1
|
Herrera-Covarrubias D, Basulto-Natividad A, Hernández-Aguilar ME, Aranda-Abreu GE, Manzo J, Toledo-Cárdenas R, Rojas-Durán F, Coria-Avila GA. Pubertal stress accelerates copulation in adult male rats: Mitigating effects of a high-calorie diet in adulthood. Physiol Behav 2025; 291:114791. [PMID: 39722368 DOI: 10.1016/j.physbeh.2024.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The pubertal phase involves significant brain reorganization, where external stressors and diet can profoundly influence long-term behavioral outcomes. In this study, we investigated the interaction between acute pubertal stress (via immune challenge) and a hypercaloric diet in adulthood on the copulatory sexual behavior of male Wistar rats. At postnatal day (PND) 35, pubertal males received a single injection of lipopolysaccharide (LPS, 1.5 mg/kg i.p.) or saline. All subjects were fed standard rat chow until postnatal week 14, during which copulatory sexual behavior was assessed from weeks 11 to 14. Then, from weeks 15 to 18, half of the animals in each group were switched to a hypercaloric cafeteria-type diet and the other half continued on standard chow, with sexual behavior of all males re-assessed during weeks 19 to 22 and under standard diet. Our results indicated that treatment with LPS during puberty accelerated copulation in adulthood, characterized by fewer mounts and intromissions per series, shorter latency to ejaculation and higher intromission ratio. Cafeteria diet alone increased mount and intromission frequency, but had no effect on ejaculations. Only intromission were affected by an interaction of treatment and diet. These findings show that LPS-induced immune stress during puberty acts as an early-life stressor with enduring consequences on copulatory timing in males, while a subchronic hypercaloric diet in adulthood may mitigate some of these effects.
Collapse
Affiliation(s)
- Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico.
| | | | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico
| | - Gonzalo E Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico
| | - Rebeca Toledo-Cárdenas
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, Xalapa, Veracruz C. P. 91190. Mexico
| |
Collapse
|
2
|
Pintos S, Lucon-Xiccato T, Vera LM, Sánchez-Vázquez FJ, Bertolucci C. Circadian Modulation of Behavioral Stress Responses in Zebrafish Is Age-Dependent. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 39831649 DOI: 10.1002/jez.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
In the wild, stressors occur with varying likelihood throughout the day, leading animals to evolve plastic stress responses that exhibit circadian rhythmicity. In mammals, studies have revealed that the circadian plasticity of stress response may differ with age. However, such developmental effects have been largely overlooked in other vertebrate groups. In our research, we explored the presence of developmental variation in the daily pattern of behavioral stress response in a teleost fish model: the zebrafish (Danio rerio). We compared juvenile and adult individuals in two behavioral paradigms commonly used to analyze fish stress response, such as the open-field test and the diving test. Our comparisons were conducted every 4 h during a 24-h cycle to analyze daily variations. Significant daily rhythms were detected for almost all analyzed behaviors in both tests. In general, the analyses suggested a greater stress response in adults during the daytime and in juveniles during the night-time, although not all indicators aligned in this direction. Moreover, we found average differences in zebrafish behavior, suggesting that juveniles were more sensitive to stress. Overall, these findings highlight the importance of considering developmental variation in the circadian pattern of stress response in non-mammalian species like zebrafish.
Collapse
Affiliation(s)
- Santiago Pintos
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Emilia-Romagna, Italy
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Region de Murcia, Spain
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Emilia-Romagna, Italy
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Region de Murcia, Spain
| | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Emilia-Romagna, Italy
| |
Collapse
|
3
|
Parkin C, Ortiz J, Cruz S, Bath KG, Romeo RD. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dev Neurosci 2024:1-11. [PMID: 39467516 DOI: 10.1159/000542277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty. METHODS The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts. RESULTS Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males. CONCLUSIONS Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.
Collapse
Affiliation(s)
- Catherine Parkin
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Juliet Ortiz
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Sofia Cruz
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Kevin G Bath
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Russell D Romeo
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| |
Collapse
|
4
|
León-Ahumada YZ, Herrera-Covarrubias D, García LI, Toledo-Cárdenas R, Rojas-Durán F, Manzo J, Coria-Avila GA. Pubertal stress in male rats: Effects on juvenile play behavior and adult sexual partner preference. Physiol Behav 2024; 284:114649. [PMID: 39069113 DOI: 10.1016/j.physbeh.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Puberty is a period of brain organization impacting the expression of social and sexual behaviors. Here, we assessed the effects of an acute pubertal stressor (immune challenge) on the expression of juvenile play (short-term) and sexual partner preference (long-term) in male rats. Juvenile play was assessed over ten trials at postnatal days (PND) (31-40) with age- and sex-matched conspecifics, and at PND35 males received a single injection of lipopolysaccharide (LPS, 1.5 mg/kg i.p.) or saline. Then, sexual partner preference was assessed at PND 60, 64, and 68, in a three-compartment chamber with a sexually receptive female and a male as potential partners simultaneously. The results confirmed that a single injection of LPS during puberty induced sickness signs indicative of an immune challenge. However, juvenile play was not affected by LPS treatment during the following days (PND36-40), nor was sexual behavior and partner preference for females in adulthood. These findings highlight that, while other studies have shown that LPS-induced immunological stress during puberty affects behavior and neuroendocrine responses, it does not affect juvenile play and sexual behavior in male rats. This suggests a remarkable resilience of these behavioral systems for adaptation to stressful experiences mediated by immune challenges during critical periods of development. These behaviors, however, might be affected by other types of stress.
Collapse
Affiliation(s)
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | |
Collapse
|
5
|
Vanderhoof SO, Vincent CJ, Beaver JN, Latsko MS, Aguilar-Alvarez R, Jasnow AM. Corticosterone after early adolescent stress prevents social avoidance, aversive behavior, and morphine-conditioned place preference in adulthood. Psychopharmacology (Berl) 2024; 241:2045-2059. [PMID: 38805040 PMCID: PMC11442498 DOI: 10.1007/s00213-024-06616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Stress during childhood or adolescence increases vulnerability to psychiatric disorders in adults. In adult rodents, the delayed effects of stress can increase anxiety-like behavior. These effects, however, can be prevented with post-stress administration of corticosterone (CORT). The effectiveness of CORT in preventing adolescent stress-induced emotional behavior alterations in adulthood has yet to be investigated. OBJECTIVES Here, we investigated the interactions between early adolescent stress and exogenous corticosterone on adult social, aversive, and drug-seeking behavior in mice, which are translationally related to symptoms associated with psychiatric and substance abuse disorders. METHODS AND RESULTS A single administration of CORT in drinking water (400ug/mL) for 24 h after social defeat or context fear conditioning prevents defeat-induced social avoidance, alters fear processing, prevents adolescent stress-induced anhedonia, and prevents stress-potentiated morphine place preference in adulthood. Exogenous CORT did not immediately prevent stress-induced potentiation of morphine conditioned-place preference in adolescents but did so in adult mice. However, when administered to adolescent mice, CORT also prevented the incubation of morphine-conditioned place preference into adulthood. Lastly, exogenous CORT administration blunted endogenous corticosterone but was unrelated to freezing behavior during a fear test. CONCLUSIONS This is the first demonstration of adolescent post-stress CORT promoting socio-emotional resilience and preventing drug-seeking behavior. Our data suggest elevated corticosterone after a stress experience promotes resilience for at least 40 days across the developmental transition from adolescence to adulthood and is effective for socio-emotional and drug-seeking behavior. These results are critical for understanding how adolescent stress impacts emotional and drug-seeking behavior into adulthood.
