1
|
Sada T, Kimura W. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Dev Growth Differ 2024. [PMID: 39463005 DOI: 10.1111/dgd.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Myocardial injury resulting from ischemia can be fatal because of the limited regenerative capacity of adult myocardium. Mammalian cardiomyocytes rapidly lose their proliferative capacities, with only a small fraction of adult myocardium remaining proliferative, which is insufficient to support post-injury recovery. Recent investigations have revealed that this decline in myocardial proliferative capacity is closely linked to perinatal metabolic shifts. Predominantly glycolytic fetal myocardial metabolism transitions towards mitochondrial fatty acid oxidation postnatally, which not only enables efficient production of ATP but also causes a dramatic reduction in cardiomyocyte proliferative capacity. Extensive research has elucidated the mechanisms behind this metabolic shift, as well as methods to modulate these metabolic pathways. Some of these methods have been successfully applied to enhance metabolic reprogramming and myocardial regeneration. This review discusses recently acquired insights into the interplay between metabolism and myocardial proliferation, emphasizing postnatal metabolic transitions.
Collapse
Affiliation(s)
- Tai Sada
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
2
|
Chen X, Wu H, Liu Y, Liu L, Houser SR, Wang WE. Metabolic Reprogramming: A Byproduct or a Driver of Cardiomyocyte Proliferation? Circulation 2024; 149:1598-1610. [PMID: 38739695 DOI: 10.1161/circulationaha.123.065880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Defining mechanisms of cardiomyocyte proliferation should guide the understanding of endogenous cardiac regeneration and could lead to novel treatments for diseases such as myocardial infarction. In the neonatal heart, energy metabolic reprogramming (phenotypic alteration of glucose, fatty acid, and amino acid metabolism) parallels cell cycle arrest of cardiomyocytes. The metabolic reprogramming occurring shortly after birth is associated with alterations in blood oxygen levels, metabolic substrate availability, hemodynamic stress, and hormone release. In the adult heart, myocardial infarction causes metabolic reprogramming but these changes cannot stimulate sufficient cardiomyocyte proliferation to replace those lost by the ischemic injury. Some putative pro-proliferative interventions can induce the metabolic reprogramming. Recent data show that altering the metabolic enzymes PKM2 [pyruvate kinase 2], LDHA [lactate dehydrogenase A], PDK4 [pyruvate dehydrogenase kinase 4], SDH [succinate dehydrogenase], CPT1b [carnitine palmitoyl transferase 1b], or HMGCS2 [3-hydroxy-3-methylglutaryl-CoA synthase 2] is sufficient to partially reverse metabolic reprogramming and promotes adult cardiomyocyte proliferation. How metabolic reprogramming regulates cardiomyocyte proliferation is not clearly defined. The possible mechanisms involve biosynthetic pathways from the glycolysis shunts and the epigenetic regulation induced by metabolic intermediates. Metabolic manipulation could represent a new approach to stimulate cardiac regeneration; however, the efficacy of these manipulations requires optimization, and novel molecular targets need to be defined. In this review, we summarize the features, triggers, and molecular regulatory networks responsible for metabolic reprogramming and discuss the current understanding of metabolic reprogramming as a critical determinant of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Xiaokang Chen
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Wu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Liu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingyan Liu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Steven R Houser
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (S.R.H.)
| | - Wei Eric Wang
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Weinberger M, Riley PR. Animal models to study cardiac regeneration. Nat Rev Cardiol 2024; 21:89-105. [PMID: 37580429 DOI: 10.1038/s41569-023-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Gan L, Cheng P, Wu J, Li Q, Pan J, Ding Y, Gao X, Chen L. Hydrogen Sulfide Promotes Postnatal Cardiomyocyte Proliferation by Upregulating SIRT1 Signaling Pathway. Int Heart J 2024; 65:506-516. [PMID: 38825495 DOI: 10.1536/ihj.23-370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hydrogen sulfide (H2S) has been identified as a novel gasotransmitter and a substantial antioxidant that can activate various cellular targets to regulate physiological and pathological processes in mammals. However, under physiological conditions, it remains unclear whether it is involved in regulating cardiomyocyte (CM) proliferation during postnatal development in mice. This study mainly aimed to evaluate the role of H2S in postnatal CM proliferation and its regulating molecular mechanisms. We found that sodium hydrosulfide (NaHS, the most widely used H2S donor, 50-200 μM) increased neonatal mouse primary CM proliferation in a dose-dependent manner in vitro. Consistently, exogenous administration of H2S also promoted CM proliferation and increased the total number of CMs at postnatal 7 and 14 days in vivo. Moreover, we observed that the protein expression of SIRT1 was significantly upregulated after NaHS treatment. Inhibition of SIRT1 with EX-527 or si-SIRT1 decreased CM proliferation, while enhancement of the activation of SIRT1 with SRT1720 promoted CM proliferation. Meanwhile, pharmacological and genetic blocking of SIRT1 repressed the effect of NaHS on CM proliferation. Taken together, these results reveal that H2S plays a promotional role in proliferation of CMs in vivo and in vitro and SIRT1 is required for H2S-mediated CM proliferation, which indicates that H2S may be a potential modulator for heart development in postnatal time window.
Collapse
Affiliation(s)
- Lu Gan
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Peng Cheng
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Jieyun Wu
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
| | - Jigang Pan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University
| | - Yan Ding
- Department of Histoembryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Xiufeng Gao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Li Chen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| |
Collapse
|
5
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
6
|
Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic Biol Med 2022; 193:59-79. [PMID: 36206932 DOI: 10.1016/j.freeradbiomed.2022.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Iodothyronine deiodinases (DIO) are a family of selenoproteins controlling systemic and local availability of the major thyroid hormone l-thyroxine (T4), a prohormone secreted by the thyroid gland. T4 is activated to the active 3,3'-5-triiodothyronine (T3) by two 5'-deiodinases, DIO1 and DIO2. DIO3, a 5-deiodinase selenoenzyme inactivates both the prohormone T4 and its active form T3. DIOs show species-specific different patterns of temporo-spatial expression, regulation and function and exhibit different mechanisms of reaction and inhibitor sensitivities. The main regulators of DIO expression and function are the thyroid hormone status, several growth factors, cytokines and altered pathophysiological conditions. Selenium (Se) status has a modest impact on DIO expression and translation. DIOs rank high in the priority of selenium supply to various selenoproteins; thus, their function is impaired only during severe selenium deficiency. DIO variants, polymorphisms, SNPs and rare mutations have been identified. Development of DIO isozyme selective drugs is ongoing. A first X-ray structure has been reported for DIO3. This review focusses on the biochemical characteristics and reaction mechanisms, the relationships between DIO selenoproteins and their importance for local and systemic provision of the active hormone T3. Nutritional, pharmacological, and environmental factors and inhibitors, such as endocrine disruptors, impact DIO functions.
