukemia inhibitory factor (LIF) is essential for rendering the uterus receptive for blastocyst implantation. In mice, LIF receptor expression (LIFR) is largely restricted to the uterine luminal epithelium (LE). LIF, secreted from the endometrial glands (GEs), binds to the LIFR, activating the Janus kinase-signal transducer and activation of transcription (STAT) 3 (Jak-Stat3) signaling pathway in the LE. JAK-STAT activation converts the LE to a receptive state so that juxtaposed blastocysts begin to implant. To specifically delete the LIFR in the LE, we derived a line of mice in which Cre recombinase was inserted into the endogenous lactoferrin gene (Ltf-Cre). Lactoferrin expression in the LE is induced by E2, and we demonstrate that Cre recombinase activity is restricted to the LE and GE. To determine the requirement of the LIFR in implantation, we derived an additional mouse line carrying a conditional (floxed) Lifrflx/flx gene. Crossing Ltf-Cre mice with Lifrflx/flx mice generated Lifrflx/Δ:LtfCre/+ females that were overtly normal but infertile. Many of these females, despite repeated matings, did not become pregnant. Unimplanted blastocysts were recovered from the Lifrflx/Δ:LtfCre/+ uteri and, when transferred to wild-type recipients, implanted normally, indicating that uterine receptivity rather than the embryo's competency is compromised. The loss of Lifr results in both the failure for STAT3 to translocate to the LE nuclei and a reduction in the expression of the LIF regulated gene Msx1 that regulates uterine receptivity. These results reveal that uterine expression of the LIFR is essential for embryo implantation and further define the components of the LIF signaling pathway necessary for effective implantation.
Collapse
Affiliation(s)
- JrGang Cheng
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | | | - Tatiana V. Cohen
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Jianbo Hu
- Cancer and Developmental Biology Laboratory, Division of Basic Science, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | | |
Collapse
|
16
|
Guo H, Cheng Y, Martinka M, McElwee K. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma. Oncotarget 2016; 6:25484-98. [PMID: 26329521 PMCID: PMC4694846 DOI: 10.18632/oncotarget.4688] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022] Open
Abstract
Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan–Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Magdalena Martinka
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Hu Q, Huang C, Wang Y, Wu R. Expression of leukemia inhibitory factor in the rat retina following acute ocular hypertension. Mol Med Rep 2015; 12:6577-83. [PMID: 26352383 PMCID: PMC4626123 DOI: 10.3892/mmr.2015.4287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/27/2015] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the expression of leukemia inhibitory factor (LIF) and its downstream signaling pathways in the rat retina following acute ocular hypertension. The intraocular pressure of the rats was elevated to 110 mmHg for 1 h by infusing the anterior chamber with normal saline. The retinal tissues were obtained 12 h, 24 h, and 2, 3 and 7 days after termination of the ocular hypertension. Hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed to assess the morphological changes and the apoptosis of retinal cells, respectively. Quantification of the retinal ganglion cells (RGCs) was performed using fluorogold retrograde (FG) staining. The expression levels of LIF, LIF receptor (LIFR), signal transducers and activators of transcription 3 (STAT3), phosphorylated STAT3 (P-STAT3), Akt, phosphorylated-Akt (P-Akt), extracellular signal-regulated kinase (ERK) and phosphorylated ERK (P-ERK) were determined at different time-points following acute ocular hypertension using western blot analysis. Reverse transcription-quantitative polymerase chain reaction was performned to detect the mRNA expression levels of LIF and LIFR. The results revealed that 12 h, 24 h, 2, 3 and 7 days after reperfusion, the thickness of the inner nuclear layer and the inner plexiform layer was decreased, with a significant reduction in the number of RGCs, as determined using TUNEL and FG staining. The expression levels of LIF and LIFR were increased following acute ocular hypertension. At 12 h post-retinal reperfusion, the expression levels of P-STAT3 and P-Akt were significantly upregulated, while the expression of P-ERK was decreased. The changes in the expression levels of LIF and LIFR suggested that LIF may be important in the process of degeneration/protection following retinal ischemia induced by acute ocular hypertension, via activation of the Janus kinase/STAT and Akt signaling pathways.
Collapse
Affiliation(s)
- Qianqian Hu
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| | - Changquan Huang
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| | - Yao Wang
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| | - Renyi Wu
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
18
|
Pawar S, Laws MJ, Bagchi IC, Bagchi MK. Uterine Epithelial Estrogen Receptor-α Controls Decidualization via a Paracrine Mechanism. Mol Endocrinol 2015; 29:1362-74. [PMID: 26241389 DOI: 10.1210/me.2015-1142] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Steroid hormone-regulated differentiation of uterine stromal cells, known as decidualization, is essential for embryo implantation. The role of the estrogen receptor-α (ESR1) during this differentiation process is unclear. Development of conditional Esr1-null mice showed that deletion of this gene in both epithelial and stromal compartments of the uterus leads to a complete blockade of decidualization, indicating a critical role of ESR1 during this process. To further elucidate the cell type-specific function of ESR1 in the uterus, we created WE(d/d) mice in which Esr1 is ablated in uterine luminal and glandular epithelia but is retained in the stroma. Uteri of WE(d/d) mice failed to undergo decidualization, indicating that epithelial ESR1 contributes to stromal differentiation via a paracrine mechanism. We noted markedly reduced production of the leukemia inhibitory factor (LIF) in WE(d/d) uteri. Supplementation with LIF restored decidualization in WE(d/d) mice. Our study indicated that LIF acts synergistically with progesterone to induce the expression of Indian hedgehog (IHH) in uterine epithelium and its receptor patched homolog 1 in the stroma. IHH then induces the expression of chicken ovalbumin upstream promoter-transcription factor II, a transcription factor that promotes stromal differentiation. To address the mechanism by which LIF induces IHH expression, we used mice lacking uterine epithelial signal transducer and activator of transcription 3, a well-known mediator of LIF signaling. Our study revealed that LIF-mediated induction of IHH occurs without the activation of epithelial signal transducer and activator of transcription 3 but uses an alternate pathway involving the activation of the ERK1/2 kinase. Collectively our results provide unique insights into the paracrine mechanisms by which ESR1 directs epithelial-stromal dialogue during pregnancy establishment.
Collapse
Affiliation(s)
- S Pawar
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M J Laws
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - I C Bagchi
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M K Bagchi
- Departments of Molecular and Integrative Physiology (S.P., M.K.B.) and Comparative Biosciences (M.J.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
19
|
Liu SC, Chang YS. Role of leukemia inhibitory factor in nasopharyngeal carcinogenesis. Mol Cell Oncol 2014; 1:e29900. [PMID: 27308310 PMCID: PMC4905174 DOI: 10.4161/mco.29900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
Abstract
Although Epstein-Barr virus-associated nasopharyngeal carcinoma (NPC) is a highly radiosensitive cancer, approximately 20% of patients with NPC develop local recurrence after radiation therapy. Multiple proinflammatory cytokines are thought to protect NPC tumor cells from immune surveillance and therapeutic interventions. The cytokine leukemia inhibitory factor (LIF) is a critical component of the NPC microenvironment. LIF influences tumor growth and survival, and is therefore considered a potential therapeutic target and/or prognostic predictor for NPC. High LIF levels have been detected in the circulating blood of patients with recurrent NPC and NPC tumor cells. This review discusses the molecular mechanisms that link LIF to NPC tumor progression and radioresistance.
