1
|
Tóth A, Dobolyi Á. Prolactin in sleep and EEG regulation: New mechanisms and sleep-related brain targets complement classical data. Neurosci Biobehav Rev 2025; 169:106000. [PMID: 39755290 DOI: 10.1016/j.neubiorev.2024.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The role of prolactin in sleep regulation has been the subject of extensive research over the past 50 years, resulting in the identification of multiple, disparate functions for the hormone. Prolactin demonstrated a characteristic circadian release pattern with elevation during dark and diminution during light. High prolactin levels were linked to non-rapid eye movement sleep and electroencephalogram delta activity in humans. Conversely, hyperprolactinemia showed strong correlation with REM sleep in rodent studies. Prolactin may be implicated in the alterations in female sleep patterns observed during the reproductive cycle, it may play a role in the REM sleep enhancement following stress and in sleep-related immunological processes. In conclusion, prolactin appears to have a sleep-promoting role, particularly during the dark phase. However, it does not appear to play a central and coherent role in sleep regulation, as observed in some neuropeptides such as orexin. Conversely, its principal function may be to facilitate situational, yet adaptive, changes in sleep patterns in response to challenging physiological phases, such as those associated with stress, immunological challenges, or the reproductive cycle. Neuronal substrates for prolactin-mediated sleep effects remain unknown; however, recent rodent sleep studies may provide insights into the potential sites of these effects.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| |
Collapse
|
2
|
Ioachimescu AG, Kelestimur F. Drug induced hypoprolactinemia. Rev Endocr Metab Disord 2024; 25:1003-1011. [PMID: 39312063 DOI: 10.1007/s11154-024-09909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 12/08/2024]
Abstract
Prolactin levels can be influenced by multiple medications primarily through the interaction with dopamine receptors which regulate its secretion. Unlike hyperprolactinemia which has a well-defined clinical phenotype, the effects of hypoprolactinemia beyond inability to lactate are incompletely understood. Recent studies have raised concerns regarding detrimental changes in glucose metabolism, sexual function and psychological profile in patients with low prolactin levels. In contrast with anatomic and genetic etiologies, drug-induced hypoprolactinemia is usually reversible after dose reduction of the offending medication. The most common clinical scenario of drug-induced hypoprolactinemia in the endocrine clinic pertains to patients treated with cabergoline or bromocriptine for prolactin-secreting or other types of pituitary adenomas. Also, data has accumulated regarding hypoprolactinemia in patients receiving aripiprazole for schizophrenia and other psychiatric disorders. These patients warrant careful evaluation for comorbidities. This review aims to increase awareness about the potentially detrimental effects of drug-induced hypoprolactinemia, which should be considered in clinical practice decisions.
Collapse
Affiliation(s)
- Adriana G Ioachimescu
- Department of Medicine, Division of Endocrinology and Molecular Medicine, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Fahrettin Kelestimur
- Faculty of Medicine, Department of Endocrinology, Yeditepe University, İstanbul, Türkiye
| |
Collapse
|
3
|
Finn BP, Dattani MT. The molecular basis of hypoprolactinaemia. Rev Endocr Metab Disord 2024; 25:967-983. [PMID: 39417960 DOI: 10.1007/s11154-024-09906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Hypoprolactinaemia is an endocrinopathy which is typically encountered as part of a combined pituitary hormone deficiency picture. The vast majority of genetic causes identified to date have been in the context of congenital hypopituitarism with multiple co-existent endocrinopathies. This is primarily with its closest hormonal relation, namely growth hormone. Acquired hypoprolactinaemia is generally rare in paediatric patients, and usually occurs together with other hormonal deficiencies. Congenital hypopituitarism occurs with an incidence of 1:4,000-10,000 cases and mutations in the following transcription factors account for the majority of documented genetic causes: PROP-1, POU1F1, LHX3/4 as well as documented case reports for a smaller subset of transcription factors and other molecules implicated in lactotroph development and prolactin secretion. Isolated prolactin deficiency has been described in a number of sporadic case reports in the literature, but no cases of mutations in the gene have been described to date. A range of genetic polymorphisms affecting multiple components of the prolactin signalling pathway have been identified in the literature, ranging from RNA spliceosome mutations (RNPC3) to loss of function mutations in IGSF-1. As paediatricians gain a greater understanding of the long-term ramifications of hypoprolactinaemia in terms of metabolic syndrome, type 2 diabetes mellitus and impaired fertility, the expectation is that clinicians will measure prolactin more frequently over time. Ultimately, we will encounter further reports of hypoprolactinaemia-related clinical presentations with further genetic mutations, in turn leading to a greater insight into the molecular basis of hypoprolactinaemia in terms of signalling pathways and downstream mediators. In the interim, the greatest untapped reserve of genetic causes remains within the phenotypic spectrum of congenital hypopituitarism.
Collapse
Affiliation(s)
- Bryan Padraig Finn
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK.
| | - Mehul T Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK
- Genetics and Genomic Medicine Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
4
|
Liu X, Duan C, Yin X, Li X, Chen M, Chen J, Zhao W, Zhang L, Liu Y, Zhang Y. Effects of Prolactin Inhibition on Lipid Metabolism in Goats. Animals (Basel) 2024; 14:3364. [PMID: 39682330 DOI: 10.3390/ani14233364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study the role of PRL on lipid metabolism in goats. Twenty healthy eleven-month-old Yanshan cashmere goats with similar body weights (BWs) were selected and randomly divided into a control (CON) group and a bromocriptine (BCR, a PRL inhibitor, 0.06 mg/kg, BW) group. The experiment lasted for 30 days. Blood was collected on the day before BCR treatment (day 0) and on the 15th and 30th days after BCR treatment (days 15 and 30). On day 30 of treatment, all goats were slaughtered to collect their liver, subcutaneous adipose, and perirenal adipose tissues. A portion of all collected tissues was stored in 4% paraformaldehyde for histological observation, and another portion was immediately stored in liquid nitrogen for RNA extraction. The PRL inhibition had inconclusive effects found on BW and average daily feed intake (ADFI) in goats (p > 0.05). PRL inhibition decreased the hormone-sensitive lipase (HSL) levels on day 30 (p < 0.05), but the effects were inconclusive on days 0 and 15. PRL inhibition had inconclusive effects found on total cholesterol (TCH), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and acetyl-CoA carboxylase (ACC) on days 0, 15, and 30 (p > 0.05). Furthermore, hematoxylin-eosin (HE) staining of the liver, subcutaneous adipose, and perirenal adipose sections showed that PRL inhibition had inconclusive effects on the pathological changes in their histomorphology (p > 0.05), but measuring adipocytes showed that the area of perirenal adipocytes decreased in the BCR group (p < 0.05). The qPCR results showed that PRL inhibition increased the expression of PRL, long-form PRL receptor (LPRLR), and short-form PRL receptor (SPRLR) genes, as well as the expression of genes related to lipid metabolism, including sterol regulatory element binding transcription factor 1 (SREBF1); sterol regulatory element binding transcription factor 2 (SREBF2); acetyl-CoA carboxylase alpha (ACACA); fatty acid synthase (FASN); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); 7-dehydrocholesterol reductase (DHCR7); peroxisome proliferator-activated receptor gamma (PPARG); and lipase E, hormone-sensitive type (LIPE) in the liver (p < 0.05). In the subcutaneous adipose tissue, PRL inhibition increased SPRLR gene expression (p < 0.05) and decreased the expression of genes related to lipid metabolism, including SREBF1, SREBF2, ACACA, PPARG, and LIPE (p < 0.05). In the perirenal adipose tissue, the inhibition of PRL decreased the expression of the PRL, SREBF2, and HMGCR genes (p < 0.05). In conclusion, the inhibition of PRL decreases the serum HSL levels in cashmere goats; the effects of PRL on lipid metabolism are different in different tissues; and PRL affects lipid metabolic activity by regulating different PRLRs in liver and subcutaneous adipose tissues, as well as by decreasing the expression of the PRL, SREBF2, and HMGCR genes in perirenal adipose tissue.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jiaxin Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
5
|
Giatti S, Cioffi L, Diviccaro S, Chrostek G, Piazza R, Melcangi RC. Transcriptomic Profile of the Male Rat Hypothalamus and Nucleus Accumbens After Paroxetine Treatment and Withdrawal: Possible Causes of Sexual Dysfunction. Mol Neurobiol 2024:10.1007/s12035-024-04592-9. [PMID: 39495228 DOI: 10.1007/s12035-024-04592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), may induce sexual dysfunction during treatment and upon discontinuation. The mechanisms involved have been poorly explored so far. We have analyzed, by RNA sequencing, the whole transcriptomic profile in the hypothalamus and nucleus accumbens (NAc) (two brain regions involved in sexual behavior) of male rats daily treated for 2 weeks with paroxetine (T0) and at 1 month of withdrawal (T1). Data here reported show seven differentially expressed genes (DEGs) at T0 and 1 at T1 in the hypothalamus and 245 at T0 and 6 at T1 in the NAc. In addition, Gene-Set Enrichment, Gene Ontology, and Reactome analyses confirm that inflammatory signature and immune system activation were present at T0 in both brain areas. Considering that inflammation is generally associated with depression and that no paradigms inducing the pathology were here applied, these SSRI pro-depressive effects should be considered in patients without a clear indication of depression. Moreover, DEGs related to neurotransmitters with a role in sexual behavior and the reward system, such as dopamine (e.g., sialyltransferase 8B-ST8SIA3), glutamate (e.g., glutamate receptor ionotropic delta-2-GRID2) and GABA (e.g., glutamate decarboxylase type 2-GAD2) or associated with neurexin and neuroligin pathways and brain-derived neurotrophic factor (BDNF) signaling, were reported to be dysregulated in the NAc, further confirming dysfunction in this brain area. Interestingly, the analysis of DEGs altered at T1 in the NAc confirms the persistence of some of these side effects providing further information for post-SSRI sexual dysfunction (PSSD) etiopathogenesis.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Lucia Cioffi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gabriela Chrostek
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Rocco Piazza
- Dipartimento Di Medicina E Chirurgia, Università Di Milano-Bicocca, Milan, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
6
|
Omaliko PC, Ferket PR, Ogundare TE, Apalowo OO, Enenya IG, Iwuozo OC, Han J, Fasina YO. Impact of dietary fat types on expression levels of dopamine and serotonin transporters in the ileum of broiler chickens. Poult Sci 2024; 103:104114. [PMID: 39214056 PMCID: PMC11402036 DOI: 10.1016/j.psj.2024.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Various types of dietary fats undergo distinct fermentation processes by gut microbes, potentially leading to the production of neurotransmitters that can influence the gut. Serotonin and dopamine are recognized neurotransmitters with positive effects on gut function. A broiler chicken trial was conducted to evaluate the influence of dietary fat types on protein expression of 2 neurotransmitter transporters, dopamine (DAT) and serotonin (5-HTT). A total of 560 day-old (Ross 708) male broiler chicks were randomly assigned to 7 dietary treatments. The experimental treatments included a basal diet of corn-soybean meal (SBM), supplemented with 3% of various fats: poultry fat (CON), olive oil (OLIV), fish oil (FISH), canola oil (CANO), lard (LARD), coconut oil (COCO), or flaxseed oil (FLAX). Bodyweight (BW) and feed conversion ratio (FCR) were recorded. Ileal tissues were aseptically collected to determine the expression levels of DAT and 5-HTT through western blot analysis. In addition, plasma samples were analyzed for reactive oxygen metabolites (d-ROM) tests on d 55. Results showed that dietary fat type inclusion did not have any detrimental effect on growth performance parameters. The expression levels of DAT were higher (P < 0.05) in FLAX treatments compared to CON treatments on d 20 and d 55, respectively. Similarly, with 5-HTT levels, FLAX, CANO, and LARD treatments were higher (P < 0.05) than CON treatments on d 20 and d 55. However, higher levels of oxidative stress (d-ROM values) were recorded in COCO (32.75 Carr U), CANO (29 Carr U), and CON treatments (25.5 Carr U) compared to FLAX (18.5 Carr U; P < 0.05) treatment. These findings suggest that incorporating dietary flaxseed oil at a 3% level in the diet has significant potential to elevate the expression levels of intestinal DAT and 5-HTT without inducing oxidative stress.
