1
|
Sánchez-Rosales AI, Posadas-Calleja JG, Serralde-Zúñiga AE, Quiroz-Olguín G. Nutritional interventions as modulators of the disease activity for idiopathic inflammatory myopathies: a scoping review. J Hum Nutr Diet 2024; 37:772-787. [PMID: 38324396 DOI: 10.1111/jhn.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic, autoimmune connective tissue diseases associated with significant morbidity and disability. Nutrients can activate the immune system and contribute to chronic low-grade inflammation (LGI). Chronic muscle inflammation leads to imbalanced pro-inflammatory and anti-inflammatory cytokines, causing inadequate nutrition, weight loss and muscle weakness during a negative cycle. Owing to its potential to modulate LGI in various diseases, the Mediterranean diet (Med Diet) has been extensively studied. This scoping review explores the nutritional implications and recommendations of the Med Diet as a treatment for immune-mediated diseases, focusing on the gaps in IIM nutritional interventions. A comprehensive literature search of the MEDLINE and EBSCO databases between September 2018 and December 2022 was performed. We identified that the Med Diet and its specific components, such as omega-3 (nω3) fatty acids, vitamin D and antioxidants, play a role in the dietary treatment of connective tissue-related autoimmune diseases. Nutritional interventions have demonstrated potential for modulating disease activity and warrant further exploration of IIMs through experimental studies. This review introduces a dietary therapeutic approach using the Med Diet and related compounds to regulate chronic inflammatory processes in IIMs. However, further clinical studies are required to evaluate the efficacy of the Med Diet in patients with IIMs. Emphasising a clinical-nutritional approach, this study encourages future research on the anti-inflammatory effects of the Med Diet on IIMs. This review highlights potential insights for managing and treating these conditions using a holistic approach.
Collapse
Affiliation(s)
- Abril I Sánchez-Rosales
- School of Public Health, Instituto Nacional de Salud Pública, Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, Cuernavaca, Morelos, Mexico
| | | | - Aurora E Serralde-Zúñiga
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Quiroz-Olguín
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| |
Collapse
|
2
|
McColl TJ, Clarke DC. Kinetic modeling of leucine-mediated signaling and protein metabolism in human skeletal muscle. iScience 2024; 27:108634. [PMID: 38188514 PMCID: PMC10767222 DOI: 10.1016/j.isci.2023.108634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Skeletal muscle protein levels are governed by the relative rates of muscle protein synthesis (MPS) and breakdown (MPB). The mechanisms controlling these rates are complex, and their integrated behaviors are challenging to study through experiments alone. The purpose of this study was to develop and analyze a kinetic model of leucine-mediated mTOR signaling and protein metabolism in the skeletal muscle of young adults. Our model amalgamates published cellular-level models of the IRS1-PI3K-Akt-mTORC1 signaling system and of skeletal-muscle leucine kinetics with physiological-level models of leucine digestion and transport and insulin dynamics. The model satisfactorily predicts experimental data from diverse leucine feeding protocols. Model analysis revealed that total levels of p70S6K are a primary determinant of MPS, insulin signaling substantially affects muscle net protein balance via its effects on MPB, and p70S6K-mediated feedback of mTORC1 signaling reduces MPS in a dose-dependent manner.
Collapse
Affiliation(s)
- Taylor J. McColl
- Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David C. Clarke
- Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
3
|
Kloska SM, Pałczyński K, Marciniak T, Talaśka T, Miller M, Wysocki BJ, Davis PH, Soliman GA, Wysocki TA. Queueing theory model of mTOR complexes' impact on Akt-mediated adipocytes response to insulin. PLoS One 2022; 17:e0279573. [PMID: 36574435 PMCID: PMC9794039 DOI: 10.1371/journal.pone.0279573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022] Open
Abstract
A queueing theory based model of mTOR complexes impact on Akt-mediated cell response to insulin is presented in this paper. The model includes several aspects including the effect of insulin on the transport of glucose from the blood into the adipocytes with the participation of GLUT4, and the role of the GAPDH enzyme as a regulator of mTORC1 activity. A genetic algorithm was used to optimize the model parameters. It can be observed that mTORC1 activity is related to the amount of GLUT4 involved in glucose transport. The results show the relationship between the amount of GAPDH in the cell and mTORC1 activity. Moreover, obtained results suggest that mTORC1 inhibitors may be an effective agent in the fight against type 2 diabetes. However, these results are based on theoretical knowledge and appropriate experimental tests should be performed before making firm conclusions.
Collapse
Affiliation(s)
- Sylwester M. Kloska
- Department of Forensic Medicine, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Krzysztof Pałczyński
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Tomasz Marciniak
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Tomasz Talaśka
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Marissa Miller
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, United States of America
| | - Beata J. Wysocki
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Ghada A. Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, City University of New York, Graduate School of Public Health and Healthy Policy, New York, NY, United States of America
| | - Tadeusz A. Wysocki
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, United States of America
| |
Collapse
|
4
|
Ortiz-Huidobro RI, Larqué C, Velasco M, Chávez-Maldonado JP, Sabido J, Sanchez-Zamora YI, Hiriart M. Sexual dimorphism in the molecular mechanisms of insulin resistance during a critical developmental window in Wistar rats. Cell Commun Signal 2022; 20:154. [PMID: 36224569 PMCID: PMC9554987 DOI: 10.1186/s12964-022-00965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is an early marker of metabolic dysfunction. However, IR also appears in physiological contexts during critical developmental windows. The molecular mechanisms of physiological IR are largely unknown in both sexes. Sexual dimorphism in insulin sensitivity is observed since early stages of development. We propose that during periods of accelerated growth, such as around weaning, at postnatal day 20 (p20) in rats, the kinase S6K1 is overactivated and induces impairment of insulin signaling in its target organs. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage.
Methods We determined systemic insulin sensitivity through insulin tolerance tests, glucose tolerance tests, and blood glucose and insulin levels under fasting and fed conditions at p20 and adult male and female Wistar rats. Furthermore, we quantified levels of S6K1 phosphorylated at threonine 389 (T389) (active form) and its target IRS1 phosphorylated at serine 1101 (S1101) (inhibited form). In addition, we assessed insulin signal transduction by measuring levels of Akt phosphorylated at serine 473 (S473) (active form) in white adipose tissue and skeletal muscle through western blot. Finally, we determined the presence and function of GLUT4 in the plasma membrane by measuring the glucose uptake of adipocytes. Results were compared using two-way ANOVA (With age and sex as factors) and one-way ANOVA with post hoc Tukey’s tests or t-student test in each corresponding case. Statistical significance was considered for P values < 0.05. Results We found that both male and female p20 rats have elevated levels of glucose and insulin, low systemic insulin sensitivity, and glucose intolerance. We identified sex- and tissue-related differences in the activation of insulin signaling proteins in p20 rats compared to adult rats. Conclusions Male and female p20 rats present physiological insulin resistance with differences in the protein activation of insulin signaling. This suggests that S6K1 overactivation and the resulting IRS1 inhibition by phosphorylation at S1101 may modulate to insulin sensitivity in a sex- and tissue-specific manner. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00965-6. Insulin regulates the synthesis of carbohydrates, lipids and proteins differently between males, and females. One of its primary functions is maintaining adequate blood glucose levels favoring glucose entry in muscle and adipose tissue after food consumption. Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is frequently associated with metabolic dysfunction such as inflammation, obesity, or type 2 diabetes. However, physiological IR develops in healthy individuals during periods of rapid growth, pregnancy, or aging by mechanisms not fully understood. We studied the postnatal development, specifically around weaning at postnatal day 20 (p20) of Wistar rats. In previous works, we identified insulin resistance during this period in male rats. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage. We found that p20 rats of both sexes have elevated blood glucose and insulin levels, low systemic insulin sensitivity, and glucose intolerance. We identified differences in insulin-regulated protein activation (S6K1, IRS1, Akt, and GLUT4) between sexes in different tissues and adipose tissue depots. Studying these mechanisms and their differences between males and females is essential to understanding insulin actions and their relationship with the possible development of metabolic diseases in both sexes.