Collapse
Affiliation(s)
- Shu-Chen Liu
- Molecular Medicine Research Center; Chang Gung University; Taoyuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center; Chang Gung University; Taoyuan, Taiwan
| |
Collapse
|
20
|
Abstract
Liver injury is a complicated pathological process caused by multiple biological and chemical factors. The repair mechanism after liver injury is the focus of liver research, involving numerous signaling pathways, cytokines and transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic signal transcription factor which belongs to the signal transducers and activators of transcription family and plays a critical role in the process of liver injury repair. STAT3 activation boosts the process of liver repair by promoting hepatocyte proliferation, maintains homeostasis by regulating metabolism of carbohydrates and lipids, and prevents the liver from bacterial infection and acute liver injury induced by toxic chemicals and drugs by increasing the expression of beneficial acute phase proteins. This review focuses on the composition of STAT3 signaling pathway and its role in liver injury repair.
Collapse
|
21
|
Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, Juang JL, Chow KPN, Chang YS. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest 2013; 123:5269-83. [PMID: 24270418 DOI: 10.1172/jci63428] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
Radioresistance of EBV-associated nasopharyngeal carcinoma (NPC) is associated with poor prognosis for patients with this form of cancer. Here, we found that NPC patients had increased serum levels of leukemia inhibitory factor (LIF) and that higher LIF levels correlated with local tumor recurrence. Furthermore, in vitro studies with NPC cells and in vivo xenograft mouse studies demonstrated that LIF critically contributes to NPC tumor growth and radioresistance. Using these model systems, we found that LIF treatment activated the mTORC1/p70S6K signaling pathway, enhanced tumor growth, inhibited DNA damage responses, and enhanced radioresistance. Treatment with either soluble LIF receptor (sLIFR), a LIF antagonist, or the mTOR inhibitor rapamycin reversed LIF-mediated effects, resulting in growth arrest and increased sensitivity to γ irradiation. Immunohistochemical (IHC) analyses of human NPC biopsies revealed that LIF and LIFR were overexpressed in tumor cells and that LIF expression correlated with the presence of the activated p-p70S6K. Finally, we found that the EBV-encoded protein latent membrane protein 1 (LMP1) enhances LIF production. Together, our findings indicate that LIF promotes NPC tumorigenesis and suggest that serum LIF levels may predict local recurrence and radiosensitivity in NPC patients.
Collapse
|
22
|
Intranuclear crosstalk between extracellular regulated kinase1/2 and signal transducer and activator of transcription 3 regulates JEG-3 choriocarcinoma cell invasion and proliferation. ScientificWorldJournal 2013; 2013:259845. [PMID: 24288470 PMCID: PMC3833059 DOI: 10.1155/2013/259845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/24/2013] [Indexed: 12/04/2022] Open
Abstract
Invasiveness of trophoblast and choriocarcinoma cells is in part mediated via leukemia inhibitory factor- (LIF-) induced activation of signal transducer and activator of transcription 3 (STAT3). The regulation of STAT3 phosphorylation at its ser727 binding site, possible crosstalk with intracellular MAPK signaling, and their functional implications are the object of the present investigation. JEG-3 choriocarcinoma cells were cultured in presence/absence of LIF and the specific ERK1/2 inhibitor (U0126). Phosphorylation of signaling molecules (p-STAT3 (ser727 and tyr705) and p-ERK1/2 (thr 202/tyr 204)) was assessed per Western blot. Immunocytochemistry confirmed results, but also pinpointed the location of phosphorylated signaling molecules. STAT3 DNA-binding capacity was studied with a colorimetric ELISA-based assay. Cell viability and invasion capability were assessed by MTS and Matrigel assays. Our results demonstrate that LIF-induced phosphorylation of STAT3 (tyr705 and ser727) is significantly increased after blocking ERK1/2. STAT3 DNA-binding capacity and cell invasiveness are enhanced after LIF stimulation and ERK1/2 blockage. In contrast, proliferation is enhanced by LIF but reduced after ERK1/2 inhibition. The findings herein show that blocking ERK1/2 increases LIF-induced STAT3 phosphorylation and STAT3 DNA-binding capacity by an intranuclear crosstalk, which leads to enhanced invasiveness and reduced proliferation.
Collapse
|
23
|
Starenki D, Singh NK, Jensen DR, Peterson FC, Park JI. Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Lett 2013; 339:144-51. [PMID: 23856028 DOI: 10.1016/j.canlet.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 01/10/2023]
Abstract
Medullary thyroid carcinoma (MTC) is a neoplasm of the endocrine system, which originates from parafollicular C-cells of the thyroid gland. For MTC therapy, the Food and Drug Administration recently approved vandetanib and cabozantinib, multi-kinase inhibitors targeting RET and other tyrosine kinase receptors of vascular endothelial growth factor, epidermal growth factor, or hepatocyte growth factor. Nevertheless, not all patients with the progressive MTC respond to these drugs, requiring the development of additional therapeutic modalities that have distinct activity. Previously, we reported that expression of activated Ras or Raf in the human MTC cell lines, TT and MZ-CRC-1, can induce growth arrest and RET downregulation via a leukemia inhibitory factor (LIF)-mediated autocrine/paracrine loop. In this study, we aimed to evaluate bacterially-produced recombinant human LIF for its efficacy to suppress human MTC xenografts in mice. Here, we report that, consistent with its effects in vitro, locally or systemically administered recombinant LIF effectively suppressed growth of TT and MZ-CRC-1 xenografts in mice. Further, as predicted from its effects in TT and MZ-CRC-1 cell cultures in vitro, recombinant LIF activated the JAK/STAT pathway and downregulated RET and E2F1 expression in tumors in mice. These results suggest that LIF is a potent cytostatic agent for MTC cells, which regulates unique mechanisms that are not targeted by currently available therapeutic agents.