Collapse
Affiliation(s)
- Paul C Omaliko
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Tunde E Ogundare
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Oluwabunmi O Apalowo
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Ikenna G Enenya
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Odinaka C Iwuozo
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
7
|
Reinhardt JK, Schertler L, Bussmann H, Sellner M, Smiesko M, Boonen G, Potterat O, Hamburger M, Butterweck V. Vitex agnus castus Extract Ze 440: Diterpene and Triterpene's Interactions with Dopamine D2 Receptor. Int J Mol Sci 2024; 25:11456. [PMID: 39519010 PMCID: PMC11547015 DOI: 10.3390/ijms252111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Pre-clinical studies suggest that extracts prepared from the fruits of Vitex agnus castus (VAC) interact with dopamine D2 receptors, leading to reduced prolactin secretion. In previous experiments, dopaminergic activity was mostly evaluated using radioligand binding assays or via the inhibition of prolactin release from rat pituitary cells. Diterpenes featuring a clerodadienol scaffold were identified as major active compounds, but no conclusive data regarding their potency and intrinsic activity are available. Utilising advances in chromatography, we re-examined this topic using HPLC-based tracking of bioactivity via microfractionation of the VAC extract Ze 440. Using a cAMP-based assay, we measured dopaminergic activity in CHO-K1 cells that overexpress the human D2 receptor. Six diterpenes were isolated from two active HPLC microfractions. Viteagnusin I emerged as the most potent diterpene (EC50: 6.6 µM), followed by rotundifuran (EC50: 12.8 µM), whereas vitexilactone was inactive (EC50: >50 µM). Interestingly, triterpenes were also identified as active, with 3-epi-maslinic acid being the most active compound (EC50: 5.1 µM). To better understand these interactions at the molecular level, selected diterpenes and triterpenes were analysed through molecular docking against D2 receptor structures. Our data show that the dopaminergic activity of VAC diterpenes seems to depend on the configuration and on ring substitution in the side chain. This study also highlights for the first time the dopaminergic contribution of triterpenes such as 3-epi-maslinic acid.
Collapse
Affiliation(s)
- Jakob K. Reinhardt
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Lukas Schertler
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Hendrik Bussmann
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Manuel Sellner
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (M.S.)
| | - Martin Smiesko
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (M.S.)
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Olivier Potterat
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Matthias Hamburger
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Veronika Butterweck
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| |
Collapse
|
8
|
Diaz-Moreno U, Gan CG, Pujari D, Gan HW, Batzios S. L-Dopa Might Be Insufficient to Suppress Development of Prolactinomas in Dihydropteridine Reductase-Deficiency Patients. JCEM CASE REPORTS 2024; 2:luae172. [PMID: 39346013 PMCID: PMC11427838 DOI: 10.1210/jcemcr/luae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 10/01/2024]
Abstract
Dihydropteridine reductase (DHPR) deficiency is a disorder that prevents regeneration of tetrahydrobiopterin (BH4), causing hyperphenylalaninemia (HPA) and low levels of neurotransmitters, including dopamine. Due to low levels of dopamine, patients present with hyperprolactinemia. Treatment consists of a phenylalanine (Phe)-restricted diet, hydroxytryptophan and levodopa (L-Dopa) supplementation, leading to a rapid normalization of prolactin (PRL) levels. We report a case of a patient with DHPR deficiency presenting with new symptomatic hyperprolactinemia and amenorrhea in adolescence despite appropriate management. The prolactinoma was confirmed with pituitary magnetic resonance imaging. The patient was started on cabergoline with rapid normalization of PRL levels and resolution of symptoms, in keeping with previous reports. Cabergoline has a stronger affinity for the D2R receptor and longer half-life than L-Dopa, leading to lactotroph apoptosis, tumor shrinkage, and rapid and maintained normalization of PRL levels, with a better side-effect profile. Patients with DHPR deficiency need to be actively monitored for symptomatic hyperprolactinemia, as L-Dopa monotherapy is insufficient to suppress PRL secretion, leading to lactotroph hypertrophy and proliferation over time and development of prolactinomas in later life.
Collapse
Affiliation(s)
- Unai Diaz-Moreno
- Metabolic Medicine Department, Great Ormond Street Hospital, WC1N3JH London, UK
| | - Cheng Guang Gan
- Endocrinology Department, Great Ormond Street Hospital, WC1N3JH London, UK
| | - Divya Pujari
- Endocrinology Department, Great Ormond Street Hospital, WC1N3JH London, UK
| | - Hoong-Wei Gan
- Endocrinology Department, Great Ormond Street Hospital, WC1N3JH London, UK
| | - Spyros Batzios
- Metabolic Medicine Department, Great Ormond Street Hospital, WC1N3JH London, UK
| |
Collapse
|
9
|
Morrison FG, Van Orden LJ, Zeitz K, Kuijer EJ, Smith SL, Heal DJ, Wallace TL. Navacaprant, a novel and selective kappa opioid receptor antagonist, has no agonist properties implicated in opioid-related abuse. Neuropharmacology 2024; 257:110037. [PMID: 38876309 DOI: 10.1016/j.neuropharm.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Kappa opioid receptors (KORs) are implicated in the pathophysiology of various psychiatric and neurological disorders creating interest in targeting the KOR system for therapeutic purposes. Accordingly, navacaprant (NMRA-140) is a potent, selective KOR antagonist being evaluated as a treatment for major depressive disorder. In the present report, we have extended the pharmacological characterization of navacaprant by further demonstrating its selective KOR antagonist properties and confirming its lack of agonist activity at KORs and related targets involved in opioid-related abuse. Using CHO-K1 cells expressing human KOR, mu (MOR), or delta (DOR) opioid receptors, navacaprant demonstrated selective antagonist properties at KOR (IC50 = 0.029 μM) versus MOR (IC50 = 3.3 μM) and DOR (IC50 > 10 μM) in vitro. In vivo, navacaprant (10-30 mg/kg, i.p.) dose-dependently abolished KOR-agonist induced analgesia in the mouse tail-flick assay. Additionally, navacaprant (10, 30 mg/kg, p.o.) significantly reduced KOR agonist-stimulated prolactin release in mice and rats, confirming KOR antagonism in vivo. Navacaprant showed no agonist activity at any opioid receptor subtype (EC50 > 10 μM) in vitro and exhibited no analgesic effect in the tail-flick assays at doses ≤100 mg/kg, p.o. thereby confirming a lack of opioid receptor agonist activity in vivo. Importantly, navacaprant did not alter extracellular dopamine concentrations in the nucleus accumbens shell of freely-moving rats following doses ≤100 mg/kg, p.o., whereas morphine (10, 20 mg/kg, i.p.) significantly increased dopamine levels. These results demonstrate that navacaprant is a KOR-selective antagonist with no pharmacological properties implicated in opioid-related abuse.
Collapse
MESH Headings
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Animals
- CHO Cells
- Cricetulus
- Humans
- Male
- Mice
- Rats
- Analgesics, Opioid/pharmacology
- Cricetinae
- Opioid-Related Disorders/drug therapy
- Narcotic Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Mice, Inbred C57BL
- Dopamine/metabolism
Collapse
Affiliation(s)
| | | | - Karla Zeitz
- Neumora Therapeutics, Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Eloise J Kuijer
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - David J Heal
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK; DevelRx Ltd., BioCity, Nottingham, NG1 1GF, UK
| | - Tanya L Wallace
- Neumora Therapeutics, Inc., 490 Arsenal Way, Watertown, MA, 02472, USA.
| |
Collapse
|
10
|
King ME, Herzing HM, McLeod KR, Klotz JL, Foote AP, Edwards JL, Harmon DL. Impact of endophyte-infected tall fescue seed consumption on endocrine changes associated with intake regulation and post-absorptive metabolism in growing steers. Domest Anim Endocrinol 2024; 89:106873. [PMID: 39032187 DOI: 10.1016/j.domaniend.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Fescue toxicosis is a syndrome occurring from the consumption of endophyte-infected tall fescue and results in substantial economic losses to the beef industry primarily from reduced growth accompanied by decreased dry matter intake (DMI); however, the associations characterizing this reduction in DMI have yet to be elucidated. The objective of this experiment was to identify endocrine changes associated with intake regulation post-consumption of endophyte-infected tall fescue seed (E+). Twelve Holstein steers were stratified by body weight and assigned to 1 of 3 treatments (n=4): 0 ppm ergovaline (ERV), 1.8 ppm ERV, or 2.7 ppm ERV. Treatments were achieved by combining differing proportions of ground E+ and non-endophyte-infected tall fescue seed. Steers were adapted to their diets for 7 d followed by a 7 d DMI collection period. Within treatment, steers were assigned to a sampling day (d 16 or d 17). Blood samples were collected every 20 min for 8 h, beginning 1 h before feeding. Intake data was analyzed using the MIXED procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) with treatment, day, and the interaction as fixed effects. Hormone and metabolite data were analyzed with the fixed effect of treatment, time, and the interaction including time as a repeated measure and orthogonal contrasts. Dry matter intake was linearly decreased with increasing ERV in the diet (P < 0.001). Insulin and leptin concentrations exhibited a quadratic effect (P = 0.018 and P = 0.005) with insulin concentrations highest for the 2.7 ppm treatment and leptin concentrations highest for the 1.8 ppm treatment. No differences were detected for active ghrelin or β-hydroxybuytrate concentrations among treatment groups. Further, steers consuming both the 1.8 and 2.7 ppm ERV treatments had lower prolactin concentrations compared to the 0 ppm treatment (quadratic, P= 0.019). Glucose concentrations had a tendency for a linear increase as ERV concentrations increased (P = 0.091). A treatment × time interaction (P = 0.002) was noted in NEFA concentrations, with the 1.8 ppm ERV treatment showing increased pre-feeding concentrations, and the 2.7 ppm ERV treatment exhibiting elevated NEFA concentrations as time post-feeding progressed. The results suggest that E+ consumption reduces intake likely through alterations in intake-related hormones and post-absorptive metabolism and contributes to our current understanding of E+ effects on intake reduction while providing avenues for future research.