Collapse
Affiliation(s)
- Rosa Isela Ortiz-Huidobro
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Embryology, and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pablo Chávez-Maldonado
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jean Sabido
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuriko Itzel Sanchez-Zamora
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
The Novel Peptide Chm-273s Has Therapeutic Potential for Metabolic Disorders: Evidence from In Vitro Studies and High-Sucrose Diet and High-Fat Diet Rodent Models. Pharmaceutics 2022; 14:pharmaceutics14102088. [PMID: 36297523 PMCID: PMC9611607 DOI: 10.3390/pharmaceutics14102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to develop a novel peptide potentially applicable for the treatment of metabolic conditions, such as obesity and type 2 diabetes (T2D). We identified CHM-273S from the list of peptides from milk hydrolysate obtained by HPLC/MS-MS. In vitro analysis of primary murine fibroblasts indicated the potential of CHM-273S to upregulate IRS2 mRNA expression. CHM-273S showed a prominent anorexigenic effect in mice with the induction of a key mechanism of leptin signaling via STAT3 in the hypothalamus as a possible effector. In the animal model of metabolic disease, CHM-273S alleviated glucose intolerance and insulin resistance, and induced phosphorylation of Akt at Ser473 and Thr308 in the hepatocytes of high-sucrose diet-fed rats. In a murine model of T2D, CHM-273S mitigated high-fat diet-induced hyperglycemia and insulin resistance and improved low-grade inflammation by diminishing serum TNFα. Mice treated with chronic CHM-273S had a significant reduction in body weight, with a lower visceral fat pad weight and narrow adipocytes. The effects of the peptide administration were comparable to those of metformin. We show the potential of CHM-273S to alleviate diet-induced metabolic alterations in rodents, substantiating its further development as a therapeutic for obesity, T2D, and other metabolic conditions.
Collapse
|
6
|
Dumolt J, Powell TL, Jansson T, Rosario FJ. Normalization of maternal adiponectin in obese pregnant mice prevents programming of impaired glucose metabolism in adult offspring. FASEB J 2022; 36:e22383. [PMID: 35670755 DOI: 10.1096/fj.202200326r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Infants born to obese mothers have a greater risk for childhood obesity and insulin resistance. However, the underlying biological mechanism remains elusive, which constitutes a significant roadblock for developing specific prevention strategies. Maternal adiponectin levels are lower in obese pregnant women, which is linked with increased placental nutrient transport and fetal overgrowth. We have previously reported that adiponectin supplementation to obese dams during the last four days of pregnancy prevented the development of obesity, glucose intolerance, muscle insulin resistance, and fatty liver in three months old offspring. In the present study, we tested the hypothesis that 6-9-month-old offspring of obese dams show glucose intolerance associated with muscle insulin resistance and mitochondrial dysfunction and that normalization of maternal adiponectin in obese pregnant mice prevents the development of this phenotype in the offspring. Male and female offspring of obese mice exhibited in vivo glucose intolerance and insulin resistance at 6 and 9 months of age. In gastrocnemius muscles ex vivo, male and female offspring of obese dams showed reduced phosphorylation of insulin receptor substrate 1Tyr-608 , AktThr-308 , and decreased Glut4 plasma membrane translocation upon insulin stimulation. These metabolic abnormalities in offspring born to obese mice were largely prevented by normalization of maternal adiponectin levels in late pregnancy. We provide evidence that low circulating maternal adiponectin is a critical mechanistic link between maternal obesity and the development of metabolic disease in offspring. Strategies aimed at improving maternal adiponectin levels may prevent long-term metabolic dysfunction in offspring of obese mothers.
Collapse
Affiliation(s)
- Jerad Dumolt
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fredrick J Rosario
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Narykov O, Johnson NT, Korkin D. Predicting protein interaction network perturbation by alternative splicing with semi-supervised learning. Cell Rep 2021; 37:110045. [PMID: 34818539 DOI: 10.1016/j.celrep.2021.110045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Alternative splicing introduces an additional layer of protein diversity and complexity in regulating cellular functions that can be specific to the tissue and cell type, physiological state of a cell, or disease phenotype. Recent high-throughput experimental studies have illuminated the functional role of splicing events through rewiring protein-protein interactions; however, the extent to which the macromolecular interactions are affected by alternative splicing has yet to be fully understood. In silico methods provide a fast and cheap alternative to interrogating functional characteristics of thousands of alternatively spliced isoforms. Here, we develop an accurate feature-based machine learning approach that predicts whether a protein-protein interaction carried out by a reference isoform is perturbed by an alternatively spliced isoform. Our method, called the alternatively spliced interactions prediction (ALT-IN) tool, is compared with the state-of-the-art PPI prediction tools and shows superior performance, achieving 0.92 in precision and recall values.
Collapse
Affiliation(s)
- Oleksandr Narykov
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Nathan T Johnson
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA; Harvard Program in Therapeutic Sciences, Harvard Medical School, and Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dmitry Korkin
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
8
|
Castro É, Vieira TS, Oliveira TE, Ortiz-Silva M, Andrade ML, Tomazelli CA, Peixoto AS, Sobrinho CR, Moreno MF, Gilio GR, Moreira RJ, Guimarães RC, Perandini LA, Chimin P, Reckziegel P, Moretti EH, Steiner AA, Laplante M, Festuccia WT. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab 2021; 321:E592-E605. [PMID: 34541875 DOI: 10.1152/ajpendo.00587.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis. Cold acclimation inhibited mTORC2 in BAT and iWAT, but its residual activity is still required for the cold-induced increases in BAT adipocyte number, total UCP-1 content and mRNA levels of proliferation markers Ki67 and cyclin 1 D, and de novo lipogenesis enzymes ATP-citrate lyase and acetyl-CoA carboxylase. In iWAT, mTORC2 residual activity is partially required for the cold-induced increases in multilocular adipocytes, mitochondrial mass, and uncoupling protein 1 (UCP-1) content. Conversely, BAT mTORC1 activity and BAT and iWAT glucose uptake were upregulated by cold independently of mTORC2. Noteworthy, the impairment in BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency had no major impact on whole body energy expenditure in cold-acclimated mice due to a compensatory activation of muscle shivering. In conclusion, adipocyte mTORC2 deficiency impairs, through different mechanisms, BAT and iWAT total UCP-1 content and thermogenic capacity in cold-acclimated mice, without affecting glucose uptake and whole body energy expenditure.NEW & NOTEWORTHY BAT and iWAT mTORC2 is inhibited by cold acclimation, but its residual activity is required for cold-induced increases in total UCP-1 content and thermogenic capacity, but not glucose uptake and mTORC1 activity. The impaired BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency are compensated by activation of muscle shivering in cold-acclimated mice.
Collapse
Affiliation(s)
- Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Tomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphael C Guimarães
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Parana, Brazil
| | - Patricia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Yang G, Francis D, Krycer JR, Larance M, Zhang Z, Novotny CJ, Diaz-Vegas A, Shokat KM, James DE. Dissecting the biology of mTORC1 beyond rapamycin. Sci Signal 2021; 14:eabe0161. [PMID: 34546793 DOI: 10.1126/scisignal.abe0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Guang Yang
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Deanne Francis
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - James R Krycer
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Mark Larance
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Ziyang Zhang
- Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | - Chris J Novotny
- Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | - Alexis Diaz-Vegas
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Kevan M Shokat
- Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | - David E James
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia.,University of Sydney, Sydney Medical School, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Bledzka KM, Manaserh IH, Grondolsky J, Pfleger J, Roy R, Gao E, Chuprun JK, Koch WJ, Schumacher SM. A peptide of the amino-terminus of GRK2 induces hypertrophy and yet elicits cardioprotection after pressure overload. J Mol Cell Cardiol 2021; 154:137-153. [PMID: 33548241 DOI: 10.1016/j.yjmcc.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (βARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, βARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, βARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify βARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and βARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in βARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male βARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the βARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.