Collapse
Affiliation(s)
- Dmytro Starenki
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
24
|
Girotti M, Donegan JJ, Morilak DA. Influence of hypothalamic IL-6/gp130 receptor signaling on the HPA axis response to chronic stress. Psychoneuroendocrinology 2013; 38:1158-69. [PMID: 23218517 PMCID: PMC3609893 DOI: 10.1016/j.psyneuen.2012.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 01/30/2023]
Abstract
Abnormal basal activity and stress-evoked reactivity of the hypothalamic-pituitary-adrenal (HPA) axis are often seen in depression, implicating HPA axis dysfunction as a potentially causative or exacerbating factor. Chronic stress is also a factor in depression, but it is not known what may underlie the shift from adaptive to maladaptive HPA activity over the course of chronic stress. Interleukin 6 (IL-6), a stress-inducible cytokine that signals through gp130 and IL-6Rα receptors to activate the JAK/STAT3 signaling cascade, is elevated in some subtypes of depression, and may have a modulatory effect on HPA activation, raising the possibility that IL-6 contributes to depression through effects on the HPA axis. In this study, we examined the effects of three different stress modalities, acute footshock, chronic intermittent cold (CIC) stress and chronic unpredictable stress (CUS) on IL-6 signaling in the hypothalamus. We also investigated whether IL-6 modulates the HPA response to chronic stress, by blocking IL-6 signaling in the brain during CIC stress using either a neutralizing antibody or an inhibitor of STAT3 phosphorylation. We show that IL-6 and STAT3 in the hypothalamus are activated in response to footshock and CUS. We also found that basal IL-6 signaling through the JAK/STAT3 pathway is required for the sustained CORT response to chronic, but not acute, cold stress and therefore is a potential determinant of plasticity in the HPA axis specifically during chronic stress exposure.
Collapse
Affiliation(s)
| | | | - David A Morilak
- Corresponding author: D. A. Morilak, Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229 Ph.: 210-567-4174, Fax: 210-567-4300,
| |
Collapse
|
25
|
Murphy AA, Rosato PC, Parker ZM, Khalenkov A, Leib DA. Synergistic control of herpes simplex virus pathogenesis by IRF-3, and IRF-7 revealed through non-invasive bioluminescence imaging. Virology 2013; 444:71-9. [PMID: 23777662 DOI: 10.1016/j.virol.2013.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Interferon regulatory factors IRF-3 and IRF-7 are central to the establishment of the innate antiviral response. This study examines HSV-1 pathogenesis in IRF-3(-/-), IRF-7(-/-) and double-deleted IRF3/7(-/-) (DKO) mice. Bioluminescence imaging of infection revealed that DKO mice developed visceral infection following corneal inoculation, along with increased viral burdens in all tissues relative to single knockout mice. While all DKO mice synchronously reached endpoint criteria 5 days post infection, the IRF-7(-/-) mice survived longer, indicating that although IRF-7 is dominant, IRF-3 also plays a role in controlling disease. Higher levels of systemic pro-inflammatory cytokines were found in IRF7(-/-) and DKO mice relative to wild-type and IRF-3(-/-) mice, and IL-6 and G-CSF, indicative of sepsis, were increased in the DKO mice relative to wild-type or single-knockout mice. In addition to controlling viral replication, IRF-3 and -7 therefore play coordinating roles in modulation of inflammation during HSV infection.
Collapse
Affiliation(s)
- Aisling A Murphy
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, HB 7556, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
26
|
Yarani R, Mansouri K, Mohammadi-Motlagh HR, Bakhtiari M, Mostafaie A. New procedure for epidermal cell isolation using kiwi fruit actinidin, and improved culture of melanocytes in the presence of leukaemia inhibitory factor and forskolin. Cell Prolif 2013; 46:348-55. [PMID: 23659789 DOI: 10.1111/cpr.12028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Conventional isolation of epidermis from the dermis and disruption of epidermal sheets to liberate the cells, are performed using proteolytic enzymes such as thermolysin or collagenase. Selective population expansion of melanocytes is achieved by suppressing proliferation of keratinocytes and fibroblasts in epidermal cell suspensions, using phorbol esters and cholera toxin. Here, we introduce a new procedure for isolation of epidermal cells, using proteolytic activity of kiwi fruit actinidin, and also an improved growth medium for melanocytes in the presence of leukaemia inhibitory factor (LIF) and forskolin. MATERIALS AND METHODS Dermo-epidermal separation and epidermal sheet cell dispersion were performed using actinidin compared to conventional proteases including collagenase, thermolysin or trypsin. Thereafter, melanocyte culture was performed in two common media and one modified medium to discover optimization for these cells. RESULTS We found that dermo-epidermal separation and epidermal sheet cell dispersion using kiwi fruit actinidin were considerably better than previously used methods, both from the aspect of less fibroblast and keratinocyte contamination, and of more viable native cells. Also, melanocytes proliferated better in phorbol ester- and cholera toxin-free proliferation medium supplemented with LIF and forskolin. CONCLUSION Less contamination and higher numbers of viable cells were actinidin preferential for separation of epidermis and isolation of epidermal cells. Supplementation of LIF and forskolin to new medium increased proliferation potential of melanocytes in comparison to exogenous mitogens.
Collapse
Affiliation(s)
- Reza Yarani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | | | | |
Collapse
|
27
|
Aisemberg J, Vercelli CA, Bariani MV, Billi SC, Wolfson ML, Franchi AM. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone. PLoS One 2013; 8:e56161. [PMID: 23409146 PMCID: PMC3567061 DOI: 10.1371/journal.pone.0056161] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders.
Collapse
Affiliation(s)
- Julieta Aisemberg
- Centro de Estudios Farmacológicos y Botánicos (CONICET-UBA), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
28
|
Jin Y, Kondo K, Ushio M, Kaga K, Ryan AF, Yamasoba T. Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: differential responses for survival, neuritogenesis and neuronal morphology. Cell Tissue Res 2012; 351:15-27. [PMID: 23149719 DOI: 10.1007/s00441-012-1526-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/24/2012] [Indexed: 12/26/2022]
Abstract
The way that the development of the inner ear innervation is regulated by various neurotrophic factors and/or their combinations at different postnatal developmental stages remains largely unclear. Moreover, survival and neuritogenesis in deafferented adult neurons is important for cochlear implant function. To address these issues, developmental changes in the responsiveness of postnatal rat spiral ganglion neurons (SGNs) to neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were examined by using a dissociated cell culture system. SGNs at postnatal day (P) 0, P5 and P20 (young adult) were cultured with the addition of NT-3, BDNF, or LIF or of a combination of NT-3 and BDNF (N + B) or of NT-3, BDNF and LIF (ALL factors). SGNs were analyzed for three parameters: survival, longest neurite length (LNL) and neuronal morphology. At P0, SGNs required exposure to N + B or ALL factors for enhanced survival and the ALL factors combination showed a synergistic effect much greater than the sum of the individual factors. At P5, SGNs responded to a wider range of treatment conditions for enhanced survival and combinations showed only an additive improvement over individual factors. The survival percentage of untreated SGNs was highest at P20 but combinations of neurotrophic factors were no more effective than individual factors. LNL of each SGN was enhanced by LIF alone or ALL factors at P0 and P5 but was suppressed by NT-3, BDNF and N + B at P5 in a dose-dependent manner. The LNL at P20 was enhanced by ALL factors and suppressed by N + B. Treatment with ALL factors increased the proportion of SGNs that had two or more primary neurites in all age groups. These findings suggest that NT-3, BDNF, LIF and their combinations predominantly support different ontogenetic events at different developmental stages in the innervation of the inner ear.