Collapse
Affiliation(s)
- Samantha O Vanderhoof
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, USA
| | - Carly J Vincent
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, USA
| | - Maeson S Latsko
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, USA
| | - Ricardo Aguilar-Alvarez
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, USA.
| |
Collapse
|
6
|
Kamens HM, Anziano EK, Horton WJ, Cavigelli SA. Chronic Adolescent Restraint Stress Downregulates miRNA-200a Expression in Male and Female C57BL/6J and BALB/cJ Mice. Genes (Basel) 2024; 15:873. [PMID: 39062652 PMCID: PMC11275362 DOI: 10.3390/genes15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Adolescence is a critical developmental period when the brain is plastic, and stress exposure can have lasting physiological consequences. One mechanism through which adolescent stress may have lasting effects is by altering microRNAs (miRNAs), leading to wide-scale gene expression changes. Three prior independent studies used unbiased approaches (RNA sequencing or microarray) to identify miRNAs differentially expressed by chronic variable stress in male rodents. In all three studies, miRNA-200a was differentially expressed in areas of the brain associated with emotion regulation. The current study extends this research to determine if chronic non-variable adolescent stress downregulates miRNA-200a expression by looking at two strains (BALB/cJ and C57BL/6J) of male and female mice. We utilized a 14-day (2 h/day) restraint stress protocol and verified stress effects on adolescent body weight gain and circulating corticosterone concentrations relative to non-restraint controls. Mice were then left undisturbed until they were euthanized in adulthood, at which time brains were collected to measure miRNA-200a in the ventral hippocampus. Three weeks after adolescent stress ended, differences in body weight between groups were no longer significant; however, animals exposed to stress had less miRNA-200a expression in the ventral hippocampus than control animals. These data implicate miRNA-200a expression as a potential mechanism by which adolescent stress can have persistent impacts on multiple outcomes in both male and female mice.
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16801, USA (W.J.H.); (S.A.C.)
| | | | | | | |
Collapse
|
7
|
Stinson EA, Sullivan RM, Navarro GY, Wallace AL, Larson CL, Lisdahl KM. Childhood adversity is associated with reduced BOLD response in inhibitory control regions amongst preadolescents from the ABCD study. Dev Cogn Neurosci 2024; 67:101378. [PMID: 38626611 PMCID: PMC11035055 DOI: 10.1016/j.dcn.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Adolescence is characterized by dynamic neurodevelopment, which poses opportunities for risk and resilience. Adverse childhood experiences (ACEs) confer additional risk to the developing brain, where ACEs have been associated with alterations in functional magnetic resonance imaging (fMRI) BOLD signaling in brain regions underlying inhibitory control. Socioenvironmental factors like the family environment may amplify or buffer against the neurodevelopmental risks associated with ACEs. Using baseline to Year 2 follow-up data from the Adolescent Brain Cognitive Development (ABCD) Study, the current study examined how ACEs relate to fMRI BOLD signaling during successful inhibition on the Stop Signal Task in regions associated with inhibitory control and examined whether family conflict levels moderated that relationship. Results showed that greater ACEs were associated with reduced BOLD response in the right opercular region of the inferior frontal gyrus and bilaterally in the pre-supplementary motor area, which are key regions underlying inhibitory control. Further, greater BOLD response was correlated with less impulsivity behaviorally, suggesting reduced activation may not be behaviorally adaptive at this age. No significant two or three-way interactions with family conflict levels or time were found. Findings highlight the continued utility of examining the relationship between ACEs and neurodevelopmental outcomes and the importance of intervention/prevention of ACES.
Collapse
Affiliation(s)
- Elizabeth A Stinson
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Ryan M Sullivan
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Gabriella Y Navarro
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Alexander L Wallace
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
| | - Christine L Larson
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Krista M Lisdahl
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
8
|
Warren M, O'Connor C, Lee JE, Burton J, Walton D, Keathley J, Wammes M, Osuch E. Predispose, precipitate, perpetuate, and protect: how diet and the gut influence mental health in emerging adulthood. Front Nutr 2024; 11:1339269. [PMID: 38505265 PMCID: PMC10948435 DOI: 10.3389/fnut.2024.1339269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Medicine often employs the 4Ps of predisposing, precipitating, perpetuating, and protective factors to identify salient influences on illness states, and to help guide patient care. Mental illness is a significant cause of morbidity and mortality worldwide. Mental health is a complex combination of biological, psychological, environmental, and social factors. There is growing interest in the gut-brain-microbiome (GBM) axis and its impact on mental health. We use the medical model of the 4Ps to explore factors involving the connection between nutrition and the GBM axis and their associated risks with mental health problems in emerging adults (EAs), a life stage when mental illness onset is the most common. We review the impact of current dietary trends on the GBM and on mental health, and the role that gut microbiome-based interventions can have in modulating the GBM axis of EAs. We discuss the implications of gut health on the GBM and areas for clinical intervention.
Collapse
Affiliation(s)
- Michael Warren
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Colleen O'Connor
- School of Food and Nutritional Sciences, Brescia University College, London, ON, Canada
| | - Ju Eun Lee
- Geriatrics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeremy Burton
- Department of Surgery, Microbiology and Immunology, Lawson Health Research Institute, Western University, London, ON, Canada
| | - David Walton
- School of Physical Therapy, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Justine Keathley
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Michael Wammes
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth Osuch
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- First Episode Mood and Anxiety Program, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
9
|
Zolzaya S, Narumoto A, Katsuyama Y. Genomic variation in neurons. Dev Growth Differ 2024; 66:35-42. [PMID: 37855730 DOI: 10.1111/dgd.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ayano Narumoto
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
10
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
11
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
12
|
Hu S, Li X, Yang L. Effects of physical activity in child and adolescent depression and anxiety: role of inflammatory cytokines and stress-related peptide hormones. Front Neurosci 2023; 17:1234409. [PMID: 37700748 PMCID: PMC10493323 DOI: 10.3389/fnins.2023.1234409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Depression and anxiety are the most common mental illnesses affecting children and adolescents, significantly harming their well-being. Research has shown that regular physical activity can promote cognitive, emotional, fundamental movement skills, and motor coordination, as a preventative measure for depression while reducing the suicide rate. However, little is known about the potential role of physical activity in adolescent depression and anxiety. The studies reviewed in this paper suggest that exercise can be an effective adjunctive treatment to improve depressive and anxiety symptoms in adolescents, although research on its neurobiological effects remains limited.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China
| | - Xinyuan Li
- College of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Smith KB, Murack M, Ismail N. The sex-dependent and enduring impact of pubertal stress on health and disease. Brain Res Bull 2023; 200:110701. [PMID: 37422090 DOI: 10.1016/j.brainresbull.2023.110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada; LIFE Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Pachankis JE, Jackson SD. A Developmental Model of the Sexual Minority Closet: Structural Sensitization, Psychological Adaptations, and Post-closet Growth. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:1869-1895. [PMID: 35978203 PMCID: PMC9935753 DOI: 10.1007/s10508-022-02381-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 05/15/2023]
Abstract
Across the lifespan, most sexual minority individuals experience the closet-a typically prolonged period in which no significant others know their sexual identity. This paper positions the closet as distinct from stigma concealment given its typical duration in years and absolute removal from sources of support for an often-central identity typically during a developmentally sensitive period. The Developmental Model of the Closet proposed here delineates the vicarious learning that takes place before sexual orientation awareness to shape one's eventual experience of the closet; the stressors that take place after one has become aware of their sexual orientation but has not yet disclosed it, which often takes place during adolescence; and potential lifespan-persistent mental health effects of the closet, as moderated by the structural, interpersonal, cultural, and temporal context of disclosure. The paper outlines the ways in which the model both draws upon and is distinct from earlier models of sexual minority identity formation and proposes several testable hypotheses and future research directions, including tests of multilevel interventions.