Collapse
Affiliation(s)
- Josef Köhrle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany.
| | - Caroline Frädrich
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| |
Collapse
|
7
|
Kim SM, Ryu V, Miyashita S, Korkmaz F, Lizneva D, Gera S, Latif R, Davies TF, Iqbal J, Yuen T, Zaidi M. Thyrotropin, Hyperthyroidism, and Bone Mass. J Clin Endocrinol Metab 2021; 106:e4809-e4821. [PMID: 34318885 PMCID: PMC8864741 DOI: 10.1210/clinem/dgab548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyrotropin (TSH), traditionally seen as a pituitary hormone that regulates thyroid glands, has additional roles in physiology including skeletal remodeling. Population-based observations in people with euthyroidism or subclinical hyperthyroidism indicated a negative association between bone mass and low-normal TSH. The findings of correlative studies were supported by small intervention trials using recombinant human TSH (rhTSH) injection, and genetic and case-based evidence. Genetically modified mouse models, which disrupt the reciprocal relationship between TSH and thyroid hormone, have allowed us to examine an independent role of TSH. Since the first description of osteoporotic phenotype in haploinsufficient Tshr +/- mice with normal thyroid hormone levels, the antiosteoclastic effect of TSH has been documented in both in vitro and in vivo studies. Further studies showed that increased osteoclastogenesis in Tshr-deficient mice was mediated by tumor necrosis factor α. Low TSH not only increased osteoclastogenesis, but also decreased osteoblastogenesis in bone marrow-derived primary osteoblast cultures. However, later in vivo studies using small and intermittent doses of rhTSH showed a proanabolic effect, which suggests that its action might be dose and frequency dependent. TSHR was shown to interact with insulin-like growth factor 1 receptor, and vascular endothelial growth factor and Wnt pathway might play a role in TSH's effect on osteoblasts. The expression and direct skeletal effect of a biologically active splice variant of the TSHβ subunit (TSHβv) in bone marrow-derived macrophage and other immune cells suggest a local skeletal effect of TSHR. Further studies of how locally secreted TSHβv and systemic TSHβ interact in skeletal remodeling through the endocrine, immune, and skeletal systems will help us better understand the hyperthyroidism-induced bone disease.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rauf Latif
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, 4th Floor, Box 1055, New York, NY 10029, USA.
| |
Collapse
|
8
|
Abstract
Mammalian cardiomyocytes mostly utilize oxidation of fatty acids to generate ATP. The fetal heart, in stark contrast, mostly uses anaerobic glycolysis. During perinatal development, thyroid hormone drives extensive metabolic remodeling in the heart for adaptation to extrauterine life. These changes coincide with critical functional maturation and exit of the cell cycle, making the heart a post-mitotic organ. Here, we review the current understanding on the perinatal shift in metabolism, hormonal status, and proliferative potential in cardiomyocytes. Thyroid hormone and glucocorticoids have roles in adult cardiac metabolism, and both pathways have been implicated as regulators of myocardial regeneration. We discuss the evidence that suggests these processes could be interrelated and how this can help explain variation in cardiac regeneration across ontogeny and phylogeny, and we note what breakthroughs are still to be made.
Collapse
Affiliation(s)
- Niall Graham
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: Guo N Huang, Ph.D., University of California San Francisco, 555 Mission Bay Blvd South, Room 352V, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Xue L, Bao L, Roediger J, Su Y, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine. Cell Biosci 2021; 11:113. [PMID: 34158114 PMCID: PMC8220849 DOI: 10.1186/s13578-021-00627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse. Methods We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium. Results We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged. Conclusions Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00627-z.
Collapse
Affiliation(s)
- Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan, 430074, China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W, Mazine A, Yang D, Burnett B, Lee J, Protze S, Bader GD, Nunes SS, Laflamme M, Keller G. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat Commun 2021; 12:3155. [PMID: 34039977 PMCID: PMC8155185 DOI: 10.1038/s41467-021-23329-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs. Cardiomyocytes of heart ventricles consist of subpopulations of trabecular and compact subtypes. Here the authors describe the generation of structurally, metabolically and functionally mature compact ventricular cardiomyocytes as well as mature atrial cardiomyocytes from human pluripotent stem cells.
Collapse
Affiliation(s)
- Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Olya Mastikhina
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada
| | - Michael Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Di Munno C, Busiello RA, Calonne J, Salzano AM, Miles-Chan J, Scaloni A, Ceccarelli M, de Lange P, Lombardi A, Senese R, Cioffi F, Visser TJ, Peeters RP, Dulloo AG, Silvestri E. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front Endocrinol (Lausanne) 2021; 12:631176. [PMID: 33746903 PMCID: PMC7971177 DOI: 10.3389/fendo.2021.631176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.
Collapse
Affiliation(s)
- Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Julie Calonne
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Anna Maria Salzano
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Jennifer Miles-Chan
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Theo J. Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Robin P. Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Abdul G. Dulloo
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Elena Silvestri,
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Bone elongation is a complex process driven by multiple intrinsic (hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This review provides an updated overview of the important factors that influence this process. RECENT FINDINGS Insulin-like growth factor-1 (IGF-1) is the major hormone required for growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized environmental variable that also impacts linear growth. This paper reviews the current state of knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation. Understanding how internal and external variables regulate bone lengthening is essential for developing and improving treatments for an array of bone elongation disorders. Future studies may benefit from understanding how these unique relationships could offer realistic new approaches for increasing bone length in different growth-limiting conditions.
Collapse
Affiliation(s)
- Holly L Racine
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, 26074, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
14
|
Han CR, Holmsen E, Carrington B, Bishop K, Zhu YJ, Starost M, Meltzer P, Sood R, Liu P, Cheng SY. Generation of Novel Genetic Models to Dissect Resistance to Thyroid Hormone Receptor α in Zebrafish. Thyroid 2020; 30:314-328. [PMID: 31952464 PMCID: PMC7047097 DOI: 10.1089/thy.2019.0598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Patients with mutations of the thyroid hormone receptor alpha (THRA) gene show resistance to thyroid hormone alpha (RTHα). No amendable mouse models are currently available to elucidate deleterious effects of TRα1 mutants during early development. Zebrafish with transient suppressed expression by morpholino knockdown and ectopic expression of TRα1 mutants in the embryos have been reported. However, zebrafish with germline transmittable mutations have not been reported. The stable expression of thra mutants from embryos to adulthood facilitated the study of molecular actions of TRα1 mutants during development. Methods: In contrast to human and mice, the thra gene is duplicated in zebrafish, thraa, and thrab. Using CRISPR/Cas9-mediated targeted mutagenesis, we created dominant negative mutations in the two duplicated thra genes. We comprehensively analyzed the molecular and phenotypic characteristics of mutant fish during development. Results: Adult and juvenile homozygous thrab 1-bp ins (m/m) mutants exhibited severe growth retardation, but adult homozygous thraa 8-bp ins (m/m) mutants had very mild growth impairment. Expression of the growth hormone (gh1) and insulin-like growth factor 1 was markedly suppressed in homozygous thrab 1-bp ins (m/m) mutants. Decreased messenger RNA and protein levels of triiodothyronine-regulated keratin genes and inhibited keratinocyte proliferation resulted in hypoplasia of the epidermis in adult and juvenile homozygous thrab 1-bp ins (m/m) mutants, but not homozygous thraa 8-bp ins (m/m) mutants. RNA-seq analysis showed that homozygous thrab 1-bp ins (m/m) mutation had global impact on the functions of the adult pituitary. However, no morphological defects nor any changes in the expression of gh1 and keratin genes were observed in the embryos and early larvae. Thus, mutations of either the thraa or thrab gene did not affect initiation of embryogenesis. But the mutation of the thrab gene, but not the thraa gene, is detrimental in postlarval growth and skin development. Conclusions: The thra duplicated genes are essential to control temporal coordination in postlarval growth and development in a tissue-specific manner. We uncovered novel functions of the duplicated thra genes in zebrafish in development. These mutant zebrafish could be used as a model for further analysis of TRα1 mutant actions and for rapid screening of therapeutics for RTHα.