Collapse
Affiliation(s)
- Yulian Jin
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Mathieu ME, Saucourt C, Mournetas V, Gauthereau X, Thézé N, Praloran V, Thiébaud P, Bœuf H. LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev Rep 2012; 8:1-15. [PMID: 21537995 PMCID: PMC3285761 DOI: 10.1007/s12015-011-9261-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.
Collapse
Affiliation(s)
- Marie-Emmanuelle Mathieu
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Claire Saucourt
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Virginie Mournetas
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Xavier Gauthereau
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Nadine Thézé
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Vincent Praloran
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Pierre Thiébaud
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Hélène Bœuf
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| |
Collapse
|
30
|
Ropka-Molik K, Oczkowicz M, Mucha A, Piórkowska K, Piestrzyńska-Kajtoch A. Variability of mRNA abundance of leukemia inhibitory factor gene (LIF) in porcine ovary, oviduct and uterus tissues. Mol Biol Rep 2012; 39:7965-72. [PMID: 22544575 DOI: 10.1007/s11033-012-1642-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
The leukemia inhibitory factor (LIF) gene encodes a pleiotropic cytokine which is produced by the endometrium and plays an important role in implantation and early embryonic development. Because of its function, LIF gene is considered as a candidate gene for litter size in many mammalian species including pig. The aim of present study was to evaluate the expression of LIF gene in the porcine ovary, oviduct and two regions of uterus (corpus uteri, cornu uteri) in prepubertal and pubertal gilts. In order to precise estimation of LIF transcript abundance we evaluated the stability of expression for several candidate housekeeping genes in investigated tissues across different breeds and different stage of oestrus cycle. The geNorm analysis indicated that the most stable reference genes across analyzed tissues were: OAZ1 and RPL27. The analysis conducted separately for each tissue confirmed that the most stable gene was OAZ1 in all tissues expect oviduct (the most stable was RPL27 gene). In prepubertal pigs, the highest level of the LIF expression was obtained in both regions of uterus compare to ovary and oviduct tissues (P < 0.01). A similar trend in LIF expression pattern was observed in follicular phase-the significantly highest transcript level was obtained in cornu uteri, it was about ninefold higher than in ovary (P < 0.05). In luteal stage the highest expression was in corpus uteri. In pig, the high expression in luteal phases suggested that, LIF may be mainly secreted in respond to the increased of progesterone concentration and it can be connected with the preparation of the uterus for implantation.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.
Collapse
|
32
|
Promoter methylation of leukemia inhibitory factor receptor gene in colorectal carcinoma. Int J Oncol 2011; 39:337-44. [PMID: 21617854 DOI: 10.3892/ijo.2011.1050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/20/2011] [Indexed: 12/31/2022] Open
Abstract
Aberrant methylation of gene promoters and corresponding loss of gene expression plays a critical role in the initiation and progression of colorectal cancer. An IL-6-type cytokine receptor, leukemia inhibitory factor receptor (LIFR), is a component of cell-surface receptor complexes for multifunctional cytokines such as LIF. Herein, we report that LIFR is methylated in human colon cancer. LIFR promoter was methylated in primary tumor tissues with high frequency (65%, 52/80). Quantitative methylation-specific PCR (TaqMan-MSP) demonstrated differential promoter methylation of LIFR in primary colorectal cancer tissues as compared to normal colon tissues (5%, 4/80). LIFR methylation was not detectable in 13 normal colon mucosa samples obtained from patients without cancer. The mRNA expression of LIFR was significantly down-regulated in colon cancer tissues as compared to corresponding normal tissues. A strong expression of LIFR protein was observed in all non-malignant normal and adjacent normal colon mucosa tissues whereas down-regulated LIFR protein expression was observed in primary tumors. These results demonstrate that cancer-specific methylation and a specific decrease of LIFR expression are a common inactivation event in colon cancer development.
Collapse
|
33
|
Abstract
Pituitary adenomas may hypersecrete hormones (including prolactin, growth hormone and adrenocorticotropic hormone, and rarely follicle-stimulating hormone, luteinizing hormone or TSH) or may be nonfunctional. Despite their high prevalence in the general population, these tumors are invariably benign and exhibit features of differentiated pituitary cell function as well as premature proliferative arrest. Pathogenesis of dysregulated pituitary cell proliferation and unrestrained hormone hypersecretion may be mediated by hypothalamic, intrapituitary and/or peripheral factors. Altered expression of pituitary cell cycle genes, activation of pituitary selective oncoproteins or loss of pituitary suppressor factors may be associated with aberrant growth factor signaling. Considerable information on the etiology of these tumors has been derived from transgenic animal models, which may not accurately and universally reflect human tumor pathophysiology. Understanding subcellular mechanisms that underlie pituitary tumorigenesis will enable development of tumor aggression markers as well as novel targeted therapies.
Collapse
Affiliation(s)
- Shlomo Melmed
- Cedars-Sinai Medical Center, Academic Affairs Room 2015, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
34
|
Jawa RS, Anillo S, Huntoon K, Baumann H, Kulaylat M. Analytic review: Interleukin-6 in surgery, trauma, and critical care: part I: basic science. J Intensive Care Med 2011; 26:3-12. [PMID: 21262749 PMCID: PMC6209321 DOI: 10.1177/0885066610395678] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A variety of cytokines play a role in the response to an inflammatory stimulus. The interleukin-6 (IL-6)-type cytokines are released in response to tissue injury or an inflammatory stimulus. They act locally and systemically to generate a variety of physiologic responses, principal among them is the acute phase response. The IL-6 type cytokines demonstrate pleiotropy and redundancy of actions. This is made possible by the distinctive characteristics of the IL-6 receptor complex, which contains an ubiquitous subunit that is shared by most IL-6-type cytokines, as well as a cytokine-specific subunit.