Collapse
Affiliation(s)
- Mindy E King
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Hannah M Herzing
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Kyle R McLeod
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY, USA
| | - Andrew P Foote
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
11
|
Wu T, Duan Y, Jiang J, Gu T, Zhang P, Bi Y. A Century of Prolactin: Emerging Perspectives as a Metabolic Regulator. Diabetes Metab Res Rev 2024; 40:e3836. [PMID: 39096246 DOI: 10.1002/dmrr.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 08/05/2024]
Abstract
Prolactin, a hormone that has been studied for almost a century, has evolved from a reproductive regulator to a key player in metabolic health. Initially identified for its lactogenic role, the impact of prolactin on glucose and lipid metabolism became evident in the 1970s, leading to a paradigm shift in our understanding. Deviations in prolactin levels, including hyperprolactinaemia and hypoprolactinaemia, have been associated with adverse effects on glucose and lipid metabolism. Mechanistically, prolactin regulates metabolic homoeostasis by maintaining islet abundance, regulating the hypothalamic energy regulatory centre, balancing adipose tissue expansion, and regulating hepatic metabolism. Given the widespread use of pharmaceutical agents that affect prolactin levels, it is important to examine prolactin-related metabolic effects. Recently, a profound exploration of the intricate metabolic role of prolactin has been conducted, encompassing its rhythm-dependent regulatory influence on metabolism and its correlation with cognitive impairment associated with metabolic diseases. In this review, we highlight the role of prolactin as a metabolic regulator, summarise its metabolic effects, and discuss topics related to the association between prolactin and metabolic comorbidities.
Collapse
Affiliation(s)
- Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yanjie Duan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jiaxuan Jiang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
12
|
Kunkel A, Asan L, Krüger I, Erfurt C, Ruhnau L, Caliskan EB, Hackert J, Wiech K, Schmidt K, Bingel U. Dopamine has no direct causal role in the formation of treatment expectations and placebo analgesia in humans. PLoS Biol 2024; 22:e3002772. [PMID: 39316644 PMCID: PMC11421806 DOI: 10.1371/journal.pbio.3002772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/29/2024] [Indexed: 09/26/2024] Open
Abstract
Dopamine-based reward and learning mechanisms have been suggested to contribute to placebo effects. However, the exact role of dopaminergic neurotransmission in their generation and maintenance is still unclear. This study aimed to shed light on the causal role of dopamine in establishing positive treatment expectations, as well as on the magnitude and duration of their effect on pain. To this end, we used an established placebo analgesia paradigm in combination with 2 opposing pharmacological modulations of dopaminergic tone, i.e., the dopamine antagonist sulpiride and the dopamine precursor L-dopa which were both applied in an experimental, double-blind, randomized, placebo-controlled trial with a between-subject design in N = 168 healthy volunteers. The study medication successfully altered dopaminergic tone during the conditioning procedure. Contrary to our hypotheses, the medication did not modulate the formation of positive treatment expectation and placebo analgesia tested 1 day later. Placebo analgesia was no longer detectable on day 8 after conditioning. Using a combined frequentist and Bayesian approach, our data provide strong evidence against a direct dopaminergic influence on the generation and maintenance of placebo effects. Further exploration of the neurochemical mechanisms underlying placebo analgesia remains paramount in the quest to exploit these effects for optimal treatment outcomes. Trial registration: ClinicalTrials.gov German Clinical Trials Register, ID: DRKS00029366, https://drks.de/search/en/trial/DRKS00029366.
Collapse
Affiliation(s)
- Angelika Kunkel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Livia Asan
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Isabel Krüger
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Clara Erfurt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Laura Ruhnau
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Elif Buse Caliskan
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jana Hackert
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Katja Wiech
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Wellcome Centre for Integrative Functional Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Sofer Y, Zilkha N, Gimpel E, Wagner S, Chuartzman SG, Kimchi T. Sexually dimorphic oxytocin circuits drive intragroup social conflict and aggression in wild house mice. Nat Neurosci 2024; 27:1565-1573. [PMID: 38969756 DOI: 10.1038/s41593-024-01685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
In nature, both males and females engage in competitive aggressive interactions to resolve social conflicts, yet the behavioral principles guiding such interactions and their underlying neural mechanisms remain poorly understood. Through circuit manipulations in wild mice, we unveil oxytocin-expressing (OT+) neurons in the hypothalamic paraventricular nucleus (PVN) as a neural hub governing behavior in dyadic and intragroup social conflicts, influencing the degree of behavioral sexual dimorphism. We demonstrate that OT+ PVN neurons are essential and sufficient in promoting aggression and dominance hierarchies, predominantly in females. Furthermore, pharmacogenetic activation of these neurons induces a change in the 'personality' traits of the mice within groups, in a sex-dependent manner. Finally, we identify an innervation from these OT neurons to the ventral tegmental area that drives dyadic aggression, in a sex-specific manner. Our data suggest that competitive aggression in naturalistic settings is mediated by a sexually dimorphic OT network connected with reward-related circuitry.
Collapse
Affiliation(s)
- Yizhak Sofer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Gimpel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | | | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Sakata K, Hashimoto A, Takeshige N, Orito K, Nagayama A, Ashida K, Nomura M, Morioka M. Clinical and radiographic characteristics of patients with non-functioning pituitary adenomas categorized according to their serum prolactin concentration: novel predictors of postoperative transient diabetes insipidus following surgery. Endocrine 2024; 85:837-848. [PMID: 38664336 DOI: 10.1007/s12020-024-03835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/14/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE Non-functioning pituitary adenomas (NFPAs) are often associated with hyperprolactinemia, which is known as the "stalk effect". However, the relationships between hyperprolactinemia and the radiographic characteristics of the tumor that affects the pituitary stalk have not been well characterized. We aimed to identify the differences in the clinical and radiographic characteristics of patients with NFPA, with and without hyperprolactinemia. METHODS We enrolled 107 patients with NFPA and allocated them to hyperprolactinemia and non-hyperprolactinemia groups using two different cut-off values: (1) the upper limit of the normal reference range, adjusted for sex and menopausal status, and (2) the upper quartile across the cohort, and compared their clinical and radiographic characteristics. These analyses were conducted to clarify the relationship between the "stalk effect" and the postoperative change in antidiuretic hormone secretion. RESULTS The specific radiographic characteristics of the patients included the presence of a cystic or hemorrhagic tumor and the presence of pituitary stalk deviation, which were more frequent in the patients with hyperprolactinemia. Interestingly, the incidence of postoperative transient diabetes insipidus was statistically significantly higher in the hyperprolactinemia group (≥40 ng/mL) and in the group with radiologic evidence of stalk deviation, which were shown to be independent risk factors on multivariate analysis. CONCLUSION The presence of a "stalk effect" was associated with a higher risk of postoperative transient diabetes insipidus, reflecting perioperative pituitary stalk dysfunction following NFPA surgery, especially in patients with serum prolactin concentrations ≥40 ng/mL and radiologic evidence of stalk deviation.
Collapse
Affiliation(s)
- Kiyohiko Sakata
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan.
| | - Aya Hashimoto
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Nobuyuki Takeshige
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Kimihiko Orito
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
15
|
Ji X, Yin H, Gu T, Xu H, Fang D, Wang K, Sun H, Tian S, Wu T, Nie Y, Zhang P, Bi Y. Excessive free fatty acid sensing in pituitary lactotrophs elicits steatotic liver disease by decreasing prolactin levels. Cell Rep 2024; 43:114465. [PMID: 38985678 DOI: 10.1016/j.celrep.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.
Collapse
Affiliation(s)
- Xinlu Ji
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hongli Yin
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hao Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Da Fang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Kai Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yuanyuan Nie
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
16
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
17
|
Bovenzi R, Schirinzi T, Conti M, Sancesario GM, Zenuni H, Simonetta C, Bissacco J, Mascioli D, Pieri M, Cerroni R, Stefani A, Mercuri NB, Pierantozzi M. A biological characterization of patients with postmenopausal Parkinson's disease. J Neurol 2024; 271:3610-3615. [PMID: 38492015 DOI: 10.1007/s00415-024-12258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Menopause increases the risk for Parkinson's disease (PD), although the underlying biological mechanisms have not been established in patients. Here, we aimed to understand the basis of menopause-related vulnerability to PD. Main motor and non-motor scores, blood levels of estradiol, testosterone, follicle-stimulating hormone, and luteinizing hormone, CSF levels of total α-synuclein, amyloid-β-42, amyloid-β-40, total tau, and phosphorylated-181-tau were examined in 45 women with postmenopausal-onset PD and 40 age-matched controls. PD patients had higher testosterone and lower estradiol levels than controls, and the residual estradiol production was associated with milder motor disturbances and lower dopaminergic requirements. In PD but not in controls, follicle-stimulating hormone levels correlated with worse cognitive scores and CSF markers of amyloidopathy and neuronal loss. In conclusion, menopause-related hormonal changes might differentially contribute to clinical-pathological trajectories of PD, accounting for the peculiar vulnerability to the disease.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Henri Zenuni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Jacopo Bissacco
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Davide Mascioli
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Tóth A, Keserű D, Pethő M, Détári L, Bencsik N, Dobolyi Á, Hajnik T. Sleep and local field potential effect of the D2 receptor agonist bromocriptine during the estrus cycle and postpartum period in female rats. Pharmacol Biochem Behav 2024; 239:173754. [PMID: 38537873 DOI: 10.1016/j.pbb.2024.173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Pituitary lactotrophs are under tonic dopaminergic inhibitory control and bromocriptine treatment blocks prolactin secretion. METHODS Sleep and local field potential were addressed for 72 h after bromocriptine treatments applied during the different stages of the estrus cycle and for 24 h in the early- and middle postpartum period characterized by spontaneously different dynamics of prolactin release in female rats. RESULTS Sleep changes showed strong dependency on the estrus cycle phase of the drug application. Strongest increase of wakefulness and reduction of slow wave sleep- and rapid eye movements sleep appeared during diestrus-proestrus and middle postpartum treatments. Stronger sleep-wake effects appeared in the dark phase in case of the estrus cycle treatments, but in the light phase in postpartum treatments. Slow wave sleep and REM sleep loss in case of estrus cycle treatments was not compensated at all and sleep loss seen in the first day post-injection was gained further later. In opposition, slow wave sleep loss in the light phase after bromocriptine injections showed compensation in the postpartum period treatments. Bromocriptine treatments resulted in a depression of local field potential delta power during slow wave sleep while an enhancement in beta and gamma power during wakefulness regardless of the treatment timing. CONCLUSIONS These results can be explained by the interplay of dopamine D2 receptor agonism, lack of prolactin release and the spontaneous homeostatic sleep drive being altered in the different stages of the estrus cycle and the postpartum period.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Norbert Bencsik
- Cellular Neurobiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| |
Collapse
|
19
|
Samson JS, Ramesh A, Parvathi VD. Development of Midbrain Dopaminergic Neurons and the Advantage of Using hiPSCs as a Model System to Study Parkinson's Disease. Neuroscience 2024; 546:1-19. [PMID: 38522661 DOI: 10.1016/j.neuroscience.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Midbrain dopaminergic (mDA) neurons are significantly impaired in patients inflicted with Parkinson's disease (PD), subsequently affecting a variety of motor functions. There are four pathways through which dopamine elicits its function, namely, nigrostriatal, mesolimbic, mesocortical and tuberoinfundibular dopamine pathways. SHH and Wnt signalling pathways in association with favourable expression of a variety of genes, promotes the development and differentiation of mDA neurons in the brain. However, there is a knowledge gap regarding the complex signalling pathways involved in development of mDA neurons. hiPSC models have been acclaimed to be effective in generating complex disease phenotypes. These models mimic the microenvironment found in vivo thus ensuring maximum reliability. Further, a variety of therapeutic compounds can be screened using hiPSCs since they can be used to generate neurons that could carry an array of mutations associated with both familial and sporadic PD. Thus, culturing hiPSCs to study gene expression and dysregulation of cellular processes associated with PD can be useful in developing targeted therapies that will be a step towards halting disease progression.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Anuradha Ramesh
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India.
| |
Collapse
|
20
|
Deebel NA, Thai K, Ramasamy R, Terlecki RP. Understanding the dopaminergic pathway relative to men's sexual dysfunction in patients with Parkinson's disease: a narrative review with implications for future research. Int J Impot Res 2024; 36:181-185. [PMID: 36572757 DOI: 10.1038/s41443-022-00656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is often most recognized for motor symptoms but associated non-motor symptoms such as sexual dysfunction can significantly impact quality of life. This condition involves a hormonal disruption and has a predilection for male patients, yet there are no formal guidelines for screening or management of sexual health pathology in these patients. While prior publications have addressed the presence of sexual dysfunction (SD) among men with PD, there has been a paucity of work examining the hypothalamic-pituitary-gonadal (HPG) axis and the interplay between dopamine, prolactin (PRL), and testosterone. This review provides an overview of data extracted from the existing peer-reviewed literature regarding hormonal and sexual health changes in men with PD and the impact of dopaminergic and/or androgen replacement therapy. Furthermore, while some research suggests that PD patients are at higher risk for prolactin elevation and testosterone deficiency, heterogeneity of the data limits extrapolation. Additionally, data related to pharmacologic optimization of the HPG axis in this patient population is similarly limited. Prospective studies are needed to better characterize the hormonal pathophysiology of PD as it relates to sexual dysfunction such that men at risk can be effectively identified so as to offer interventions that may improve quality of life.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest Baptist Medical Center, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Kim Thai
- Department of Urology, Wake Forest Baptist Medical Center, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ranjith Ramasamy
- Desai Sethi Urological Institute Miller School of Medicine, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Ryan P Terlecki
- Department of Urology, Wake Forest Baptist Medical Center, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
21
|
Saito N, Hirai N, Koyahara Y, Sato S, Hiramoto Y, Fujita S, Nakayama H, Hayashi M, Iwabuchi S. Evaluation of Treatment Strategies for Male Prolactin-Secreting Pituitary Neuroendocrine Tumors. Cureus 2024; 16:e54503. [PMID: 38516477 PMCID: PMC10955445 DOI: 10.7759/cureus.54503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Prolactin-secreting pituitary neuroendocrine tumors (PitNETs) are more common in women. Male patients may also have few symptoms and have macroadenomas extending outside the sella turcica. This study aimed to report the results of cabergoline treatment in male patients with prolactin-secreting PitNET. The study included nine male patients aged 26-65 years (median, 46 years) diagnosed with prolactin-secreting PitNETs. The age at onset, prolactin values, tumor size, symptoms, and treatment were assessed. The mean prolactin value at the initial presentation was 2734.6 ng/mL, and the mean maximum tumor diameter was 40.4 mm. Visual field disturbance was the most common symptom (44.4%), followed by headaches (33.3%), asymptomatic symptoms (11.1%), and galactorrhea (11.1%). Eight patients responded to cabergoline treatment with normalization of prolactin levels and tumor shrinkage. One patient did not respond to the cabergoline treatment and required surgical intervention. There were no cases of cerebrospinal fluid leakage. Cabergoline was found to be an effective treatment for male prolactin-secreting PitNETs.
Collapse
Affiliation(s)
- Norihiko Saito
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Nozomi Hirai
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Yuki Koyahara
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Sho Sato
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Yu Hiramoto
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Satoshi Fujita
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Haruo Nakayama
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Morito Hayashi
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | | |
Collapse
|
22
|
Donnelly C, Estrella L, Ginevic I, Ganesh J. A Case of DNAJC12-Deficient Hyperphenylalaninemia Detected on Newborn Screening: Clinical Outcomes from Early Detection. Int J Neonatal Screen 2024; 10:7. [PMID: 38248634 PMCID: PMC10801465 DOI: 10.3390/ijns10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNAJC12-deficient hyperphenylalaninemia is a recently described inborn error of metabolism associated with hyperphenylalaninemia, neurotransmitter deficiency, and developmental delay caused by biallelic pathogenic variants of the DNAJC12 gene. The loss of the DNAJC12-encoded chaperone results in the destabilization of the biopterin-dependent aromatic amino acid hydroxylases, resulting in deficiencies in dopamine, norepinephrine, and serotonin. We present the case of a patient who screened positive for hyperphenylalaninemia on newborn screening and was discovered to be homozygous for a likely pathogenic variant of DNAJC12. Here, we review the management of DNAJC12-related hyperphenylalaninemia and compare our patient to other reported cases in the literature to investigate how early detection and management may impact clinical outcomes.
Collapse
Affiliation(s)
- Colleen Donnelly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.E.)
| | | | | | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.E.)
| |
Collapse
|
23
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Díaz-Torga G. Revealing Sexual Dimorphism in Prolactin Regulation From Early Postnatal Development to Adulthood in Murine Models. J Endocr Soc 2023; 8:bvad146. [PMID: 38045876 PMCID: PMC10690727 DOI: 10.1210/jendso/bvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/05/2023] Open
Abstract
Serum prolactin (PRL) levels exhibit a gradual rise both in male and female rats from birth to adulthood, with females consistently displaying higher levels compared to age-matched males. This pattern has traditionally been attributed to the development and maturation of endocrine and neuroendocrine networks responsible for regulating PRL synthesis and secretion. However, the effect of dopamine (DA), which acts as an inhibitory factor on lactotroph function, also increases from birth to puberty, particularly in females. Nonetheless, the secretion of PRL remains higher in females compared to males. On the other hand, the observed sex differences in serum PRL levels during early postnatal development cannot be attributed to the influence of estradiol (E2). While serum E2 levels gradually increase after birth, only after 45 days of life do the disparities in E2 levels between females and males become evident. These observations collectively suggest that neither the maturation of hypothalamic DA regulation nor the rise in E2 levels can account for the progressive and sustained elevation in serum PRL levels and the observed sexual dimorphism during postnatal development. This review highlights the importance of recent discoveries in animal models that shed light on inhibitory mechanisms in the control of PRL secretion within the pituitary gland itself, that is intrapituitary mechanisms, with a specific emphasis on the role of transforming growth factor β1 and activins in PRL secretion.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Milagros Peña-Zanoni
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Dana Bornancini
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| |
Collapse
|
24
|
Araujo-Castro M, Marazuela M, Puig-Domingo M, Biagetti B. Prolactin and Growth Hormone Signaling and Interlink Focused on the Mammosomatotroph Paradigm: A Comprehensive Review of the Literature. Int J Mol Sci 2023; 24:14002. [PMID: 37762304 PMCID: PMC10531307 DOI: 10.3390/ijms241814002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Prolactin (PRL) and growth hormone (GH) are peptide hormones that bind to the class 1 cytokine receptor superfamily, a highly conserved cell surface class of receptors. Both hormones control their own secretion via a negative autocrine loop in their own mammosomatotroph, lactotroph or somatotroph. In this regard, GH and PRL are regulated by similar signaling pathways involving cell growth and hormone secretion. Thus, GH and PRL dysregulation and pituitary neuroendocrine tumor (PitNET) development may have common pathogenic pathways. Based on cell linage, lactotroph and somatotroph PitNETs come from pituitary-specific POU-class homeodomain transcription factor (Pit-1). Mammosomatotroph and plurihormonal PitNETs are a unique subtype of PitNETs that arise from a single-cell population of Pit-1 lineage. In contrast, mixed somatotroph-lactotroph PitNETs are composed of two distinct cell populations: somatotrophs and lactotrophs. Morphologic features that distinguish indolent PitNETs from locally aggressive ones are still unidentified, and no single prognostic parameter can predict tumor aggressiveness or treatment response. In this review, we aim to explore the latest research on lactotroph and somatotroph PitNETs, the molecular mechanisms involved in PRL and GH axis regulation and the signaling pathways involved in their aggressiveness, particularly focused on mammosomatotroph and mixed subtypes. Finally, we summarize epidemiological, clinical, and radiological features of these exceptional tumors. We aim to shed light, from basic to clinical settings, on new perspectives and scientific gaps in this field.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Colmenar Viejo Street km 9, 28034 Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Colmenar Viejo Street km 9, 28034 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER G747, Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Betina Biagetti
- Department of Endocrinology and Nutrition, Vall d’Hebron University Hospital, Reference Networks (ERN) and Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Avenue, 119, 08035 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Avenida Can Domènech s/n, 08193 Bellaterra, Spain
| |
Collapse
|
25
|
Auriemma RS, Pirchio R, Pivonello C, Garifalos F, Colao A, Pivonello R. Approach to the Patient With Prolactinoma. J Clin Endocrinol Metab 2023; 108:2400-2423. [PMID: 36974474 PMCID: PMC10438891 DOI: 10.1210/clinem/dgad174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Prolactinomas are the most common pituitary tumor histotype, with microprolactinomas being prevalent in women and macroprolactinomas in men. Hyperprolactinemia is among the most common causes of hypogonadotropic hypogonadism in both sexes, prompting medical advice for hypogonadism (infertility, oligo-amenorrhea, impotence, osteoporosis/osteopenia) in both sexes, and for signs and symptoms of mass effects (hypopituitarism, visual loss, optic chiasm compression, cranial nerve deficits, headaches) predominantly in men. Diagnostic workup involves a single prolactin measurement and pituitary imaging, but some laboratory artifacts (ie, the "hook effect" and macroprolactin) can complicate or delay the diagnosis. The treatment of choice for prolactinomas is represented by dopamine agonists, mainly cabergoline, which are able to induce disease control, restore fertility in both sexes, and definitively cure one-third of patients, thus permitting treatment discontinuation. Pregnancy and menopause may promote spontaneous prolactin decline and anticipate cabergoline discontinuation in women. Surgery and/or radiotherapy are indicated in case of resistance to cabergoline not overcome by the increase in drug dose up to the maximally tolerated or the patient's personal choice of surgery. The evidence of resistance to cabergoline in invasive and proliferative tumors may indicate biological aggressiveness, thus requiring alternative therapeutic approaches mainly based on temozolomide use as monotherapy or combined with radiotherapy. In uncontrolled patients, new medical approaches (alternative hormonal treatments, cytotoxic drugs, peptide receptor radionuclide therapy, mTOR/Akt inhibitors, tyrosine kinase inhibitors, or immunotherapy) may be offered but the experience collected to date is still very scant. This article reviews different facets of prolactinomas and discusses approaches to the condition in more common clinical situations.
Collapse
Affiliation(s)
- Renata S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy
| | - Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy
| | - Claudia Pivonello
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, 80131 Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Unità di Andrologia e Medicina della Riproduzione e Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, “Federico II” University, 80131 Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Unità di Andrologia e Medicina della Riproduzione e Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, 80131 Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
26
|
Baba MS, Laway BA, Misgar RA, Wani AI, Bashir MI, Bhat IA, Haq MG, Shah ZA. Metabolic Abnormalities, Inflammatory Markers and Endothelial Dysfunction in Hyperprolactinemia due to Prolactinoma before and after Normalization of Serum Prolactin: A Prospective Case Control Study. Indian J Endocrinol Metab 2023; 27:357-364. [PMID: 37867992 PMCID: PMC10586551 DOI: 10.4103/ijem.ijem_201_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 10/24/2023] Open
Abstract
Background Hyperprolactinemia is associated with obesity, dyslipidemia, insulin resistance, and low-grade inflammation which may promote endothelial dysfunction (EnD). Limited work has been done on EnD in prolactinomas and we, therefore, studied serum markers of inflammation and EnD in patients with prolactinomas before and after treatment with dopamine agonists. Methodology Fifty-six treatment naïve patients with prolactinomas and fifty-three (apparently healthy age and sex-matched) controls were enrolled in the study and subjected to clinical assessment and laboratory investigations including blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, urea, creatinine, uric acid, erythrocyte sedimentation rate (ESR), highly sensitive C-reactive protein (hsCRP) and markers of EnD i.e., intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Patients were treated with a dopamine agonist (cabergoline) and parameters (like ESR, hsCRP, ICAM-1, and VCAM-1) were measured at 12 weeks. Results The majority of the patients (84%) were female, more than half (52%) had metabolic syndrome and over a third (36%) were obese. Blood glucose fasting, HbA1c, lipid fractions, ESR, hsCRP, ICAM-1, and VCAM-1 were significantly higher in patients than in controls. Median ICAM-1 was 1331.95 ng/ml (IQR 803.43-1825.99) in patients vs 753.04 ng/ml (IQR 402.04-871.55) in controls, P < 0.001 and median VCAM-1in patients was 971.35 ng/ml (IQR 695.03-1285.23) as against 634.56 ng/ml (IQR 177.49-946.50) in controls, p0.001. Serum ICAM-1 and VCAM-1 correlated positively with hsCRP. On multivariate regression analysis, serum hsCRP was the only significant predictor of change in ICAM-1 and VCAM-1. Normalization of serum PRL with CAB resulted in a significant decrease in metabolic parameters, ESR, hsCRP, ICAM-1, and VCAM-1. Conclusion Hyperprolactinemia because of prolactinoma is associated with EnD secondary to systemic inflammation and metabolic abnormalities which improve after treatment with DA.
Collapse
Affiliation(s)
- Mohammad Salem Baba
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Bashir Ahmad Laway
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Raiz Ahmad Misgar
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Arshad Iqbal Wani
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Mir Iftikhar Bashir
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Imtiyaz Ahmad Bhat
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Malik Gawharul Haq
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Zafar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
27
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
28
|
Calva-González M, Villanueva-Solórzano PL, Crail-Meléndez ED, Loya-Murguia KM, Dehesa Hernandez IA, Robles-Ramirez F, Rodríguez-Hernández LA, Mondragón-Soto MG, Flores-Vázquez JG, Portocarrero-Ortiz LA. Neuropsychiatric Effects in Patients With Invasive Prolactinomas Treated With Cabergoline. Cureus 2023; 15:e39869. [PMID: 37404423 PMCID: PMC10315068 DOI: 10.7759/cureus.39869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Background and objective Invasive prolactinoma accounts for 1-5% of all prolactinomas. Its mass and compromise of the diencephalon and frontal and temporal lobes may result in a range of neuropsychiatric symptoms that are often missed during initial evaluations. Cabergoline is a dopaminergic agonist used as the first-line treatment for these patients; however, its effect on neuropsychiatric symptoms in this particular setting remains unexplored. In this study, our primary objective was to describe the epidemiology of neuropsychiatric comorbidities in Mexican patients with invasive prolactinomas. The secondary aim of the study was to describe how these comorbidities are modified by treatment with cabergoline, through follow-up with standardized clinical scales. Methods This was a retrospective analytic study. Data were pulled from clinical records and evaluations of patients at baseline and at six-month follow-ups. Results A total of 10 patients were included in the study. None of them had any prior psychiatric diagnosis. At the initial evaluation, 70% were diagnosed with depression or anxiety. During follow-up, two patients developed neuropsychiatric symptoms; there was a significant reduction in tumor size but no difference was found in clinimetric scores for neuropsychiatric comorbidities. Conclusions Patients with giant prolactinomas may present with several neuropsychiatric symptoms throughout the course of their disease. Although there are several mechanisms involved, it is important to keep in mind that cabergoline may interfere with the dopaminergic pathways involved. This study was underpowered to determine the association but can serve as a pilot for further research on this topic.
Collapse
Affiliation(s)
- Metztli Calva-González
- Psychiatry, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| | | | - Edgar D Crail-Meléndez
- Neuropsychiatry, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| | - Kennya M Loya-Murguia
- Neuropsychiatry, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| | | | - Fernando Robles-Ramirez
- Neuroradiology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| | | | - Michel G Mondragón-Soto
- Neurosurgery, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
- General Surgery, Centro Medico ABC, Mexico City, MEX
| | | | - Lesly A Portocarrero-Ortiz
- Neuroendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| |
Collapse
|
29
|
Biagetti B, Puig-Domingo M. Age-Related Hormones Changes and Its Impact on Health Status and Lifespan. Aging Dis 2023; 14:605-620. [PMID: 37191429 PMCID: PMC10187696 DOI: 10.14336/ad.2022.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 05/17/2023] Open
Abstract
The increase in life expectancy is accompanied with an increased consultation of age-related pathologies including endocrine disorders. Two main areas are focusing the attention of medical and social research in older population: the diagnosis and care of this heterogeneous population, and the interventional measures potentially useful to mitigate age-related functional declines and to increase health and quality of lifespan. Thus, better understanding the physiopathology of aging and establishing accurate diagnostic and personalized approaches are a priority and currently an unmet need of the medical community. The endocrine system plays a major role in survival and lifespan through regulating vital processes such as energy consumption and optimizing the stress response among others. The aim of this paper is to review the physiological evolution of the main hormonal functions in aging and its clinical translation to improve our approach to the aging patient.
Collapse
Affiliation(s)
- Betina Biagetti
- Endocrinology & Nutrition Service, Vall d’Hebron University Hospital and Vall d'Hebron Research Institute (VHIR), Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
| | - Manel Puig-Domingo
- Endocrinology & Nutrition Service, Germans Trias Hospital and Research Institute, Badalona, Department of Medicine, Autonomous University of Barcelona, Badalona, Spain.
| |
Collapse
|
30
|
MUW researcher of the month. Wien Klin Wochenschr 2023; 135:217-218. [PMID: 37081182 DOI: 10.1007/s00508-023-02203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
31
|
Makowczenko KG, Jastrzebski JP, Kiezun M, Paukszto L, Dobrzyn K, Smolinska N, Kaminski T. Adaptation of the Porcine Pituitary Transcriptome, Spliceosome and Editome during Early Pregnancy. Int J Mol Sci 2023; 24:ijms24065946. [PMID: 36983019 PMCID: PMC10053595 DOI: 10.3390/ijms24065946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The physiological mechanisms of the porcine reproduction are relatively well-known. However, transcriptomic changes and the mechanisms accompanying transcription and translation processes in various reproductive organs, as well as their dependence on hormonal status, are still poorly understood. The aim of this study was to gain a principal understanding of alterations within the transcriptome, spliceosome and editome occurring in the pituitary of the domestic pig (Sus scrofa domestica L.), which controls basic physiological processes in the reproductive system. In this investigation, we performed extensive analyses of data obtained by high-throughput sequencing of RNA from the gilts' pituitary anterior lobes during embryo implantation and the mid-luteal phase of the estrous cycle. During analyses, we obtained detailed information on expression changes of 147 genes and 43 long noncoding RNAs, observed 784 alternative splicing events and also found the occurrence of 8729 allele-specific expression sites and 122 RNA editing events. The expression profiles of the selected 16 phenomena were confirmed by PCR or qPCR techniques. As a final result of functional meta-analysis, we acquired knowledge regarding intracellular pathways that induce changes in the processes accompanying transcription and translation regulation, which may induce modifications in the secretory activity of the porcine adenohypophyseal cells.