Collapse
Affiliation(s)
- Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Erik Holmsen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuelin Jack Zhu
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Matthew Starost
- Division of Veterinary Resources, Diagnostic and Research Services Branch, National Institutes of Health, Bethesda, Maryland
| | - Paul Meltzer
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Liu
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Sheue-yann Cheng, PhD, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264
| |
Collapse
|
15
|
Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grützner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 2019; 364:184-188. [PMID: 30846611 DOI: 10.1126/science.aar2038] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
Tissue regenerative potential displays striking divergence across phylogeny and ontogeny, but the underlying mechanisms remain enigmatic. Loss of mammalian cardiac regenerative potential correlates with cardiomyocyte cell-cycle arrest and polyploidization as well as the development of postnatal endothermy. We reveal that diploid cardiomyocyte abundance across 41 species conforms to Kleiber's law-the ¾-power law scaling of metabolism with bodyweight-and inversely correlates with standard metabolic rate, body temperature, and serum thyroxine level. Inactivation of thyroid hormone signaling reduces mouse cardiomyocyte polyploidization, delays cell-cycle exit, and retains cardiac regenerative potential in adults. Conversely, exogenous thyroid hormones inhibit zebrafish heart regeneration. Thus, our findings suggest that loss of heart regenerative capacity in adult mammals is triggered by increasing thyroid hormones and may be a trade-off for the acquisition of endothermy.
Collapse
Affiliation(s)
- Kentaro Hirose
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander Y Payumo
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen Cutie
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alison Hoang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Zhang
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Romain Guyot
- Department of Internal Medicine, Institut de Génomique Fonctionnelle de Lyon, Institut National de la Recherche Agronomique, Université Lyon 1, CNRS, École Normale Superieure de Lyon, 69 007 France
| | - Dominic Lunn
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel B Bigley
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jiajia Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Megan Smith
- Calico Life Sciences, 1170 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Ellen Gillett
- School of Biological Sciences, University of Adelaide, South Australia, Adelaide 5005, Australia
| | - Sandra E Muroy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94708, USA
| | - Tobias Schmid
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94708, USA
| | - Emily Wilson
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Malcom Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94708, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank Grützner
- School of Biological Sciences, University of Adelaide, South Australia, Adelaide 5005, Australia
| | - Thomas S Scanlan
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Luke I Szweda
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Rochelle Buffenstein
- Calico Life Sciences, 1170 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Frederic Flamant
- Department of Internal Medicine, Institut de Génomique Fonctionnelle de Lyon, Institut National de la Recherche Agronomique, Université Lyon 1, CNRS, École Normale Superieure de Lyon, 69 007 France
| | - Jeffrey E Olgin
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA. .,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Bao L, Roediger J, Park S, Fu L, Shi B, Cheng SY, Shi YB. Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid 2019; 29:439-448. [PMID: 30595106 PMCID: PMC6437623 DOI: 10.1089/thy.2018.0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The thyroid hormone triiodothyronine (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) >50 years ago and subsequent identification of genetic mutations in only the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in RTH patients with THRB gene mutations (RTHβ). That is, RTHα patients have constipation, implicating intestinal defects caused by THRA gene mutations. METHODS To determine how TRα1 mutations affect the intestine, this study analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes observed in patients. RESULTS In adult Thra1PV/+ mice, constipation was observed just like in patients with TRα mutations. Importantly, significant intestinal defects were discovered, including shorter villi and increased differentiated cells in the crypt, accompanied by reduced stem-cell proliferation in the intestine. CONCLUSIONS The findings suggest that further analysis of this mouse model should help to reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Sunmi Park
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49 Room 6A82, Bethesda, MD 20892
| |
Collapse
|
17
|
Bongers-Schokking JJ, Resing WCM, Oostdijk W, de Rijke YB, de Muinck Keizer-Schrama SMPF. Relation between Early Over- and Undertreatment and Behavioural Problems in Preadolescent Children with Congenital Hypothyroidism. Horm Res Paediatr 2018; 90:247-256. [PMID: 30408796 PMCID: PMC6492506 DOI: 10.1159/000494056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Congenital hypothyroidism (CH) per se, when not treated or undertreated, may lead to severe behavioural problems (cretinism), whereas overtreatment of CH seems associated with attention problems. DESIGN AND METHODS For 55 CH patients, prospectively followed from birth until 11 years, parents rated the Child Behaviour Checklist and teachers the Teacher's Report Form at children's ages 6 and 11 years. We related scores regarding Attention, Delinquency, and Aggression (ADA scores, indicative for attention deficit hyperactivity syndrome, ADHD), and scores regarding Withdrawn, Anxious, Social, and Thought problems (WAST scores, indicative for autism) to the occurrence of over- and undertreatment in five age periods. Over- and undertreatment were defined as free thyroxine (fT4) concentrations above/below the range of the patient's individual fT4 steady state concentration. RESULTS ADA scores at 6 and 11 years for patients overtreated in the period 1-3 months postnatally were higher than those for patients who were not overtreated. Patients with severe CH undertreated in the period 3-6 months postnatally had higher WAST scores at 6 and 11 years than all other patients. CONCLUSIONS This is the first study suggesting that permanent ADHD as well as autism in CH patients at ages 6 and 11 years are the result of early overtreatment and undertreatment, respectively.
Collapse
Affiliation(s)
- Jacoba J Bongers-Schokking
- Department of Pediatrics, Erasmus MC - Sophia Children's Hospital , University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wilma C M Resing
- Department of Developmental and Educational Psychology, Faculty of Social Sciences, University of Leiden, Leiden, The Netherlands
| | - Wilma Oostdijk
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Grefhorst A, van den Beukel JC, Dijk W, Steenbergen J, Voortman GJ, Leeuwenburgh S, Visser TJ, Kersten S, Friesema ECH, Themmen APN, Visser JA. Multiple effects of cold exposure on livers of male mice. J Endocrinol 2018; 238:91-106. [PMID: 29743343 DOI: 10.1530/joe-18-0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 02/02/2023]
Abstract
Cold exposure of mice is a common method to stimulate brown adipose tissue (BAT) activity and induce browning of white adipose tissue (WAT) that has beneficial effects on whole-body lipid metabolism, including reduced plasma triglyceride (TG) concentrations. The liver is a key regulatory organ in lipid metabolism as it can take up as well as oxidize fatty acids. The liver can also synthesize, store and secrete TGs in VLDL particles. The effects of cold exposure on murine hepatic lipid metabolism have not been addressed. Here, we report the effects of 24-h exposure to 4°C on parameters of hepatic lipid metabolism of male C57BL/6J mice. Cold exposure increased hepatic TG concentrations by 2-fold (P < 0.05) but reduced hepatic lipogenic gene expression. Hepatic expression of genes encoding proteins involved in cholesterol synthesis and uptake such as the LDL receptor (LDLR) was significantly increased upon cold exposure. Hepatic expression of Cyp7a1 encoding the rate-limiting enzyme in the classical bile acid (BA) synthesis pathway was increased by 4.3-fold (P < 0.05). Hepatic BA concentrations and fecal BA excretion were increased by 2.8- and 1.3-fold, respectively (P < 0.05 for both). VLDL-TG secretion was reduced by approximately 50% after 24 h of cold exposure (P < 0.05). In conclusion, cold exposure has various, likely intertwined effects on the liver that should be taken into account when studying the effects of cold exposure on whole-body metabolism.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johanna C van den Beukel
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wieneke Dijk
- Division of Human NutritionNutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Jacobie Steenbergen
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gardi J Voortman
- Section of PharmacologyVascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Selmar Leeuwenburgh
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Theo J Visser
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sander Kersten
- Division of Human NutritionNutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Edith C H Friesema
- Section of PharmacologyVascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Axel P N Themmen
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jenny A Visser
- Section of EndocrinologyDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Yu Y, Ma R, Yu L, Cai Z, Li H, Zuo Y, Wang Z, Li H. Combined effects of cadmium and tetrabromobisphenol a (TBBPA) on development, antioxidant enzymes activity and thyroid hormones in female rats. Chem Biol Interact 2018; 289:23-31. [DOI: 10.1016/j.cbi.2018.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
|
20
|
Mayerl S, Schmidt M, Doycheva D, Darras VM, Hüttner SS, Boelen A, Visser TJ, Kaether C, Heuer H, von Maltzahn J. Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration. Stem Cell Reports 2018; 10:1959-1974. [PMID: 29706500 PMCID: PMC5993536 DOI: 10.1016/j.stemcr.2018.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) transporters are required for the transmembrane passage of TH in target cells. In humans, inactivating mutations in the TH transporter MCT8 cause the Allan-Herndon-Dudley syndrome, characterized by severe neuromuscular symptoms and an abnormal TH serum profile, which is fully replicated in Mct8 knockout mice and Mct8/Oatp1c1 double-knockout (M/O DKO) mice. Analysis of tissue TH content and expression of TH-regulated genes indicate a thyrotoxic state in Mct8-deficient skeletal muscles. Both TH transporters are upregulated in activated satellite cells (SCs). In M/O DKO mice, we observed a strongly reduced number of differentiated SCs, suggesting an impaired stem cell function. Moreover, M/O DKO mice and mice lacking both transporters exclusively in SCs showed impaired skeletal muscle regeneration. Our data provide solid evidence for a unique gate-keeper function of MCT8 and OATP1C1 in SC activation, underscoring the importance of a finely tuned TH signaling during myogenesis. MCT8 and OATP1C1 expression increases upon activation of muscle stem cells Loss of MCT8 and OATP1C1 expression inhibits muscle stem cell differentiation Mct8- and Oatp1c1-deficient mice display impaired muscle regeneration
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Manuel Schmidt
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany
| | - Denica Doycheva
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sören S Hüttner
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany
| | - Anita Boelen
- Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Theo J Visser
- Erasmus Medical Center (EMC), Rotterdam, The Netherlands
| | | | - Heike Heuer
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Duisburg-Essen, University Hospital Essen, Department of Endocrinology, Essen, Germany.
| | | |
Collapse
|
21
|
|
22
|
Eerdekens A, Langouche L, Güiza F, Verhaeghe J, Naulaers G, Vanhole C, Van den Berghe G. Maternal and placental responses before preterm birth: adaptations to increase fetal thyroid hormone availability? J Matern Fetal Neonatal Med 2018; 32:2746-2757. [DOI: 10.1080/14767058.2018.1449199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- An Eerdekens
- Department of Neonatology, University Hospitals Leuven, KU Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Fabian Güiza
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Johan Verhaeghe
- Department of Obstetrics and Gynecology, University Hospitals Leuven, KU Leuven, Belgium
| | - Gunnar Naulaers
- Department of Neonatology, University Hospitals Leuven, KU Leuven, Belgium
| | - Christine Vanhole
- Department of Neonatology, University Hospitals Leuven, KU Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| |
Collapse
|
23
|
Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep 2018. [PMID: 29535325 PMCID: PMC5849681 DOI: 10.1038/s41598-018-22553-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear. The development of the auditory system requires thyroid hormone and the cochlea is a primary target tissue. We have proposed that the compartmental anatomy of the cochlea would necessitate transport mechanisms to convey blood-borne hormone to target tissues. We report hearing loss in mice with mutations in Slc16a2 and a related gene Slc16a10 (Mct10, Tat1). Deficiency of both transporters results in retarded development of the sensory epithelium similar to impairment caused by hypothyroidism, compounded with a progressive degeneration of cochlear hair cells and loss of endocochlear potential. Administration of T3 largely restores the development of the sensory epithelium and limited auditory function, indicating the T3-sensitivity of defects in the sensory epithelium. The results indicate a necessity for thyroid hormone transporters in cochlear development and function.
Collapse
|
24
|
Thyroid Hormone Signaling in the Development of the Endochondral Skeleton. VITAMINS AND HORMONES 2018; 106:351-381. [PMID: 29407442 PMCID: PMC9830754 DOI: 10.1016/bs.vh.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone (TH) is an established regulator of skeletal growth and maintenance both in clinical studies and in laboratory models. The clinical consequences of altered thyroid status on the skeleton during development and in adulthood are well known, and genetic mouse models in which elements of the TH signaling axis have been manipulated illuminate the mechanisms which underlie TH regulation of the skeleton. TH is involved in the regulation of the balance between proliferation and differentiation in several skeletal cell types including chondrocytes, osteoblasts, and osteoclasts. The effects of TH are mediated primarily via the thyroid hormone receptors (TRs) α and β, ligand-inducible nuclear receptors which act as transcription factors to regulate target gene expression. Both TRα and TRβ signaling are important for different stages of skeletal development. The molecular mechanisms of TH action in bone are complex and include interaction with a number of growth factor signaling pathways. This review provides an overview of the regulation and mechanisms of TH action in bone, focusing particularly on the role of TH in endochondral bone formation during postnatal growth.
Collapse
|
25
|
Individualized treatment to optimize eventual cognitive outcome in congenital hypothyroidism. Pediatr Res 2016; 80:816-823. [PMID: 27494505 DOI: 10.1038/pr.2016.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/07/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND In congenital hypothyroidism (CH), age-specific reference ranges (asRR) for fT4 and thyrotropine (TSH) are usually used to signal over/under-treatment. We compared the consequences of individual fT4 steady-state concentrations (SSC's) and asRR regarding over-treatment signaling and intelligence quotient at 11 y (IQ11) and the effect of early over-treatment with high L-T4 dosages on IQ11. METHODS Sixty-one patients (27 severe, 34 mild CH) were psychologically tested at 1.8, 6, and 11 y. Development scores were related to over-treatment in the period 0-24 mo, relative to either individual fT4SSC's or asRR. Three groups were formed, based on severity of over/under-treatment 0-5 mo (severe, mild, and no over/under-treatment). RESULTS FT4 and TSH asRR missed 41-50% of the over-treatment episodes and consequently 22% of the over-treated patients, classified as such by fT4SSC's. Severe over-treatment 0-5 mo led to lowered IQ11's and to a 5.5-fold higher risk of IQ11 < 85 than other treatment regimes. Under-treatment had no effect on development scores. Initial L-T4 dosages >10 µg/kg resulted in a 3.7-fold higher risk of over-treatment than lower dosages. CONCLUSIONS Data suggest that asRR, compared to fT4SSC's, signal over-treatment insufficiently. Using fT4SSC's and avoiding over-treatment may optimize cognitive outcome. Lowered IQ11's are usually a late complication of severe early over-treatment.
Collapse
|
26
|
Sun G, Roediger J, Shi YB. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Rev Endocr Metab Disord 2016; 17:559-569. [PMID: 27554108 DOI: 10.1007/s11154-016-9380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Julia Roediger
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Fu L, Shi YB. The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 2016; 63:58-67. [PMID: 27567710 DOI: 10.1016/j.semcdb.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States.
| |
Collapse
|
28
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
29
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
30
|
Visser WE, Bombardieri CR, Zevenbergen C, Barnhoorn S, Ottaviani A, van der Pluijm I, Brandt R, Kaptein E, van Heerebeek R, van Toor H, Garinis GA, Peeters RP, Medici M, van Ham W, Vermeij WP, de Waard MC, de Krijger RR, Boelen A, Kwakkel J, Kopchick JJ, List EO, Melis JPM, Darras VM, Dollé MET, van der Horst GTJ, Hoeijmakers JHJ, Visser TJ. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS One 2016; 11:e0149941. [PMID: 26953569 PMCID: PMC4783069 DOI: 10.1371/journal.pone.0149941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/07/2016] [Indexed: 01/24/2023] Open
Abstract
DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.
Collapse
Affiliation(s)
- W. Edward Visser
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Cíntia R. Bombardieri
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Barnhoorn
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexandre Ottaviani
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284 CNRS U1081 INSERM UNS, 28 avenue de Valombrose Faculté de Médecine, Nice, France
| | - Ingrid van der Pluijm
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Renata Brandt
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ellen Kaptein
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Hans van Toor
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - George A. Garinis
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P. Peeters
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Willy van Ham
- Laboratory of Comparative Endocrinology, Biology Department, KULeuven, Leuven, Belgium
| | - Wilbert P. Vermeij
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique C. de Waard
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Anita Boelen
- Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Joan Kwakkel
- Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - John J. Kopchick
- Dept of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Edward O. List
- Dept of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Joost P. M. Melis
- Dept of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KULeuven, Leuven, Belgium
| | - Martijn E. T. Dollé
- Centre for Health Protection Research, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Jan H. J. Hoeijmakers
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo J. Visser
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Mayerl S, Liebsch C, Visser TJ, Heuer H. Absence of TRH receptor 1 in male mice affects gastric ghrelin production. Endocrinology 2015; 156:755-67. [PMID: 25490146 DOI: 10.1210/en.2014-1395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TRH not only functions as a thyrotropin releasing hormone but also acts as a neuropeptide in central circuits regulating food intake and energy expenditure. As one suggested mode of action, TRH expressed in the caudal brainstem influences vagal activity by activating TRH receptor 1 (TRH-R1). In order to evaluate the impact of a diminished medullary TRH signaling on ghrelin metabolism, we analyzed metabolic changes of TRH-R1 knockout (R1ko) mice in response to 24 hours of food deprivation. Because R1ko mice are hypothyroid, we also studied eu- and hypothyroid wild-type (wt) animals and R1ko mice rendered euthyroid by thyroid hormone treatment. Independent of their thyroidal state, R1ko mice displayed a higher body weight loss than wt animals and a delayed reduction in locomotor activity upon fasting. Ghrelin transcript levels in the stomach as well as total ghrelin levels in the circulation were equally high in fasted wt and R1ko mice. In contrast, only wt mice responded to fasting with a rise in ghrelin-O-acyltransferase mRNA expression and consequently an increase in serum levels of acylated ghrelin. Together, our data suggest that an up-regulation of medullary TRH expression and subsequently enhanced activation of TRH-R1 in the vagal system represents a critical step in the stimulation of ghrelin-O-acyltransferase expression upon starvation that in turn is important for adjusting the circulating levels of acylated ghrelin to the fasting condition.
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute for Age Research/Fritz Lipmann Institute (S.M., C.L., H.H.), D-07745 Jena, Germany; Brandenburg University of Technology Cottbus-Senftenberg (C.L.), D-01968 Senftenberg, Germany; Department of Internal Medicine (T.J.V.), Erasmus Medical Center, Rotterdam, The Netherlands; and Leibniz Research Institute for Environmental Medicine (H.H.), Düsseldorf, Germany
| | | | | | | |
Collapse
|
32
|
Cardoso LF, Maciel LMZ, de Paula FJA. The multiple effects of thyroid disorders on bone and mineral metabolism. ACTA ACUST UNITED AC 2014; 58:452-63. [DOI: 10.1590/0004-2730000003311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 11/22/2022]
Abstract
Differently from most hormones, which commonly are specialized molecules able to influence other cells, tissues and systems, thyroid hormones (TH) are pleiotropic peptides, whose primordial function is difficult to identify. The complex action of TH on human economy can be easily witnessed by examining the diverse consequences of TH excess and deficiency during development and after maturity. In particular, different manifestations in bone modeling and remodeling reflect the circumstantial consequences of thyroid disturbances, which are age dependent. While hyperthyroidism during childhood enhances bone mineralization and accelerates epiphyseal maturation, in adults it induces bone loss by predominant activation of osteoclast activity. Furthermore, the syndrome of TH resistance is a multifaceted condition in which different sites exhibit signs of hormone excess or deficiency depending on the configuration of the TH receptor isoform. The investigation of the impact of TH resistance on the skeleton still remains to be elucidated. We present here a thorough review of the action of TH on bone and of the impact of thyroid disorders, including hyper- and hypothyroidism and the syndrome of TH resistance, on the skeleton.
Collapse
|
33
|
Expression of organic anion transporting polypeptide 1c1 and monocarboxylate transporter 8 in the rat placental barrier and the compensatory response to thyroid dysfunction. PLoS One 2014; 9:e96047. [PMID: 24763672 PMCID: PMC3999103 DOI: 10.1371/journal.pone.0096047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/02/2014] [Indexed: 01/21/2023] Open
Abstract
Thyroid hormones (THs) must pass from mother to fetus for normal fetal development and require the expression of placental TH transporters. We investigate the compensatory effect of placental organic anion transporting polypeptide 1c1 (Oatp1c1) and monocarboxylate transporter 8 (Mct8) on maternal thyroid dysfunction. We describe the expressions of these two transporters in placental barriers and trophoblastic cell populations in euthyroidism and thyroid dysfunction resulting from differential iodine nutrition at gestation day (GD) 16 and 20, that is, before and after the onset of fetal thyroid function. Immunohistochemistry revealed that in the blood-placenta barrier, these two TH transporters were strongly expressed in the villous interstitial substance and were weakly expressed in trophoblast cells. Levels of Oatp1c1 protein obviously increased in the placental fetal portion during maternal thyroid deficiency at GD16. Under maternal thyroid deficiency after the production of endogenous fetal TH, quantitative PCR analysis revealed down-regulation of Oatp1c1 occurred along with up-regulation of Mct8 in trophoblast cell populations isolated by laser capture microdissection (LCM); this was consistent with the protein levels in the fetal portion of the placenta. In addition, decreased D3 mRNA at GD16 and increased D2 mRNA on two gestational days were observed in trophoblast cells with thyroid dysfunction. However, levels of Oatp1c1 mRNA at GD16 and D3 mRNA at GD20 were too low to be detectable in trophoblast cells. In conclusion, placental Oatp1c1 plays an essential compensatory role when the transplacental passage of maternal THs is insufficient at the stage before the fetal TH production. In addition, the coordinated effects of Oatp1c1, Mct8, D2 and D3 in the placental barrier may regulate both transplacental TH passage and the development of trophoblast cells during thyroid dysfunction throughout the pregnancy.
Collapse
|
34
|
Mayerl S, Müller J, Bauer R, Richert S, Kassmann CM, Darras VM, Buder K, Boelen A, Visser TJ, Heuer H. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 2014; 124:1987-99. [PMID: 24691440 DOI: 10.1172/jci70324] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/06/2014] [Indexed: 11/17/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with abnormal thyroid hormone (TH) parameters, is linked to mutations in the TH-specific monocarboxylate transporter MCT8. In mice, deletion of Mct8 (Mct8 KO) faithfully replicates AHDS-associated endocrine abnormalities; however, unlike patients, these animals do not exhibit neurological impairments. While transport of the active form of TH (T3) across the blood-brain barrier is strongly diminished in Mct8 KO animals, prohormone (T4) can still enter the brain, possibly due to the presence of T4-selective organic anion transporting polypeptide (OATP1C1). Here, we characterized mice deficient for both TH transporters, MCT8 and OATP1C1 (Mct8/Oatp1c1 DKO). Mct8/Oatp1c1 DKO mice exhibited alterations in peripheral TH homeostasis that were similar to those in Mct8 KO mice; however, uptake of both T3 and T4 into the brains of Mct8/Oatp1c1 DKO mice was strongly reduced. Evidence of TH deprivation in the CNS of Mct8/Oatp1c1 DKO mice included highly decreased brain TH content as well as altered deiodinase activities and TH target gene expression. Consistent with delayed cerebellar development and reduced myelination, Mct8/Oatp1c1 DKO mice displayed pronounced locomotor abnormalities. Intriguingly, differentiation of GABAergic interneurons in the cerebral cortex was highly compromised. Our findings underscore the importance of TH transporters for proper brain development and provide a basis to study the pathogenic mechanisms underlying AHDS.
Collapse
|
35
|
Stenzel D, Wilsch-Bräuninger M, Wong FK, Heuer H, Huttner WB. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 2014; 141:795-806. [DOI: 10.1242/dev.101907] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neocortex expansion during evolution is associated with the enlargement of the embryonic subventricular zone, which reflects an increased self-renewal and proliferation of basal progenitors. In contrast to human, the vast majority of mouse basal progenitors lack self-renewal capacity, possibly due to lack of a basal process contacting the basal lamina and downregulation of cell-autonomous production of extracellular matrix (ECM) constituents. Here we show that targeted activation of the ECM receptor integrin αvβ3 on basal progenitors in embryonic mouse neocortex promotes their expansion. Specifically, integrin αvβ3 activation causes an increased cell cycle re-entry of Pax6-negative, Tbr2-positive intermediate progenitors, rather than basal radial glia, and a decrease in the proportion of intermediate progenitors committed to neurogenic division. Interestingly, integrin αvβ3 is the only known cell surface receptor for thyroid hormones. Remarkably, tetrac, a thyroid hormone analog that inhibits the binding of thyroid hormones to integrin αvβ3, completely abolishes the intermediate progenitor expansion observed upon targeted integrin αvβ3 activation, indicating that this expansion requires the binding of thyroid hormones to integrin αvβ3. Convergence of ECM and thyroid hormones on integrin αvβ3 thus appears to be crucial for cortical progenitor proliferation and self-renewal, and hence for normal brain development and the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
- Denise Stenzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Fong Kuan Wong
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Heike Heuer
- Leibniz Institute for Age Research / Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
36
|
Müller J, Mayerl S, Visser TJ, Darras VM, Boelen A, Frappart L, Mariotta L, Verrey F, Heuer H. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 2014; 155:315-25. [PMID: 24248460 DOI: 10.1210/en.2013-1800] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the well-established TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific alterations in TH transport and metabolism, we speculated that Mct10 inactivation may compromise the tissue-specific TH homeostasis as well. However, analysis of Mct10 knockout (ko) mice revealed normal serum TH levels and tissue TH content in contrast to Mct8 ko mice that are characterized by high serum T3, low serum T4, decreased brain TH content, and increased tissue TH concentrations in the liver, kidneys, and thyroid gland. Surprisingly, mice deficient in both TH transporters (Mct10/Mct8 double knockout [dko] mice) showed normal serum T4 levels in the presence of elevated serum T3, indicating that the additional inactivation of Mct10 partially rescues the phenotype of Mct8 ko mice. As a consequence of the normal serum T4, brain T4 content and hypothalamic TRH expression were found to be normalized in the Mct10/Mct8 dko mice. In contrast, the hyperthyroid situation in liver, kidneys, and thyroid gland of Mct8 ko mice was even more severe in Mct10/Mct8 dko animals, suggesting that in these organs, both transporters contribute to the TH efflux. In summary, our data indicate that Mct10 indeed participates in tissue-specific TH transport and also contributes to the generation of the unusual serum TH profile characteristic for Mct8 deficiency.
Collapse
Affiliation(s)
- Julia Müller
- Leibniz Institute for Age Research/Fritz Lipmann Institute (J.M., S.M., L.F., H.H.), Jena, Germany; Department of Internal Medicine (T.J.V.), Erasmus Medical Center, Rotterdam, The Netherlands; Laboratory of Comparative Endocrinology (V.M.D.), Biology Department, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Endocrinology and Metabolism (A.B.), Academic Medical Center, Amsterdam, The Netherlands; Institute of Physiology and Zürich Center for Integrative Human Physiology (L.M., F.V.), University of Zürich, Zürich, Switzerland; and Leibniz Institute for Environmental Medicine (H.H.), Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Faustino LC, Ortiga-Carvalho TM. Thyroid hormone role on cerebellar development and maintenance: a perspective based on transgenic mouse models. Front Endocrinol (Lausanne) 2014; 5:75. [PMID: 24904526 PMCID: PMC4033007 DOI: 10.3389/fendo.2014.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/15/2023] Open
Abstract
Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neuronal migration, differentiation, and myelination. Most effects of THs are mediated by the thyroid hormone receptor (TR) isoforms TRβ1, TRβ2, and TRα1. Studies aimed at identifying TH target genes during cerebellum development have only achieved partial success, as some of these genes do not possess classical TH-responsive elements, and those that do are likely to be temporally and spatially regulated by THs. THs may also affect neurodevelopment by regulating transcription factors that control particular groups of genes. Furthermore, TH action can also be affected by TH transport, which is mediated mainly by monocarboxylate transporter family members. Studies involving transgenic animal models and genome-wide expression analyses have helped to address the unanswered questions regarding the role of TH in cerebellar development. Recently, a growing body of evidence has begun to clarify the molecular, cellular, and functional aspects of THs in the developing cerebellum. This review describes the current findings concerning the effects of THs on cerebellar development and maintenance as well as advances in the genetic animal models used in this field.