Collapse
Affiliation(s)
- Randeep S Jawa
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | | | | | | | |
Collapse
|
35
|
Li X, Kim SW, Do KT, Ha YK, Lee YM, Yoon SH, Kim HB, Kim JJ, Choi BH, Kim KS. Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies. Mol Biol Rep 2010; 38:3805-20. [PMID: 21107721 DOI: 10.1007/s11033-010-0496-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 11/11/2010] [Indexed: 12/14/2022]
Abstract
The Porcine SNP database has a huge number of SNPs, but these SNPs are mostly found by computer data-mining procedures and have not been well characterized. We re-sequenced 1,439 porcine public SNPs from four commercial pig breeds and one Korean domestic breed (Korean Native pig, KNP) by using two DNA pools from eight unrelated animals in each breed. These SNPs were from 419 protein-coding genes covering the 18 autosomes, and the re-sequencing in breeds confirmed 690 public SNPs (47.9%) and 226 novel mutations (173 SNPs and 53 insertions/deletions). Thus, totally, 916 variations were found from our study. Of the 916 variations, 148 SNPs (16.2%) were found across all the five breeds, and 199 SNPs (21.7%) were breed specific polymorphisms. According to the SNP locations in the gene sequences, these 916 variations were categorized into 802 non-coding SNPs (785 in intron, 17 in 3'-UTR) and 114 coding SNPs (86 synonymous SNPs, 28 non-synonymous SNPs). The nucleotide substitution analyses for these SNPs revealed that 70.2% were from transitions, 20.0% from transversions, and the remaining 5.79% were deletions or insertions. Subsequently, we genotyped 261 SNPs from 180 genes in an experimental KNP × Landrace F2 cross by the Sequenom MassARRAY system. A total of 33 traits including growth, carcass composition and meat quality were analyzed for the phenotypic association tests using the 132 SNPs in 108 genes with minor allele frequency (MAF)>0.2. The association results showed that five marker-trait combinations were significant at the 5% experiment-wise level (ADCK4 for rear leg, MYH3 for rear leg, Hunter B, Loin weight and Shearforce) and four at the 10% experiment-wise level (DHX38 for average daily gain at live weight, LGALS9 for crude lipid, NGEF for front leg and LIFR for pH at 24 h). In addition, 49 SNPs in 44 genes showing significant association with the traits were detected at the 1% comparison-wise level. A large number of genes that function as enzymes, transcription factors or signalling molecules were considered as genetic markers for pig growth (RNF103, TSPAN31, DHX38, ABCF1, ABCC10, SCD5, KIAA0999 and FKBP10), muscling (HSPA5, PTPRM, NUP88, ADCK4, PLOD1, DLX1 and GRM8), fatness (PTGIS, IDH3B, RYR2 and NOL4) and meat quality traits (DUSP4, LIFR, NGEF, EWSR1, ACTN2, PLXND1, DLX3, LGALS9, ENO3, EPRS, TRIM29, EHMT2, RBM42, SESN2 and RAB4B). The SNPs or genes reported here may be beneficial to future marker assisted selection breeding in pigs.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ruan M, Pederson L, Bradley EW, Bamberger AM, Oursler MJ. Transforming growth factor-{beta} coordinately induces suppressor of cytokine signaling 3 and leukemia inhibitory factor to suppress osteoclast apoptosis. Endocrinology 2010; 151:1713-22. [PMID: 20181800 PMCID: PMC2850239 DOI: 10.1210/en.2009-0813] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Local release of TGF-beta during times of high bone turnover leads to elevated levels within the bone microenvironment, and we have shown that TGF-beta suppresses osteoclast apoptosis. Therefore, understanding the influences of TGF-beta on bone resorbing osteoclasts is critical to the design of therapies to reduce excess bone loss. Here we investigated the mechanisms by which TGF-beta sustains suppression of osteoclast apoptosis. We found TGF-beta rapidly increased leukemia inhibitory factor (LIF) expression and secretion by phosphorylated mothers against decapentaplegic-dependent and -independent signaling pathways. TGF-beta also induced suppressor of cytokine signaling 3 (SOCS3) expression, which was required for TGF-beta or LIF to promote osteoclast survival by. Blocking LIF or SOCS3 blocked TGF-beta promotion of osteoclast survival, confirming that LIF and SOCS3 expression are necessary for TGF-beta-mediated suppression of osteoclast apoptosis. Investigation of the mechanisms by which LIF promotes osteoclast survival revealed that LIF-induced expression of Bcl-X(L) and repressed Bcl-2 interacting domain expression by activating MAPK kinase, AKT, and nuclear factor-kappaB pathways. Suppression of Janus kinase/signal transducer and activator of transcription signaling further increased Bcl-X(L) expression and enhanced osteoclast survival, supporting that this pathway is not involved in prosurvival effects of TGF-beta and LIF. These data show that TGF-beta coordinately induces LIF and SOCS3 to promote prosurvival signaling. This alters the ratio of prosurvival Bcl2 family member Bcl-X(L) to proapoptotic family member Bcl-2 interacting domain, leading to prolonged osteoclast survival.
Collapse
Affiliation(s)
- Ming Ruan
- Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
37
|
Grossberg AJ, Scarlett JM, Marks DL. Hypothalamic mechanisms in cachexia. Physiol Behav 2010; 100:478-89. [PMID: 20346963 DOI: 10.1016/j.physbeh.2010.03.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 12/12/2022]
Abstract
The role of nutrition and balanced metabolism in normal growth, development, and health maintenance is well known. Patients affected with either acute or chronic diseases often show disorders of nutrient balance. In some cases, a devastating state of malnutrition known as cachexia arises, brought about by a synergistic combination of a dramatic decrease in appetite and an increase in metabolism of fat and lean body mass. Other common features that are not required for the diagnosis include decreases in voluntary movement, insulin resistance, and anhedonia. This combination is found in a number of disorders including cancer, cystic fibrosis, AIDS, rheumatoid arthritis, renal failure, and Alzheimer's disease. The severity of cachexia in these illnesses is often the primary determining factor in both quality of life, and in eventual mortality. Indeed, body mass retention in AIDS patients has a stronger association with survival than any other current measure of the disease. This has led to intense investigation of cachexia and the proposal of numerous hypotheses regarding its etiology. Most authors suggest that cytokines released during inflammation and malignancy act on the central nervous system to alter the release and function of a number of neurotransmitters, thereby altering both appetite and metabolic rate. This review will discuss the salient features of cachexia in human diseases, and review the mechanisms whereby inflammation alters the function of key brain regions to produce stereotypical illness behavior. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
38
|
Grossberg AJ, Scarlett JM, Zhu X, Bowe DD, Batra AK, Braun TP, Marks DL. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology 2010; 151:606-16. [PMID: 20016025 PMCID: PMC2817620 DOI: 10.1210/en.2009-1135] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proinflammatory cytokine leukemia inhibitory factor (LIF) is induced in disease states and is known to inhibit food intake when administered centrally. However, the neural pathways underlying this effect are not well understood. We demonstrate that LIF acutely inhibits food intake by directly activating pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. We show that arcuate POMC neurons express the LIF-R, and that LIF stimulates the release of the anorexigenic peptide, alpha-MSH from ex vivo hypothalami. Transgenic mice lacking gp130, the signal transducing subunit of the LIF-R complex, specifically in POMC neurons fail to respond to LIF. Furthermore, LIF does not stimulate the release of alpha-MSH from the transgenic hypothalamic explants. These findings indicate that POMC neurons mediate the acute anorectic actions of central LIF administration and provide a mechanistic link between inflammation and food intake.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Pediatrics, Oregon Health and Science University, Mail Code L-481, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Sánchez-Lemus E, Benicky J, Pavel J, Saavedra JM. In vivo Angiotensin II AT1 receptor blockade selectively inhibits LPS-induced innate immune response and ACTH release in rat pituitary gland. Brain Behav Immun 2009; 23:945-57. [PMID: 19427376 PMCID: PMC2749886 DOI: 10.1016/j.bbi.2009.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/20/2009] [Accepted: 04/30/2009] [Indexed: 12/23/2022] Open
Abstract
Systemic lipopolysaccharide (LPS) administration induces an innate immune response and stimulates the hypothalamic-pituitary-adrenal axis. We studied Angiotensin II AT(1) receptor participation in the LPS effects with focus on the pituitary gland. LPS (50 microg/kg, i.p.) enhanced, 3h after administration, gene expression of pituitary CD14 and that of Angiotensin II AT(1A) receptors in pituitary and hypothalamic paraventricular nucleus (PVN); stimulated ACTH and corticosterone release; decreased pituitary CRF(1) receptor mRNA and increased all plasma and pituitary pro-inflammatory factors studied. The AT(1) receptor blocker (ARB) candesartan (1mg/kg/day, s.c. daily for 3 days before LPS) blocked pituitary and PVN AT(1) receptors, inhibited LPS-induced ACTH but not corticosterone secretion and decreased LPS-induced release of TNF-alpha, IL-1beta and IL-6 to the circulation. The ARB reduced LPS-induced pituitary gene expression of IL-6, LIF, iNOS, COX-2 and IkappaB-alpha; and prevented LPS-induced increase of nNOS/eNOS activity. The ARB did not affect LPS-induced TNF-alpha and IL-1beta gene expression, IL-6 or IL-1beta protein content or LPS-induced decrease of CRF(1) receptors. When administered alone, the ARB increased basal plasma corticosterone levels and basal PGE(2) mRNA in pituitary. Our results demonstrate that the pituitary gland is a target for systemically administered LPS. AT(1) receptor activity is necessary for the complete pituitary response to LPS and is limited to specific pro-inflammatory pathways. There is a complementary and complex influence of the PVN and circulating cytokines on the initial pituitary response to LPS. Our findings support the proposal that ARBs may be considered for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Enrique Sánchez-Lemus
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
40
|
Yamanaka S. Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 2008; 363:2079-87. [PMID: 18375377 DOI: 10.1098/rstb.2008.2261] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells are promising donor cell sources for cell transplantation therapy, which may in the future be used to treat various diseases and injuries. However, as is the case for organ transplantation, immune rejection after transplantation is a potential problem with this type of therapy. Moreover, the use of human embryos presents serious ethical difficulties. These issues may be overcome if pluripotent stem cells are generated from patients' somatic cells. Here, we review the molecular mechanisms underlying pluripotency and the currently known methods of inducing pluripotency in somatic cells.
Collapse
Affiliation(s)
- Shinya Yamanaka
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
41
|
Yu C, Kastin AJ, Tu H, Pan W. Opposing effects of proteasomes and lysosomes on LIFR: modulation by TNF. J Mol Neurosci 2007; 32:80-9. [PMID: 17873291 DOI: 10.1007/s12031-007-0017-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 11/30/1999] [Accepted: 02/01/2007] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB), a communicating interface for inflammation, transports cytokines through its endothelial cells. This study shows how tumor necrosis factor alpha (TNF) regulates the expression of the leukemia inhibitor factor receptor (LIFR) gp190 in RBE4 cells. The high expression of LIFR was rapidly downregulated by the proinflammatory agents lipopolysaccharide, TNF, and LIF. Downregulation by TNF affected LIFR endocytosis and lysosomal degradation, preceding decreased LIFR mRNA. Lysosomal inhibitors reversed the rapid disappearance of LIFR, whereas inhibition of the ubiquitin-proteasome pathway did not. Rather, blockade of proteasome activity, as well as inhibition of NFkappaB activation, reduced the basal expression of LIFR. Thus, NFkappaB activity and proteasome degradation of IkappaB stabilized LIFR and prevented its rapid lysosomal degradation. By a non-NFkappaB-mediated mechanism, TNF facilitated LIFR degradation and reduced LIFR activation indicated by pStat3. The novel opposite effects of proteasomes and lysosomes in controlling receptor expression shows the functional implications and interactions of circulating inflammatory cytokines in acutely modulating BBB activity.
Collapse
Affiliation(s)
- Chuanhui Yu
- The Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
42
|
McColm JR, Geisen P, Peterson LJ, Hartnett ME. Exogenous leukemia inhibitory factor (LIF) attenuates retinal vascularization reducing cell proliferation not apoptosis. Exp Eye Res 2006; 83:438-46. [PMID: 16643897 PMCID: PMC1828040 DOI: 10.1016/j.exer.2006.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/28/2022]
Abstract
To study the effect of leukemia inhibitory factor (LIF) on rat retinal vascular development, Sprague-Dawley rats at postnatal age 3 days (p3) were given intraperitoneal (IP) LIF and analysis performed at p6 (p3/6). p7 rats were given intravitreous (IV) LIF and analysis performed at p9 (p7/9). Control animals were PBS injected. At the time of analysis retinal flatmounts were prepared and stained with Griffonia lectin and activated caspase-3. The retinal peripheral avascular area was measured and number of apoptotic cells counted. In vitro, human retinal microvascular endothelial cells (RMVECs) were cultured in media containing LIF, with and without neutralizing antibody to LIF. Cells were stained with activated caspase-3 and apoptotic cells counted. Proliferation was measured by counting cell numbers, and cell cycle stage was determined using propidium iodide staining and FACS analysis. LIF injected either IP or IV had no effect on body weight or total retina area, but significantly increased the peripheral retinal avascular area. In both IP and IV injected groups there was no difference in the number of apoptotic cells between PBS- or LIF-injected groups; although in the p7/9 retinas, both injected groups had significantly more apoptotic cells than the non-injected group. In vitro, there was no effect of LIF on RMVEC apoptosis; however, cell counts were significantly lower in the LIF-treated group. Antibody to LIF restored the cell counts to untreated levels. LIF reduced the number of cells in S phase. LIF attenuates retinal vascular development in vivo through growth arrest, and not apoptosis, of endothelial cells.
Collapse
Affiliation(s)
- Janet R McColm
- Department of Ophthalmology, University of North Carolina, 6135 Neuroscience Research Building, 103 Mason Farm Road, Chapel Hill, NC 27599-7041, USA.
| | | | | | | |
Collapse
|
43
|
SILVERMAN MARNIN, PEARCE BRADD, BIRON CHRISTINEA, MILLER ANDREWH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18:41-78. [PMID: 15802953 PMCID: PMC1224723 DOI: 10.1089/vim.2005.18.41] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Compelling data has been amassed indicating that soluble factors, or cytokines, emanating from the immune system can have profound effects on the neuroendocrine system, in particular the hypothalamic- pituitary-adrenal (HPA) axis. HPA activation by cytokines (via the release of glucocorticoids), in turn, has been found to play a critical role in restraining and shaping immune responses. Thus, cytokine-HPA interactions represent a fundamental consideration regarding the maintenance of homeostasis and the development of disease during viral infection. Although reviews exist that focus on the bi-directional communication between the immune system and the HPA axis during viral infection (188,235), others have focused on the immunomodulatory effects of glucocorticoids during viral infection (14,225). This review, however, concentrates on the other side of the bi-directional loop of neuroendocrine-immune interactions, namely, the characterization of HPA axis activity during viral infection and the mechanisms employed by cytokines to stimulate glucocorticoid release.
Collapse
Affiliation(s)
- MARNI N. SILVERMAN
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - BRAD D. PEARCE
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - CHRISTINE A. BIRON
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - ANDREW H. MILLER
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Address reprint requests to: Dr. Andrew H. Miller, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, WMRB Suite 4000, Atlanta, Georgia 30322, E-mail:
| |
Collapse
|
44
|
Catalano RD, Johnson MH, Campbell EA, Charnock-Jones DS, Smith SK, Sharkey AM. Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception. Proc Natl Acad Sci U S A 2005; 102:8585-90. [PMID: 15937114 PMCID: PMC1150834 DOI: 10.1073/pnas.0502343102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the receptors for leukemia inhibitory factor (LIF) and IL-11 is essential for embryo attachment and decidualization in mice. Both receptors induce activation of the Stat family of signal transducers via the Jak/Stat pathway. Here, we aimed to establish whether activation of Stat3 in maternal endometrium is essential for successful implantation. Functional blockade of Stat3 before implantation, by injection into the uterine lumen of a cell-permeable Stat3 peptide inhibitor, reduced embryo implantation specifically by 70% (P < 0.001). Stat3 is phosphorylated in the luminal epithelium (LE) in response to LIF, and this phosphorylation was significantly reduced both in vitro and in vivo by the Stat3 inhibitor. The inhibitor also blocked induction by LIF of several LIF-regulated genes in the LE including Irg1, which has been shown previously to be essential for implantation. Successful implantation is therefore dependent on phosphorylation and activation of Stat3 in the endometrium before implantation. This finding provides a target for contraceptive development, based on selective blockade of signal transduction pathways essential for implantation. This study demonstrates that cell-permeable peptide inhibitors can be used effectively to target intracellular signaling pathways in the uterine LE.
Collapse
Affiliation(s)
- Rob D Catalano
- Reproductive Molecular Research Group, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
45
|
Nozaki I, Lunz JG, Specht S, Park JI, Giraud AS, Murase N, Demetris AJ. Regulation and function of trefoil factor family 3 expression in the biliary tree. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:1907-20. [PMID: 15579435 PMCID: PMC1618723 DOI: 10.1016/s0002-9440(10)63243-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microarray analysis identified trefoil factor family 3 (TFF3) as a gene expressed in biliary epithelial cells (BECs), regulated by interleukin (IL)-6, and potentially involved in biliary pathophysiology. We therefore studied the regulation and function of BEC TFF3, in vitro and in vivo in IL-6(+/+) and IL-6(-/-) mice subjected to chronic bile duct ligation for 12 weeks. In vitro studies showed that IL-6 wild-type (IL-6(+/+)) BECs expressed higher TFF3 mRNA and protein levels than IL-6-deficient (IL-6(-/-)) BECs. BEC TFF3 expression is dependent primarily on signal transducer and activator of transcription (STAT3) signaling, but the reciprocal negative regulation known to exist between the intracellular IL-6/gp130 signaling pathways, STAT3 and mitogen-activated protein kinase (MAPK), importantly contributes to BEC TFF3 expression. Specifically blocking STAT3 activity with a dominant-negative molecule or treatment with a growth factor such as hepatocyte growth factor, which increases MAPK signaling, decreases BEC TFF3 expression. In contrast, specifically blocking MAPK activity with PD98059 significantly increased BEC TFF3 expression. Higher BEC TFF3 levels in IL-6(+/+) BECs were associated with significantly better migration than IL-6(-/-) BECs in a wound-healing assay and defective IL-6(-/-) BEC migration was reversed with exogenous TFF3. In vivo, hepatic TFF3 mRNA and protein expression was limited to BECs and dependent significantly on STAT3 signaling, but was influenced by other factors present after bile duct ligation. Comparable results were obtained in normal and diseased human tissue samples. In conclusion the regulation and function of BEC TFF3 expression is similar to the colon. BEC TFF3 expression depends primarily on gp130/STAT3 and contributes to BEC migration and wound healing. Therefore, use of recombinant IL-6 or TFF3 peptides should exert a therapeutic role in preventing biliary strictures in liver allografts.
Collapse
Affiliation(s)
- Isao Nozaki
- Thomas E. Starzl Transplantation Institute, Division of Transplantation, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Tomida M, Saito T. The human hepatocyte growth factor (HGF) gene is transcriptionally activated by leukemia inhibitory factor through the Stat binding element. Oncogene 2004; 23:679-86. [PMID: 14647442 DOI: 10.1038/sj.onc.1207190] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We found that human melanoma SEKI and neuroepithelioma NAGAI cells, which are known to secrete high concentrations of leukemia inhibitory factor (LIF), also secrete high levels of hepatocyte growth factor (HGF). We therefore examined the role of LIF in HGF expression and examined the human HGF promoter. The expression of both LIF and HGF mRNA is very low in HEK293 cells. Treatment of these cells with LIF stimulated the expression of HGF mRNA. The cis-acting regulatory element of the HGF promoter in SEKI and 293 cells was analysed by means of a transient expression assay. By deletion analysis, we showed that the region comprising the -181 to -73 bp was required for full activity of the HGF promoter in SEKI cells and for LIF responsiveness of 293 cells. This region contains putative consensus sequences for the Stat and NF-IL6 (C/EBP beta) transcription factors. The activity of the HGF promoter was abolished by mutation of the Stat site at -99/-91, while the activity only slightly decreased on mutation of the NF-IL6 site. Treatment with anti-LIF antibodies or interruption of Stat3 signaling by dominant-negative Stat3 also reduced the HGF promoter activity. Stat3 activation was constitutive in SEKI cells and induced on treatment of 293 cells with LIF. These results suggest that cytokines, growth factors and oncogenes (v-Src, etc.) that activate Stat3 are important regulators of HGF expression.
Collapse
Affiliation(s)
- Mikio Tomida
- Research Division, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan.
| | | |
Collapse
|
47
|
Suzuki M, Wright LS, Marwah P, Lardy HA, Svendsen CN. Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc Natl Acad Sci U S A 2004; 101:3202-7. [PMID: 14973190 PMCID: PMC365767 DOI: 10.1073/pnas.0307325101] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) is a neurosteroid with potential effects on neurogenesis and neuronal survival in humans. However, most studies on DHEA have been performed in rodents, and there is little direct evidence for biological effects on the human nervous system. Furthermore, the mechanism of its action is unknown. Here, we show that DHEA significantly increased the growth rates of human neural stem cells derived from the fetal cortex and grown with both epidermal growth factor (EGF) and leukemia inhibitory factor (LIF). However, it had no effect on cultures grown in either factor alone, suggesting a specific action on the EGF/LIF-responsive cell. Precursors of DHEA such as pregnenolone or six of its major metabolites, had no significant effect on proliferation rates. DHEA did not alter the small number (<3%) of newly formed neuroblasts or the large number (>95%) of nestin-positive precursors. However, the number of glial fibrillary acidic protein-positive cells, its mRNA, and protein were significantly increased by DHEA. We found both N-methyl-d-aspartate and sigma 1 antagonists, but not GABA antagonists, could completely eliminate the effects of DHEA on stem cell proliferation. Finally we asked whether the EGF/LIF/DHEA-responsive stem cells had an increased potential for neurogenesis and found a 29% increase in neuronal production when compared to cultures grown in EGF/LIF alone. Together these data suggest that DHEA is involved in the maintenance and division of human neural stem cells. Given the wide availability of this neurosteroid, this finding has important implications for future use.