Collapse
Affiliation(s)
- Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Yang H, Wang S, Ye Y, Xie M, Li Y, Jin H, Li J, Gao L. GLP-1 preserves β cell function via improvement on islet insulin signaling in high fat diet feeding mice. Neuropeptides 2021; 85:102110. [PMID: 33307381 DOI: 10.1016/j.npep.2020.102110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Numerous studies have shown that Glucagon like peptide-1 (GLP-1) treatment can protect β cell function, but the exact mechanism remains unclear. We hypothesized that GLP-1 may protect β cell function via its action on insulin signaling pathway. METHODS Mice were fed with high fat diet (HFD, 20 weeks) in the presence or absence of GLP-1 receptor agonist (exenatide) treatment. The islet structure was demonstrated by HE staining. Immunofluorescence antibodies targeting insulin and glucagon were used to illustrate α and β cell distribution. The insulin and glucagon abundance was measured by ELISA using pancreatic homogenates. The molecules involved in insulin signaling pathway (IRc, IRS1, IRS2, mTOR) in islet were examined with immunohistochemistry and immunoblotting. The effect of IRS1 silencing on mTOR and apoptosis were examined on NIT cells(β cell line)with immunoblotting and flow cytometry. RESULTS HE and immunofluorescence staining demonstrated that the normal structure of islet was deformed in HFD mice but preserved by exenatide. Insulin and glucagon contents were increased in islet and blood stream of HFD mice (HFD vs. Control, p<0.05) but resumed by exenatide. Meanwhile the expressions of IRc, IRS-1, mTOR from insulin signaling pathway and β cell apoptosis in the pancreas were significantly reduced (p<0.05) by HFD but reversed by exenatide. CONCLUSION Exenatide improved insulin signaling pathway that was suppressed by HFD in mice islet. Our results reveal a novel mechanism of the protective effects of GLP-1 on β cell function.
Collapse
Affiliation(s)
- Heng Yang
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Shuo Wang
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Yingchun Ye
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Min Xie
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Yubin Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Hong Jin
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Jing Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China.
| |
Collapse
|
12
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
13
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
14
|
Enhanced skeletal muscle insulin sensitivity after acute resistance-type exercise is upregulated by rapamycin-sensitive mTOR complex 1 inhibition. Sci Rep 2020; 10:8509. [PMID: 32444657 PMCID: PMC7244536 DOI: 10.1038/s41598-020-65397-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023] Open
Abstract
Acute aerobic exercise (AE) increases skeletal muscle insulin sensitivity for several hours, caused by acute activation of AMP-activated protein kinase (AMPK). Acute resistance exercise (RE) also activates AMPK, possibly improving insulin-stimulated glucose uptake. However, RE-induced rapamycin-sensitive mechanistic target of rapamycin complex 1 (mTORC1) activation is higher and has a longer duration than after AE. In molecular studies, mTORC1 was shown to be upstream of insulin receptor substrate 1 (IRS-1) Ser phosphorylation residue, inducing insulin resistance. Therefore, we hypothesised that although RE increases insulin sensitivity through AMPK activation, prolonged mTORC1 activation after RE reduces RE-induced insulin sensitising effect. In this study, we used an electrical stimulation-induced RE model in rats, with rapamycin as an inhibitor of mTORC1 activation. Our results showed that RE increased insulin-stimulated glucose uptake following AMPK signal activation. However, mTORC1 activation and IRS-1 Ser632/635 and Ser612 phosphorylation were elevated 6 h after RE, with concomitant impairment of insulin-stimulated Akt signal activation. By contrast, rapamycin inhibited these prior exercise responses. Furthermore, increases in insulin-stimulated skeletal muscle glucose uptake 6 h after RE were higher in rats with rapamycin treatment than with placebo treatment. Our data suggest that mTORC1/IRS-1 signaling inhibition enhances skeletal muscle insulin-sensitising effect of RE.
Collapse
|
15
|
Edick AM, Auclair O, Burgos SA. Role of Grb10 in mTORC1-dependent regulation of insulin signaling and action in human skeletal muscle cells. Am J Physiol Endocrinol Metab 2020; 318:E173-E183. [PMID: 31794259 DOI: 10.1152/ajpendo.00025.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that binds to the insulin receptor, upon which insulin signaling and action are thought to be inhibited. Grb10 is also a substrate for the mechanistic target of rapamycin complex 1 (mTORC1) that mediates its feedback inhibition on phosphatidylinositide 3-kinase (PI3K)/Akt signaling. To characterize the function of Grb10 and its regulation by mTORC1 in human muscle, primary skeletal muscle cells were isolated from healthy lean young men and then induced to differentiate into myotubes. Knockdown of Grb10 enhanced insulin-induced PI3K/Akt signaling and glucose uptake in myotubes, reinforcing the notion underlying its function as a negative regulator of insulin action in human muscle. The increased insulin responsiveness in Grb10-silenced myotubes was associated with a higher abundance of the insulin receptor. Furthermore, insulin and amino acids independently and additively stimulated phosphorylation of Grb10 at Ser476. However, acute inhibition of mTORC1 with rapamycin blocked Grb10 Ser476 phosphorylation and repressed a negative-feedback loop on PI3K/Akt signaling that increased myotube responsiveness to insulin. Chronic rapamycin treatment reduced Grb10 protein abundance in conjunction with increased insulin receptor protein levels. Based on these findings, we propose that mTORC1 controls PI3K/Akt signaling through modulation of insulin receptor abundance by Grb10. These findings have potential implications for obesity-linked insulin resistance, as well as clinical use of mTORC1 inhibitors.
Collapse
Affiliation(s)
- Ashlin M Edick
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Olivia Auclair
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sergio A Burgos
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Waise TMZ, Rasti M, Duca FA, Zhang SY, Bauer PV, Rhodes CJ, Lam TKT. Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. Nat Commun 2019; 10:714. [PMID: 30755615 PMCID: PMC6372624 DOI: 10.1038/s41467-019-08582-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/16/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR. The mechanistic target of rapamycin (TOR) functions as an energy sensor and contributes to the control of glucose homeostasis. Here, the authors show that mTOR in the upper small intestine regulates hepatic glucose production and is required for the glucose lowering effect of metformin.
Collapse
Affiliation(s)
- T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Mozhgan Rasti
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, 60637, USA.,MedImmune LLC, Gaithersburg, MD, 20878, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
17
|
Dungan CM, Gordon BS, Williamson DL. Acute treadmill exercise discriminately improves the skeletal muscle insulin-stimulated growth signaling responses in mice lacking REDD1. Physiol Rep 2019; 7:e14011. [PMID: 30806987 PMCID: PMC6383112 DOI: 10.14814/phy2.14011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
A loss of the regulated in development and DNA damage 1 (REDD1) hyperactivates mechanistic Target of Rapamycin Complex 1 (mTORC1) reducing insulin-stimulated insulin signaling, which could provide insight into mechanisms of insulin resistance. Although aerobic exercise acutely inhibits mTORC1 signaling, improvements in insulin-stimulated signaling are exhibited. The goal of this study was to determine if a single bout of treadmill exercise was sufficient to improve insulin signaling in mice lacking REDD1. REDD1 wildtype (WT) and REDD1 knockout (KO) mice were acutely exercised on a treadmill (30 min, 20 m/min, 5% grade). A within animal noninsulin-to-insulin-stimulated percent change in skeletal muscle insulin-stimulated kinases (IRS-1, ERK1/2, Akt), growth signaling activation (4E-BP1, S6K1), and markers of growth repression (REDD1, AMPK, FOXO1/3A) was examined, following no exercise control or an acute bout of exercise. Unlike REDD1 KO mice, REDD1 WT mice exhibited an increase (P < 0.05) in REDD1 following treadmill exercise. However, both REDD1 WT and KO mice exhibited an increase (P < 0.05) AMPK phosphorylation, and a subsequent reduction (P < 0.05) in mTORC1 signaling after the exercise bout versus nonexercising WT or KO mice. Exercise increased (P < 0.05) the noninsulin-to-insulin-stimulated percent change phosphorylation of mTORC1, ERK1/2, IRS-1, and Akt on S473 in REDD1 KO mice when compared to nonexercised KO mice. However, there was no change in the noninsulin-to-insulin-stimulated percent change activation of Akt on T308 and FOXO1/3A in the KO when compared to WT or KO mouse muscle after exercise. Our data show that a bout of treadmill exercise discriminately improves insulin-stimulated signaling in the absence of REDD1.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Rehabilitation SciencesCollege of Health SciencesUniversity of KentuckyLexingtonKentucky
| | - Bradley S. Gordon
- Department of Nutrition, Food, and Exercise SciencesCollege of Human SciencesFlorida State UniversityTallahasseeFlorida
| | - David L. Williamson
- Kinesiology ProgramSchool of Behavioral Sciences and EducationPenn State HarrisburgMiddletownPennsylvania
| |
Collapse
|
18
|
Brewer PD, Romenskaia I, Mastick CC. A high-throughput chemical-genetics screen in murine adipocytes identifies insulin-regulatory pathways. J Biol Chem 2018; 294:4103-4118. [PMID: 30591588 DOI: 10.1074/jbc.ra118.006986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical-genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries. We identified, confirmed, and validated 64 activators and 65 inhibitors that acutely increase or rapidly decrease cell-surface Glut4 in adipocytes stimulated with submaximal insulin concentrations. These agents were grouped by target, chemical class, and mechanism of action. All groups contained multiple hits from a single drug class, and several comprised multiple structurally unrelated hits for a single target. Targets include the β-adrenergic and adenosine receptors. Agonists of these receptors increased and inverse agonists/antagonists decreased cell-surface Glut4 independently of insulin. Additional activators include insulin sensitizers (thiazolidinediones), insulin mimetics, dis-inhibitors (the mTORC1 inhibitor rapamycin), cardiotonic steroids (the Na+/K+-ATPase inhibitor ouabain), and corticosteroids (dexamethasone). Inhibitors include heterocyclic amines (tricyclic antidepressants) and 21 natural product supplements and herbal extracts. Mechanisms of action include effects on Glut4 trafficking, signal transduction, inhibition of protein synthesis, and dissipation of proton gradients. Two pathways that acutely regulate Glut4 translocation were discovered: de novo protein synthesis and endocytic acidification. The mechanism of action of additional classes of activators (tanshinones, dalbergiones, and coumarins) and inhibitors (flavonoids and resveratrol) remains to be determined. These tools are among the most sensitive, responsive, and reproducible insulin-activity assays described to date.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Irina Romenskaia
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| |
Collapse
|
19
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
20
|
Blanchard PG, Moreira RJ, Castro É, Caron A, Côté M, Andrade ML, Oliveira TE, Ortiz-Silva M, Peixoto AS, Dias FA, Gélinas Y, Guerra-Sá R, Deshaies Y, Festuccia WT. PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism 2018; 89:27-38. [PMID: 30316815 DOI: 10.1016/j.metabol.2018.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation. METHODS Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis. RESULTS Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPARγ copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPARγ deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. CONCLUSIONS PPARγ, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPARγ agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation.
Collapse
Affiliation(s)
- Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Caron
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Marie Côté
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - France Anne Dias
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Gélinas
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Renata Guerra-Sá
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Deshaies
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Elevated Carbohydrate Response Element-Binding Protein Beta (ChREBPβ) and Thioredoxin Interacting Protein (TXNIP) Levels in Human Adipocytes Differentiated in High Glucose Concentrations. Can J Diabetes 2018; 43:215-220. [PMID: 30551936 DOI: 10.1016/j.jcjd.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Obesity and type 2 diabetes often coexist. The effect of hyperglycemia on adipose tissue is, therefore, of interest. Although studies have shown that high glucose (HG) concentrations do not inhibit adipocyte differentiation, the resulting adipocyte phenotype has not been investigated. In particular, the levels of the glucose-responsive transcription factor carbohydrate-responsive response element binding protein (ChREBP) isoforms have not been assessed. METHODS Human preadipocytes were differentiated into adipocytes in either normal glucose (NG) or HG conditions. RNA and protein analyses were used to measure the expression of ChREBP isoforms, thioredoxin interacting protein (TXNIP) and lipogenic genes. Insulin-stimulated glucose uptake was measured. RESULTS HG- vs. NG-differentiated adipocytes expressed more ChREBPβ and more TXNIP at the mRNA and protein levels. There was no change in lipogenic gene expression. HG- vs. NG-differentiated adipocytes displayed an inhibition of insulin-stimulated glucose uptake. CONCLUSIONS HG-differentiated human adipocytes have distinct molecular differences and are insulin resistant. More studies are warranted to investigate potential mechanisms linking changes in ChREBPβ and TXNIP to insulin responsiveness.
Collapse
|
22
|
Breuker C, Amouzou C, Fabre O, Lambert K, Seyer P, Bourret A, Salehzada T, Mercier J, Sultan A, Bisbal C. Decreased RNF41 expression leads to insulin resistance in skeletal muscle of obese women. Metabolism 2018; 83:81-91. [PMID: 29410345 DOI: 10.1016/j.metabol.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 01/30/2023]
Abstract
CONTEXT Toll-like receptor 4 (TLR4) activation contributes to obesity-associated insulin resistance in skeletal muscles (SM). TLR4 signaling involves two pathways: the myeloid differentiation primary response gene 88 (MyD88) leading to inflammatory cytokines production and the toll/interleukin-1 receptor domain-containing adapter-inducing interferon (IFN) I (TRIF)-dependent pathways leading to type 1 interferon (IFNI) and interferon stimulated genes (ISG) expression. The E3 ubiquitin ligase RNF41 allows the preferential activation of the TRIF-IFNI pathway; however, its role in insulin response has not been reported. METHODS We measured RNF41 level and IFNI pathway activation (ISG expression) in SM biopsies of obese insulin sensitive (OIS) and obese insulin resistant (OIR) women. Then we isolated and differentiated in myotubes, primary human SM cell progenitors from OIS and OIR SM biopsies. We modulated RNF41 and ISG expression in these myotubes and investigated their effects on insulin response. RESULTS RNF41 expression is down-regulated in vivo in OIR SM and myotubes compared to OIS SM and myotubes. TLR4 activation with palmitate induces TRIF-IFNI pathway and ISG in OIS myotubes but not in OIR myotubes. Inhibition of RNF41 expression with siRNF41 in OIS myotubes treated with palmitate attenuates insulin response, IFNI pathway activation and ISG induction, mimicking OIR phenotype. Further, overexpression of RNF41 in OIR myotubes increases insulin response and ISG expression. Exposure to IFNI or to its inducer polyinosinic-polycytidylic acid, restores ISG expression and insulin sensitivity in OIR myotubes and OIS myotubes transfected with siRNF41. CONCLUSION Our results identify RNF41 as essential to IFNI pathway activation in order to maintain muscle insulin sensitivity during human obesity.
Collapse
Affiliation(s)
- Cyril Breuker
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France; Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| | - Cacylde Amouzou
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Odile Fabre
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Pascal Seyer
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Annick Bourret
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Tamim Salehzada
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France; Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| | - Ariane Sultan
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France; Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France.
| |
Collapse
|
23
|
Abstract
The hexosamine biosynthetic pathway (HBP) integrates glucose, amino acids, fatty acids and nucleotides metabolisms for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is the nucleotide sugar donor for O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) processes. O-GlcNAc transferase (OGT) is the enzyme which transfers the N-acetylglucosamine (O-GlcNAc) residue onto target proteins. Several studies previously showed that glucose metabolism dysregulations associated with obesity, diabetes or cancer correlated with an increase of OGT expression and global O-GlcNAcylation levels. Moreover, these diseases present an increased activation of the nutrient sensing mammalian target of rapamycin (mTOR) pathway. Other works demonstrate that mTOR regulates protein O-GlcNAcylation in cancer cells through stabilization of OGT. In this context, we studied the cross-talk between these two metabolic sensors in vivo in obese mice predisposed to diabetes and in vitro in normal and colon cancer cells. We report that levels of OGT and O-GlcNAcylation are increased in obese mice colon tissues and colon cancer cells and are associated with a higher activation of mTOR signaling. In parallel, treatments with mTOR regulators modulate OGT and O-GlcNAcylation levels in both normal and colon cancer cells. However, deregulation of O-GlcNAcylation affects mTOR signaling activation only in cancer cells. Thus, a crosstalk exists between O-GlcNAcylation and mTOR signaling in contexts of metabolism dysregulation associated to obesity or cancer.
Collapse
|
24
|
Ardestani A, Lupse B, Kido Y, Leibowitz G, Maedler K. mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metab 2018; 27:314-331. [PMID: 29275961 DOI: 10.1016/j.cmet.2017.11.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of metabolic and nutrient cues that integrates environmental inputs into downstream signaling pathways to control cellular metabolism, growth, and survival. While numerous in vitro and in vivo studies reported the positive functions of mTORC1 in the regulation of β cell survival and proliferation under physiological conditions, more recent work demonstrates the opposite in the long term; this is exemplified by the constitutive inappropriate hyper-activation of mTORC1 in diabetic islets or β cells under conditions of increased β cell stress and metabolic demands. These recent findings uncover mTORC1's importance as an emerging significant player in the development and progression of β cell failure in type 2 diabetes and suggest that mTORC1 may act as a "double edge sword" in the regulation of β cell mass and function in response to metabolic stress such as nutrient overload and insulin resistance.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Gil Leibowitz
- Endocrinology and Metabolism Service and the Hadassah Diabetes Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
25
|
Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicol In Vitro 2017; 48:1-10. [PMID: 29278758 DOI: 10.1016/j.tiv.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Leucine (Leu) is an essential branched-chain amino acid, present in dairy products, which has been investigated for its important role in cell signaling. The effects of Leu on several kinds of cells have been studied, altough little is known on its action upon bone cells and cell proliferation. Thus, the aim of this study is to investigate the effects of Leu supplementation on the proliferation of pre-osteoblasts from MC3T3-E1 lineage. MC3T3-E1 cells were kept in Alpha medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimitotic. Cells were treated during 48h by adding 50μM of Leu, which corresponds to a 12.5% increase of the amino acid in the culture medium. The evaluation of viability and proliferation of cultured cells was performed using Trypan Blue dye. In order to identify the mechanisms related to the decreased cellular proliferation, assays were performed to assess cytotoxicity, apotosis, oxidative stress, inflammation, autophagy, senescence and DNA damage. Results showed that Leu supplementation decreased cell proliferation by 40% through mechanisms not related to cell necrosis, apoptosis, oxidative stress, autophagy or inhibition of the mTORC1 pathway. On the other hand, Leu supplementation caused DNA damage. In conclusion, Leu caused a negative impact on bone cell proliferation by inducing cell senescence through DNA damage.
Collapse
|
26
|
Loss of hepatic DEPTOR alters the metabolic transition to fasting. Mol Metab 2017; 6:447-458. [PMID: 28462079 PMCID: PMC5404102 DOI: 10.1016/j.molmet.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Objective The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulates growth and metabolism. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to reduce their activity. Whether DEPTOR loss affects metabolism and organismal growth in vivo has never been tested. Methods We have generated a conditional transgenic mouse allowing the tissue-specific deletion of DEPTOR. This model was crossed with CMV-cre mice or Albumin-cre mice to generate either whole-body or liver-specific DEPTOR knockout (KO) mice. Results Whole-body DEPTOR KO mice are viable, fertile, normal in size, and do not display any gross physical and metabolic abnormalities. To circumvent possible compensatory mechanisms linked to the early and systemic loss of DEPTOR, we have deleted DEPTOR specifically in the liver, a tissue in which DEPTOR protein is expressed and affected in response to mTOR activation. Liver-specific DEPTOR null mice showed a reduction in circulating glucose upon fasting versus control mice. This effect was not associated with change in hepatic gluconeogenesis potential but was linked to a sustained reduction in circulating glucose during insulin tolerance tests. In addition to the reduction in glycemia, liver-specific DEPTOR KO mice had reduced hepatic glycogen content when fasted. We showed that loss of DEPTOR cell-autonomously increased oxidative metabolism in hepatocytes, an effect associated with increased cytochrome c expression but independent of changes in mitochondrial content or in the expression of genes controlling oxidative metabolism. We found that liver-specific DEPTOR KO mice showed sustained mTORC1 activation upon fasting, and that acute treatment with rapamycin was sufficient to normalize glycemia in these mice. Conclusion We propose a model in which hepatic DEPTOR accelerates the inhibition of mTORC1 during the transition to fasting to adjust metabolism to the nutritional status. Whole-body DEPTOR KO mice are viable and do not display abnormalities. Liver-specific DEPTOR KO mice are hypoglycemic when fasted. Loss of DEPTOR promotes mTORC1 and increases oxidative metabolism. Rapamycin corrects hypoglycemia in liver-specific DEPTOR KO mice.
Collapse
|
27
|
Cross-talks via mTORC2 can explain enhanced activation in response to insulin in diabetic patients. Biosci Rep 2017; 37:BSR20160514. [PMID: 27986865 PMCID: PMC5271673 DOI: 10.1042/bsr20160514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of insulin resistance in Type 2 diabetes have been
extensively studied in primary human adipocytes, and mathematical modelling has
clarified the central role of attenuation of mammalian target of rapamycin
(mTOR) complex 1 (mTORC1) activity in the diabetic state. Attenuation of mTORC1
in diabetes quells insulin-signalling network-wide, except for the mTOR in
complex 2 (mTORC2)-catalysed phosphorylation of protein kinase B (PKB) at
Ser473 (PKB-S473P), which is increased. This unique increase
could potentially be explained by feedback and interbranch cross-talk signals.
To examine if such mechanisms operate in adipocytes, we herein analysed data
from an unbiased phosphoproteomic screen in 3T3-L1 adipocytes. Using a
mathematical modelling approach, we showed that a negative signal from
mTORC1-p70 S6 kinase (S6K) to rictor–mTORC2 in combination with a
positive signal from PKB to SIN1–mTORC2 are compatible with the
experimental data. This combined cross-branch signalling predicted an increased
PKB-S473P in response to attenuation of mTORC1 – a distinguishing feature
of the insulin resistant state in human adipocytes. This aspect of insulin
signalling was then verified for our comprehensive model of insulin signalling
in human adipocytes. Introduction of the cross-branch signals was compatible
with all data for insulin signalling in human adipocytes, and the resulting
model can explain all data network-wide, including the increased PKB-S473P in
the diabetic state. Our approach was to first identify potential mechanisms in
data from a phosphoproteomic screen in a cell line, and then verify such
mechanisms in primary human cells, which demonstrates how an unbiased approach
can support a direct knowledge-based study.
Collapse
|
28
|
Ferreira MSS, Araújo TS, Alves AC, Porto LCJ, Schinckel AP, Rambo ZJ, Cantarelli VS, Zangeronimo MG, Sousa RV. Ractopamine with dietary lysine concentrations above basal requirements of finishing barrows improves growth performance, carcass traits and modifies the mTor signalling pathway. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A 28-day study was conducted to evaluate the effects of three step-up levels of ractopamine hydrochloride (RAC) together with two additional levels of standardised ileal digestible lysine (Lys) above the basal requirements on growth performance, carcass characteristics and the mechanism of action on adipose and muscle tissue. In all, 108 finishing pigs (initial bodyweight 75.37 kg ± 2.88) were used for growth data and 54 pigs for carcass data. Samples from 18 pigs were used for the molecular study. Pigs were blocked by initial bodyweight and allotted to one of the following nine treatments: negative control (NC) without addition of RAC or Lys supplementation, constant 7.5 mg/kg RAC, 5 mg/kg RAC for 14 days, followed by 10 mg/kg for 14 days (Step-up 1), 5 mg/kg RAC for 21 days, followed by 10 mg/kg for 7 days (Step-up 2) and 5 mg/kg RAC for 7 days followed by 10 mg/kg for 21 days (Step up 3); on constant and step-up treatments were added 15% or 30% Lys above the basal level, giving a 4 × 2 + 1 factorial with six replicates. Loin muscle and fat tissue were collected for carcass-characteristic analysis and western blotting for p-AKT, p-P70S6K and carnitine palmitoyltransferase I. Feeding RAC increased gain to feed ratio and efficiency of energy utilisation (EF) from Day 0 to Day 13 (P < 0.05) compared with NC. From Day 14 to Day 27, greater average daily gain (ADG) was observed in RAC-treated animals (P < 0.05), except in the Step-up 2 with 30% additional Lys. During the second half of the trial, RAC positively affected ADG, gain to feed ratio and EF (P < 0.01), while a Step-1 versus Step-2 effect was observed for ADG (P < 0.03). For the overall period, RAC-treated pigs had greater ADG than did NC pigs (P < 0.05). An average of 8.1% improvement on feed efficiency and 30% improvement on EF were observed for RAC-fed pigs in comparison to NC pigs (P < 0.05). Chilled carcass weight and loin eye area were increased in pigs fed RAC (P < 0.01). Western blotting showed greater p-P70S6K in muscle samples from pigs fed RAC with 15% additional Lys than in those from NC pigs (P < 0.10). RAC was effective at improving efficiency of production. Lys supplementation of 15% was enough for optimal performance of the pigs in the present study; however, step-up programs did not outperform RAC-constant programs. Results of the present study suggest that RAC stimulates protein synthesis through the mTOR signalling pathway.
Collapse
|
29
|
Lipina C, Hundal HS. Is REDD1 a Metabolic Éminence Grise? Trends Endocrinol Metab 2016; 27:868-880. [PMID: 27613400 PMCID: PMC5119498 DOI: 10.1016/j.tem.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023]
Abstract
Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
30
|
Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Front Pharmacol 2016; 7:395. [PMID: 27826244 PMCID: PMC5079084 DOI: 10.3389/fphar.2016.00395] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR), via its two distinct multiprotein complexes, mTORC1, and mTORC2, plays a central role in the regulation of cellular growth, metabolism, and migration. A dysregulation of the mTOR pathway has in turn been implicated in several pathological conditions including insulin resistance and cancer. Overactivation of mTORC1 and disruption of mTORC2 function have been reported to induce insulin resistance. On the other hand, aberrant mTORC1 and mTORC2 signaling via either genetic alterations or increased expression of proteins regulating mTOR and its downstream targets have contributed to cancer development. These underlined the attractiveness of mTOR as a therapeutic target to overcome both insulin resistance and cancer. This review summarizes the evidence supporting the notion of intermittent, low dose rapamycin for treating insulin resistance. It further highlights recent data on the continuous use of high dose rapamycin analogs and related second generation mTOR inhibitors for cancer eradication, for overcoming chemoresistance and for tumor stem cell suppression. Within these contexts, the potential challenges associated with the use of mTOR inhibitors are also discussed.
Collapse
Affiliation(s)
- Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Louis Z Wang
- Department of Pharmacy, Faculty of Science, National University of SingaporeSingapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sheng Hsuan Tseng
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Shang Jun Loo
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
31
|
Liu Z, Gan L, Liu G, Chen Y, Wu T, Feng F, Sun C. Sirt1 decreased adipose inflammation by interacting with Akt2 and inhibiting mTOR/S6K1 pathway in mice. J Lipid Res 2016; 57:1373-81. [PMID: 27317762 DOI: 10.1194/jlr.m063537] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Sirtuin type 1 (Sirt1) and protein kinase B (Akt2) are associated with development of obesity and inflammation, but the molecular mechanisms of Sirt1 and Akt2 interaction on adipose inflammation remain unclear. To explore these mechanisms, a mouse model was used. Mice were fed with a high-fat diet (HFD) for 8 weeks, with interventions of resveratrol (RES) or nicotinamide (NAM) during the last 15 days. The HFD reduced Sirt1 mRNA in adipose tissue and elevated interleukin-6 (IL-6) expression. RES reduced the adipose tissue weight, increased the Sirt1 mRNA level, and reduced both mRNA and protein levels of IL-6, MCP-1, inducible nitric oxide synthase, and TNF-α by inhibiting phosphorylation of Akt2 in adipose tissue. Additionally, macrophage type I marker genes were reduced while macrophage type II marker genes were elevated by RES addition. Moreover, activation of Akt2 signal by using insulin significantly blunted the inhibitory effect of RES on adipose inflammation. Immunoprecipitation assay demonstrated that RES enhances the protein-protein interaction between Sirt1 and Akt2, but NAM inhibits this interaction. Furthermore, Sirt1 significantly reduced the levels of raptor and inactivated mammalian target of rapamycin (mTOR)C1 signal by interacting with Akt2, and confirmed that RES attenuated adipose inflammation by inhibiting the mTOR/S6K1 pathway via rapamycin.
Collapse
Affiliation(s)
- Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guannv Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhe Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Pentassuglia L, Heim P, Lebboukh S, Morandi C, Xu L, Brink M. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes. Am J Physiol Endocrinol Metab 2016; 310:E782-94. [PMID: 26979522 DOI: 10.1152/ajpendo.00259.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Gene Knockdown Techniques
- Glucose/metabolism
- Heart Ventricles/cytology
- Hypoglycemic Agents/pharmacology
- Immunoprecipitation
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Mechanistic Target of Rapamycin Complex 2
- Mice
- Mice, Inbred C57BL
- Multiprotein Complexes/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Neuregulin-1/pharmacology
- Phosphatidylinositol 3-Kinases/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering
- Rats
- Receptor, ErbB-2/drug effects
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-4/drug effects
- Receptor, ErbB-4/genetics
- Receptor, ErbB-4/metabolism
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Laura Pentassuglia
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Philippe Heim
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sonia Lebboukh
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christian Morandi
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
33
|
Guridi M, Kupr B, Romanino K, Lin S, Falcetta D, Tintignac L, Rüegg MA. Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. Skelet Muscle 2016; 6:13. [PMID: 27004103 PMCID: PMC4800774 DOI: 10.1186/s13395-016-0084-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. Results We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. Conclusions Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0084-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maitea Guridi
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Barbara Kupr
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Klaas Romanino
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Denis Falcetta
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lionel Tintignac
- Biozentrum, University of Basel, 4056 Basel, Switzerland ; Present address: Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Shum M, Bellmann K, St-Pierre P, Marette A. Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice. Diabetologia 2016; 59:592-603. [PMID: 26733005 DOI: 10.1007/s00125-015-3839-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal S6 kinase (S6K)1 pathway is overactivated in obesity, leading to inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling and insulin resistance. However, chronic mTORC1 inhibition by rapamycin impairs glucose homeostasis because of robust induction of liver gluconeogenesis. Here, we compared the effect of rapamycin with that of the selective S6K1 inhibitor, PF-4708671, on glucose metabolism in vitro and in vivo. METHODS We used L6 myocytes and FAO hepatocytes to explore the effect of PF-4708671 on the regulation of glucose uptake, glucose production and insulin signalling. We also treated high-fat (HF)-fed obese mice for 7 days with PF-4708671 in comparison with rapamycin to assess glucose tolerance, insulin resistance and insulin signalling in vivo. RESULTS Chronic rapamycin treatment induced insulin resistance and impaired glucose metabolism in hepatic and muscle cells. Conversely, chronic S6K1 inhibition with PF-4708671 reduced glucose production in hepatocytes and enhanced glucose uptake in myocytes. Whereas rapamycin treatment inhibited Akt phosphorylation, PF-4708671 increased Akt phosphorylation in both cell lines. These opposite effects of the mTORC1 and S6K1 inhibitors were also observed in vivo. Indeed, while rapamycin treatment induced glucose intolerance and failed to improve Akt phosphorylation in liver and muscle of HF-fed mice, PF-4708671 treatment improved glucose tolerance and increased Akt phosphorylation in metabolic tissues of these obese mice. CONCLUSIONS/INTERPRETATION Chronic S6K1 inhibition by PF-4708671 improves glucose homeostasis in obese mice through enhanced Akt activation in liver and muscle. Our results suggest that specific S6K1 blockade is a valid pharmacological approach to improve glucose disposal in obese diabetic individuals.
Collapse
Affiliation(s)
- Michael Shum
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5
| | - Kerstin Bellmann
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5
| | - Philippe St-Pierre
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5
| | - André Marette
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5.
| |
Collapse
|
35
|
Ma Y, Gao J, Yin J, Gu L, Liu X, Chen S, Huang Q, Lu H, Yang Y, Zhou H, Wang Y, Peng Y. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue. J Proteome Res 2016; 15:628-37. [PMID: 26767403 DOI: 10.1021/acs.jproteome.5b01030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM.
Collapse
Affiliation(s)
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | |
Collapse
|
36
|
Williamson DL, Dungan CM, Mahmoud AM, Mey JT, Blackburn BK, Haus JM. Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R855-63. [PMID: 26269521 PMCID: PMC4666944 DOI: 10.1152/ajpregu.00285.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
Abstract
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
37
|
Paradoxical effect of rapamycin on inflammatory stress-induced insulin resistance in vitro and in vivo. Sci Rep 2015; 5:14959. [PMID: 26449763 PMCID: PMC4598825 DOI: 10.1038/srep14959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is closely related to inflammatory stress and the mammalian target of rapamycin/S6 kinase (mTOR/S6K) pathway. The present study investigated whether rapamycin, a specific inhibitor of mTOR, ameliorates inflammatory stress-induced insulin resistance in vitro and in vivo. We used tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) stimulation in HepG2 hepatocytes, C2C12 myoblasts and 3T3-L1 adipocytes and casein injection in C57BL/6J mice to induce inflammatory stress. Our results showed that inflammatory stress impairs insulin signaling by reducing the expression of total IRS-1, p-IRS-1 (tyr632), and p-AKT (ser473); it also activates the mTOR/S6K signaling pathway both in vitro and in vivo. In vitro, rapamycin treatment reversed inflammatory cytokine-stimulated IRS-1 serine phosphorylation, increased insulin signaling to AKT and enhanced glucose utilization. In vivo, rapamycin treatment also ameliorated the impaired insulin signaling induced by inflammatory stress, but it induced pancreatic β-cell apoptosis, reduced pancreatic β-cell function and enhanced hepatic gluconeogenesis, thereby resulting in hyperglycemia and glucose intolerance in casein-injected mice. Our results indicate a paradoxical effect of rapamycin on insulin resistance between the in vitro and in vivo environments under inflammatory stress and provide additional insight into the clinical application of rapamycin.
Collapse
|
38
|
Watanabe M, Hisatake M, Fujimori K. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4979-4987. [PMID: 25945786 DOI: 10.1021/acs.jafc.5b00821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.
Collapse
Affiliation(s)
- Marina Watanabe
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mitsuhiro Hisatake
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
39
|
Chao H, Li H, Grande R, Lira V, Yan Z, Harris TE, Li C. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells. Mol Endocrinol 2015; 29:831-41. [PMID: 25875045 DOI: 10.1210/me.2014-1245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 2 corticotropin-releasing factor receptor (CRFR2) is expressed in skeletal muscle and stimulation of the receptor has been shown to inhibit the effect of insulin on glucose uptake in muscle cells. Currently, little is known about the mechanisms underlying this process. In this study, we first showed that both in vivo and in vitro CRFR2 expression in muscle was closely correlated with insulin sensitivity, with elevated receptor levels observed in insulin resistant muscle cells. Stimulation of CRFR2 by urocortin 2 (Ucn 2), a CRFR2-selective ligand, in C2C12 myotubes greatly attenuated insulin-induced glucose uptake. The inhibitory effect of CRFR2 signaling required cAMP production and is involved the mammalian target of rapamycine pathway, as rapamycin reversed the inhibitory effect of CRFR2 stimulation on insulin-induced glucose uptake. Moreover, stimulation of CRFR2 failed to inhibit glucose uptake in muscle cells induced by platelet-derived growth factor, which, similar to insulin, signals through Akt-mediated pathway but is independently of insulin receptor substrate (IRS) proteins to promote glucose uptake. This result argues that CRFR2 signaling modulates insulin's action likely at the levels of IRS. Consistent with this notion, Ucn 2 reduced insulin-induced tyrosine phosphorylation of IRS-1, and treatment with rapamycin reversed the inhibitory effect of Ucn 2 on IRS-1 and Akt phosphorylation. In conclusion, the inhibitory effect of CRFR2 signaling on insulin action is mediated by cAMP in a mammalian target of rapamycine-dependent manner, and IRS-1 is a key nodal point where CRFR2 signaling modulates insulin-stimulated glucose uptake in muscle cells.
Collapse
Affiliation(s)
- Hongxia Chao
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Haochen Li
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Rebecca Grande
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Vitor Lira
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Zhen Yan
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Thurl E Harris
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Chien Li
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
40
|
Singh M, Shin YK, Yang X, Zehr B, Chakrabarti P, Kandror KV. 4E-BPs Control Fat Storage by Regulating the Expression of Egr1 and ATGL. J Biol Chem 2015; 290:17331-8. [PMID: 25814662 DOI: 10.1074/jbc.m114.631895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/04/2023] Open
Abstract
Early growth response transcription factor Egr1 controls multiple aspects of cell physiology and metabolism. In particular, Egr1 suppresses lipolysis and promotes fat accumulation in adipocytes by inhibiting the expression of adipose triglyceride lipase. According to current dogma, regulation of the Egr1 expression takes place primarily at the level of transcription. Correspondingly, treatment of cultured adipocytes with insulin stimulates expression of Egr1 mRNA and protein. Unexpectedly, the MEK inhibitor PD98059 completely blocks insulin-stimulated increase in the Egr1 mRNA but has only a moderate effect on the Egr1 protein. At the same time, mTORC1 inhibitors rapamycin and PP242 suppress expression of the Egr1 protein and have an opposite effect on the Egr1 mRNA. Mouse embryonic fibroblasts with genetic ablations of TSC2 or 4E-BP1/2 express less Egr1 mRNA but more Egr1 protein than wild type controls. (35)S-labeling has confirmed that translation of the Egr1 mRNA is much more effective in 4E-BP1/2-null cells than in control. A selective agonist of the CB1 receptors, ACEA, up-regulates Egr1 mRNA, but does not activate mTORC1 and does not increase Egr1 protein in adipocytes. These data suggest that although insulin activates both the Erk and the mTORC1 signaling pathways in adipocytes, regulation of the Egr1 expression takes place predominantly via the mTORC1/4E-BP-mediated axis. In confirmation of this model, we show that 4E-BP1/2-null MEFs express less ATGL and accumulate more fat than control cells, while knock down of Egr1 in 4E-BP1/2-null MEFs increases ATGL expression and decreases fat storage.
Collapse
Affiliation(s)
- Maneet Singh
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yu-Kyong Shin
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Xiaoqing Yang
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Brad Zehr
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Partha Chakrabarti
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | | |
Collapse
|
41
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Zarfeshani A, Ngo S, Sheppard AM. Leucine alters hepatic glucose/lipid homeostasis via the myostatin-AMP-activated protein kinase pathway - potential implications for nonalcoholic fatty liver disease. Clin Epigenetics 2014; 6:27. [PMID: 25859286 PMCID: PMC4391119 DOI: 10.1186/1868-7083-6-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022] Open
Abstract
Background Elevated plasma levels of the branched-chain amino acid (BCAA) leucine are associated with obesity and insulin resistance (IR), and thus the propensity for type 2 diabetes mellitus development. However, other clinical studies suggest the contradictory view that leucine may in fact offer a degree of protection against metabolic syndrome. Aiming to resolve this apparent paradox, we assessed the effect of leucine supplementation on the metabolism of human hepatic HepG2 cells. Results We demonstrate that pathophysiological leucine appears to be antagonistic to insulin, promotes glucose uptake (and not glycogen synthesis), but results in hepatic cell triglyceride (TG) accumulation. Further, we provide evidence that myostatin (MSTN) regulation of AMP-activated protein kinase (AMPK) is a key pathway in the metabolic effects elicited by excess leucine. Finally, we report associated changes in miRNA expression (some species previously linked to metabolic disease etiology), suggesting that epigenetic processes may contribute to these effects. Conclusions Collectively, our observations suggest leucine may be both ‘friend’ and ‘foe’ in the context of metabolic syndrome, promoting glucose sequestration and driving lipid accumulation in liver cells. These observations provide insight into the clinical consequences of excess plasma leucine, particularly for hyperglycemia, IR and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Aida Zarfeshani
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton Auckland, 1023 New Zealand
| | - Sherry Ngo
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton Auckland, 1023 New Zealand
| | - Allan M Sheppard
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton Auckland, 1023 New Zealand
| |
Collapse
|
43
|
Dai W, Panserat S, Terrier F, Seiliez I, Skiba-Cassy S. Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2014; 307:R1231-8. [DOI: 10.1152/ajpregu.00166.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our aim was to investigate the potential role of TOR (target of rapamycin) signaling pathway in the regulation of hepatic glucose metabolism in rainbow trout. Fasted fish were first treated with a single intraperitoneal injection of rapamycin or vehicle and then submitted to a second intraperitoneal administration of glucose 4 h later. Our results revealed that intraperitoneal administration of glucose induced hyperglycemia for both vehicle and rapamycin treatments, which peaked at 2 h. Plasma glucose level in vehicle-treated fish was significantly higher than in rapamycin-treated fish at 8 and 17 h, whereas it remained at the basal level in rapamycin-treated fish. Glucose administration significantly enhanced the phosphorylation of Akt and ribosomal protein S6 kinase (S6K1) in vehicle-treated fish, while rapamycin completely abolished the activation of S6K1 in rapamycin-treated fish, without inhibiting the phosphorylation of Akt on Thr-308 or Ser-473. Despite the lack of significant variation in phosphoenolpyruvate carboxykinase mRNA abundance, mRNA abundance for glucokinase (GK), glucose 6-phosphatase (G6Pase) I and II, and fructose 1,6-bisphosphatase (FBPase) was reduced by rapamycin 17 h after glucose administration. The inhibition effect of rapamycin on GK and FBPase was further substantiated at the activity level. The suppression of GK gene expression and activity by rapamycin provided the first in vivo evidence in fish that glucose regulates hepatic GK gene expression and activity through a TORC1-dependent manner. Unlike in mammals, we observed that acute rapamycin treatment improved glucose tolerance through the inhibition of hepatic gluconeogenesis in rainbow trout.
Collapse
Affiliation(s)
- Weiwei Dai
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Frédéric Terrier
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
44
|
Dungan CM, Wright DC, Williamson DL. Lack of REDD1 reduces whole body glucose and insulin tolerance, and impairs skeletal muscle insulin signaling. Biochem Biophys Res Commun 2014; 453:778-83. [PMID: 25445588 DOI: 10.1016/j.bbrc.2014.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022]
Abstract
A lack of the REDD1 promotes dysregulated growth signaling, though little has been established with respect to the metabolic role of REDD1. Therefore, the goal of this study was to determine the role of REDD1 on glucose and insulin tolerance, as well as insulin stimulated growth signaling pathway activation in skeletal muscle. First, intraperitoneal (IP) injection of glucose or insulin were administered to REDD1 wildtype (WT) versus knockout (KO) mice to examine changes in blood glucose over time. Next, alterations in skeletal muscle insulin (IRS-1, Akt, ERK 1/2) and growth (4E-BP1, S6K1, REDD1) signaling intermediates were determined before and after IP insulin treatment (10min). REDD1 KO mice were both glucose and insulin intolerant when compared to WT mice, evident by higher circulating blood glucose concentrations and a greater area under the curve following IP injections of glucose or insulin. While the REDD1 KO exhibited significant though blunted insulin-stimulated increases (p<0.05) in Akt S473 and T308 phosphorylation versus the WT mice, acute insulin treatment has no effect (p<0.05) on REDD1 KO skeletal muscle 4E-BP1 T37/46, S6K1 T389, IRS-1 Y1222, and ERK 1/2 T202/Y204 phosphorylation versus the WT mice. Collectively, these novel data suggest that REDD1 has a more distinct role in whole body and skeletal muscle metabolism and insulin action than previously thought.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - David C Wright
- Department of Human Health and Nutrition Sciences, University of Guelph, Guelph, ON, Canada
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
45
|
Rangel EB. Tacrolimus in pancreas transplant: a focus on toxicity, diabetogenic effect and drug–drug interactions. Expert Opin Drug Metab Toxicol 2014; 10:1585-605. [DOI: 10.1517/17425255.2014.964205] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Kleinert M, Sylow L, Fazakerley DJ, Krycer JR, Thomas KC, Oxbøll AJ, Jordy AB, Jensen TE, Yang G, Schjerling P, Kiens B, James DE, Ruegg MA, Richter EA. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab 2014; 3:630-41. [PMID: 25161886 PMCID: PMC4142396 DOI: 10.1016/j.molmet.2014.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/12/2023] Open
Abstract
The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose homeostasis in part by blocking muscle mTORC2, indicating its importance in muscle metabolism in vivo.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J. Fazakerley
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - James R. Krycer
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Kristen C. Thomas
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Anne-Julie Oxbøll
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Andreas B. Jordy
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Guang Yang
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - David E. James
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | | | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Cyclosporine A enhances gluconeogenesis while sirolimus impairs insulin signaling in peripheral tissues after 3 weeks of treatment. Biochem Pharmacol 2014; 91:61-73. [DOI: 10.1016/j.bcp.2014.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
|
48
|
Zhang C, Cooper DE, Grevengoed TJ, Li LO, Klett EL, Eaton JM, Harris TE, Coleman RA. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor. Am J Physiol Endocrinol Metab 2014; 307:E305-15. [PMID: 24939733 PMCID: PMC4121579 DOI: 10.1152/ajpendo.00034.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - James M Eaton
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina;
| |
Collapse
|
49
|
Abstract
The mammalian target of rapamycin (mTOR), a phosphoinositide-3-kinase-related protein kinase, acts as a rheostat capable of integrating a variety of environmental cues in the form of nutrients, energy, and growth factors to modulate organismal processes and homeostasis. Recently, there is a growing appreciation of mTOR in adaptive immunity for its crucial roles in keeping a proper balance between T cell quiescence and activation. Under steady-state circumstances, mTOR is subtly inhibited by multiple mechanisms to maintain normal T cell homeostasis. Antigen recognition by naïve T cells leads to mTOR activation, which subsequently promotes the differentiation of these cells into distinct effector T cell subsets. This review focuses primarily on the recent literature with respect to the regulatory effects and mechanisms of mTOR signaling in dictating T cell fate, and discusses the therapeutic implications of mTOR modulation in T-cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Yu Liu
- 1School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | | | | |
Collapse
|
50
|
Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, Yang X, Liang H, Slaga TJ, Yu Y, Zhou Z, Blenis J, Scherer PE, Dong LQ, Liu F. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab 2014; 19:967-80. [PMID: 24746805 PMCID: PMC4064112 DOI: 10.1016/j.cmet.2014.03.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/21/2014] [Accepted: 03/13/2014] [Indexed: 12/14/2022]
Abstract
Identification of key regulators of lipid metabolism and thermogenic functions has important therapeutic implications for the current obesity and diabetes epidemic. Here, we show that Grb10, a direct substrate of mechanistic/mammalian target of rapamycin (mTOR), is expressed highly in brown adipose tissue, and its expression in white adipose tissue is markedly induced by cold exposure. In adipocytes, mTOR-mediated phosphorylation at Ser501/503 switches the binding preference of Grb10 from the insulin receptor to raptor, leading to the dissociation of raptor from mTOR and downregulation of mTOR complex 1 (mTORC1) signaling. Fat-specific disruption of Grb10 increased mTORC1 signaling in adipose tissues, suppressed lipolysis, and reduced thermogenic function. The effects of Grb10 deficiency on lipolysis and thermogenesis were diminished by rapamycin administration in vivo. Our study has uncovered a unique feedback mechanism regulating mTORC1 signaling in adipose tissues and identified Grb10 as a key regulator of adiposity, thermogenesis, and energy expenditure.
Collapse
Affiliation(s)
- Meilian Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Juli Bai
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Sijia He
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Ricardo Villarreal
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Derong Hu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chuntao Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; The Department of Microbiology, School of Basic Medicine, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang 830011, China
| | - Xin Yang
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Huiyun Liang
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Thomas J Slaga
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Yonghao Yu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Zhiguang Zhou
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - John Blenis
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, and Department of Cell Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549, USA
| | - Lily Q Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Feng Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|