Collapse
Affiliation(s)
- Karol G Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
32
|
Csikós V, Oláh S, Dóra F, Arrasz N, Cservenák M, Dobolyi A. Microglia depletion prevents lactation by inhibition of prolactin secretion. iScience 2023; 26:106264. [PMID: 36936786 PMCID: PMC10014264 DOI: 10.1016/j.isci.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Microglial cells were eliminated from the brain with sustained 3-4 weeks long inhibition of colony stimulating factor 1 receptor by Pexidartinib 3397 (PLX3397). The prepartum treated mice mothers did not feed their pups after parturition. The pups of mothers treated orally only in the postpartum period starting immediately after parturition showed reduced body weight by 15.5 ± 0.22 postnatal days as the treatment progressed without the mothers showing altered caring behaviors. The apparent weight gain of foster pups during a suckling bout was reduced in mother mice fed by PLX3397-containing diet and also in rat dams following sustained intracerebroventricular infusion of PLX3397 in a separate experiment suggesting that lactation was affected by the reduced number of microglia. Prolactin secretion and signaling were markedly reduced in PLX3397-treated mothers. The results suggest that microglial cells are required for prolactin secretion and lactation whereas maternal motivation may not be directly affected by microglia.
Collapse
Affiliation(s)
- Vivien Csikós
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Nikolett Arrasz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Melinda Cservenák
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Corresponding author
| |
Collapse
|
33
|
Ben-Jonathan N, Borcherding DC, Hugo ER. Dopamine Receptors in Breast Cancer: Prevalence, Signaling, and Therapeutic Applications. Crit Rev Oncog 2023; 27:51-71. [PMID: 36734872 DOI: 10.1615/critrevoncog.2022043641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most common malignancy among women, with over one million cases occurring annually worldwide. Although therapies against estrogen receptors and HER2 have improved response rate and survival, patients with advanced disease, who are resistant to anti-hormonal therapy and/or to chemotherapy, have limited treatment options for reducing morbidity and mortality. These limitations provide major incentives for developing new, effective, and personalized therapeutic interventions. This review presents evidence on the involvement of dopamine (DA) and its type 1 receptors (D1R) in BC. DA is produced in multiple peripheral organs and is present in the systemic circulation in significant amounts. D1R is overexpressed in ~ 30% of BC cases and is associated with advanced disease and shortened patient survival. Activation of D1R, which signals via the cGMP/PKG pathway, results in apoptosis, inhibition of cell invasion, and increased chemosensitivity in multiple BC cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in mouse models with D1R-expressing BC xenografts. It is proposed that D1R should serve as a novel diagnostic/prognostic factor through the use of currently available D1R detection methods. Fenoldopam, which is FDA-approved to treat renal hypertension, could be repurposed as an effective therapeutic agent for patients with D1R-expressing tumors. Several drugs that interfere with the cGMP/PKG pathway and are approved for treating other diseases should also be considered as potential treatments for BC.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dana C Borcherding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric R Hugo
- Medpace Reference Laboratories, Cincinnati, OH, USA
| |
Collapse
|
34
|
Cowan VE, Chohan M, Blakley BR, McKinnon J, Anzar M, Singh J. Chronic ergot exposure in adult bulls suppresses prolactin but minimally impacts results of typical breeding soundness exams. Theriogenology 2023; 197:71-83. [PMID: 36476505 DOI: 10.1016/j.theriogenology.2022.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Canadian standards allow ≤3000 μg ergot alkaloids/kg cattle feed. A concentration-response relationship was hypothesized between ergot in feed and reductions in plasma prolactin, sperm motility, sperm function, and increase in sperm abnormalities. The study consisted of pre-treatment (12 weeks), treatment (9 weeks), and post-treatment periods (10 weeks). Adult bulls were fed 1113 (n = 8; low ergot group) or 2227 (n = 6; high) μg/kg of dry matter intake. Endpoints were measured every two weeks. Ejaculates were analyzed for sperm concentration, total and progressive motility, plasma membrane and acrosome integrity, mitochondrial membrane potential and sperm abnormalities. Data were analyzed by repeated measures MIXED PROC in SAS. Average outside ambient temperature during the pre-treatment, treatment, and post-treatment periods was -13 (-31 to 1), 0.5 (-18 to 19), and 21 (13-28) °C. Plasma prolactin decreased markedly during treatment (-52.4%; Experimental period p < 0.01). Rectal temperature increased during the treatment and post-treatment periods (EP p < 0.01) but was within the normal physiological range. Bull weight increased during the study (EP p < 0.01). Scrotal circumference in low ergot group increased during treatment (+0.8 cm; Tx∗EP p = 0.05). Progressive motility in high ergot group decreased during treatment (-7%; Tx∗EP p = 0.05), however, semen volume and sperm concentrations were unaffected (p ≥ 0.11). Live sperm with high and medium MMP decreased during treatment (-1.4 and -3.7%; EP p < 0.01). Results suggest that feeding ≤2227 μg ergot alkaloids/kg has only minor effects on adult bull semen quality.
Collapse
Affiliation(s)
- Vanessa E Cowan
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N5B3, Canada
| | - Moveed Chohan
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N5B4, Canada
| | - Barry R Blakley
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N5B3, Canada
| | - John McKinnon
- Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N5A8, Canada
| | - Muhammad Anzar
- Canadian Animal Genetic Resource Program, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N0X2, Canada
| | - Jaswant Singh
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N5B4, Canada.
| |
Collapse
|
35
|
Al-Karagholi MAM, Kalatharan V, Ghanizada H, Gram C, Dussor G, Ashina M. Prolactin in headache and migraine: A systematic review of clinical studies. Cephalalgia 2023; 43:3331024221136286. [PMID: 36718026 DOI: 10.1177/03331024221136286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To systemically review clinical studies investigating the role of prolactin and its receptors in headache and migraine. BACKGROUND Migraine prevalence is more common in women compared to men. As prolactin is a crucial regulator of the hypothalamus-pituitary-gonadal axis, prolactin and its receptors might contribute to signaling mechanisms underlying migraine. METHODS In this systematic review, we searched PubMed and EMBASE with the terms: prolactin, hyperprolactinemia, macroprolactinemia, hypoprolactinemia, migraine, headache, head pain and trigeminal pain pathway for clinical studies investigating prolactin signaling in headache and migraine. Two reviewers independently screened 841 articles for population, intervention, comparison, outcome, and study design. Studies were restricted to the English language and were excluded if they had a nonexperimental methodology. RESULTS Nineteen clinical studies met the inclusion criteria and were included in the qualitative and quantitative analysis. The main findings were that serum prolactin levels were found to be higher in individuals with migraine compared to healthy controls, and prolactinomas (prolactin-secreting pituitary adenomas) were correlated with higher incidence of headache in otherwise healthy individuals and migraine attacks in individuals with migraine. CONCLUSION Considerable evidence suggests a key role of prolactin and its receptors in migraine pathophysiology. Further randomized and placebo-controlled clinical studies targeting prolactin signaling are needed to further clarify influences of prolactin in migraine attack initiation.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Veberka Kalatharan
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.,Danish Headache Knowledge Center on Headache Disorders, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
36
|
Ma B, Zhao W, Fan H, Yun Y, Qi S, An H, Yang F. Relationship Between Plasma Aripiprazole and Dehydroaripiprazole Concentrations and Prolactin Levels in Chinese Children and Adolescents. J Child Adolesc Psychopharmacol 2023; 33:27-33. [PMID: 36730747 DOI: 10.1089/cap.2022.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: To investigate the relationship between plasma aripiprazole (ARI) and its metabolite dehydroaripiprazole (DARI) concentrations and prolactin (PRL) levels in Chinese children and adolescents. Methods: This was a retrospective cross-sectional study and the data were collected at Beijing HuiLongGuan Hospital, a Beijing City owned psychiatric hospital, between January 1 and December 31, 2021. Fifty-two child and adolescent inpatients (17 males, 35 females) aged 13-18 years and received ARI regardless of diagnosis were included. The steady-state ARI and DARI plasma concentrations were measured using high-performance liquid chromatography-tandem mass spectrometry. The serum PRL levels were measured by chemiluminescence immunoassay. Results: The plasma concentrations of ARI, DARI, and the total of ARI and DARI were negatively correlated with serum PRL levels in female children and adolescents. Approximately 15% of child and adolescent inpatients treated with ARI exhibited subnormal PRL serum levels. Conclusions: The results suggest that in addition to regularly monitoring PRL levels, therapeutic drug monitoring for ARI and its main metabolite DARI can help to mitigate the adverse medical consequences associated with PRL reduction. Thus, clinicians should consider the ARI-induced reduction of PRL levels when prescribing ARI to child and adolescent patients, particularly among females.
Collapse
Affiliation(s)
- Botao Ma
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Wenxuan Zhao
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Hongzhen Fan
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yajun Yun
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Siyuan Qi
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Huimei An
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- Psychiatry Research Center, HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
37
|
Hooda R, Malik N, Pathak P, More H, Singh V. Impact of Postoperative Pain on Early Initiation of Breastfeeding and Ambulation After Cesarean Section: A Randomized Trial. Breastfeed Med 2023; 18:132-137. [PMID: 36800334 DOI: 10.1089/bfm.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aim: To compare the effect of different analgesic regimens on the time to initiate breastfeeding (BF) and ambulation after cesarean section (CS). Methods: This prospective, double-blinded, placebo-controlled randomized study included 300 women (20-40 years of age) of the American Society of Anesthesiologists status 1 or 2 with singleton term pregnancies scheduled for CS under spinal anesthesia. Women were allocated to three groups of 100 each by computer-generated randomization. As an adjunct to 1,000 mg intravenous acetaminophen, Group 1 received 100 mg rectal diclofenac, Group 2 received 100 mg rectal tramadol, and Group 3 received rectal glycerin suppository. The time to initiate BF and ambulation was compared between different analgesic regimens and corelated with pain score. Results: BF (both with and without support) was initiated significantly earlier in Groups 1 and 2 as compared with control Group 3 (p < 0.001). A significantly shorter time was taken to initiate BF without support in Group 1 as compared with Group 2 (p = 0.028). The time to start ambulation (both with and without assistance) was significantly lower in Groups 1 and 2 as compared with Group 3 and in Group 1 versus Group 2 (p < 0.001). A significant positive correlation was found between the time to initiate BF with support and ambulation without assistance and postoperative pain score at 0, 1, and 6 hours. Conclusion: Effective post-CS analgesia affects early initiation of BF and ambulation in the immediate postnatal period. The inclusion of rectal diclofenac suppository in post-CS analgesic regimens is a promising approach to postoperative delivery care.
Collapse
Affiliation(s)
- Reetu Hooda
- Department of Obstetrics and Gynecology, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| | - Nisha Malik
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India
| | - Prachi Pathak
- Department of Obstetrics and Gynecology, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| | - Hemant More
- Department of Orthopedics, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| | - Vikram Singh
- Department of General Surgery, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India
| |
Collapse
|
38
|
Kumar A, Ravi R, Sivakumar RK, Chidambaram V, Majella MG, Sinha S, Adamo L, Lau ES, Al’Aref SJ, Asnani A, Sharma G, Mehta JL. Prolactin Inhibition in Peripartum Cardiomyopathy: Systematic Review and Meta-analysis. Curr Probl Cardiol 2023; 48:101461. [PMID: 36261102 PMCID: PMC9805509 DOI: 10.1016/j.cpcardiol.2022.101461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Heart failure (HF) is one of the leading causes of maternal mortality and morbidity in the United States. Peripartum cardiomyopathy (PPCM) constitutes up to 70% of all HF in pregnancy. Cardiac angiogenic imbalance caused by cleaved 16kDa prolactin has been hypothesized to contribute to the development of PPCM, fueling investigation of prolactin inhibitors for the management of PPCM. We conducted a systematic review and meta-analysis to assess the impact of prolactin inhibition on left ventricular (LV) function and mortality in patients with PPCM. We included English language articles from PubMed and EMBASE published upto March 2022. We pooled the mean difference (MD) for left ventricular ejection fraction (LVEF) at follow-up, odds ratio (OR) for LV recovery and risk ratio (RR) for all-cause mortality using random-effects meta-analysis. Among 548 studies screened, 10 studies (3 randomized control trials (RCTs), 2 retrospective and 5 prospective cohorts) were included in the systematic review. Patients in the Bromocriptine + standard guideline directed medical therapy (GDMT) group had higher LVEF% (pMD 12.56 (95% CI 5.84-19.28, I2=0%) from two cohorts and pMD 14.25 (95% CI 0.61-27.89, I2=88%) from two RCTs) at follow-up compared to standard GDMT alone group. Bromocriptine group also had higher odds of LV recovery (pOR 3.55 (95% CI 1.39-9.1, I2=62)). We did not find any difference in all-cause mortality between the groups. Our analysis demonstrates that the addition of Bromocriptine to standard GDMT was associated with a significant improvement in LVEF% and greater odds of LV recovery, without significant reduction in all-cause mortality.
Collapse
Affiliation(s)
- Amudha Kumar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ramya Ravi
- Department of Anesthesia and Intensive Care, Chinese university of Hong Kong, Prince of Wales hospital, Shatin, Hong Kong
| | - Ranjith K. Sivakumar
- Department of Anesthesia and Intensive Care, Chinese university of Hong Kong, Prince of Wales hospital, Shatin, Hong Kong
| | - Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Marie G. Majella
- Department of Community Medicine, Sri Venkateshwaraa Medical College Hospital & Research Center, Pondicherry, India
| | - Shashank Sinha
- Division of Cardiology, Inova Heart and Vascular Institute, Fairfax, VA
| | - Luigi Adamo
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily S. Lau
- Division of Cardiology, Massachusetts General Hospital, Boston, MA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Aarti Asnani
- Beth Israel Deaconess Medical Center, Harvard Medical School, Cardiovascular Institute, Boston, MA
| | - Garima Sharma
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
39
|
Comprehensive Profiling of ceRNA (circRNA-miRNA-mRNA) Networks in Hypothalamic-Pituitary-Mammary Gland Axis of Dairy Cows under Heat Stress. Int J Mol Sci 2023; 24:ijms24010888. [PMID: 36614329 PMCID: PMC9821774 DOI: 10.3390/ijms24010888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Heat stress (HS) is directly correlated with mammary gland dysfunction and the hypothalamic-pituitary-mammary gland (HPM) axis is involved in regulating stress responses and lactation in dairy cows. Circular RNAs (circRNAs) play major roles in regulating transcription and post-transcription but their expression in the HPM axis of dairy cows under HS is still unclear. In the present study, we performed RNA sequencing to identify diferentially expressed (DE) circRNAs, DE microRNAs(miRNAs) and DEmRNAs, and performed bioinformatics analysis on those in HPM axis-related tissues of heat-stressed and normal cows. A total of 1680, 1112 and 521 DEcircRNAs, 120, 493 and 108 DEmiRNAs, 274, 6475 and 3134 DEmRNAs were identified in the hypothalamic, pituitary, and mammary gland tissues, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses indicated that the MAPK signaling pathway is potentially a key pathway. Competitive endogenous RNA (ceRNA) networks related to HS response and lactation regulation were established in three tissues. In conclusion, our results indicate that HS induces differential circRNA expression profiles in HPM axis-related tissues, and the predicted ceRNA network provides a molecular basis for regulating the stress response and lactation regulation in heat-stressed dairy cows.
Collapse
|
40
|
Cao C, Wen W, Chen A, Wang S, Xu G, Niu C, Song J. Neuropsychological Alterations of Prolactinomas' Cognitive Flexibility in Task Switching. Brain Sci 2023; 13:brainsci13010082. [PMID: 36672063 PMCID: PMC9856801 DOI: 10.3390/brainsci13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Prolactinomas have been reported to impair cognition in broad aspects. However, few studies investigated the influence of prolactinomas on cognitive flexibility never mentioning the underlying neural and electrophysiological mechanism. We recorded scalp electroencephalography (EEG) in a colour-shape switching task. Patients with prolactinomas showed longer reaction time in switch trials and larger switch costs relative to healthy controls (HCs). Compared to HCs who showed stronger frontal theta activity in switch trials, the generally weak frontal theta activity in patients implied that they could not afford the executive control to configure task sets. Meanwhile, machine-learning based classification revealed that patients manifested non-selective brain patterns in response to different task types (colour vs. shape task) and different task states (switch vs. repeat state), which collectively suggested the cognitive dysfunction in preparation for a changing environment. Compared to HCs who showed stronger frontoparietal synchronization in switch trials, this enhanced frontoparietal connectivity was disrupted among patients with severe prolactinomas. This finding implicated greater hyperprolactinemia was linked to a larger decrease in cognitive performance. Taken together, the present study highlighted frontal theta power, and frontoparietal connectivity at theta band as the electrophysiological markers of the impaired cognitive flexibility and task control in patients with prolactinomas.
Collapse
Affiliation(s)
- Chenglong Cao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
| | - Wen Wen
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Aobo Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shuochen Wang
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
| | - Guozheng Xu
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (C.N.); (J.S.)
| | - Jian Song
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
- Correspondence: (C.N.); (J.S.)
| |
Collapse
|
41
|
Rahmad Royan M, Siddique K, Nourizadeh-Lillabadi R, Weltzien FA, Henkel C, Fontaine R. Functional and developmental heterogeneity of pituitary lactotropes in medaka. Gen Comp Endocrinol 2023; 330:114144. [PMID: 36270338 DOI: 10.1016/j.ygcen.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope clusters have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these satellite clusters are not known. We recently discovered two distinct prolactin-expressing cell types in Japanese medaka (Oryzias latipes), a euryhaline species, using single cell transcriptomics. In the present study, we characterize these two transcriptomically distinct lactotrope cell types and explore the hypothesis that they represent spatially distinct cell clusters, as found in other species. Single cell RNA sequencing shows that one of the two lactotrope cell types exhibits an expression profile similar to that of stem cell-like folliculo-stellate cell populations. Using in situ hybridization, we show that the medaka pituitary often develops additional small satellite lactotrope cell clusters, like in other teleost species. These satellite clusters arise early during development and grow in cell number throughout life regardless of the animal's sex. Surprisingly, our data do not show a correspondence between the stem cell-like lactotropes and these satellite lactotrope clusters. Instead, our data support a scenario in which the stem cell-like lactotropes are an intrinsic stage in the development of every spatially distinct lactotrope cluster. In addition, lactotrope activity in both spatially distinct lactotrope clusters decreases when environmental salinity increases, supporting their role in osmoregulation. However, this decrease appears weaker in the satellite lactotrope cell clusters, suggesting that these lactotropes are regulated differently.
Collapse
Affiliation(s)
- Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Khadeeja Siddique
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
42
|
TRH Regulates the Synthesis and Secretion of Prolactin in Rats with Adenohypophysis through the Differential Expression of miR-126a-5p. Int J Mol Sci 2022; 23:ijms232415914. [PMID: 36555554 PMCID: PMC9781503 DOI: 10.3390/ijms232415914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Prolactin (PRL) is an important hormone that is secreted by the pituitary gland and plays an important role in the growth, development and reproduction of organisms. Thyrotropin-releasing hormone (TRH) is a common prolactin-releasing factor that regulates the synthesis and secretion of prolactin. In recent studies, microRNAs (miRNAs) have been found to play a key role in the regulation of pituitary hormones. However, there is a lack of systematic studies on the regulatory role that TRH plays on the pituitary transcriptome, and the role of miRNAs in the regulation of PRL synthesis and secretion by TRH lacks experimental evidence. In this study, we first investigated the changes in PRL synthesis and secretion in the rat pituitary gland after TRH administration. The results of transcriptomic analysis after TRH treatment showed that 102 genes, including those that encode Nppc, Fgf1, PRL, Cd63, Npw, and Il23a, were upregulated, and 488 genes, including those that encode Lats1, Cacna2d1, Top2a, and Tfap2a, were downregulated. These genes are all involved in the regulation of prolactin expression. The gene expression of miR-126a-5p, which regulates the level of PRL in the pituitary gland, was screened by analysis prediction software and by a dual luciferase reporter system. The data presented in this study demonstrate that TRH can regulate prolactin synthesis and secretion through miR-126a-5p, thereby improving our understanding of the molecular mechanism of TRH-mediated PRL secretion and providing a theoretical basis for the role of miRNAs in regulating the secretion of pituitary hormones.
Collapse
|
43
|
Zubair H, Saqib M, Khan MN, Shamas S, Irfan S, Shahab M. Variation in Hypothalamic GnIH Expression and Its Association with GnRH and Kiss1 during Pubertal Progression in Male Rhesus Monkeys ( Macaca mulatta). Animals (Basel) 2022; 12:ani12243533. [PMID: 36552453 PMCID: PMC9774706 DOI: 10.3390/ani12243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Modulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion across postnatal development in higher primates is not fully understood. While gonadotropin-inhibitory hormone (GnIH) is reported to suppress reproductive axis activity in birds and rodents, little is known about the developmental trajectory of GnIH expression in rhesus monkeys throughout the pubertal transition. This study was aimed at examining the variation in GnIH immunoreactivity (-ir) and associated changes among GnIH, GnRH, and Kiss1 mRNA expression in the hypothalamus of infant, juvenile, prepubertal, and adult male rhesus monkeys. The brains from rhesus macaques were collected from infancy until adulthood and were examined using immunofluorescence and RT-qPCR. The mean GnIH-ir was found to be significantly higher in prepubertal animals (p < 0.01) compared to infants, and significantly reduced in adults (p < 0.001). Significantly higher (p < 0.001) GnRH and Kiss1 mRNA expression was noted in adults while GnIH mRNA expression was the highest at the prepubertal stage (p < 0.001). Significant negative correlations were seen between GnIH-GnRH (p < 0.01) and GnIH-Kiss1 (p < 0.001) expression. Our findings suggest a role for GnIH in the prepubertal suppression of the reproductive axis, with disinhibition of the adult reproductive axis occurring through decreases in GnIH. This pattern of expression suggests that GnIH may be a viable target for the development of novel therapeutics and contraceptives for humans.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| | - Muhammad Saqib
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noman Khan
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Shamas
- Department of Zoology, Rawalpindi Women University, Rawalpindi 46300, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| |
Collapse
|
44
|
Pronina T, Pavlova E, Dil’mukhametova L, Ugrumov M. Development of the Periventricular Nucleus as a Brain Center, Containing Dopaminergic Neurons and Neurons Expressing Individual Enzymes of Dopamine Synthesis. Int J Mol Sci 2022; 23:ijms232314682. [PMID: 36499006 PMCID: PMC9736787 DOI: 10.3390/ijms232314682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
We have recently shown that the periventricular nucleus (PeVN) of adult rats is a "mixed dopaminergic (DAergic) center" containing three thousand neurons: DAergic neurons and those expressing one of the dopamine (DA)-synthesizing enzymes. This study aims to evaluate the development of the PeVN as a mixed DAergic center in rats in the perinatal period, critical for brain morphogenesis. During this period, the PeVN contains DAergic neurons and monoenzymatic neurons expressing individual enzymes of DA synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). In the perinatal period, the total number of such neurons triples, mainly due to monoenzymatic neurons; the content of L-DOPA, the end product of monoenzymatic TH neurons, doubles; and the content of DA, the end product of monoenzymatic AADC neurons and DAergic neurons, increases sixfold. Confocal microscopy has shown that, in the PeVN, all types of neurons and their processes are in close relationships, which suggests their mutual regulation by L-DOPA and DA. In addition, monoenzymatic and DAergic fibers are close to the third cerebral ventricle, located in the subependymal zone, between ependymal cells and in the supraependymal zone. These observations suggest that these fibers deliver L-DOPA and DA to the cerebrospinal fluid, participating in the neuroendocrine regulation of the brain.
Collapse
|
45
|
Agarwal S, Chamoun D, Flyckt R, Lindheim SR. Clinical Conundrum: Spontaneous Ovarian Hyperstimulation Syndrome. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1181-1184. [PMID: 36410935 DOI: 10.1016/j.jogc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Shruti Agarwal
- Camran Nezhat Institute, Minimally Invasive & Robotic Surgery, Woodside, CA.
| | | | - Rebecca Flyckt
- University Hospitals of Cleveland, Department of Obstetrics and Gynecology, Beachwood, OH
| | - Steven R Lindheim
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH; University of Central Florida College of Medicine, Department of Obstetrics and Gynecology, Orlando, FL; Center for Reproductive Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
46
|
Coronel DA, De la Peña FR, Palacios-Cruz L, Cuevas D, Duran S. Sociodemographic and clinical characteristics related with hyperprolactinaemia in psychiatric clinical population. Int J Psychiatry Clin Pract 2022; 26:387-394. [PMID: 35471923 DOI: 10.1080/13651501.2022.2050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hyperprolactinaemia (HyperPRL) induced by psychotropic drugs is a high-prevalence consequence which has repercussions in psychical and mental health in the psychiatric population, so this research had the objective to expand which sociodemographic and clinical features are associated with prolactin (PRL) elevation in patients treated with antidepressant and/or antipsychotic drugs. METHODS An observational, cross-sectional, comparative and retrolective study was conducted on 300 patients who received clinical attention in a third level of psychiatric care unit in Mexico during 2017. These patients have been reported to show PRL levels greater than 25 ng/mL among women and greater than 20 ng/mL among men. In the same way, sociodemographic and clinical variables were collected, as well as psychiatric diagnosis and type of psychopharmacological treatment used by the patients. RESULTS HyperPRL was more frequent in women (80.7%) than men (19.3%). The mean levels of PRL were 68.94 ± 62.28 ng/mL with higher levels in women (71.9 ± 67.3, p=.02). Regarding the treatment, 78.3%, 71.3% and 49.7% consumed antipsychotics, antidepressants, and both drugs, respectively. The relationship between hyperPRL (>100 n/mL) and typical antipsychotics was dose-dependent (33.23 ± 13.24 mg, p=.01). In the multivariate regression models according to the type of treatment, as well as the demographic and clinical features, hyperPRL was associated independently with the use of antipsychotic treatment, pituitary adenoma and hypertension (R2=0.05). CONCLUSIONS HyperPRL is a complex clinical syndrome frequent in the psychiatric population with detrimental long-term consequences, as well as its relationship with the use of psychotropic drugs as in the case of antipsychotics. Effective actions should be implemented in the prevention, approach and treatment of this condition paying special attention to the accompanying medical comorbidities.
Collapse
Affiliation(s)
- D A Coronel
- National Institute of Psychiatry Ramón de la Fuente Muñiz, México City, Mexico
| | - F R De la Peña
- Unit of Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, México City, Mexico
| | - L Palacios-Cruz
- National Institute of Psychiatry Ramón de la Fuente Muñiz, México City, Mexico
| | - D Cuevas
- Department of Neuroendocrinology, National Institute of Medical Sciences and Nutrition Salvador Zubiran, México City, Mexico
| | - S Duran
- National Institute of Psychiatry Ramón de la Fuente Muñiz, México City, Mexico
| |
Collapse
|
47
|
Agarwal S, Chamoun D, Flyckt R, Lindheim SR. Raisonnement clinique : Syndrome d'hyperstimulation ovarienne spontanée. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1185-1189. [PMID: 36410936 DOI: 10.1016/j.jogc.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Shruti Agarwal
- Camran Nezhat Institute, Chirurgie minimalement invasive et robotisée, Woodside, Californie.
| | | | - Rebecca Flyckt
- University Hospitals de Cleveland, Département d'obstétrique et gynécologie, Beachwood, Ohio
| | - Steven R Lindheim
- Département d'obstétrique et gynécologie, École de médecine Boonshoft, Université d'État Wright, Dayton, Ohio; Collège de médecine de l'Université de Floride centrale, Département d'obstétrique et gynécologie, Orlando, Floride; Centre de médecine reproductive de l'hôpital Renji, École de médecine, Université Jiao Tong de Shanghai, Shanghai, République populaire de Chine
| |
Collapse
|
48
|
Campideli-Santana AC, Gusmao DO, Almeida FRCL, Araujo-Lopes R, Szawka RE. Partial loss of arcuate kisspeptin neurons in female rats stimulates luteinizing hormone and decreases prolactin secretion induced by estradiol. J Neuroendocrinol 2022; 34:e13204. [PMID: 36319592 DOI: 10.1111/jne.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022]
Abstract
Kisspeptin, neurokinin, and dynorphin (KNDy) neurons in the arcuate nucleus (ARC) control luteinizing hormone (LH) and prolactin (PRL) release, although their role in conveying the effects of estradiol (E2 ) to these hormones is not well understood. We performed a longitudinal evaluation of female rats in which KNDy neurons were ablated using a neurokinin-3 receptor agonist conjugated with saporin (NK3-SAP) to investigate the impact of the reduction of KNDy neurons on the E2 regulation of gonadal and PRL axes. NK3-SAP rats, bearing a moderate loss of ARC kisspeptin-immunoreactive (-IR) neurons (50%-90%), displayed irregular estrous cycles but essentially unaltered follicular development and a normal number of corpora lutea. Rats were then ovariectomized (OVX) and treated with a positive-feedback dose of E2 (OVX + E2 ). LH and PRL were measured in the tail blood by an enzyme-linked immunosorbent assay. The E2 -induced LH surge was amplified, whereas the PRL rise was decreased in NK3-SAP rats compared to Blank-SAP control. After 10 days of no hormonal treatment, basal LH levels were equally elevated in NK3-SAP and controls. Tyrosine hydroxylase (TH) phosphorylation in the median eminence, in turn, was increased in NK3-SAP rats, with no change in the number of ARC TH-IR neurons. Thus, KNDy neurons exert concurrent and opposite roles in the E2 -induced surges of LH and PRL. The partial loss of KNDy neurons disrupts ovarian cyclicity but does not preclude ovulation, consistent with the disinhibition of the LH preovulatory surge. Conversely, KNDy neurons tonically inhibit the enzymatic activity of tuberoinfundibular dopaminergic neurons, which appears to facilitate PRL release in response to E2 .
Collapse
Affiliation(s)
- Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela O Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda R C L Almeida
- Departamento de Morfologia, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
49
|
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice. Nat Commun 2022; 13:5944. [PMID: 36209152 PMCID: PMC9547883 DOI: 10.1038/s41467-022-33584-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain’s clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants. The psychostimulant-sensitive neural mechanism linking the circadian clock to locomotion is unknown. Here, hypothalamic A14 neurons are shown to time diurnal activity by entraining the lateral septum, and their activity is shown to be sensitive to amphetamine.
Collapse
|
50
|
Bailey VN, Sones JL, Camp CM, Gomes VC, Oberhaus EL. Endocrine and ovarian responses to combined estradiol benzoate-sulpiride in seasonally anovulatory mares treated with kisspeptin. Anim Reprod Sci 2022; 247:107087. [DOI: 10.1016/j.anireprosci.2022.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|