Collapse
Affiliation(s)
- Masatoshi Suzuki
- Department of Anatomy and the Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705-2280, USA
| | | | | | | | | |
Collapse
|
48
|
Ware CB, Nelson AM, Liggitt D. Late gestation modulation of fetal glucocorticoid effects requires the receptor for leukemia inhibitory factor: an observational study. Reprod Biol Endocrinol 2003; 1:43. [PMID: 12823859 PMCID: PMC165445 DOI: 10.1186/1477-7827-1-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Accepted: 05/16/2003] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Ablation of the low-affinity receptor subunit for leukemia inhibitory factor (LIFR) causes multi-systemic defects in the late gestation fetus. Because corticosterone is known to have a broad range of effects and LIF function has been associated with the hypothalamo-pituitary-adrenal axis, this study was designed to determine the role for LIFR in the fetus when exposed to the elevated maternal glucocorticoid levels of late gestation. Uncovering a requirement for LIFR in appropriate glucocorticoid response will further understanding of control of glucocorticoid function. METHODS Maternal adrenalectomy or RU486 administration were used to determine the impact of the maternal glucocorticoid surge on fetal development in the absence of LIFR. The mice were analyzed by a variety of histological techniques including immunolabeling and staining techniques (hematoxylin and eosin, Alizarin red S and alcian blue). Plasma corticosterone was assayed using radioimmunoassay. RESULTS Maternal adrenalectomy does not improve the prognosis for LIFR null pups and exacerbates the effects of LIFR loss. RU486 noticeably improves many of the tissues affected by LIFR loss: bone density, skeletal muscle integrity and glial cell formation. LIFR null pups exposed during late gestation to RU486 in utero survive natural delivery, unlike LIFR null pups from untreated litters. But RU486 treated LIFR null pups succumb within the first day after birth, presumably due to neural deficit resulting in an inability to suckle. CONCLUSION LIFR plays an integral role in modulating the fetal response to elevated maternal glucocorticoids during late gestation. This role is likely to be mediated through the glucocorticoid receptor and has implications for adult homeostasis as a direct tie between immune, neural and hormone function.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Adrenalectomy
- Adrenocorticotropic Hormone/analysis
- Animals
- Bone Diseases, Metabolic/embryology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/prevention & control
- Corticosterone/blood
- Female
- Fetal Diseases/embryology
- Fetal Diseases/genetics
- Fetal Diseases/prevention & control
- Fetus/physiology
- Genes, Lethal
- Gestational Age
- Homeostasis
- Hormone Antagonists/pharmacology
- Hypothalamo-Hypophyseal System/physiology
- Interleukin-6
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mifepristone/pharmacology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/pathology
- Neuroglia/drug effects
- Neuroimmunomodulation/physiology
- Pituitary-Adrenal System/physiology
- Pregnancy
- Proteins/physiology
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Receptors, Cytokine/physiology
- Receptors, Glucocorticoid/physiology
- Receptors, OSM-LIF
- Specific Pathogen-Free Organisms
- Spinal Cord/embryology
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Carol B Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190
| | - Angelique M Nelson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190
| |
Collapse
|
49
|
Park JI, Strock CJ, Ball DW, Nelkin BD. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol 2003; 23:543-54. [PMID: 12509453 PMCID: PMC151536 DOI: 10.1128/mcb.23.2.543-554.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.
Collapse
Affiliation(s)
- Jong-In Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
50
|
Blanchard F, Kinzie E, Wang Y, Duplomb L, Godard A, Held WA, Asch BB, Baumann H. FR901228, an inhibitor of histone deacetylases, increases the cellular responsiveness to IL-6 type cytokines by enhancing the expression of receptor proteins. Oncogene 2002; 21:6264-77. [PMID: 12214267 DOI: 10.1038/sj.onc.1205777] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 06/12/2002] [Accepted: 06/18/2002] [Indexed: 11/09/2022]
Abstract
The related members of the interleukin-6 (IL-6) family of cytokines, leukemia inhibitory factor (LIF), oncostatin M (OSM) and IL-6 are inflammatory mediators that control differentiated cell functions as well as proliferation. The cellular responsiveness to these cytokines is largely determined by the expression of the appropriate receptor proteins. The receptor expression profile for each cell type is established during differentiation and is often altered during oncogenic transformation. Since inhibition of histone deacetylases (HDAC) has the potential to re-activate epigenetically silenced genes, we asked whether inhibition of HDAC enhances the expression of IL-6 cytokine receptors and, thus, increase desirable cytokine responses. We demonstrate that treatment with FR901228 (FR), an HDAC inhibitor, increases the responsiveness to LIF in different cell types, including normal fibroblasts, epithelial cells, macrophages and splenocytes, as well as various tumor cell lines. Depending on the cell type, FR treatment also enhances the responsiveness to OSM and IL-6. These effects involve a transcriptional induction of the cytokine receptor subunits LIFRalpha, OSMRbeta, gp130, or the transcription factor STAT3. FR-specific induction of LIFRalpha occurs independently of de novo protein synthesis and cell proliferation and is mediated in part by the CBP/p300 coactivator. Chromatin immunoprecipitation experiments indicate that the expression of LIFRalpha and gp130 genes correlates with the level of acetylated histone 3 associated with the receptor promoter regions. The FR-stimulated expression of IL-6-type cytokine receptors in certain tumor cells also provided improved conditions for suppression of cell growth by taking advantage of the growth inhibitory effect of these cytokines.
Collapse
MESH Headings
- Acetylation/drug effects
- Anti-Bacterial Agents/pharmacology
- Antibiotics, Antineoplastic/pharmacology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Cytokine Receptor gp130
- DNA-Binding Proteins/metabolism
- Depsipeptides
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Interleukin-6/pharmacology
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Molecular Sequence Data
- Peptides, Cyclic
- Promoter Regions, Genetic
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Interleukin-6/metabolism
- Receptors, OSM-LIF
- STAT3 Transcription Factor
- Signal Transduction/drug effects
- Trans-Activators/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Frédéric Blanchard
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, NY 14263, USA.
| | | | | | | | | | | | | | | |
Collapse
|