Collapse
Affiliation(s)
- John E Pachankis
- Department of Social and Behavioral Sciences, Yale School of Public Health, 60 College Street, Suite 316, New Haven, CT, 06510, USA.
| | - Skyler D Jackson
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
15
|
Molina P, Andero R, Armario A. Restraint or immobilization: a comparison of methodologies for restricting free movement in rodents and their potential impact on physiology and behavior. Neurosci Biobehav Rev 2023; 151:105224. [PMID: 37156310 DOI: 10.1016/j.neubiorev.2023.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Restriction of free movement has historically been used as a model for inducing acute and chronic stress in laboratory animals. This paradigm is one of the most widely employed experimental procedures for basic research studies of stress-related disorders. It is easy to implement, and it rarely involves any physical harm to the animal. Many different restraint methods have been developed with variations in the apparatuses used and the degree of limitation of movement. Unfortunately, very few studies directly compare the differential impact of the distinct protocols. Additionally, restraint and immobilization terms are not differentiated and are sometimes used interchangeably in the literature. This review offers evidence of great physiological differences in the impact of distinct restraint procedures in rats and mice and emphasizes the need for a standardized language on this topic. Moreover, it illustrates the necessity of additional systematic studies that compare the effects of the distinct restraint methodologies, which would help to decide better which procedure should be used depending on the objectives of each particular study.
Collapse
Affiliation(s)
- Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; ICREA, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
16
|
Mancini GF, Meijer OC, Campolongo P. Stress in adolescence as a first hit in stress-related disease development: Timing and context are crucial. Front Neuroendocrinol 2023; 69:101065. [PMID: 37001566 DOI: 10.1016/j.yfrne.2023.101065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, however, represents another highly sensitive developmental window during which exposure to stressful events may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is experienced in two different life stages.
Collapse
Affiliation(s)
- Giulia F Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
17
|
Hipwell AE, Fu H, Tung I, Stiller A, Keenan K. Preconception stress exposure from childhood to adolescence and birth outcomes: The impact of stress type, severity and consistency. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 4:1007788. [PMID: 36713849 PMCID: PMC9876597 DOI: 10.3389/frph.2022.1007788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
The negative effects of prenatal stress on offspring health are well established, but there remains little understanding of the influence of stress prior to conception despite known effects on biological systems that are important for a healthy pregnancy. Furthermore, operational definitions of stress vary considerably, and exposure is often characterized via summed, ordinal scales of events. We hypothesized that type, severity, and consistency of preconception stress would be associated with birthweight and gestational age (GA) at birth. Data were drawn from a subsample of participants in the 21-year longitudinal Pittsburgh Girls Study (PGS, N = 2,450) that has followed women annually since childhood. Prior work in the PGS derived three domains of stress exposure between ages 7-17 years related to subsistence (e.g., resource strain, overcrowding), safety (e.g., community violence, inter-adult aggression), and caregiving (e.g., separation, maternal depression). We tested the effects of dimensions of preconception stress on birthweight and GA among offspring of 490 PGS participants who delivered at age 18 or older (n = 490; 76% Black, 20% White, 4% Multiracial). Our hypotheses were partially supported with results varying by stress type and severity and by infant sex. Severity of preconception exposure to subsistence stress was prospectively associated with lower offspring birthweight (B = -146.94, SE = 69.07, 95% CI = -282.66, -11.22). The association between severity of caregiving stress in childhood and adolescence and GA at birth was moderated by infant sex (B = 0.85, SE = .41, 95% CI = 0.04, 1.66), suggesting greater vulnerability to this type of stress for male compared to female infants. Exposure to safety stressors did not predict birth outcomes. Infants of Black compared with White mothers had lower birthweight in all models regardless of preconception stress type, severity or consistency. However, we observed no moderating effects of race on preconception stress-birth outcome associations. Demonstrating specificity of associations between preconception stress exposure and prenatal health has the potential to inform preventive interventions targeting profiles of exposure to optimize birth outcomes.
Collapse
Affiliation(s)
- Alison E. Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haoyi Fu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irene Tung
- Department of Psychology, California State University Dominguez Hills, Carson, CA, United States
| | - Ashley Stiller
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate Keenan
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Jaehne EJ, Kent JN, Lam N, Schonfeld L, Spiers JG, Begni V, De Rosa F, Riva MA, van den Buuse M. Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev Psychobiol 2023; 65:e22347. [PMID: 36567651 DOI: 10.1002/dev.22347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
Exercise has been shown to be beneficial in reducing symptoms of affective disorders and to increase the expression of brain-derived neurotrophic factor (BDNF). The BDNF Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety and depression. Male and female Val66Met rats were given access to running wheels from 3 weeks of age and compared to sedentary controls. Anxiety- and depression-like behaviors were measured in adulthood using the elevated plus maze (EPM), open field (OF), and forced swim test (FST). Expression of BDNF and a number of stress-related genes, the glucocorticoid receptor (Nr3c1), serum/glucocorticoid-regulated kinase 1 (Sgk1), and FK506 binding protein 51 (Fkbp5) in the hippocampus were also measured. Rats given access to running wheels developed high levels of voluntary exercise, decreased open-arm time on the EPM and center-field time in the OF, reduced overall exploratory activity in the open field, and increased immobility time in the FST with no differences between genotypes. Chronic exercise induced a significant increase in Bdnf mRNA and BDNF protein levels in the hippocampus with some of these effects being genotype specific. Exercise decreased the expression of Nr3c1 and Sgk1, but increased the expression of Fkbp5. These results suggest that chronic running-wheel exercise from adolescence increased anxiety and depression-like phenotypes in adulthood, independent of BDNF Val66Met genotype. Further studies are required to confirm that increased indices of anxiety-like behavior are independent from reduced overall locomotor activity.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jessica N Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Nikki Lam
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Lina Schonfeld
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federico De Rosa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia.,Department of Pharmacology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Lookfong NA, Raup-Konsavage WM, Silberman Y. Potential Utility of Cannabidiol in Stress-Related Disorders. Cannabis Cannabinoid Res 2022; 8:230-240. [PMID: 36409719 PMCID: PMC10061337 DOI: 10.1089/can.2022.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: The endocannabinoid (eCB) system plays an important role in homeostatic regulation of anxiety and stress responses; however, the eCB system can be disrupted following traumatic stressors. Additionally, traumatic or chronic stressors that occur during adulthood or early life can cause long-lasting disturbances in the eCB system. These alterations interfere with hypothalamic-pituitary-adrenal axis function and may be involved in lifelong increased fear and anxiety behaviors as well as increased risk for development of post-traumatic stress disorder (PTSD). Methods: This review focuses on the implications of trauma and significant stressors on eCB functionality and neural pathways, both in adolescence and into adulthood, as well as the current state of testing for CBD efficacy in treating pediatric and adult patients suffering from stress-induced eCB dysregulation. Articles were searched via Pubmed and included studies examining eCB modulation of stress-related disorders in both clinical settings and preclinical models. Conclusion: Given the potential for lifelong alterations in eCB signaling that can mediate stress responsiveness, consideration of pharmaceutical or nutraceutical agents that impact eCB targets may improve clinical outcomes in stress-related disorders. However, caution may be warranted in utilization of medicinal cannabinoid products that contain delta-9-tetrahydrocannabinol due to pronounced euphorigenic effects and potential to exacerbate stress-related behaviors. Other cannabinoid products, such as cannabidiol (CBD), have shown promise in reducing stress-related behaviors in pre-clinical models. Overall, pre-clinical evidence supports CBD as a potential treatment for stress or anxiety disorders resulting from previously stressful events, particularly by reducing fearful behavior and promoting extinction of contextual fear memories, which are hallmarks of PTSD. However, very limited clinical research has been conducted examining the potential effectiveness of CBD in this regard and should be examined further.
Collapse
Affiliation(s)
- Nicole A. Lookfong
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
20
|
Esposito P, Ismail N. Linking Puberty and the Gut Microbiome to the Pathogenesis of Neurodegenerative Disorders. Microorganisms 2022; 10:2163. [PMID: 36363755 PMCID: PMC9697368 DOI: 10.3390/microorganisms10112163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/31/2023] Open
Abstract
Puberty is a critical period of development marked by the maturation of the central nervous system, immune system, and hypothalamic-pituitary-adrenal axis. Due to the maturation of these fundamental systems, this is a period of development that is particularly sensitive to stressors, increasing susceptibility to neurodevelopmental and neurodegenerative disorders later in life. The gut microbiome plays a critical role in the regulation of stress and immune responses, and gut dysbiosis has been implicated in the development of neurodevelopmental and neurodegenerative disorders. The purpose of this review is to summarize the current knowledge about puberty, neurodegeneration, and the gut microbiome. We also examine the consequences of pubertal exposure to stress and gut dysbiosis on the development of neurodevelopmental and neurodegenerative disorders. Understanding how alterations to the gut microbiome, particularly during critical periods of development (i.e., puberty), influence the pathogenesis of these disorders may allow for the development of therapeutic strategies to prevent them.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
21
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
22
|
Lee JE, Walton D, O’Connor CP, Wammes M, Burton JP, Osuch EA. Drugs, Guts, Brains, but Not Rock and Roll: The Need to Consider the Role of Gut Microbiota in Contemporary Mental Health and Wellness of Emerging Adults. Int J Mol Sci 2022; 23:6643. [PMID: 35743087 PMCID: PMC9223871 DOI: 10.3390/ijms23126643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging adulthood (ages 18-25) is a critical period for neurobiological development and the maturation of the hypothalamic-pituitary-adrenal axis. Recent findings also suggest that a natural perturbation of the gut microbiota (GM), combined with other factors, may create a unique vulnerability during this period of life. The GM of emerging adults is thought to be simpler, less diverse, and more unstable than either younger or older people. We postulate that this plasticity in the GM suggests a role in the rising mental health issues seen in westernized societies today via the gut-brain-microbiota axis. Studies have paid particular attention to the diversity of the microbiota, the specific function and abundance of bacteria, and the production of metabolites. In this narrative review, we focus specifically on diet, physical activity/exercise, substance use, and sleep in the context of the emerging adult. We propose that this is a crucial period for establishing a stable and more resilient microbiome for optimal health into adulthood. Recommendations will be made about future research into possible behavioral adjustments that may be beneficial to endorse during this critical period to reduce the probability of a "dysbiotic" GM and the emergence and severity of mental health concerns.
Collapse
Affiliation(s)
- Ju Eun Lee
- London Health Science Centre—Victoria Hospital, Department of Psychiatry, B8-102, London, ON N6A 5W9, Canada;
| | - David Walton
- Rm. EC1443 School of Physical Therapy, 1201 Western Rd., London, ON N6G 1H1, Canada;
| | - Colleen P. O’Connor
- School of Food and Nutritional Sciences, Brescia University College, London, ON N6G 1H2, Canada;
| | - Michael Wammes
- London Health Sciences Centre, Department of Psychiatry, Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, 860 Richmond Street, FEMAP, London, ON N6A 3H8, Canada;
| | - Jeremy P. Burton
- Departments of Surgery, Microbiology and Immunology, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada;
| | - Elizabeth A. Osuch
- London Health Sciences Centre, Department of Psychiatry, Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, 860 Richmond Street, FEMAP, London, ON N6A 3H8, Canada;
| |
Collapse
|
23
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
24
|
Kann RB, Romeo RD. Pubertal changes in the pituitary and adrenal glands of male and female rats: Relevance to stress reactivity. Neurobiol Stress 2022; 18:100457. [PMID: 35592027 PMCID: PMC9112058 DOI: 10.1016/j.ynstr.2022.100457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
The hormonal stress response mediated by the hypothalamic-pituitary-adrenal (HPA) axis changes significantly during puberty in a variety of species, including humans. For example, stress-induced adrenocorticotropic hormone (ACTH) and corticosterone responses are greater in prepubertal compared to adult rats, yet the mechanisms that mediate these age-related differences are unclear. It is possible that the pituitary and adrenal glands have higher hormonal concentrations prior to puberty, thus enabling a greater hormonal response if a stressor were to occur. Thus, we tested the hypothesis that resting levels of ACTH, and its precursor, proopiomelanocortin (POMC), are higher in the pituitary, and corticosterone levels are higher in the adrenals, of prepubertal compared to adult rats. Furthermore, to investigate any potential sex differences in these parameters, both males and females were assessed. Here we report that despite similar circulating plasma ACTH and corticosterone levels, prepubertal males and females have greater ACTH levels in the pituitary and greater corticosterone concentrations in the adrenals compared to adult males and females. Moreover, we show that POMC protein levels are significantly greater in the pituitary gland of prepubertal than adult rats, particularly in prepubertal females. These data suggest that increased glandular production of ACTH and corticosterone during puberty in part mediate pubertal differences in hormonal stress reactivity and highlight how each node of the HPA axis may contribute to these developmental changes. Given the dramatic increase in stress-related dysfunctions during puberty, continued study of all parts of the HPA axis will be imperative.
Collapse
|
25
|
Lodha J, Brocato E, Wolstenholme JT. Areas of Convergence and Divergence in Adolescent Social Isolation and Binge Drinking: A Review. Front Behav Neurosci 2022; 16:859239. [PMID: 35431830 PMCID: PMC9009335 DOI: 10.3389/fnbeh.2022.859239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a critical developmental period characterized by enhanced social interactions, ongoing development of the frontal cortex and maturation of synaptic connections throughout the brain. Adolescents spend more time interacting with peers than any other age group and display heightened reward sensitivity, impulsivity and diminished inhibitory self-control, which contribute to increased risky behaviors, including the initiation and progression of alcohol use. Compared to adults, adolescents are less susceptible to the negative effects of ethanol, but are more susceptible to the negative effects of stress, particularly social stress. Juvenile exposure to social isolation or binge ethanol disrupts synaptic connections, dendritic spine morphology, and myelin remodeling in the frontal cortex. These structural effects may underlie the behavioral and cognitive deficits seen later in life, including social and memory deficits, increased anxiety-like behavior and risk for alcohol use disorders (AUD). Although the alcohol and social stress fields are actively investigating the mechanisms through which these effects occur, significant gaps in our understanding exist, particularly in the intersection of the two fields. This review will highlight the areas of convergence and divergence in the fields of adolescent social stress and ethanol exposure. We will focus on how ethanol exposure or social isolation stress can impact the development of the frontal cortex and lead to lasting behavioral changes in adulthood. We call attention to the need for more mechanistic studies and the inclusion of the evaluation of sex differences in these molecular, structural, and behavioral responses.
Collapse
Affiliation(s)
- Jyoti Lodha
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
26
|
Repeated Restraint Stress and Binge Alcohol during Adolescence Induce Long-Term Effects on Anxiety-like Behavior and the Expression of the Endocannabinoid System in Male Rats. Biomedicines 2022; 10:biomedicines10030593. [PMID: 35327395 PMCID: PMC8945821 DOI: 10.3390/biomedicines10030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Negative experiences during adolescence increase the vulnerability to develop mental disorders later in life. A better understanding of the mechanisms underlying these long-term alterations could help to identify better therapeutic interventions. (2) Methods: Adolescent male Wistar rats were used to explore the effects of repeated stress and alcohol exposure on anxiety-like behaviors, plasma corticosterone levels and the gene expression of the endocannabinoid system (ECS) and other relevant signaling systems (glutamatergic, corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY)) in the amygdala and the medial prefrontal cortex (mPFC). (3) Results: Overall, both stress and alcohol induced anxiety-like behaviors, but only the alcohol-exposed rats displayed increased plasma levels of corticosterone. In the amygdala, there was a general deficit in the gene expression of the ECS and increases in the mRNA levels of certain subunits of glutamate receptors. Interestingly, there were significant interaction effects between stress and alcohol on the expression of the NMDA receptor subunits. In addition, increased mRNA levels of the CRH receptor were observed in alcohol-exposed rats. In the mPFC, alcohol exposure was associated with an increase in the gene expression of the ECS. By contrast, the combination of stress and alcohol produced opposite effects. (4) Conclusions: In summary, early stress and alcohol exposure induced long-term anxiety-like behavior in male rats but different mechanisms are involved in these maladaptive changes in the brain.
Collapse
|
27
|
Aleksic M, Brkic Z, Petrovic Z, Francija E, Lukic I, Adzic M. Sex‐specific contribution of glucocorticoid receptor alpha isoforms to anxiety and depressive‐like behavior in mice. J Neurosci Res 2022; 100:1239-1253. [DOI: 10.1002/jnr.25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Minja Aleksic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Zeljka Brkic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Zorica Petrovic
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Bronx New York USA
| | - Ester Francija
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
28
|
Wu C, Zheng W, Jia X, Li Y, Shen F, Haghparast A, Liang J, Sui N, Zhang J. Adolescent chronic unpredictable stress causes a bias in goal‐directed behavior and distinctively changes the expression of NMDA and dopamine receptors in the dorsomedial and dorsolateral striatum in male rats. Dev Psychobiol 2022; 64:e22235. [DOI: 10.1002/dev.22235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Wu
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Wei Zheng
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences Institute of Automation Chinese Academy of Sciences Beijing China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Abbas Haghparast
- Neuroscience Research Center School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Jing Liang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jian‐Jun Zhang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
29
|
Eusebi PG, Sevane N, O'Rourke T, Pizarro M, Boeckx C, Dunner S. Age Effects Aggressive Behavior: RNA-Seq Analysis in Cattle with Implications for Studying Neoteny Under Domestication. Behav Genet 2022; 52:141-153. [PMID: 35032285 PMCID: PMC8860811 DOI: 10.1007/s10519-021-10097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
The reactive type of aggression is regulated mostly by the brain's prefrontal cortex; however, the molecular changes underlying aggressiveness in adults have not been fully characterized. We used an RNA-seq approach to investigate differential gene expression in the prefrontal cortex of bovines from the aggressive Lidia breed at different ages: young three-year old and adult four-year-old bulls. A total of 50 up and 193 down-regulated genes in the adult group were identified. Furthermore, a cross-species comparative analysis retrieved 29 genes in common with previous studies on aggressive behaviors, representing an above-chance overlap with the differentially expressed genes in adult bulls. We detected changes in the regulation of networks such as synaptogenesis, involved in maintenance and refinement of synapses, and the glutamate receptor pathway, which acts as excitatory driver in aggressive responses. The reduced reactive aggression typical of domestication has been proposed to form part of a retention of juvenile traits as adults (neoteny).
Collapse
Affiliation(s)
- Paulina G Eusebi
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Natalia Sevane
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Thomas O'Rourke
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain
| | - Manuel Pizarro
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Susana Dunner
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
30
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Maly MA, Edwards KL, Koester DC, Farin CE, Crosier AE. Assessing puberty in female cheetahs (Acinonyx jubatus) via faecal hormone metabolites and body weight. Reprod Fertil Dev 2021; 33:841-854. [PMID: 34844663 DOI: 10.1071/rd21169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
With fewer than 7500 cheetahs remaining in the wild, ex situ cheetah populations serve as an insurance policy against extinction and a resource to study species' biology. This study aimed to identify the age of pubertal onset in ex situ female cheetahs using non-invasive faecal steroid hormone monitoring and body weights. Faecal samples from nine female cheetahs were collected two to three times weekly from 2 to 36months of age and body weights were recorded every 3months. Faecal oestrogen metabolites (FOM) and faecal glucocorticoid metabolites (FGM) were analysed using enzyme immunoassays and samples were categorised into 6-month intervals to compare endocrine characteristics. Faecal hormone and body weight data were analysed using generalised linear mixed models. Age was a significant predictor of mean and baseline FOM concentrations, number of FOM peaks, mean and maximum FOM peak concentrations and the number of cycles. Female cheetahs aged 24-30months exhibited a marked rise in mean FOM concentration and the number of FOM peaks and cycles increased with age until 24-30months. Females attained adult body weight by 21months of age. Mean and baseline FGM concentrations were highest at the 0-6 and 12-18months of age groups and did not follow the same FOM patterns. Based on body weight data, the FOM concentrations and peak patterning, females were considered pubertal from 24 to 30months of age. Characterisation of cheetah puberty has direct and significant implications for the improvement of management and reproductive success of cheetahs under human care. This information is particularly informative for identifying important windows of development, littermate dispersal and breeding introductions.
Collapse
Affiliation(s)
- Morgan A Maly
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA; and Genetics Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; and Genetics Program, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Katie L Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA; and North of England Zoological Society, Chester Zoo, Upton-by-Chester CH2 1LH, UK
| | - Diana C Koester
- Department of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, OH 44109, USA
| | - Charlotte E Farin
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Adrienne E Crosier
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| |
Collapse
|
32
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
33
|
Life History Evolution Forms the Foundation of the Adverse Childhood Experience Pyramid. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2021. [DOI: 10.1007/s40806-021-00299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Pachankis JE, Clark KA, Klein DN, Dougherty LR. Early Timing and Determinants of the Sexual Orientation Disparity in Internalizing Psychopathology: A Prospective Cohort Study from Ages 3 to 15. J Youth Adolesc 2021; 51:458-470. [PMID: 34731394 DOI: 10.1007/s10964-021-01532-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/17/2021] [Indexed: 11/28/2022]
Abstract
Knowing the age at which the sexual orientation disparity in depression and anxiety symptoms first emerges and the early determinants of this disparity can suggest optimal timing and targets of supportive interventions. This prospective cohort study of children ages 3 to 15 (n = 417; 10.6% same-sex-attracted; 47.2% assigned female at birth) and their parents sought to determine the age at which the sexual orientation disparity in depression and anxiety symptoms first emerges and whether peer victimization and poor parental relationships mediate this disparity. Same-sex-attracted youth first demonstrated significantly higher depression symptoms at age 12 and anxiety symptoms at age 15 than exclusively other-sex-attracted youth. Age 12 peer victimization mediated the sexual orientation disparity in age 15 depression symptoms. Age 12 poor mother-child relationship mediated the sexual orientation disparity in age 15 anxiety symptoms. The findings are discussed in terms of implications for developmentally appropriate interventions against social stress during early development.
Collapse
Affiliation(s)
- John E Pachankis
- Department of Social and Behavioral Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA.
| | - Kirsty A Clark
- Department of Medicine, Health, and Society, Vanderbilt University, 300 Calhoun Hall, Nashville, TN, 37235, USA
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Lea R Dougherty
- Department of Psychology, University of Maryland, 4094 Campus Drive, College Park, MD, 20742, USA
| |
Collapse
|
35
|
Romeo RD, Sciortino RK. Age-dependent changes in hormonal stress reactivity following repeated restraint stress throughout adolescence in male rats. Stress 2021; 24:496-503. [PMID: 33587012 DOI: 10.1080/10253890.2021.1873945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stress-related psychological dysfunctions show a marked increase during adolescence, yet the mechanisms that mediate these vulnerabilities are unknown. Notably, however, adolescence is associated with changes in hormonal stress reactivity mediated by the hypothalamic-pituitary-adrenal (HPA) axis, which might contribute to these dysfunctions. Specifically, pre-adolescent animals display prolonged stress-induced HPA responses compared to adults. Previous experience with stressors further modify these changes in stress reactivity, such that repeated exposure to the same stressor results in an augmented HPA response prior to adolescence, but a habituated response in adulthood. It is unclear when during adolescence the habituated, adult-like response develops to a repeated stressor. Using male rats at various ages that span adolescence (30-70 days of age), we show that by mid-adolescence (i.e. 42 days of age), animals show neither a facilitated nor a habituated HPA hormonal response following four days of repeated restraint stress (4RS) compared to a single restraint session (1RS). We also show that the habituated HPA response to 4RS develops between late-adolescence and young adulthood (i.e. between 56 and 70 days of age, respectively). Further, we find age- and experience-dependent changes in progesterone and testosterone secretion, indicating that the interaction between development and experience affects stress-induced hormonal responses outside of canonical HPA-related hormones. Despite these hormonal differences mediated by age and experience, repeated restraint stress resulted in decreased fecal boli production at all four ages, suggesting dissociation between hormonal and autonomic reactivity during adolescence. These data indicate that HPA plasticity is significantly affected by adolescence and that a habituated hormonal response to homotypic stress does not occur until young adulthood. A greater appreciation of these changes in stress reactivity will contribute to our understanding of the psychological vulnerabilities often associated with stressful adolescence.
Collapse
Affiliation(s)
- Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Rose K Sciortino
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Mooney-Leber SM, Caruso MJ, Gould TJ, Cavigelli SA, Kamens HM. The impact of adolescent stress on nicotine use and affective disorders in rodent models. Eur J Neurosci 2021; 55:2196-2215. [PMID: 34402112 PMCID: PMC9730548 DOI: 10.1111/ejn.15421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Recent findings indicate that stress exposure during adolescence contributes to the development of both nicotine use and affective disorders, suggesting a potential shared biological pathway. One key system that may mediate the association between adolescent stress and nicotine or affective outcomes is the hypothalamic-pituitary-adrenal (HPA) axis. Here we reviewed evidence regarding the effects of adolescent stress on nicotine responses and affective phenotypes and the role of the HPA-axis in these relationships. Literature indicates that stress, possibly via HPA-axis dysfunction, is a risk factor for both nicotine use and affective disorders. In rodent models, adolescent stress modulates behavioural responses to nicotine and increases the likelihood of affective disorders. The exact role that the HPA-axis plays in altering nicotine sensitivity and affective disorder development after adolescent stress remains unclear. However, it appears likely that adolescent stress-induced nicotine use and affective disorders are precipitated by repetitive activation of a hyperactive HPA-axis. Together, these preclinical studies indicate that adolescent stress is a risk factor for nicotine use and anxiety/depression phenotypes. The findings summarized here suggest that the HPA-axis mediates this relationship. Future studies that pharmacologically manipulate the HPA-axis during and after adolescent stress are critical to elucidate the exact role that the HPA-axis plays in the development of nicotine use and affective disorders following adolescent stress.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,Department of Psychology, University of Wisconsin - Stevens Point, Stevens Point, WI, USA
| | - Michael J Caruso
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,Center for Brain, Behavior, and Cognition, The Pennsylvania State University, University Park, PA, USA
| | - Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,Center for Brain, Behavior, and Cognition, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
37
|
Fariborzi M, Park SB, Ozgur A, Lur G. Sex-dependent long-term effects of prepubescent stress on the posterior parietal cortex. Neurobiol Stress 2021; 14:100295. [PMID: 33521171 PMCID: PMC7820135 DOI: 10.1016/j.ynstr.2021.100295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescence is a time of intense cortical development and a period of heightened sensitivity to insult. To determine how sex affects the short- and long-term outcomes of early-adolescent stress exposure, we subjected prepubescent (postnatal day 30) male and female mice to repeated multiple concurrent stressors (RMS). In the posterior parietal cortex (PPC), RMS caused the elimination of excitatory synapses in deeper layers while inhibitory synapse density was predominantly diminished in superficial layers. These short-term effects coincided with reduced visuo-spatial working memory and were similar in both sexes. The loss of excitatory synapses and impaired working memory persisted in males past a 30-day recovery period. In contrast, we observed a remarkable recovery of excitatory transmission and behavioral performance in females. Inhibitory synapse density recovered in both sexes. We have also observed a late onset anxiety phenotype in RMS exposed females that was absent in males. Overall, our results indicate that there are marked sex differences in the long-term effects of prepubescent stress on cortical synapses and behavior.
Collapse
Affiliation(s)
- Mona Fariborzi
- Department of Neurobiology and Behavior, University of California, 1215 McGaugh Hall, Irvine, CA, 92697, USA
| | - Soo Bin Park
- Department of Neurobiology and Behavior, University of California, 1215 McGaugh Hall, Irvine, CA, 92697, USA
| | - Ali Ozgur
- Department of Neurobiology and Behavior, University of California, 1215 McGaugh Hall, Irvine, CA, 92697, USA
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California, 1215 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
38
|
Zhang X, Xun Y, Wang L, Zhang J, Hou W, Ma H, Cai W, Li L, Guo Q, Li Y, Lv Z, Jia R, Tai F, He Z. Involvement of the dopamine system in the effect of chronic social isolation during adolescence on social behaviors in male C57 mice. Brain Res 2021; 1765:147497. [PMID: 33894223 DOI: 10.1016/j.brainres.2021.147497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
In the early stage of life, experiencing social isolation can generate long-lasting deleterious effects on behaviors and brain development. However, the effects of chronic social isolation during adolescence on social behaviors and its underlying neurobiological mechanisms remain unclear. The present study found that four weeks of social isolation during adolescence impaired social recognition ability in the three-chamber test and five-trial social recognition test, and increased aggressive-like behaviors, but reduced environmental exploration, as showed in the social interaction test. Chronic social isolation decreased levels of dopamine D2 receptor in the shell of the nucleus accumbens (NAcc) and medial prefrontal cortex. It also reduced TH in the NAcc. Using in vivo fiber photometry, it was also found that isolated mice displayed a reduction in NAcc shell activity upon exploring unfamiliar social stimuli. An injection of a 100 ng dose of the D2R agonist quinpirole into the shell of the NAcc reversed behavioral abnormalities induced by chronic social isolation. These data suggest that the dopamine system is involved in alterations in social behaviors induced by chronic social isolation. This finding sheds light on the mechanism underlying abnormalities in social behavior induced by adolescent chronic social isolation and provides a promising target to treat mental diseases relevant to social isolation.
Collapse
Affiliation(s)
- Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yufeng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
39
|
Li X, Lv Q, Tang W, Deng W, Zhao L, Meng Y, Guo W, Li T. Psychological stresses among Chinese university students during the COVID-19 epidemic: The effect of early life adversity on emotional distress. J Affect Disord 2021; 282:33-38. [PMID: 33387744 PMCID: PMC7985596 DOI: 10.1016/j.jad.2020.12.126] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is leading to numerous psychological outcomes, especially emotional distress. Individuals with early life adversity (ELA) may be more susceptible to those psychological stresses during this epidemic. AIMS To measure the effect of the ELA on acute stress reactions, anxiety and depression during the COVID-19 epidemic, and to examine whether specific trauma types and frequencies of exposure are associated with a more severe acute stress reaction and increased risk of anxiety and depressive symptoms. METHOD This investigation was performed at college students in a comprehensive University of China. The online self-report questionnaire included ELA experiences, exposure to epidemic-related events, acute stress reactions, and anxiety and depression symptoms during the COVID-19 epidemic. Logistic regression and stepwise regression were used to assess the associations and interactions among these variables. RESULTS Participants with ELA reported more exposure to epidemic-related events and more severe stress reactions during the epidemics than did those with no ELA. The experience of ELA is associated with acute stress reactions, anxiety and depression in early adulthood. Furthermore, experiencing more ELA during childhood may not only increase the risk of anxiety and depression episode in early adulthood but also lead to more severe acute stress reactions during the epidemic. CONCLUSION Regardless of specific ELA types, ELAs have longer time effects on individual's susceptibility to stress. Under this epidemic, the mental health in young adults with ELA needs more attention.
Collapse
Affiliation(s)
- Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiuyue Lv
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjie Tang
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yajing Meng
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
40
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
41
|
Prepubertal and adult male rats differ in the degree and pattern of stress reactive neurons in brain regions that project to the paraventricular nucleus of the hypothalamus. Brain Res 2021; 1760:147371. [PMID: 33600828 DOI: 10.1016/j.brainres.2021.147371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
The hormonal stress response, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, shows greater responsiveness to various stressors in prepubertal compared to adult animals. Though the implications of this age-related change are unclear, this heightened reactivity might contribute to the increase in stress-related dysfunctions observed during adolescence. Interestingly, prepubertal animals show greater stress-induced neural activation compared to adults in the paraventricular nucleus of the hypothalamus (PVN), the area responsible for initiating the hormonal stress response. Thus, it is possible that direct afferents to the PVN, such as the anterior bed nucleus of the stria terminalis (aBST), nucleus of the solitary tract (NTS), posterior BST (pBST), medial preoptic area (MPOA), and dorsomedial nucleus (DMN), contribute to this age-dependent change in reactivity. To investigate these possibilities, two separate experiments were conducted in prepubertal (30 days old) and adult (70 days old) male rats using the retrograde tracer, Fluoro-Gold (FG), and FOS immunohistochemistry to study neural connectivity and activation, respectively. Though there was no difference in the number or size of FG-positive cells in the PVN afferents we examined, we found a significantly greater number of stress-induced FOS-like-positive cells in the aBST and significantly fewer in the DMN in prepubertal compared to adult animals. Together these data suggest that functional, instead of structural, changes in nuclei that project to the PVN may lead to the greater PVN stress responsiveness observed prior to adolescence. Furthermore, these data indicate that nuclei known to directly modulate HPA stress responsiveness show differential activation patterns before and after adolescent development.
Collapse
|
42
|
Chronic adolescent stress causes sustained impairment of cognitive flexibility and hippocampal synaptic strength in female rats. Neurobiol Stress 2021; 14:100303. [PMID: 33614865 PMCID: PMC7876631 DOI: 10.1016/j.ynstr.2021.100303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Females that experience chronic stress during development, particularly adolescence, are the most vulnerable group to stress-induced disease. While considerable attention has been devoted to stress-induced manifestation of anxiety, depression, and PTSD, evidence indicates that a history of chronic stress is also a risk factor for cognitive decline and dementia - with females again in a higher risk group. This interplay between sex and stress history indicates specific mechanisms drive neural dysfunction across the lifespan. The presence of sex and stress steroid receptors in the hippocampus provides a point of influence for these variables to drive changes in cognitive function. Here, we used a rodent model of chronic adolescent stress (CAS) to determine the extent to which CAS modifies glutamatergic signaling resulting in cognitive dysfunction. Male and female Wistar rats born in-house remained non-stressed (NS), unmanipulated aside from standard cage cleaning, or were exposed to either physical restraint (60 min) or social defeat (CAS) each day (6 trials each), along with social isolation, throughout the adolescent period (PND 35-47). Cognition was assessed in adult (PND 80-130) male and female rats (n = 10-12) using the Barnes Maze task and the Attention Set-Shift task. Whole hippocampi were extracted from a second cohort of male and female rats (NS and CAS; n = 9-10) and processed for RNA sequencing. Brain tissue from the first cohort (n = 6) was processed for density of glutamatergic synaptic markers (GluA1, NMDA1a, and synaptophysin) or whole-cell patch clamping (n = 4) to determine glutamatergic activity in the hippocampus. Females with a history of chronic stress had shorter latencies to locate the goal box than NS controls during acquisition learning but showed an increased latency to locate the new goal box during reversal learning. This reversal deficit persisted across domains as females with a history of stress required more trials to reach criterion during the reversal phases of the Attention Set-Shift task compared to controls. Ovariectomy resulted in greater performance variability overall during reversal learning with CAS females showing worse performance. Males showed no effects of CAS history on learning or memory performance. Bioinformatic prediction using gene ontology categorization indicated that in females, postsynaptic membrane gene clusters, specifically genes related to glutamatergic synapse remodeling, were enriched with a history of stress. Structural analysis indicated that CAS did not alter glutamate receptor density in females. However, functionally, CAS females had a decreased AMPA/NMDA-dependent current ratio compared to controls indicating a weakening in synaptic strength in the hippocampus. Males showed only a slight change in density of NMDA1a labeling in the CA3 region with a history of stress. The data observed here suggest that females are at risk for impaired cognitive flexibility following a history of adolescent stress, possibly driven by changes in glutamatergic signaling.
Collapse
|
43
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
44
|
Murack M, Chandrasegaram R, Smith KB, Ah-Yen EG, Rheaume É, Malette-Guyon É, Nanji Z, Semchishen SN, Latus O, Messier C, Ismail N. Chronic sleep disruption induces depression-like behavior in adolescent male and female mice and sensitization of the hypothalamic-pituitary-adrenal axis in adolescent female mice. Behav Brain Res 2020; 399:113001. [PMID: 33197456 DOI: 10.1016/j.bbr.2020.113001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/01/2020] [Accepted: 11/01/2020] [Indexed: 01/05/2023]
Abstract
Depression is a prevalent mood disorder responsible for reduced quality of life for over 264 million people. Depression commonly develops during adolescence and becomes twice as prevalent in females than in males. However, the mechanisms underlying adolescent depression onset and sex differences in the prevalence rate remain unclear. Adolescent exposure to stress and subsequent sensitization of the hypothalamic-pituitary-adrenal (HPA) axis contributes to mood disorder development, and females are particularly vulnerable to HPA sensitization. Repeated exposure to stressors common to adolescent development, like sleep disruption, could partially be responsible for adolescent female susceptibility to depression. To address this possibility, 80 adolescent and adult CD-1 mice (Male, n = 40; Female, n = 40) were manually sleep disrupted for the first four hours of each rest cycle or allowed normal rest for eight consecutive days. Depression-like behavior was assessed with the forced swim test. 5-HT1A and glucocorticoid receptor expression and concurrent cellular activation via glucocorticoid receptor/c-Fos colocalization were examined in various brain regions to assess cellular correlates of depression and HPA-axis activation. Both adolescent male and female mice displayed significantly greater depression-like behavior and prelimbic c-Fos expression after chronic sleep disruption than non-sleep disrupted adolescent and sleep disrupted adult counterparts. However, sleep disrupted adolescent females demonstrated greater dorsal raphe 5-HT1A expression than sleep disrupted adolescent males. Adolescent females and males had decreased medial prefrontal 5-HT1A expression after chronic sleep disruption, but only adolescent females expressed decreased hippocampal 5-HT1A expression compared to controls. Chronic sleep disruption significantly increased corticosterone release, glucocorticoid expression in the CA1, and activation of glucocorticoid immunoreactive cells in the prelimbic cortex of adolescent females but not in adolescent males. These findings suggest that chronic sleep disruption during adolescence could give rise to depressive symptoms in male and female adolescents through differing signaling mechanisms.
Collapse
Affiliation(s)
- Michael Murack
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Kevin B Smith
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily G Ah-Yen
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Étienne Rheaume
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Zahra Nanji
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Olivia Latus
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Claude Messier
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Canada.
| |
Collapse
|
45
|
Pachankis JE, Mahon CP, Jackson SD, Fetzner BK, Bränström R. Sexual orientation concealment and mental health: A conceptual and meta-analytic review. Psychol Bull 2020; 146:831-871. [PMID: 32700941 PMCID: PMC8011357 DOI: 10.1037/bul0000271] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identity concealment affects all sexual minority individuals, with potentially complex mental health implications. Concealing a sexual minority identity can simultaneously generate the stress of hiding, protect against the stress of discrimination, and keep one apart from sexual minority communities and their norms and supports. Not surprisingly, existing studies of the association between sexual orientation concealment and mental health problems show contradictory associations-from positive to negative to null. This meta-analysis attempts to resolve these contradictions. Across 193 studies (n = 92,236) we find a small positive association between sexual orientation concealment and internalizing mental health problems (i.e., depression, anxiety, distress, problematic eating; ESr = 0.126; 95% CI [0.102, 0.151]) and a small negative association between concealment and substance use problems (ESr = -0.061; 95% CI [-0.096, -0.026]). The association between concealment and internalizing mental health problems was larger for those studies that assessed concealment as lack of open behavior, those conducted recently, and those with younger samples; it was smaller in exclusively bisexual samples. Year of data collection, study location, and sample gender, education, and racial/ethnic composition did not explain between-study heterogeneity. Results extend existing theories of stigma and sexual minority mental health, suggesting potentially distinct stress processes for internalizing problems versus substance use problems, life course fluctuations in the experience of concealment, distinct experiences of concealment for bisexual individuals, and measurement recommendations for future studies. Small overall effects, heavy reliance on cross-sectional designs, relatively few effects for substance use problems, and the necessarily coarse classification of effect moderators in this meta-analysis suggest future needed methodological advances to further understand the mental health of this still-increasingly visible population. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
46
|
Dhabhar FS, Meaney MJ, Sapolsky RM, Spencer RL. Reflections on Bruce S. McEwen's contributions to stress neurobiology and so much more. Stress 2020; 23:499-508. [PMID: 32851903 DOI: 10.1080/10253890.2020.1806228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The authors highlight, from a firsthand perspective, Bruce S. McEwen's seminal influence on the field of stress neurobiology and beyond, and how these investigations have yielded important insights, principles and critical questions that continue to guide stress research today. Featured are discussion of: 1) the important inverted-U relationship between stress/glucocorticoids and optimal physiological function, 2) stress adaptation and the role of adaptive stress responses, 3) mechanisms by which the short-term stress response promotes heightened immune function and immunity, and 4) the far reaching impact of the theoretical framework of allostasis and allostatic load-concepts that have created new bridges between stress physiology, biomedical sciences, health psychology and sociology.
Collapse
Affiliation(s)
- Firdaus S Dhabhar
- Departments of Psychiatry & Behavioral Sciences, Microbiology & Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miama, FL, USA
| | - Michael J Meaney
- Faculty of Medicine, McGill University, Montreal, Canada
- Translational Neuroscience Programme, Singapore Institute of Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Robert M Sapolsky
- John A. and Cynthia Fry Gunn Professor of Biological Sciences Departments of Biology, Neurology and Neurological Sciences, and Neurosurgery, Stanford University, Stanford, CA, USA
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
47
|
Rivera-Irizarry JK, Skelly MJ, Pleil KE. Social Isolation Stress in Adolescence, but not Adulthood, Produces Hypersocial Behavior in Adult Male and Female C57BL/6J Mice. Front Behav Neurosci 2020; 14:129. [PMID: 32792924 PMCID: PMC7394086 DOI: 10.3389/fnbeh.2020.00129] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic stress during the developmental period of adolescence increases susceptibility to many neuropsychiatric diseases in adulthood, including anxiety, affective, and alcohol/substance use disorders. Preclinical rodent models of adolescent stress have produced varying results that are species, strain, sex, and laboratory-dependent. However, adolescent social isolation is a potent stressor in humans that has been reliably modeled in male rats, increasing adult anxiety-like and alcohol drinking behaviors, among others. In this study, we examined the generalizability and sex-dependence of this model in C57BL/6J mice, the most commonly used rodent strain in neuroscience research. We also performed a parallel study using social isolation in adulthood to understand the impact of adult social isolation on basal behavioral phenotypes. We found that 6 weeks of social isolation with minimal handling in adolescence through early adulthood [postnatal day (PD) 28-70] produced a hypersocial phenotype in both male and female mice and an anxiolytic phenotype in the elevated plus-maze in female mice. However, it had no effects in other assays for avoidance behavior or on fear conditioning, alcohol drinking, reward or aversion sensitivity, or novel object exploration in either sex. In contrast, 6 weeks of social isolation in adulthood beginning at PD77 produced an anxiogenic phenotype in the light/dark box but had no effects on any other assays. Altogether, our results suggest that: (1) adolescence is a critical period for social stress in C57BL/6J mice, producing aberrant social behavior in a sex-independent manner; and (2) chronic individual housing in adulthood does not alter basal behavioral phenotypes that may confound interpretation of behavior following other laboratory manipulations.
Collapse
Affiliation(s)
- Jean K. Rivera-Irizarry
- Graduate Program in Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY, United States
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Kristen E. Pleil
- Graduate Program in Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Graduate Program in Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
48
|
Yahfoufi N, Matar C, Ismail N. Adolescence and Aging: Impact of Adolescence Inflammatory Stress and Microbiota Alterations on Brain Development, Aging, and Neurodegeneration. J Gerontol A Biol Sci Med Sci 2020; 75:1251-1257. [PMID: 31917834 PMCID: PMC7302172 DOI: 10.1093/gerona/glaa006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Puberty/adolescence is a critical phase during neurodevelopment with numerous structural, neurochemical, and molecular changes occurring in response to genetic and environmental signals. A consequence of this major neuronal reorganizing and remodeling is a heightened level of vulnerability to stressors and immune challenges. The gut microbiota is a fundamental modulator of stress and immune responses and has been found to play a role in mental health conditions and neurodegenerative disorders. Environmental insults (stress, infection, neuroinflammation, and use of antibiotics) during adolescence can result in dysbiosis subsidizing the development of brain disorders later in life. Also, pubertal neuroinflammatory insults can alter neurodevelopment, impact brain functioning in an enduring manner, and contribute to neurological disorders related to brain aging, such as Alzheimer's disease, Parkinson's disease, and depression. Exposure to probiotics during puberty can mitigate inflammation, reverse dysbiosis, and decrease vulnerabilities to brain disorders later in life. The goal of this review is to reveal the consequences of pubertal exposure to stress and immune challenges on the gut microbiota, immune reactivity within the brain, and the risk or resilience to stress-induced mental illnesses and neurodegenerative disorders. We propose that the consumption of probiotics during adolescence contribute to the prevention of brain pathologies in adulthood.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ontario, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Jin SX, Dickson D, Maguire J, Feig LA. RASGRF1 in CRF cells controls the early adolescent female response to repeated stress. J Endocrinol 2020; 245:397-410. [PMID: 32240981 PMCID: PMC7297040 DOI: 10.1530/joe-19-0375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/08/2022]
Abstract
RASGRF1 (GRF1) is a calcium-stimulated guanine-nucleotide exchange factor that activates RAS and RAC GTPases. In hippocampus neurons, it mediates the action of NMDA and calcium-permeable AMPA glutamate receptors on specific forms of synaptic plasticity, learning, and memory in both male and female mice. Recently, we showed GRF1 also regulates the HPA axis response to restraint stress, but only in female mice before puberty. In particular, we found that after 7 days of restraint stress (7DRS) (30 min/day) both elevated serum CORT levels and induction of an anxiolytic phenotype normally observed in early adolescent (EA) female mice are blocked in GRF1-knockout mice. In contrast, no effects were observed in EA male or adult females. Here, we show this phenotype is due, at least in part, to GRF1 loss in CRF cells of the paraventricular nucleus of the hypothalamus, as GRF1 knockout specifically in these cells suppressed 7DRS-induced elevation of serum CORT levels specifically in EA females, but only down to levels found in comparably stressed EA males. Nevertheless, it still completely blocked the 7DRS-induced anxiolytic phenotype observed in EA females. Interestingly, loss of GRF1 in CRF cells had no effect after only three restraint stress exposures, implying a role for GRF1 in 7DRS stress-induced plasticity of CRF cells that appears to be specific to EA female mice. Overall, these findings indicate that GRF1 in CRF cells makes a key contribution to the distinct response EA females display to repeated stress.
Collapse
Affiliation(s)
- Shan-xue Jin
- