1
|
Wang L, Zhang M, Wang Y, Shi B. Graves' Orbitopathy Models: Valuable Tools for Exploring Pathogenesis and Treatment. Horm Metab Res 2023; 55:745-751. [PMID: 37903495 DOI: 10.1055/a-2161-5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Graves' orbitopathy (GO) is the most common extrathyroidal complication of Graves' disease (GD) and severely affects quality of life. However, its pathogenesis is still poorly understood, and therapeutic options are limited. Animal models are important tools for preclinical research. The animals in some previous models only exhibited symptoms of hyperthyroidism without ocular lesions. With the improvements achieved in modeling methods, some progressive animal models have been established. Immunization of mice with A subunit of the human thyroid stimulating hormone receptor (TSHR) by either adenovirus or plasmid (with electroporation) is widely used and convincing. These models are successful to identify that the gut microbiota influences the occurrence and severity of GD and GO, and sex-related risk factors may be key contributors to the female bias in the occurrence of GO rather than sex itself. Some data provide insight that macrophages and CD8+ T cells may play an important pathogenic role in the early stage of GO. Our team also replicated the time window from GD onset to GO onset and identified a group of CD4+ cytotoxic T cells. In therapeutic exploration, TSHR derived peptides, fingolimod, and rapamycin offer new potential options. Further clinical trials are needed to investigate these drugs. With the increasing use of these animal models and more in-depth studies of the new findings, scientists will gain a clearer understanding of the pathogenesis of GO and identify more treatments for patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Merakchi K, Djerbib S, Soleimani M, Dumont JE, Miot F, De Deken X. Murine Thyroid IL-4 Expression Worsens Hypothyroidism on Iodine Restriction and Mitigates Graves Disease Development. Endocrinology 2022; 163:6650252. [PMID: 35881515 DOI: 10.1210/endocr/bqac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/19/2022]
Abstract
Cytokines are known to perturb thyroid function and the role of interleukin-4 (IL-4) in the pathogenesis of Graves disease (GD) remains controversial. In our mouse model overexpressing IL-4 in thyrocytes (Thyr-IL4), we have reported that adult mice preserved normal serum thyroxine despite an iodide uptake defect. In the present work, we evaluated if iodine restriction could uncover the thyroid deficiency in Thyr-IL4 animals as well as the role of pendrin overexpression as a compensatory mechanism. Moreover, using an experimental model of GD we investigated the effect of a local expression of IL-4 on the incidence of hyperthyroidism. Thyr-IL4 mice developed more rapidly elevated serum thyrotropin under low-iodine supply with thyroid enlargement and classical histological modifications. These hallmarks of hypothyroidism were all enhanced in Thyr-IL4 mice with complete pendrin invalidation. Following immunization, a lower proportion of Thyr-IL4 animals developed hyperthyroidism. Surprisingly, immunized Thyr-IL4 animals presented numerous leukocyte infiltrates, associated with increased intrathyroidal expression of IFN-γ. We have demonstrated that thyroid deficiency in Thyr-IL4 mice is partially compensated for by the excessive iodide content of the standard chow and the overexpression of pendrin in these animals. Furthermore, we have shown that the local expression of IL-4 in the thyroid attenuates GD progression, which was associated with enhanced thyroid infiltration by immune cells that could negatively affect thyroid function.
Collapse
Affiliation(s)
- Karima Merakchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sami Djerbib
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Manoocher Soleimani
- Department of Medicine, University of New Mexico, School of Medicine, Albuquerque, New Mexico 87106, USA
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Françoise Miot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
3
|
Faustino LC, Li CW, Stefan-Lifshitz M, Kim K, Clarke OB, Tomer Y. A Novel Mouse Model of Autoimmune Thyroiditis Induced by Immunization with Adenovirus Containing Full-Length Thyroglobulin cDNA: Implications to Genetic Studies of Thyroid Autoimmunity. Thyroid 2020; 30:1338-1345. [PMID: 32228171 PMCID: PMC7482114 DOI: 10.1089/thy.2019.0711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Thyroglobulin (TG) is a key autoantigen in autoimmune thyroid diseases (AITD). Several single nucleotide polymorphisms (SNPs) in the TG locus were shown to be strongly associated with disease susceptibility in both humans and mice, and autoimmune response to TG is the earliest event in the development of thyroid autoimmunity in mice. The classical model of experimental autoimmune thyroiditis (EAT) is induced by immunizing mice with TG protein together with an adjuvant to break down immune tolerance. The classical EAT model has limited utility in genetic studies of TG since it does not allow testing the effects of TG sequence variants on the development of autoimmune thyroiditis. In this study, we have immunized CBA-J mice, an EAT-susceptible strain, with an adenovirus vector encoding the full-length human TG (hTG) to generate a model of EAT in which the TG sequence can be manipulated to test AITD-associated TG SNPs. Methods: We immunized CBA-J mice with hTG-expressing adenovirus following the well-recognized experimental autoimmune Graves' disease protocol that also uses an adenovirus vector to deliver the immunogen. Results: After hTG adenovirus immunizations, mice developed higher T cell proliferative and cytokine responses to hTG and TG2098 (a major T cell epitope in AITD) and higher titers of TG and thyroperoxidase autoantibodies compared with mice immunized with control LacZ-expressing adenovirus. The mice, however, did not develop thyroidal lymphocytic infiltration and hypothyroidism. Conclusions: Our data describe a novel murine model of autoimmune thyroiditis that does not require the use of adjuvants to break down tolerance and that will allow investigators to test the effects of hTG variants in the pathoetiology of Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Larissa C. Faustino
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Address correspondence to: Larissa C. Faustino, PhD, Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Cheuk W. Li
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mihaela Stefan-Lifshitz
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kookjoo Kim
- Department of Anesthesiology and Columbia University, New York, New York, USA
- Department of Physiology, Columbia University, New York, New York, USA
| | - Oliver B. Clarke
- Department of Anesthesiology and Columbia University, New York, New York, USA
- Department of Physiology, Columbia University, New York, New York, USA
| | - Yaron Tomer
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Boutin A, Krieger CC, Marcus-Samuels B, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro. Front Endocrinol (Lausanne) 2020; 11:276. [PMID: 32425890 PMCID: PMC7203478 DOI: 10.3389/fendo.2020.00276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 01/30/2023] Open
Abstract
Thyrotropin hormone (TSH) was reported to exhibit biphasic regulation of cAMP production in human thyroid slices; specifically, upregulation at low TSH doses transitioning to inhibition at high doses. We observed this phenomenon in HEK293 cells overexpressing TSH receptors (TSHRs) but in only 25% of human thyrocytes (hThyros) in vitro. Because TSHR expression in hThyros in vitro was low, we tested the hypothesis that high, in situ levels of TSHRs were needed for biphasic cAMP regulation. We increased expression of TSHRs by infecting hThyros with adenoviruses expressing human TSHR (AdhTSHR), measured TSH-stimulated cAMP production and TSHR homodimerization. TSHR mRNA levels in hThyros in vitro were 100-fold lower than in human thyroid tissue. AdhTSHR infection increased TSHR mRNA expression to levels found in thyroid tissue and flow cytometry showed that cell-surface TSHRs increased more than 15-fold. Most uninfected hThyro preparations exhibited monotonic cAMP production. In contrast, most hThyro preparations infected with AdhTSHR expressing TSHR at in vivo levels exhibited biphasic TSH dose responses. Treatment of AdhTSHR-infected hThyros with pertussis toxin resulted in monotonic dose response curves demonstrating that lower levels of cAMP production at high TSH doses were mediated by Gi/Go proteins. Proximity ligation assays confirmed that AdhTSHR infection markedly increased the number of TSHR homodimers. We conclude that in situ levels of TSHRs as homodimers are needed for hThyros to exhibit biphasic TSH regulation of cAMP production.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, MD, United States
| | - Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, MD, United States
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, MD, United States
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, MD, United States
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, MD, United States
| |
Collapse
|
5
|
Cepharanthine blocks TSH receptor peptide presentation by HLA-DR3: Therapeutic implications to Graves' disease. J Autoimmun 2020; 108:102402. [PMID: 31980336 DOI: 10.1016/j.jaut.2020.102402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
We have previously identified a signature HLA-DR3 pocket variant, designated HLA-DRβ1-Arg74 that confers a high risk for Graves' Disease (GD). In view of the key role of HLA-DRβ1-Arg74 in triggering GD we hypothesized that thyroid-stimulating hormone receptor (TSHR) peptides that bind to the HLA-DRβ1-Arg74 pocket with high affinity represent key pathogenic TSHR peptides triggering GD, and that blocking their presentation to CD4+ T-cells can be used as a novel therapeutic approach in GD. There were several previous attempts to identify the major pathogenic TSHR peptide utilizing different methodologies, however the results were inconsistent and inconclusive. Therefore, the aim of our study was to use TSHR peptide binding affinity to HLA-DRβ1-Arg74 as a method to identify the key pathogenic TSHR peptides that trigger GD. Using virtual screening and ELISA and cellular binding assays we identified 2 TSHR peptides that bound with high affinity to HLA-DRβ1-Arg74 - TSHR.132 and TSHR.197. Peptide immunization studies in humanized DR3 mice showed that only TSHR.132, but not TSHR.197, induced autoreactive T-cell proliferation and cytokine responses. Next, we induced experimental autoimmune Graves' disease (EAGD) in a novel BALB/c-DR3 humanized mouse model we created and confirmed TSHR.132 as a major DRβ1-Arg74 binding peptide triggering GD in our mouse model. Furthermore, we demonstrated that Cepharanthine, a compound we have previously identified as DRβ1-Arg74 blocker, could block the presentation and T-cell responses to TSHR.132 in the EAGD model.
Collapse
|
6
|
McLachlan SM, Rapoport B. A transgenic mouse that spontaneously develops pathogenic TSH receptor antibodies will facilitate study of antigen-specific immunotherapy for human Graves' disease. Endocrine 2019; 66:137-148. [PMID: 31560118 DOI: 10.1007/s12020-019-02083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Graves' hyperthyroidism can be treated but not cured. Antigen-specific immunotherapy would accomplish this goal, for which purpose an animal model is an invaluable tool. Two types of animal models are available. First, pathogenic TSHR antibodies (TSHRAb) can be induced by injecting mice with fibroblasts co-expressing the human TSHR (hTSHR) and MHC class II, or in mammals using plasmid or adenovirus vectors encoding the hTSHR or its A-subunit. Second, a mouse model that spontaneously develops pathogenic TSHRAb resembling those in human disease was recently described. This outcome was accomplished by transgenic intrathyroidal expression of the hTSHR A-subunit in NOD.H2h4 mice that are genetically predisposed to develop thyroiditis but, without the transgene, do not generate TSHRAb. Recently, novel approaches to antigen-specific immunotherapy have been tested, primarily in the induced model, by injecting TSHR A-subunit protein or cyclic TSHR peptides. T-cell tolerance has also been induced in "humanized" HLA-DR3 mice by injecting synthetic peptides predicted in silico to mimic naturally processed TSHR T-cell epitopes. Indeed, a phase 1 study based on the latter approach has been conducted in humans. In the spontaneous model (hTSHR/NOD.H2h mice), injection of soluble or nanoparticle-bearing hTSHR A-subunits had the unwanted effect of exacerbating pathogenic TSHRAb levels. A promising avenue for tolerance induction, successful in other conditions and yet to be tested with the TSHR, involves encapsulating the antigen. In conclusion, these studies provide insight into the potential outcome of immunotherapeutic approaches and emphasize the importance of a spontaneous model to test future novel, antigen-specific immunotherapies for Graves' disease.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Tang Y, Zhu X, Feng H, Zhu L, Fu S, Kong B, Liu X. An improved mouse model of Graves disease by once immunization with Ad-TSHR289. Endocr J 2019; 66:827-835. [PMID: 31217394 DOI: 10.1507/endocrj.ej19-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The novel Graves disease (GD) model was established in BALB/c mice with recombinant adenovirus expressing the full-length human TSHR (Ad-TSHR289) by three times immunizations for nearly three months. Reducing the frequency of immunizations may shorten the modeling time to improve the efficiency of the study. In this study, female BALB/c mice were immunized one time with an adenovirus expressing the autoantigen thyroid-stimulating hormone receptor (Ad-TSHR289). At the 3, 6, 12, 17 weeks after the immunization, mice were sacrificed. The blood was collected and thyroids were removed. T3, T4, TRAB and thyroid weight/body weight (TW/BW) were tested. Compared with the Normal control (NC) group, the incidence of hyperthyroidism at 3, 6, 12 and 17 weeks after immunization were about 66.67%, 100%, 100%, and 100%. Meanwhile, the incidences of goiter were nearly 50%, 83.33%, 100% and 100% at the same stages. Therefore, modeling rates of GD were about 50%, 83.33%, 100%, 100% at 3, 6, 12 and 17 weeks after immunization. T3 in serum continues to increase from 3 weeks to 17 weeks after immunization. Serum TRAb reached to peak at 6 weeks and remained from 12 weeks after immunization, while T4 and TW/BW had kept steady from 6 weeks. There are positive correlations between T3, T4 and TRAb, TRAb and TW/BW, as well as T3, T4 and TW/BW. GD model can be constructed by primary immunization with Ad-TSHR289, which could be detected at 3 weeks and at least until the 17 weeks after primary immunization. It would improve the efficiency of GD research.
Collapse
Affiliation(s)
- Yang Tang
- Department of Laboratory of Diabetes, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Xiaoyun Zhu
- Department of Laboratory of Diabetes, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Hui Feng
- Department of Laboratory of Diabetes, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Lili Zhu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shouqiang Fu
- Department of Laboratory of Diabetes, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingtan Kong
- Department of Laboratory of Diabetes, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ximing Liu
- Department of Laboratory of Diabetes, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| |
Collapse
|
8
|
McLachlan SM, Aliesky HA, Garcia P, Banuelos B, Rapoport B. Thyroid Hemiagenesis in a Thyroiditis Prone Mouse Strain. Eur Thyroid J 2018; 7:187-192. [PMID: 30283736 PMCID: PMC6140602 DOI: 10.1159/000490700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thyroid hemiagenesis, a rare congenital condition detected by ultrasound screening of the neck, is usually not manifested clinically in humans. This condition has been reported in mice with hypothyroidism associated with induced deficiency in paired box 8 and NK2 homeobox 1, sonic hedgehog, or T-box 1. Unexpectedly, we observed thyroid hemiagenesis in NOD.H2h4 mice, an unusual strain that spontaneously develops iodide enhanced thyroid autoimmunity but remains euthyroid. OBJECTIVES AND METHODS First, to compare mice with thyroid hemiagenesis versus bilobed littermates for serum T4, autoantibodies to thyroglobulin (ELISA) and thyroid peroxidase (TPO; flow cytometry with eukaryotic cells expressing mouse TPO), gross anatomy, and thyroid histology; second, to estimate the percentage of mice with thyroid hemiagenesis in the NOD.H2h4 mice we have studied over 6 years. RESULTS Thyroid hemiagenesis was observed in 3 of 1,025 NOD.H2h4 mice (2 females, 1 male; 0.3$). Two instances of hemiagenesis were in wild-type females and one in a transgenic male expressing the human TSHR A-subunit in the thyroid. Two mice had very large unilobed glands, as in some human cases with this condition. Thyroid lymphocytic infiltration, serum T4, and the levels of thyroid autoantibodies were similar in mice with thyroid hemiagenesis and bilobed littermates. CONCLUSIONS Unlike hypothyroidism associated with hemiagenesis in transcription factor knockout mice, hemiagenesis in euthyroid NOD.H2h4 mice occurs spontaneously and is phenotypically similar to that occasionally observed in humans.
Collapse
Affiliation(s)
- Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California, USA
- UCLA School of Medicine, University of California, Los Angeles, California, USA
- *Sandra M. McLachlan, Cedars-Sinai Medical Center, 8700 Beverly Blvd, B-131, Los Angeles, CA 90048 (USA), E-Mail
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California, USA
| | - Priscilla Garcia
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California, USA
| | - Bianca Banuelos
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California, USA
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California, USA
- UCLA School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Yuan Q, Zhao Y, Zhu X, Liu X. Low regulatory T cell and high IL-17 mRNA expression in a mouse Graves' disease model. J Endocrinol Invest 2017; 40:397-407. [PMID: 27822606 DOI: 10.1007/s40618-016-0575-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/29/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Graves' disease (GD) is an autoimmune thyroid disease, and the most important characteristic of it is the presence of the thyroid-stimulating antibody (TSAb). The mechanisms of the TSAb elevation are still uncertain. Recent studies have suggested that the dysregulation of regulatory T cell (Treg) and T helper 17 (Th17) might stimulate the production of TSAb and be a pathogenesis of GD. However, the role of Treg and Th17 cells in the pathogenesis of GD is still debated. Our aim is to assess changes of Treg and Th17 cells in the spleen of a mouse in an in vivo GD model and try to explain the pathogenesis of GD. METHODS We used an adenovirus expressing the autoantigen thyroid-stimulating hormone receptor (Ad-TSHR289) to immunise mice in order to induce GD in the model. Flow cytometry was used to measure the frequencies of splenic Treg and Th17 cells and real-time PCR to analyse the mRNA expression of forkhead box P3(Foxp3) and interleukin-17(IL-17). RESULTS Compared with the Ad-Control group, the frequencies of CD4+CD25+Foxp3+ Treg cells were significantly decreased (p = 0.007) and gene expression of Foxp3 was down-regulated (p = 0.001) in the Ad-TSHR289 group. Though there was no significant difference in CD4+IL-17+ T cell subpopulation between the two groups (p = 0.336), the IL-17 mRNA expression was significantly up-regulated in the Ad-TSHR289 group (p = 0.001). CONCLUSIONS The pathogenesis of GD may be associated with reduced Treg cells and increased IL-17 gene expression. The increased IL-17 mRNA needs to be explained by other mechanisms but not Th17 cells.
Collapse
Affiliation(s)
- Q Yuan
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Y Zhao
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - X Zhu
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - X Liu
- Department of Laboratory of Diabetes, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
10
|
Xia N, Ye X, Hu X, Song S, Xu H, Niu M, Wang H, Wang J. Simultaneous induction of Graves' hyperthyroidism and Graves' ophthalmopathy by TSHR genetic immunization in BALB/c mice. PLoS One 2017; 12:e0174260. [PMID: 28319174 PMCID: PMC5358867 DOI: 10.1371/journal.pone.0174260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Graves' disease is the most common form of autoimmune thyroid disorder, characterized by hyperthyroidism due to circulating autoantibodies. To address the pathological features and establish a therapeutic approach of this disease, an animal model carrying the phenotype of Graves' disease (GD) in concert with Graves' Ophthalmopathy (GO) will be very important. However, there are no ideal animal models that are currently available. The aim of the present study is to establish an animal model of GD and GO disease, and its pathological features were further characterized. METHODS A recombinant plasmid pcDNA3.1- T289 was constructed by inserting the TSHR A-subunit gene into the expression vector pcDNA3.1, and genetic immunization was successfully performed by intramuscular injection of the plasmid pcDNA3.1-T289 on female 8-week-old BALB/c mice. Each injection was immediately followed by in vivo electroporation using ECM830 square wave electroporator. Morphological changes of the eyes were examined using 7.0T MRI scanner. Levels of serum T4 and TSHR antibodies (TRAb) were assessed by ELISA. The pathological changes of the thyroid and orbital tissues were examined by histological staining such as H&E staining and Alcian blue staining. RESULTS More than 90% of the immunized mice spontaneously developed goiter, and about 80% of the immunized mice manifested increased serum T4 and TRAb levels, combined with hypertrophy and hyperplasia of thyroid follicles. A significantly increased synthesis of hyaluronic acid was detected in in the immunized mice compared with the control groups. CONCLUSION We have successfully established an animal model manifesting Graves' hyperthyroidism and ophthalmopathy, which provides a useful tool for future study of the pathological features and the development of novel therapies of the diseases.
Collapse
Affiliation(s)
- Nan Xia
- Department of Endocrinology, Jingling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P.R. China
- Department of Endocrinology, Mingci Cardiovascular Hospital, Wuxi, P.R. China
| | - Xiaozhen Ye
- Department of Endocrinology, Jingling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Xiaohao Hu
- Department of Endocrinology, Jingling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P.R. China
| | - Hui Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P.R. China
| | - Mengyuan Niu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P.R. China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P.R. China
| | - Jian Wang
- Department of Endocrinology, Jingling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| |
Collapse
|
11
|
Ungerer M, Faßbender J, Li Z, Münch G, Holthoff HP. Review of Mouse Models of Graves' Disease and Orbitopathy-Novel Treatment by Induction of Tolerance. Clin Rev Allergy Immunol 2017; 52:182-193. [PMID: 27368808 PMCID: PMC5346423 DOI: 10.1007/s12016-016-8562-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Various approaches have been used to model human Graves' disease in mice, including transfected fibroblasts, and plasmid or adenoviral immunisations with the extracellular A subunit of the human thyrotropin receptor (TSHR). Some of these models were only observed for a short time period or were self-limiting. A long-term model for human Graves' disease was established in mice using continuing immunisations (4-weekly injections) with recombinant adenovirus expressing TSHR. Generation of TSHR binding cAMP-stimulatory antibodies, thyroid enlargement and alterations, elevated serum thyroxin levels, tachycardia and cardiac hypertrophy were maintained for at least 9 months in all Ad-TSHR-immunised mice. Here, we show that these mice suffer from orbitopathy, which was detected by serial orbital sectioning and histomorphometry. Attempts to treat established Graves' disease in preclinical mouse model studies have included small molecule allosteric antagonists and specific antagonist antibodies which were isolated from hypothyroid patients. In addition, novel peptides have been conceived which mimic the cylindrical loops of the TSHR leucine-rich repeat domain, in order to re-establish tolerance toward the antigen. Here, we show preliminary results that one set of these peptides improves or even cures all signs and symptoms of Graves' disease in mice after six consecutive monthly injections. First beneficial effects were observed 3-4 months after starting these therapies. In immunologically naïve mice, administration of the peptides did not induce any immune response.
Collapse
Affiliation(s)
- Martin Ungerer
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany.
| | - Julia Faßbender
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | - Zhongmin Li
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | - Götz Münch
- Procorde (Advancecor), Fraunhoferstrasse 9a, 82152, Martinsried, Germany
| | | |
Collapse
|
12
|
Berchner-Pfannschmidt U, Moshkelgosha S, Diaz-Cano S, Edelmann B, Görtz GE, Horstmann M, Noble A, Hansen W, Eckstein A, Banga JP. Comparative Assessment of Female Mouse Model of Graves' Orbitopathy Under Different Environments, Accompanied by Proinflammatory Cytokine and T-Cell Responses to Thyrotropin Hormone Receptor Antigen. Endocrinology 2016; 157:1673-82. [PMID: 26872090 DOI: 10.1210/en.2015-1829] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently described a preclinical model of Graves' orbitopathy (GO), induced by genetic immunization of eukaryotic expression plasmid encoding human TSH receptor (TSHR) A-subunit by muscle electroporation in female BALB/c mice. The onset of orbital pathology is characterized by muscle inflammation, adipogenesis, and fibrosis. Animal models of autoimmunity are influenced by their environmental exposures. This follow-up study was undertaken to investigate the development of experimental GO in 2 different locations, run in parallel under comparable housing conditions. Functional antibodies to TSHR were induced in TSHR A-subunit plasmid-immunized animals, and antibodies to IGF-1 receptor α-subunit were also present, whereas control animals were negative in both locations. Splenic T cells from TSHR A-subunit primed animals undergoing GO in both locations showed proliferative responses to purified TSHR antigen and secreted interferon-γ, IL-10, IL-6, and TNF-α cytokines. Histopathological evaluation showed orbital tissue damage in mice undergoing GO, manifest by adipogenesis, fibrosis, and muscle damage with classic signs of myopathy. Although no inflammatory infiltrate was observed in orbital tissue in either location, the appearances were consistent with a "hit-and-run" immune-mediated inflammatory event. A statistically significant increase of cumulative incidence of orbital pathology when compared with control animals was shown for both locations, confirming onset of orbital dysimmune myopathy. Our findings confirm expansion of the model in different environments, accompanied with increased prevalence of T cell-derived proinflammatory cytokines, with relevance for pathogenesis. Wider availability of the model makes it suitable for mechanistic studies into pathogenesis and undertaking of novel therapeutic approaches.
Collapse
Affiliation(s)
- Utta Berchner-Pfannschmidt
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Sajad Moshkelgosha
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Salvador Diaz-Cano
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Bärbel Edelmann
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Gina-Eva Görtz
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Mareike Horstmann
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Alistair Noble
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Wiebke Hansen
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - Anja Eckstein
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| | - J Paul Banga
- Molecular Ophthalmology (U.B.-P., S.M., G.-E.G., M.H., A.E., J.P.B.), Department of Ophthalmology; Department of Molecular Biology (B.E.); and Institute of Medical Microbiology (W.H.), University Hospital Essen/University of Duisburg-Essen, 45147 Essen, Germany; Faculty of Life Sciences and Medicine (S.M., A.N., J.P.B.), King's College London, London, SE5 9NU United Kingdom; and King's College Hospital NHS Foundation Trust (S.D.-C.), London, SE5 9RS United Kingdom
| |
Collapse
|
13
|
Luo Y, Yoshihara A, Oda K, Ishido Y, Suzuki K. Excessive Cytosolic DNA Fragments as a Potential Trigger of Graves' Disease: An Encrypted Message Sent by Animal Models. Front Endocrinol (Lausanne) 2016; 7:144. [PMID: 27895620 PMCID: PMC5107990 DOI: 10.3389/fendo.2016.00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023] Open
Abstract
Graves' hyperthyroidism is caused by autoantibodies directed against the thyroid-stimulating hormone receptor (TSHR) that mimic the action of TSH. The establishment of Graves' hyperthyroidism in experimental animals has proven to be an important approach to dissect the mechanisms of self-tolerance breakdown that lead to the production of thyroid-stimulating TSHR autoantibodies (TSAbs). "Shimojo's model" was the first successful Graves' animal model, wherein immunization with fibroblasts cells expressing TSHR and a major histocompatibility complex (MHC) class II molecule, but not either alone, induced TSAb production in AKR/N (H-2k) mice. This model highlights the importance of coincident MHC class II expression on TSHR-expressing cells in the development of Graves' hyperthyroidism. These data are also in agreement with the observation that Graves' thyrocytes often aberrantly express MHC class II antigens via mechanisms that remain unclear. Our group demonstrated that cytosolic self-genomic DNA fragments derived from sterile injured cells can induce aberrant MHC class II expression and production of multiple inflammatory cytokines and chemokines in thyrocytes in vitro, suggesting that severe cell injury may initiate immune responses in a way that is relevant to thyroid autoimmunity mediated by cytosolic DNA signaling. Furthermore, more recent successful Graves' animal models were primarily established by immunizing mice with TSHR-expressing plasmids or adenovirus. In these models, double-stranded DNA vaccine contents presumably exert similar immune-activating effect in cells at inoculation sites and thus might pave the way toward successful Graves' animal models. This review focuses on evidence suggesting that cell injury-derived self-DNA fragments could act as Graves' disease triggers.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kenzaburo Oda
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Internal Medicine, Division of Diabetes, Metabolism and Endocrinology, Toho University, Tokyo, Japan
| | - Yuko Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- *Correspondence: Koichi Suzuki,
| |
Collapse
|
14
|
Rapoport B, Aliesky HA, Chen CR, McLachlan SM. Evidence that TSH Receptor A-Subunit Multimers, Not Monomers, Drive Antibody Affinity Maturation in Graves' Disease. J Clin Endocrinol Metab 2015; 100:E871-5. [PMID: 25856215 PMCID: PMC4454809 DOI: 10.1210/jc.2015-1528] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The TSH receptor (TSHR) A-subunit shed from the cell surface contributes to the induction and/or affinity maturation of pathogenic TSHR autoantibodies in Graves' disease. OBJECTIVE This study aimed to determine whether the quaternary structure (multimerization) of shed A-subunits influences pathogenic TSHR autoantibody generation. DESIGN The isolated TSHR A-subunit generated by transfected mammalian cells exists in two forms; one (active) is recognized only by Graves' TSHR autoantibodies, the second (inactive) is recognized only by mouse monoclonal antibody (mAb) 3BD10. Recent evidence suggests that both Graves' TSHR autoantibodies and mAb 3BD10 recognize the A-subunit monomer. Therefore, if the A-subunit monomer is an immunogen, Graves' sera should have antibodies to both active and inactive A-subunits. Conversely, restriction of TSHR autoantibodies to active A-subunits would be evidence of a role for shed A-subunit multimers, not monomers, in the pathogenesis of Graves' disease. Therefore, we tested a panel of Graves' sera for their relative recognition of active and inactive A-subunits. RESULTS Of 34 sera from unselected Graves' patients, 28 were unequivocally positive in a clinical TSH binding inhibition assay. None of the latter sera, as well as 8/9 sera from control individuals, recognized inactive A-subunits on ELISA. In contrast to Graves' sera, antibodies induced in mice, not by shedding from the TSHR holoreceptor, but by immunization with adenovirus expressing the free human A-subunit, were directed to both the active and inactive A-subunit forms. CONCLUSIONS The present study supports the concept that pathogenic TSHR autoantibody affinity maturation in Graves' disease is driven by A-subunit multimers, not monomers.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048
| | - Holly A Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048
| | - Chun-Rong Chen
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
15
|
Rapoport B, Aliesky HA, Banuelos B, Chen CR, McLachlan SM. A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor. THE JOURNAL OF IMMUNOLOGY 2015; 194:4154-61. [PMID: 25825442 DOI: 10.4049/jimmunol.1500126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2015] [Indexed: 11/19/2022]
Abstract
Abs that stimulate the thyrotropin receptor (TSHR), the cause of Graves' hyperthyroidism, only develop in humans. TSHR Abs can be induced in mice by immunization, but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2(h4) mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, Abs. We hypothesized that transferring the human TSHR A-subunit to NOD.H2(h4) mice would result in loss of tolerance to this protein. BALB/c human TSHR A-subunit mice were bred to NOD.H2(h4) mice, and transgenic offspring were repeatedly backcrossed to NOD.H2(h4) mice. All offspring developed Abs to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2(h4) mice (TSHR/NOD.H2(h4)) developed pathogenic TSHR Abs as detected using clinical Graves' disease assays. As in humans, TSHR/NOD.H2(h4) female mice were more prone than male mice to developing pathogenic TSHR Abs. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic human TSHR Abs cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD.H2(h4) mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR Abs in female mice, providing a unique model to investigate disease pathogenesis and test novel TSHR Ag-specific immunotherapies aimed at curing Graves' disease in humans.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Holly A Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Bianca Banuelos
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Chun-Rong Chen
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute/David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048
| |
Collapse
|
16
|
McLachlan SM, Aliesky H, Banuelos B, Magana J, Williams RW, Rapoport B. Immunoglobulin heavy chain variable region and major histocompatibility region genes are linked to induced graves' disease in females from two very large families of recombinant inbred mice. Endocrinology 2014; 155:4094-103. [PMID: 25051451 PMCID: PMC4164918 DOI: 10.1210/en.2014-1388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit (S.M.M., H.A., B.B., J.M., B.R.), Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048; and Department of Anatomy and Neurobiology (R.W.W.), University of Tennessee Health-Science Center, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci 2014; 55:1735-48. [PMID: 24651704 DOI: 10.1167/iovs.14-14002] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Graves' disease (GD) is a common autoimmune condition. At its core, stimulatory autoantibodies are directed at the thyroid-stimulating hormone receptor (TSHR), resulting in dysregulated thyroid gland activity and growth. Closely associated with GD is the ocular condition known as thyroid-associated ophthalmopathy (TAO). The pathogenesis of TAO remains enigmatic as do the connections between the thyroid and orbit. This review highlights the putative molecular mechanisms involved in TAO and suggests how these insights provide future directions for identifying therapeutic targets. Genetic, epigenetic, and environmental factors have been suggested as contributory to the development of GD and TAO. Thyroid-stimulating hormone receptor and insulin-like growth factor receptor (IGF-1R) are expressed at higher levels in the orbital connective tissue from individuals with TAO than in healthy tissues. Together, they form a functional complex and appear to promote signaling relevant to GD and TAO. Orbital fibroblasts display an array of cell surface receptors and generate a host of inflammatory molecules that may participate in T and B cell infiltration. Recently, a population of orbital fibroblasts has been putatively traced to bone marrow-derived progenitor cells, known as fibrocytes, as they express CD45, CD34, CXCR4, collagen I, functional TSHR, and thyroglobulin (Tg). Fibrocytes become more numerous in GD and we believe traffic to the orbit in TAO. Numerous attempts at developing complete animal models of GD have been largely unsuccessful, because they lack fidelity with the ocular manifestations seen in TAO. Better understanding of the pathogenesis of TAO and development of improved animal models should greatly accelerate the identification of medical therapy for this vexing medical problem.
Collapse
Affiliation(s)
- Yao Wang
- Department of Ophthalmology and Visual Sciences and Division of Metabolic and Endocrine Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
18
|
Wang Y, Wu LP, Fu J, Lv HJ, Guan XY, Xu L, Chen P, Gao CQ, Hou P, Ji MJ, Shi BY. Hyperthyroid monkeys: a nonhuman primate model of experimental Graves' disease. J Endocrinol 2013; 219:183-93. [PMID: 24029729 DOI: 10.1530/joe-13-0279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Graves' disease (GD) is a common organ-specific autoimmune disease with the prevalence between 0.5 and 2% in women. Several lines of evidence indicate that the shed A-subunit rather than the full-length thyrotropin receptor (TSHR) is the autoantigen that triggers autoimmunity and leads to hyperthyroidism. We have for the first time induced GD in female rhesus monkeys, which exhibit greater similarity to patients with GD than previous rodent models. After final immunization, the monkeys injected with adenovirus expressing the A-subunit of TSHR (A-sub-Ad) showed some characteristics of GD. When compared with controls, all the test monkeys had significantly higher TSHR antibody levels, half of them had increased total thyroxine (T₄) and free T₄, and 50% developed goiter. To better understand the underlying mechanisms, quantitative studies on subpopulations of CD4+T helper cells were carried out. The data indicated that this GD model involved a mixed Th1 and Th2 response. Declined Treg proportions and increased Th17:Treg ratio are also observed. Our rhesus monkey model successfully mimicked GD in humans in many aspects. It would be a useful tool for furthering our understanding of the pathogenesis of GD and would potentially shorten the distance toward the prevention and treatment of this disease in human.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moshkelgosha S, So PW, Deasy N, Diaz-Cano S, Banga JP. Cutting edge: retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of Graves' orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation. Endocrinology 2013; 154:3008-15. [PMID: 23900776 DOI: 10.1210/en.2013-1576] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Graves' orbitopathy (GO) is a complication in Graves' disease (GD) but mechanistic insights into pathogenesis remain unresolved, hampered by lack of animal model. The TSH receptor (TSHR) and perhaps IGF-1 receptor (IGF-1R) are considered relevant antigens. We show that genetic immunization of human TSHR (hTSHR) A-subunit plasmid leads to extensive remodeling of orbital tissue, recapitulating GO. Female BALB/c mice immunized with hTSHR A-subunit or control plasmids by in vivo muscle electroporation were evaluated for orbital remodeling by histopathology and magnetic resonance imaging (MRI). Antibodies to TSHR and IGF-1R were present in animals challenged with hTSHR A-subunit plasmid, with predominantly TSH blocking antibodies and were profoundly hypothyroid. Orbital pathology was characterized by interstitial inflammation of extraocular muscles with CD3+ T cells, F4/80+ macrophages, and mast cells, accompanied by glycosaminoglycan deposition with resultant separation of individual muscle fibers. Some animals showed heterogeneity in orbital pathology with 1) large infiltrate surrounding the optic nerve or 2) extensive adipogenesis with expansion of retrobulbar adipose tissue. A striking finding that underpins the new model were the in vivo MRI scans of mouse orbital region that provided clear and quantifiable evidence of orbital muscle hypertrophy with protrusion (proptosis) of the eye. Additionally, eyelid manifestations of chemosis, including dilated and congested orbital blood vessels, were visually apparent. Immunization with control plasmids failed to show any orbital pathology. Overall, these findings support TSHR as the pathogenic antigen in GO. Development of a new preclinical model will facilitate molecular investigations on GO and evaluation of new therapeutic interventions.
Collapse
Affiliation(s)
- Sajad Moshkelgosha
- Division of Diabetes and Nutritional Sciences, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 2013; 23:14-24. [PMID: 23025526 PMCID: PMC3539254 DOI: 10.1089/thy.2012.0374] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Thyrotropin receptor (TSHR) antibodies that stimulate the thyroid (TSAb) cause Graves' hyperthyroidism and TSHR antibodies which block thyrotropin action (TBAb) are occasionally responsible for hypothyroidism. Unusual patients switch from TSAb to TBAb (or vice versa) with concomitant thyroid function changes. We have examined case reports to obtain insight into the basis for "switching." SUMMARY TBAb to TSAb switching occurs in patients treated with levothyroxine (LT4); the reverse switch (TBAb to TSAb) occurs after anti-thyroid drug therapy; TSAb/TBAb alterations may occur during pregnancy and are well recognized in transient neonatal thyroid dysfunction. Factors that may impact the shift include: (i) LT4 treatment, usually associated with decreased thyroid autoantibodies, in unusual patients induces or enhances thyroid autoantibody levels; (ii) antithyroid drug treatment decreases thyroid autoantibody levels; (iii) hyperthyroidism can polarize antigen-presenting cells, leading to impaired development of regulatory T cells, thereby compromising control of autoimmunity; (iv) immune-suppression/hemodilution reduces thyroid autoantibodies during pregnancy and rebounds postpartum; (v) maternally transferred IgG transiently impacts thyroid function in neonates until metabolized; (vi) a Graves' disease model involving immunizing TSHR-knockout mice with mouse TSHR-adenovirus and transfer of TSHR antibody-secreting splenocytes to athymic mice demonstrates the TSAb to TBAb shift, paralleling the outcome of maternally transferred "term limited" TSHR antibodies in neonates. Finally, perhaps most important, as illustrated by dilution analyses of patients' sera in vitro, TSHR antibody concentrations and affinities play a critical role in switching TSAb and TBAb functional activities in vivo. CONCLUSIONS Switching between TBAb and TSAb (or vice versa) occurs in unusual patients after LT4 therapy for hypothyroidism or anti-thyroid drug treatment for Graves' disease. These changes involve differences in TSAb versus TBAb concentrations, affinities and/or potencies in individual patients. Thus, anti-thyroid drugs or suppression/hemodilution in pregnancy reduce initially low TSAb levels even further, leading to TBAb dominance. In contrast, TSAb emergence after LT4 administration may be sufficient to counteract TBAb inhibition. The occurrence of "switching" emphasizes the need for careful patient monitoring and management. Finally, whole genome screening of relatively rare "switch" patients and appropriate Graves' and Hashimoto's controls could provide unexpected and valuable information regarding the basis for thyroid autoimmunity.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048, USA.
| | | |
Collapse
|
21
|
Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'. PLoS One 2012; 7:e43517. [PMID: 22970131 PMCID: PMC3436763 DOI: 10.1371/journal.pone.0043517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/23/2012] [Indexed: 02/05/2023] Open
Abstract
Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance.
Collapse
|
22
|
McLachlan SM, Aliesky HA, Chen CR, Rapoport B. Role of self-tolerance and chronic stimulation in the long-term persistence of adenovirus-induced thyrotropin receptor antibodies in wild-type and transgenic mice. Thyroid 2012; 22:931-7. [PMID: 22827528 PMCID: PMC3429281 DOI: 10.1089/thy.2012.0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Graves'-like disease, reflected by thyrotropin receptor (TSHR) antibodies and hyperthyroidism in some mouse strains, can be induced by immunization with adenovirus-expressing DNA for the human TSHR or its A-subunit. The conventional approach involves two or three adenovirus injections at 3-week intervals and euthanasia 10 weeks after the first injection. To investigate TSHR antibody persistence in mice with differing degrees of self-tolerance to the TSHR A-subunit, we studied the effect of delaying euthanasia until 20 weeks after the initial immunization. METHODS Wild-type (WT) mice and transgenic (tg) mice expressing low intrathyroidal levels of the human TSHR A-subunit were immunized with A-subunit-adenovirus on two occasions; a second group of mice was immunized on three occasions. Sera obtained 4, 10, and 20 weeks (euthanasia) after the initial immunization were tested for thyrotropin (TSH) binding inhibition (TBI), antibody binding to TSHR A-subunit protein-coated enzyme-linked immunosorbent assay (ELISA) plates, and thyroid stimulating antibody activity (TSAb; cyclic adenosine monophosphate [cAMP] generation). Serum thyroxine (T4) and thyroid histology were studied at euthanasia. RESULTS THE majority of WT mice retained high TSHR antibody levels measured by TBI or ELISA at euthanasia but only about 50% were TSAb positive. Low-expressor tgs exhibited self-tolerance, with fewer mice positive by TBI or ELISA and antibody levels were lower than in WT littermates. In WT mice, antibody persistence was similar after two or three immunizations; for tgs, only mice immunized three times had detectable TSAb at 20 weeks. Unlike our previous observations of hyperthyroidism in WT mice examined 4 or 10 weeks after immunization, all mice were euthyroid at 20 weeks. CONCLUSIONS Our findings for induced TSHR antibodies in mice, similar to data for human thyroid autoantibodies, indicate that the parameters that contribute to the concentration of the antibody and thereby play a critical role in long-term persistence of TSHR antibodies are the degree of self-tolerance to the TSHR and chronic stimulation.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|
23
|
Huber AK, Finkelman FD, Li CW, Concepcion E, Smith E, Jacobson E, Latif R, Keddache M, Zhang W, Tomer Y. Genetically driven target tissue overexpression of CD40: a novel mechanism in autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:3043-53. [PMID: 22888137 DOI: 10.4049/jimmunol.1200311] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The CD40 gene, an important immune regulatory gene, is also expressed and functional on nonmyeloid-derived cells, many of which are targets for tissue-specific autoimmune diseases, including β cells in type 1 diabetes, intestinal epithelial cells in Crohn's disease, and thyroid follicular cells in Graves' disease (GD). Whether target tissue CD40 expression plays a role in autoimmune disease etiology has yet to be determined. In this study, we show that target tissue overexpression of CD40 plays a key role in the etiology of autoimmunity. Using a murine model of GD, we demonstrated that thyroidal CD40 overexpression augmented the production of thyroid-specific Abs, resulting in more severe experimental autoimmune GD (EAGD), whereas deletion of thyroidal CD40 suppressed disease. Using transcriptome and immune-pathway analyses, we showed that in both EAGD mouse thyroids and human primary thyrocytes, CD40 mediates this effect by activating downstream cytokines and chemokines, most notably IL-6. To translate these findings into therapy, we blocked IL-6 during EAGD induction in the setting of thyroidal CD40 overexpression and showed decreased levels of thyroid stimulating hormone receptor-stimulating Abs and frequency of disease. We conclude that target tissue overexpression of CD40 plays a key role in the etiology of organ-specific autoimmune disease.
Collapse
Affiliation(s)
- Amanda K Huber
- Division of Endocrinology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhou YC, Chen S, Cao JJ, Chen SY, Xie YF, Niu QX. Adenovirus-mediated viral interleukin-10 gene transfer prevents concanavalin A-induced liver injury. Dig Liver Dis 2012; 44:398-405. [PMID: 22209949 DOI: 10.1016/j.dld.2011.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Liver injury is closely associated with immune inflammation. Lacking immunostimulatory functions, viral interleukin-10 (vIL-10), a cellular IL-10 homologue, has been an attractive molecule for immunomodulatory therapy. We aimed to reveal a protective effect of the gene transfer of an adenoviral vector encoding vIL-10 on liver injury induced by concanavalin A. METHODS C57BL/6J mice were intravenously injected with adenoviral vector encoding vIL-10 before concanavalin A challenge. Liver injury was assessed. Interferon-γ and interleukin-4 levels were measured by ELISA. The activation of splenic and hepatic immune cells was analysed using an MTT assay. RESULTS Adenoviral vector encoding vIL-10 pretreatment significantly decreased concanavalin A-mediated elevations in serum alanine aminotransaminase and aspartate aminotransaminase activity, and necrotic area in liver tissues. The protective effect of adenoviral vector encoding vIL-10 was attributed to its inhibition of T cell activation, and production of interferon-γ and interleukin-4 by the immune cells. Recombinant mouse IL-10, a high homologous cytokine to vIL-10, effectively downregulated interferon-γ and interleukin-4 release by hepatic mononuclear cells. CONCLUSION Adenovirus vector-mediated vIL-10 gene transfer can prevent concanavalin A-induced hepatic injury, minimise pro-inflammatory cytokine release, and inhibit the activation of T lymphocytes.
Collapse
Affiliation(s)
- Yan-Chun Zhou
- Institute of Inflammation and Immune Diseases, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
25
|
Chen CR, Aliesky HA, Rapoport B, McLachlan SM. An attempt to induce "Graves' disease of the gonads" by immunizing mice with the luteinizing hormone receptor provides insight into breaking tolerance to self-antigens. Thyroid 2011; 21:773-81. [PMID: 21649471 PMCID: PMC3123529 DOI: 10.1089/thy.2010.0460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Gonadotropin receptors, unlike the thyrotropin receptor (TSHR), are not cleaved into disulfide-linked A- and B-subunits, nor do they shed A-subunits. Heavily glycosylated TSHR A-subunits initiate or amplify responses leading to stimulating TSHR-autoantibodies and Graves' hyperthyroidism. METHODS To investigate the possibility that mice immunized with luteinizing hormone receptor (LHR) would develop functional antibodies, we constructed adenoviruses expressing the rat-LH holoreceptor (LHR-Ad) and an LHR A-subunit equivalent (LHR-289-Ad). Female BALB/c mice were immunized with high doses (10(11) particles) of LHR-Ad, LHR-289-Ad, or control (Con)-Ad. Sera were tested using LHR-expressing eukaryotic cells for antibody binding by flow cytometry and for bioactivity by measuring cyclic adenosine monophosphate (cAMP) stimulation. RESULTS Elevated serum binding to LHR cells in some LHR-Ad and LHR-289-Ad immunized mice was not specific for LHR-expressing cells. Moreover, sera lacked bioactivity, consistent with unchanged serum estradiol and ovary histology. The difference between rat and mouse LHR-ectodomains is relatively small (3% at the amino-acid level). In contrast, despite amino-acid identity, immunization of mice with adenovirus expressing membrane-bound mouse thyroid peroxidase (TPO), but not soluble mouse TPO ectodomain, elicited strong TPO-specific antibodies. CONCLUSIONS Our investigations provide insight into antibody responses to self-antigens. First, antibodies are induced to large self-antigens like mouse-TPO when membrane bound. Second, lesser amino acid homology between the immunogen and mouse protein (91% vs. 97% for the human-TSHR and rat-LHR, respectively) favors antibody induction. Finally, from previous studies demonstrating the immunogenicity of the highly glycosylated human TSHR A-subunit versus our present data for the nonimmunogenic less glycosylated rat LHR, we suggest that the extent of glycosylation contributes to breaking self-tolerance.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
26
|
Regulatory T cells but not T helper 17 cells are modulated in an animal model of Graves’ hyperthyroidism. Clin Exp Med 2011; 12:39-46. [DOI: 10.1007/s10238-011-0137-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
|
27
|
Jacobson EM, Concepcion E, Ho K, Kopp P, Vono Toniolo J, Tomer Y. cDNA immunization of mice with human thyroglobulin generates both humoral and T cell responses: a novel model of thyroid autoimmunity. PLoS One 2011; 6:e19200. [PMID: 21559421 PMCID: PMC3084781 DOI: 10.1371/journal.pone.0019200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis.
Collapse
Affiliation(s)
- Eric M Jacobson
- Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
28
|
Dağdelen S, Kong YCM, Banga JP. Toward better models of hyperthyroid Graves' disease. Endocrinol Metab Clin North Am 2009; 38:343-54, viii. [PMID: 19328415 DOI: 10.1016/j.ecl.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graves' disease affects only humans. Although it is a treatable illness, medical therapy with antithyroid drugs is imperfect, showing high rates of recurrence. Furthermore, the etiology and treatment of the associated ophthalmopathy still represent problematic issues. Animal models could contribute to the solution of such problems by providing a better understanding of the underlying pathogenesis and could be used for evaluating novel therapeutic strategies. This article discusses the pursuit of a better experimental model for hyperthyroid Graves' disease and outlines how this research has clarified the immunology of the disease.
Collapse
Affiliation(s)
- Selçuk Dağdelen
- Department of Diabetes and Endocrinology, King's College London School of Medicine, Denmark Hill Campus, The Rayne Institute, London, UK.
| | | | | |
Collapse
|
29
|
Mizutori Y, Chen CR, Latrofa F, McLachlan SM, Rapoport B. Evidence that shed thyrotropin receptor A subunits drive affinity maturation of autoantibodies causing Graves' disease. J Clin Endocrinol Metab 2009; 94:927-35. [PMID: 19066298 PMCID: PMC2681282 DOI: 10.1210/jc.2008-2134] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT In Graves' disease, thyroid-stimulating antibodies (TSAb) activate the TSH receptor (TSHR) causing hyperthyroidism. Serum polyclonal TSAb are difficult to study because of their extremely low serum levels. OBJECTIVE Our objective was to determine whether monoclonal TSAb possess characteristics previously reported for polyclonal autoantibodies in Graves' sera. DESIGN We studied monoclonal TSAb from three laboratories: six generated from mice with induced hyperthyroidism; and one, M22, a human autoantibody obtained from Graves' B cells. RESULTS All TSAb with one exception were potent activators of TSHR-mediated cAMP generation, with relatively similar half-maximal stimulatory concentrations. Like polyclonal autoantibodies, monoclonal TSAb were largely neutralized by conformationally "active" (but not "inactive") recombinant TSHR A subunits (the N-terminal cleavage product of the TSHR). Chimeric substitutions of TSHR amino acids 25-30 (the extreme N terminus after removal of the 21 residue signal peptide) abrogated the binding and function of all monoclonal TSAb but with one antibody (TSAb4) revealing a nonidentical epitope. Remarkably, these residues are uninvolved in the M22 epitope determined by x-ray analysis. Finally, flow-cytometric dose-response analyses, not previously possible with polyclonal TSAb, revealed that all monoclonal TSAb, human and murine, bound with lower affinity to their in vivo target, the TSH-holoreceptor, than to the isolated TSHR ectodomain. CONCLUSIONS TSAb function does not require antibodies with identical epitopes, and human autoantibody M22 may, therefore, not represent the full epitopic repertoire of polyclonal TSAb in Graves' disease. Most important, we provide strong evidence that the shed ectodomain (primarily the A subunit) is the primary antigen driving affinity maturation of TSAb producing B cells.
Collapse
Affiliation(s)
- Yumiko Mizutori
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
30
|
Banga JP, Nielsen CH, Gilbert JA, El Fassi D, Hegedus L. Application of new therapies in Graves' disease and thyroid-associated ophthalmopathy: animal models and translation to human clinical trials. Thyroid 2008; 18:973-81. [PMID: 18752425 DOI: 10.1089/thy.2007.0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most current approaches for treating Graves' disease are based essentially upon regimes developed nearly 50 years ago. Moreover, therapeutic approaches for complications such as thyroid-associated ophthalmopathy (TAO) and dermopathy are singularly dependent on conventional approaches of nonspecific immunosuppression. The recent development of an induced model of experimental Graves' disease, although incomplete as it lacks the extrathyroidal manifestations, provided opportunities to investigate immune intervention strategies, including influence upon the autoreactive B and T cell players in the autoimmune process. These major advances are generating new possibilities for therapeutic interventions for patients with Graves' disease and TAO.
Collapse
Affiliation(s)
- J Paul Banga
- Division of Gene and Cell Based Therapy, King's College London School of Medicine, London, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
McLachlan SM, Nagayama Y, Pichurin PN, Mizutori Y, Chen CR, Misharin A, Aliesky HA, Rapoport B. The link between Graves' disease and Hashimoto's thyroiditis: a role for regulatory T cells. Endocrinology 2007; 148:5724-33. [PMID: 17823263 DOI: 10.1210/en.2007-1024] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperthyroidism in Graves' disease is caused by thyroid-stimulating autoantibodies to the TSH receptor (TSHR), whereas hypothyroidism in Hashimoto's thyroiditis is associated with thyroid peroxidase and thyroglobulin autoantibodies. In some Graves' patients, thyroiditis becomes sufficiently extensive to cure the hyperthyroidism with resultant hypothyroidism. Factors determining the balance between these two diseases, the commonest organ-specific autoimmune diseases affecting humans, are unknown. Serendipitous findings in transgenic BALB/c mice, with the human TSHR A-subunit targeted to the thyroid, shed light on this relationship. Of three transgenic lines, two expressed high levels and one expressed low intrathyroidal A-subunit levels (Hi- and Lo-transgenics, respectively). Transgenics and wild-type littermates were depleted of T regulatory cells (Treg) using antibodies to CD25 (CD4(+) T cells) or CD122 (CD8(+) T cells) before TSHR-adenovirus immunization. Regardless of Treg depletion, high-expressor transgenics remained tolerant to A-subunit-adenovirus immunization (no TSHR antibodies and no hyperthyroidism). Tolerance was broken in low-transgenics, although TSHR antibody levels were lower than in wild-type littermates and no mice became hyperthyroid. Treg depletion before immunization did not significantly alter the TSHR antibody response. However, Treg depletion (particularly CD25) induced thyroid lymphocytic infiltrates in Lo-transgenics with transient or permanent hypothyroidism (low T(4), elevated TSH). Neither thyroid lymphocytic infiltration nor hypothyroidism developed in similarly treated wild-type littermates. Remarkably, lymphocytic infiltration was associated with intermolecular spreading of the TSHR antibody response to other self thyroid antigens, murine thyroid peroxidase and thyroglobulin. These data suggest a role for Treg in the natural progression of hyperthyroid Graves' disease to Hashimoto's thyroiditis and hypothyroidism in humans.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen CR, McLachlan SM, Rapoport B. Suppression of thyrotropin receptor constitutive activity by a monoclonal antibody with inverse agonist activity. Endocrinology 2007; 148:2375-82. [PMID: 17272389 DOI: 10.1210/en.2006-1754] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TSH binding to the TSH receptor (TSHR) induces thyrocyte growth and proliferation primarily by activating the adenylyl cyclase signaling pathway. Relative to the other glycoprotein hormone receptors, the TSHR has considerable ligand-independent (constitutive) activity. We describe a TSHR monoclonal antibody (CS-17) with the previously unrecognized property of being an inverse agonist for TSHR constitutive activity. This property is retained, even when constitutive activity is extremely high consequent to diverse TSHR extracellular region mutations. A similar effect on an activating mutation at the base of the sixth transmembrane helix (not accessible to direct CS-17 contact) indicates that CS-17 is acting allosterically. Administered to mice in vivo, CS-17 reduces serum T(4) levels. The CS-17 epitope is conformational and a significant portion lies in the C-terminal region of the TSHR leucine-rich domain (residues 260-289). By interacting with the large TSHR extracellular domain, CS-17 is, to our knowledge, the first antibody reported to be an inverse agonist for a member of the G protein receptor superfamily. After humanization of its murine constant region, CS-17 has the potential to be an adjunctive therapeutic agent in athyreotic patients with residual well-differentiated thyroid carcinoma as well as pending definitive treatment in some selected hyperthyroidism states.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Cedars-Sinai Research Institute, University of California, Los Angeles, California 90048, USA
| | | | | |
Collapse
|
33
|
Kaneda T, Honda A, Hakozaki A, Fuse T, Muto A, Yoshida T. An improved Graves' disease model established by using in vivo electroporation exhibited long-term immunity to hyperthyroidism in BALB/c mice. Endocrinology 2007; 148:2335-44. [PMID: 17255207 DOI: 10.1210/en.2006-1077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Graves' disease, the overstimulation of the thyroid gland and hyperthyroidism are caused by autoantibodies directed against the TSH receptor (TSHR) that mimics the action of TSH. The establishment of an animal model is an important step to study the pathophysiology of autoimmune hyperthyroidism and for immunological analysis. In this study, we adopted the technique of electroporation (EP) for genetic immunization to achieve considerable enhancement of in vivo human TSHR (hTSHR) expression and efficient induction of hyperthyroidism in mice. In a preliminary study using beta-galactosidase (beta-gal) expression vectors, beta-gal introduced into the muscle by EP showed over 40-fold higher enzymatic activity than that introduced via previous direct gene transfer methods. The sustained hTSHR mRNA expression derived from cDNA transferred by EP was detectable in muscle tissue for at least 2 wk by RT-PCR. Based on these results, we induced hyperthyroidism via two expression vectors inserted with hTSHR or hTSHR289His cDNA. Consequently, 12.0-31.8% BALB/c mice immunized with hTSHR and 79.2-95.7% immunized with hTSHR289His showed high total T(4) levels due to the TSHR-stimulating antibody after three to four times repeated immunization by EP, and thyroid follicles of which were hyperplastic and had highly irregular epithelium. Moreover, TSHR-stimulating antibody surprisingly persisted more than 8 months after the last immunization. These results demonstrate that genetic immunization by in vivo EP is more efficient than previous procedures, and that it is useful for delineating the pathophysiology of Graves' disease.
Collapse
Affiliation(s)
- Toshio Kaneda
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Gilbert JA, Kalled SL, Moorhead J, Hess DM, Rennert P, Li Z, Khan MZ, Banga JP. Treatment of autoimmune hyperthyroidism in a murine model of Graves' disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 2006; 147:4561-8. [PMID: 16794009 DOI: 10.1210/en.2006-0507] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperthyroid Graves' disease is a common autoimmune disorder mediated by agonistic antibodies to the TSH receptor, termed thyroid stimulating antibodies (TSAbs). Recently members of the TNF superfamily, B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), have been identified along with their receptors, B cell maturation antigen and transmembrane activator and calcium-modulator and cyclophilin ligand interactor, and the BAFF-specific receptor. BAFF is a fundamental B cell survival/maturation factor, and both BAFF and APRIL have been implicated in antibody production. We investigated the effect of interfering with BAFF- and APRIL-mediated signals in an induced model of Graves' disease by blockade of these factors using soluble decoy receptors. In a therapeutic setting in mice with established hyperthyroidism, we show that blockade of BAFF or BAFF+APRIL with BAFF-specific receptor-Fc and B cell maturation antigen-Fc, respectively, leads to significant reductions in the induced hyperthyroidism. This was supported by a parallel pattern of declining TSAbs in the responding animals. Histopathological analysis of splenic sections from treated animals revealed marked reductions in the B cell follicle regions, but staining with anti-CD138 revealed the persistence of plasma cells. Thus, the reductions in TSAbs in the treated animals were not related to overall plasma cell numbers in the secondary lymphoid organs. Our results are the first to demonstrate attenuation of established hyperthyroidism by therapeutic intervention aimed at autoreactive B cells and indicate that both BAFF and APRIL appear to play important roles in the development and survival of the autoantibody producing cells in this model.
Collapse
Affiliation(s)
- Jacqueline A Gilbert
- Division of Gene and Cell-Based Therapy, King's College London School of Medicine, Bessemer Road, London SE5 9PJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gilbert JA, Gianoukakis AG, Salehi S, Moorhead J, Rao PV, Khan MZ, McGregor AM, Smith TJ, Banga JP. Monoclonal pathogenic antibodies to the thyroid-stimulating hormone receptor in Graves' disease with potent thyroid-stimulating activity but differential blocking activity activate multiple signaling pathways. THE JOURNAL OF IMMUNOLOGY 2006; 176:5084-92. [PMID: 16585606 DOI: 10.4049/jimmunol.176.8.5084] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thyroid target Ag for disease-inducing autoantibodies in Graves' disease is the receptor for thyroid-stimulating hormone (TSH), but little is known about the molecular basis of this pathogenic Ab response. We describe the characteristics of two high- affinity mAbs developed from an experimental murine model of hyperthyroid Graves' disease that exhibit potent thyroid-stimulating activity. Nanogram concentrations of the IgG mAbs KSAb1 and KSAb2 and their Fab induce full stimulation of the TSH receptor that is matched by the ligand TSH and, thus, act as full agonists for the receptor. However, KSAb1 and KSAb2 display differential activities in their ability to block TSH-mediated stimulation of the receptor, indicating subtle differences in their biological properties. In displacement studies, IgG and Fabs of KSAb1 and KSAb2 compete with Graves' disease autoantibodies as well as thyroid-blocking Abs present in some hypothyroid patients, indicating a close relationship between these autoimmune determinants on the receptor. In passive transfer studies, single injections of microgram quantities of KSAb1 or KSAb2 IgG led to rapid elevation of serum thyroxine and a hyperthyroid state that was maintained for a number of days. The thyroid glands showed evidence of cell necrosis, but there was no accompanying mononuclear cell infiltrate. In studying their receptor activation pathways, both KSAb1 and KSAb2 provoked phosphorylation of the intracellular ERK1/2 pathway in primary thyrocytes, indicating that multiple signaling pathways may participate in the pathogenesis of Graves' disease. In summary, our findings emphasize the similarities of the experimental mouse model in reproducing the human disorder and provide improved means for characterizing the molecular basis of this pathogenic response.
Collapse
Affiliation(s)
- Jacqueline A Gilbert
- King's College London, Division of Gene and Cell Based Therapy, King's College School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen CR, Aliesky HA, Guo J, Rapoport B, McLachlan SM. Blockade of costimulation between T cells and antigen-presenting cells: an approach to suppress murine Graves' disease induced using thyrotropin receptor-expressing adenovirus. Thyroid 2006; 16:427-34. [PMID: 16756463 DOI: 10.1089/thy.2006.16.427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Immune responses require costimulatory interactions between molecules on antigen-presenting cells and T cells: CD40 binding to CD40 ligand and B7 binding to CD28. Graves' hyperthyroidism is induced in BALB/c mice by immunization with thyrotropin receptor (TSHR) A-subunit adenovirus (Ad-A-subunit). We attempted to modulate Ad-A-subunit-induced Graves' disease using adenoviruses expressing costimulation "decoys": CD40-IgG-Fc (CD40-Ig) to block CD40:CD40-ligand interactions and CTLA4-Fc (CTLA4-Ig) to prevent B7:CD28 binding. OUTCOME Unexpectedly, coimmunizing mice with Ad-A-subunit and excess control adenovirus (1:10 Ad-A-subunit:Ad-control) reduced TSHR antibody levels (thyrotropin binding inhibition [TBI]). Furthermore, only 15% of mice developed hyperthyroidism versus 75% using the same Ad-A-subunit dose (10(8) particles) without Ad-control. This effect was related to the dose of control adenovirus but not to the adenovirus insert, the timing or immunization site. Increasing the Ad-subunit dose (10(9) particles) and decreasing the control adenovirus dose (10:1 Ad-A-subunit:Ad-control) induced high TBI levels and 80% of mice were hyperthyroid. Coimmunization with Ad-CD40-Ig (but not Ad-CTLA4-Ig) reduced the incidence of hyperthyroidism to 40%. CONCLUSIONS Using appropriate controls and adenovirus ratios, our data suggest the importance of CD40:CD40-ligand interactions for inducing Graves' hyperthyroidism by Ad-A-subunit. Furthermore, our observations emphasize the potential pitfalls of non-specific inhibition by coimmunization with two adenovirus species.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
37
|
Pichurin PN, Chen CR, Chazenbalk GD, Aliesky H, Pham N, Rapoport B, McLachlan SM. Targeted expression of the human thyrotropin receptor A-subunit to the mouse thyroid: insight into overcoming the lack of response to A-subunit adenovirus immunization. THE JOURNAL OF IMMUNOLOGY 2006; 176:668-76. [PMID: 16365463 DOI: 10.4049/jimmunol.176.1.668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The thyrotropin receptor (TSHR), the major autoantigen in Graves' disease, is posttranslationally modified by intramolecular cleavage to form disulfide-linked A- and B-subunits. Because Graves' hyperthyroidism is preferentially induced in BALB/c mice using adenovirus encoding the free A-subunit rather than full-length human TSHR, the shed A-subunit appears to drive the disease-associated autoimmune response. To further investigate this phenomenon, we generated transgenic mice with the human A-subunit targeted to the thyroid. Founder transgenic mice had normal thyroid function and were backcrossed to BALB/c. The A-subunit mRNA expression was confirmed in thyroid tissue. Unlike wild-type littermates, transgenic mice immunized with low-dose A-subunit adenovirus failed to develop TSHR Abs, hyperthyroidism, or splenocyte responses to TSHR Ag. Conventional immunization with A-subunit protein and adjuvants induced TSHR Abs lacking the characteristics of human autoantibodies. Unresponsiveness was partially overcome using high-dose, full-length human TSHR adenovirus. Although of low titer, these induced Abs recognized the N terminus of the A-subunit, and splenocytes responded to A-subunit peptides. Therefore, "non-self" regions in the B-subunit did not contribute to inducing responses. Indeed, transgenic mice immunized with high-dose A-subunit adenovirus developed TSHR Abs with thyrotropin-binding inhibitory activity, although at lower titers than wild-type littermates, suggesting down-regulation in the transgenic mice. In conclusion, in mice expressing a human A-subunit transgene in the thyroid, non-self human B-subunit epitopes are not necessary to induce responses to the A-subunit. Our findings raise the possibility that autoimmunity to the TSHR in humans may not involve epitopes on a cross-reacting protein, but rather, strong adjuvant signals provided in bystander immune responses.
Collapse
Affiliation(s)
- Pavel N Pichurin
- Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kala M, Chen CR, McLachlan SM, Rapoport B, Aliesky H, Chapman HA. Cathepsin S is not crucial to TSHR processing and presentation in a murine model of Graves' disease. Immunology 2006; 116:532-40. [PMID: 16313367 PMCID: PMC1802445 DOI: 10.1111/j.1365-2567.2005.02255.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
By regulating invariant (Ii) chain processing and MHC class II peptide loading, the endosomal protease cathepsin S (Cat S) has a potential role in autoimmune susceptibility. Indeed, Cat S null mice are resistant to I-Ab-restricted experimental myasthenia gravis due to inadequate peptide presentation. To explore the role of Cat S in a Graves' disease model, I-Ad-restricted wild-type (WT) and Cat S(-/-) mice were immunized with adenovirus encoding the A subunit of thyroid stimulating hormone receptor (TSHR). TSHR adenovirus immunized mice develop Th1 T cells, TSHR antibodies, and a proportion become overtly hyperthyroid. Although TSHR presentation in vitro was initially impaired in Cat S(-/-) mice, subsequent TSHR presentation in vitro and disease development were similar in both groups but with higher antibody responses in Cat S null mice. WT and Cat S(-/-) mice recognized similar T cell epitopes from a panel of overlapping TSHR peptides. TSHR responses were found to be I-Ad-restricted and Cat S(-/-) I-Ad B cells had marked defects in Ii processing. These data imply that loading of TSHR peptides critical to TSHR antibody responses becomes Ii-independent. Contrasting findings among organ-specific murine autoimmune models imply that potential uses of Cat S inhibitors to ameliorate autoimmunity must be determined empirically.
Collapse
Affiliation(s)
- Mrinalini Kala
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, 93143, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chen CR, Abbud R, Wang C, Tan Y, Rapoport B, McLachlan SM. Gene expression profiles differ markedly in mouse strains that are (or are not) susceptible to hyperthyroidism induced using thyrotropin receptor-expressing adenovirus. Thyroid 2005; 15:1229-37. [PMID: 16356085 DOI: 10.1089/thy.2005.15.1229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BALB/c mice are susceptible and C57BL/6 mice are resistant to Graves' hyperthyroidism induced by immunization with adenovirus encoding the thyrotropin receptor (TSHR) A-subunit. Both strains develop comparable levels of TSHR antibodies, but potent TSH blocking antibody activity in C57BL/6 mice likely blocks development of hyperthyroidism. We used microarrays to compare gene expression in spleens of mice immunized with A-subunit adenovirus (TSHR-Ad) or control adenovirus (Con-Ad). To preclude the effects of variable thyroxine (T(4)) levels, mice were studied when euthyroid as follows: BALB/c mice immunized three times with TSHR-Ad or Con-Ad and C57BL/6 mice immunized three times with TSHR-Ad or Con-Ad. Among the 14,000 expressed probe sets, there were no statistically significant differences in gene expression in BALB/c mice immunized with TSHR-Ad versus Con-Ad. In contrast, expression of 57 transcripts (representing 40 genes) changed in response to TSHR-Ad in C57BL/6 mice. Diverse genes were identified, including proteins involved in immune responses, inflammation, and cell cycling as well as heat-shock proteins and proteases. Down-regulation of chitinase 3- and-4 gene expression likely reflects cytokines produced by T-helper 2 (Th2) type cells. Indeed, the immunoglobulin (IgG) subclass for TSHR antibodies reflects a deviation away from Th2 cytokines and toward Th1 in C57BL/6 mice. In conclusion, TSHR-Ad immunization altered gene expression profiles in C57BL/6, but not in BALB/c, mice. This response primarily involved reduced gene expression. In C57BL/6 mice, decreased expression of genes such as cathelicidin, calgranulins, and lipocalin following TSHR A-subunit adenovirus immunization suggests the importance of innate immunity in this response.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
40
|
Guo J, McLachlan SM, Pichurin PN, Chen CR, Pham N, Aliesky HA, David CS, Rapoport B. Relationship between thyroid peroxidase T cell epitope restriction and antibody recognition of the autoantibody immunodominant region in human leukocyte antigen DR3 transgenic mice. Endocrinology 2005; 146:4961-7. [PMID: 16081633 DOI: 10.1210/en.2005-0760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the relationship between thyroid peroxidase (TPO) antibody and T lymphocyte epitopes in TPO-adenovirus (TPO-Ad) immunized BALB/c mice and mice transgenic for the human class II molecule DR3 associated with human thyroid autoimmunity. TPO autoantibodies are largely restricted to an immunodominant region (IDR). BALB/c mice immunized with fewer (10(7) vs. 10(9)) TPO-Ad particles developed TPO antibodies with lower titers that displayed greater restriction to the IDR. However, as with higher-dose TPO-Ad immunization, T cell epitopes (assessed by splenocyte interferon-gamma response to TPO in vitro) were highly diverse and variable in different animals. In contrast, DR3 mice immunized the higher TPO-Ad dose (10(9) particles) had high TPO antibody levels that showed relative focus on the IDR. Moreover, T cell epitopes recognized by splenocytes from DR3 mice showed greater restriction than BALB/c mice. Antibody affinities for TPO were higher in DR3 than in BALB/c mice. The present study indicates that weak TPO-Ad immunization of BALB/c mice (with consequent low TPO antibody titers) is required for enhanced IDR focus yet is not associated with T cell epitopic restriction. Humanized DR3 transgenic mice, despite stronger TPO-Ad immunization, develop higher titer TPO antibodies that do focus on the autoantibody IDR with T cells that recognize a more limited range of TPO peptides. These data suggest a relationship between major histocompatibility complex class II molecules and the development of antibodies to the IDR, a feature of human thyroid autoimmunity.
Collapse
Affiliation(s)
- Jin Guo
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite B-131, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mizutori Y, Saitoh O, Eguchi K, Nagayama Y. Adenovirus encoding the thyrotropin receptor A-subunit improves the efficacy of dendritic cell-induced Graves' hyperthyroidism in mice. J Autoimmun 2005; 26:32-6. [PMID: 16242303 DOI: 10.1016/j.jaut.2005.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 06/26/2005] [Accepted: 08/24/2005] [Indexed: 01/22/2023]
Abstract
Stimulating the immune system by in vivo expression of the thyrotropin receptor (TSHR) is an efficient means to induce Graves' disease experimentally. For example, BALB/c mice injected with dendritic cells (DCs) infected with adenovirus encoding the full-length TSHR (AdTSHR) develop hyperthyroidism, albeit at a low incidence (36%). Recent observations suggest that the shed TSHR A-subunit, rather than the full-length receptor, is the autoantigen responsible for initiating/enhancing immune responses leading to thyroid stimulating antibodies (TSAb) and hyperthyroidism. Therefore, we attempted to improve the efficacy of the DC-based approach for Graves' disease using adenovirus encoding the TSHR A-subunit (AdTSHR289). Three injections of DCs infected with AdTSHR289 induced hyperthyroidism in 70% of BALB/c mice, approximately twice the disease induction rate with AdTSHR. TSAb activity was detected in most hyperthyroid mice, whereas virtually all immunized mice developed antibodies that inhibit [125I]TSH binding to the TSHR or recognize linear or conformational epitopes on the TSHR. TSHR antibodies were of IgG1 and IgG2a, indicating mixed T-helper type 1 (Th1)/Th2 immune responses. In conclusion, immunization with DC infected with adenovirus expressing the TSHR A-subunit is a highly efficient protocol to induce Graves' hyperthyroidism in BALB/c mice. This improved model will permit studies of the pathogenic role and therapeutic potential of DCs in Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Yumiko Mizutori
- Department of Medical Gene Technology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|
42
|
Abstract
Graves' hyperthyroidism can be induced in mice or hamsters by novel approaches, namely injecting cells expressing the TSH receptor (TSHR) or vaccination with TSHR-DNA in plasmid or adenoviral vectors. These models provide unique insight into several aspects of Graves' disease: 1) manipulating immunity toward Th1 or Th2 cytokines enhances or suppresses hyperthyroidism in different models, perhaps reflecting human disease heterogeneity; 2) the role of TSHR cleavage and A subunit shedding in immunity leading to thyroid-stimulating antibodies (TSAbs); and 3) epitope spreading away from TSAbs and toward TSH-blocking antibodies in association with increased TSHR antibody titers (as in rare hypothyroid patients). Major developments from the models include the isolation of high-affinity monoclonal TSAbs and analysis of antigen presentation, T cells, and immune tolerance to the TSHR. Studies of inbred mouse strains emphasize the contribution of non-MHC vs. MHC genes, as in humans, supporting the relevance of the models to human disease. Moreover, other findings suggest that the development of Graves' disease is affected by environmental factors, including infectious pathogens, regardless of modifications in the Th1/Th2 balance. Finally, developing immunospecific forms of therapy for Graves' disease will require painstaking dissection of immune recognition and responses to the TSHR.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
43
|
McLachlan SM, Braley-Mullen H, Chen CR, Aliesky H, Pichurin PN, Rapoport B. Dissociation between iodide-induced thyroiditis and antibody-mediated hyperthyroidism in NOD.H-2h4 mice. Endocrinology 2005; 146:294-300. [PMID: 15459116 DOI: 10.1210/en.2004-1126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NOD.H-2h4 mice are genetically predisposed to thyroid autoimmunity and spontaneously develop thyroglobulin autoantibodies (TgAb) and thyroiditis. Iodide administration enhances TgAb levels and the incidence and severity of thyroiditis. Using these mice, we investigated the interactions between TSH receptor (TSHR) antibodies induced by vaccination and spontaneous or iodide-enhanced thyroid autoimmunity (thyroiditis and TgAb). Mice were immunized with adenovirus expressing the TSHR A-subunit (or control adenovirus). Thyroid antibodies, histology, and serum thyroxine levels were compared in animals on a regular diet or on a high-iodide diet (0.05% NaI-supplemented water). Thyroiditis severity and TgAb levels were enhanced by iodide administration and were independent of the type of adenovirus used for immunization. In contrast, TSHR antibodies, measured by TSH-binding inhibition, thyroid-stimulating activity, and TSH-blocking activity, were induced in the majority of animals immunized with TSHR (but not control) adenovirus and were unaffected by dietary iodide. The NOD.2h4 strain of mice was less susceptible than BALB/c or BALB/k mice to TSHR adenovirus-induced hyperthyroidism. Nevertheless, hyperthyroidism developed in approximately one third of TSHR adenovirus-injected NOD.2h4 mice. This hyperthyroidism was suppressed by a high-iodide diet, probably by a nonimmune mechanism. The fact that inducing an immune response to the TSHR had no effect on thyroiditis raises the possibility that the TSHR may not be the target involved in the variable thyroiditis component in some humans with Graves' disease.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and University of California Los Angeles School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Chen CR, Aliesky H, Pichurin PN, Nagayama Y, McLachlan SM, Rapoport B. Susceptibility rather than resistance to hyperthyroidism is dominant in a thyrotropin receptor adenovirus-induced animal model of Graves' disease as revealed by BALB/c-C57BL/6 hybrid mice. Endocrinology 2004; 145:4927-33. [PMID: 15284197 DOI: 10.1210/en.2004-0716] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated why TSH receptor (TSHR) adenovirus immunization induces hyperthyroidism more commonly in BALB/c than in C57BL/6 mice. Recent modifications of the adenovirus model suggested that using adenovirus expressing the TSHR A subunit (A-subunit-Ad), rather than the full-length TSHR, and injecting fewer viral particles would increase the frequency of hyperthyroidism in C57BL/6 mice. This hypothesis was not fulfilled; 65% of BALB/c but only 5% of C57BL/6 mice developed hyperthyroidism. TSH binding inhibitory antibody titers were similar in each strain. Functional TSHR antibody measurements provided a better indication for this strain difference. Whereas thyroid-stimulating antibody activity was higher in C57BL/6 than BALB/c mice, TSH blocking antibody activity was more potent in hyperthyroid-resistant C57BL/6 mice. F(1) hybrids (BALB/c x C57BL/6) responded to A-subunit-Ad immunization with hyperthyroidism and TSHR antibody profiles similar to those of the hyperthyroid-susceptible parental BALB/c strain. In contrast, ELISA of TSHR antibodies revealed that the IgG subclass distribution in the F(1) mice resembled the disease-resistant C57BL/6 parental strain. Because the IgG subclass distribution is dependent on the T helper 1/T helper 2 cytokine balance, this paradigm can likely be excluded as an explanation for susceptibility to hyperthyroidism. In summary, our data for BALB/c, C57BL/6, and F(1) strains suggest that BALB/c mice carry a dominant gene(s) for susceptibility to induction of a thyroid-stimulating antibody/TSH blocking antibody balance that results in hyperthyroidism. Study of this genetic influence will provide useful information on potential candidate genes in human Graves' disease.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite B-131, Los Angeles, California 90048, USA.
| | | | | | | | | | | |
Collapse
|