Collapse
Affiliation(s)
- Larissa C. Faustino
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania M. Ortiga-Carvalho
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Tania M. Ortiga-Carvalho, Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, s/n Cidade Universitária, Rio de Janeiro 21941-902, Brazil e-mail:
| |
Collapse
|
38
|
Sun G, Heimeier RA, Fu L, Hasebe T, Das B, Ishizuya-Oka A, Shi YB. Expression profiling of intestinal tissues implicates tissue-specific genes and pathways essential for thyroid hormone-induced adult stem cell development. Endocrinology 2013; 154:4396-407. [PMID: 23970787 PMCID: PMC3800751 DOI: 10.1210/en.2013-1432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of the epithelium during development in the vertebrate intestine touches upon many contemporary aspects of biology: to name a few, the formation of the adult stem cells (ASCs) essential for the life-long self-renewal and the balance of stem cell activity for renewal vs cancer development. Although extensive analyses have been carried out on the property and functions of the adult intestinal stem cells in mammals, little is known about their formation during development due to the difficulty of manipulating late-stage, uterus-enclosed embryos. The gastrointestinal tract of the amphibian Xenopus laevis is an excellent model system for the study of mammalian ASC formation, cell proliferation, and differentiation. During T3-dependent amphibian metamorphosis, the digestive tract is extensively remodeled from the larval to the adult form for the adaptation of the amphibian from its aquatic herbivorous lifestyle to that of a terrestrial carnivorous frog. This involves de novo formation of ASCs that requires T3 signaling in both the larval epithelium and nonepithelial tissues. To understand the underlying molecular mechanisms, we have characterized the gene expression profiles in the epithelium and nonepithelial tissues by using cDNA microarrays. Our results revealed that T3 induces distinct tissue-specific gene regulation programs associated with the remodeling of the intestine, particularly the formation of the ASCs, and further suggested the existence of potentially many novel stem cell-associated genes, at least in the intestine during development.
Collapse
Affiliation(s)
- Guihong Sun
- National Institutes of Health, National Institute of Child Health and Human Development, Laboratory of Gene Regulation and Development, Building 18T, Room 106, 18 Library Drive, MSC 5431, Bethesda, Maryland 20892; Rachel A. Heimeier, Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; or Atsuko Ishizuya-Oka, Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan. , , or
| | | | | | | | | | | | | |
Collapse
|
39
|
Kim HY, Mohan S. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development. Bone Res 2013; 1:146-61. [PMID: 26273499 DOI: 10.4248/br201302004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/28/2013] [Indexed: 01/03/2023] Open
Abstract
The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates proliferation and/or differentiated actions of multiple cell types in bone including chondrocytes, osteoblasts and osteoclasts. Thyroid hormone effects on the target cells are mediated via ligand-inducible nuclear receptors/transcription factors, thyroid hormone receptor (TR) α and β, of which TRα seems to be critically important in regulating bone cell functions. In terms of mechanisms for thyroid hormone action, studies suggest that thyroid hormone regulates a number of key growth factor signaling pathways including insulin-like growth factor-I, parathyroid hormone related protein, fibroblast growth factor, Indian hedgehog and Wnt to influence skeletal growth. In this review we describe findings from various genetic mouse models and clinical mutations of thyroid hormone signaling related mutations in humans that pertain to the role and mechanism of action of thyroid hormone in the regulation of skeletal growth and maintenance.
Collapse
Affiliation(s)
- Ha-Young Kim
- Musculoskeletal Disease Center, Loma Linda VA HealthCare System , Loma Linda, CA 92357, USA ; Departments of Medicine, Loma Linda University , Loma Linda, CA 92354, USA ; Division of Endocrinology, Department of Internal Medicine, Wonkwang University Sanbon Hospital , Gunpo, Gyeonggi, Korea
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA HealthCare System , Loma Linda, CA 92357, USA ; Departments of Medicine, Loma Linda University , Loma Linda, CA 92354, USA
| |
Collapse
|
40
|
Kurlak L, Mistry H, Kaptein E, Visser T, Broughton Pipkin F. Thyroid hormones and their placental deiodination in normal and pre-eclamptic pregnancy. Placenta 2013; 34:395-400. [DOI: 10.1016/j.placenta.2013.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 12/14/2022]
|
41
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Groba C, Mayerl S, van Mullem AA, Visser TJ, Darras VM, Habenicht AJ, Heuer H. Hypothyroidism compromises hypothalamic leptin signaling in mice. Mol Endocrinol 2013; 27:586-97. [PMID: 23518925 DOI: 10.1210/me.2012-1311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism.
Collapse
Affiliation(s)
- Claudia Groba
- Leibniz Institute for Age Research/Fritz Lipmann Institute e.V., Beutenbergstr. 11, D-07745 Jena/Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Horn S, Kersseboom S, Mayerl S, Müller J, Groba C, Trajkovic-Arsic M, Ackermann T, Visser TJ, Heuer H. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 2013; 154:968-79. [PMID: 23307789 DOI: 10.1210/en.2012-1628] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) plays a critical role in mediating the uptake of thyroid hormones (THs) into the brain. In patients, inactivating mutations in the MCT8 gene are associated with a severe form of psychomotor retardation and abnormal serum TH levels. Here, we evaluate the therapeutic potential of the TH analog 3,5,3',5'-tetraiodothyroacetic acid (tetrac) as a replacement for T(4) in brain development. Using COS1 cells transfected with TH transporter and deiodinase constructs, we could show that tetrac, albeit not being transported by MCT8, can be metabolized to the TH receptor active compound 3,3',5-triiodothyroacetic acid (triac) by type 2 deiodinase and inactivated by type 3 deiodinase. Triac in turn is capable of replacing T(3) in primary murine cerebellar cultures where it potently stimulates Purkinje cell development. In vivo effects of tetrac were assessed in congenital hypothyroid Pax8-knockout (KO) and Mct8/Pax8 double-KO mice as well as in Mct8-KO and wild-type animals after daily injection of tetrac (400 ng/g body weight) during the first postnatal weeks. This treatment was sufficient to promote TH-dependent neuronal differentiation in the cerebellum, cerebral cortex, and striatum but was ineffective in suppressing hypothalamic TRH expression. In contrast, TSH transcript levels in the pituitary were strongly down-regulated in response to tetrac. Based on our findings we propose that tetrac administration offers the opportunity to provide neurons during the postnatal stage with a potent TH receptor agonist, thereby eventually reducing the neurological damage in patients with MCT8 mutations without deteriorating the thyrotoxic situation in peripheral tissues.
Collapse
Affiliation(s)
- Sigrun Horn
- Leibniz Institute for Age Research/Fritz Lipmann Institute, D-07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Iodothyronine deiodinases are important mediators of thyroid hormone (TH) action. They are present in tissues throughout the body where they catalyse 3,5,3'-triiodothyronine (T(3)) production and degradation via, respectively, outer and inner ring deiodination. Three different types of iodothyronine deiodinases (D1, D2 and D3) have been identified in vertebrates from fish to mammals. They share several common characteristics, including a selenocysteine residue in their catalytic centre, but show also some type-specific differences. These specific characteristics seem very well conserved for D2 and D3, while D1 shows more evolutionary diversity related to its Km, 6-n-propyl-2-thiouracil sensitivity and dependence on dithiothreitol as a cofactor in vitro. The three deiodinase types have an impact on systemic T(3) levels and they all contribute directly or indirectly to intracellular T(3) availability in different tissues. The relative contribution of each of them, however, varies amongst species, developmental stages and tissues. This is especially true for amphibians, where the impact of D1 may be minimal. D2 and D3 expression and activity respond to thyroid status in an opposite and conserved way, while the response of D1 is variable, especially in fish. Recently, a number of deiodinases have been cloned from lower chordates. Both urochordates and cephalochordates possess selenodeiodinases, although they cannot be classified in one of the three vertebrate types. In addition, the cephalochordate amphioxus also expresses a non-selenodeiodinase. Finally, deiodinase-like sequences have been identified in the genome of non-deuterostome organisms, suggesting that deiodination of externally derived THs may even be functionally relevant in a wide variety of invertebrates.
Collapse
Affiliation(s)
- Veerle M Darras
- Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
45
|
Sun G, Shi YB. Thyroid hormone regulation of adult intestinal stem cell development: mechanisms and evolutionary conservations. Int J Biol Sci 2012; 8:1217-24. [PMID: 23136549 PMCID: PMC3491429 DOI: 10.7150/ijbs.5109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors.
Collapse
Affiliation(s)
- Guihong Sun
- Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan 430072, PR China.
| | | |
Collapse
|
46
|
Müller J, Heuer H. Understanding the hypothalamus-pituitary-thyroid axis in mct8 deficiency. Eur Thyroid J 2012; 1:72-9. [PMID: 24783000 PMCID: PMC3821472 DOI: 10.1159/000339474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/15/2012] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone (TH) metabolism and action via binding to nuclear receptors are intracellular events that require the passage of TH across the plasma membrane. This process is mediated by specific TH transporters of which the monocarboxylate transporter 8 (Mct8) has received major attention. Mct8 is highly expressed in different tissues such as liver, kidney, thyroid, pituitary and brain. In humans, inactivating mutations of the MCT8 gene (SLC16A2) are associated with severe forms of psychomotor retardation and abnormal TH serum levels (Allan-Herndon-Dudley syndrome). Surprisingly, Mct8 knockout (ko) mice do not exhibit overt neurological symptoms but fully replicate the unusual serum TH profile with highly increased serum T3 in the presence of low serum T4. In order to evaluate the underlying mechanisms for these abnormalities, TH transport and metabolism have been intensively studied in different tissues of Mct8 ko mice. Here, we summarize the observed changes within the hypothalamus-pituitary-thyroid axis that result in altered TH production and secretion. Although analysis of Mct8 ko mice has greatly expanded our knowledge, many open questions still remain to be addressed in order to define the tissue- and cell-specific role of this important TH transporter.
Collapse
Affiliation(s)
| | - Heike Heuer
- *Heike Heuer, PhD, Leibniz Institute for Age Research/Fritz Lipmann Institute e.V., Beutenbergstrasse 11, DE–07745 Jena (Germany), Tel. +49 3641 65 6021, E-Mail
| |
Collapse
|
47
|
Mayerl S, Visser TJ, Darras VM, Horn S, Heuer H. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 2012; 153:1528-37. [PMID: 22294745 DOI: 10.1210/en.2011-1633] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Organic anion-transporting polypeptide 1c1 (Oatp1c1) (also known as Slco1c1 and Oatp14) belongs to the family of Oatp and has been shown to facilitate the transport of T(4). In the rodent brain, Oatp1c1 is highly enriched in capillary endothelial cells and choroid plexus structures where it may mediate the entry of T(4) into the central nervous system. Here, we describe the generation and first analysis of Oatp1c1-deficient mice. Oatp1c1 knockout (KO) mice were born with the expected frequency, were not growth retarded, and developed without any overt neurological abnormalities. Serum T(3) and T(4) concentrations as well as renal and hepatic deiodinase type 1 expression levels were indistinguishable between Oatp1c1 KO mice and control animals. Hypothalamic TRH and pituitary TSH mRNA levels were not affected, but brain T(4) and T(3) content was decreased in Oatp1c1-deficient animals. Moreover, increased type 2 and decreased type 3 deiodinase activities indicate a mild hypothyroid situation in the brain of Oatp1c1 KO mice. Consequently, mRNA expression levels of gene products positively regulated by T(3) in the brain were down-regulated. This central nervous system-specific hypothyroidism is presumably caused by an impaired passage of T(4) across the blood-brain barrier and indicates a unique function of Oatp1c1 in facilitating T(4) transport despite the presence of other thyroid hormone transporters such as Mct8.
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute for Age Research/Fritz Lipmann Institute e.V., Beutenbergstrasse 11, D-07745 Jena/Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Thyroid hormones (TH) regulate key cellular processes, including proliferation, differentiation, and apoptosis in virtually all human cells. Disturbances in TH pathway and the resulting deregulation of these processes have been linked with neoplasia. The concentrations of TH in peripheral tissues are regulated via the activity of iodothyronine deiodinases. There are 3 types of these enzymes: type 1 and type 2 deiodinases are involved in TH activation while type 3 deiodinase inactivates TH. Expression and activity of iodothyronine deiodinases are disturbed in different types of neoplasia. According to the limited number of studies in cancer cell lines and mouse models changes in intratumoral and extratumoral T3 concentrations may influence proliferation rate and metastatic progression. Recent findings showing that increased expression of type 3 deiodinases may lead to enhanced tumoral proliferation support the idea that deiodinating enzymes have the potential to influence cancer progression. This review summarizes the observations of impaired expression and activity in different cancer types, published to date, and the mechanisms behind these alterations, including impaired regulation via TH receptors, transforming growth factor-β, and Sonic-hedgehog pathway. Possible roles of deiodinases as cancer markers and potential modulators of tumor progression are also discussed.
Collapse
Affiliation(s)
- A Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | |
Collapse
|
49
|
Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A. The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell Biosci 2011; 1:30. [PMID: 21896185 PMCID: PMC3177767 DOI: 10.1186/2045-3701-1-30] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/06/2011] [Indexed: 01/05/2023] Open
Abstract
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Mammalian retinas display an astonishing diversity in the spatial arrangement of their spectral cone photoreceptors, probably in adaptation to different visual environments. Opsin expression patterns like the dorsoventral gradients of short-wave-sensitive (S) and middle- to long-wave-sensitive (M) cone opsin found in many species are established early in development and thought to be stable thereafter throughout life. In mouse early development, thyroid hormone (TH), through its receptor TRβ2, is an important regulator of cone spectral identity. However, the role of TH in the maintenance of the mature cone photoreceptor pattern is unclear. We here show that TH also controls adult cone opsin expression. Methimazole-induced suppression of serum TH in adult mice and rats yielded no changes in cone numbers but reversibly altered cone patterns by activating the expression of S-cone opsin and repressing the expression of M-cone opsin. Furthermore, treatment of athyroid Pax8(-/-) mice with TH restored a wild-type pattern of cone opsin expression that reverted back to the mutant S-opsin-dominated pattern after termination of treatment. No evidence for cone death or the generation of new cones from retinal progenitors was found in retinas that shifted opsin expression patterns. Together, this suggests that opsin expression in terminally differentiated mammalian cones remains subject to control by TH, a finding that is in contradiction to previous work and challenges the current view that opsin identity in mature mammalian cones is fixed by permanent gene silencing.
Collapse
|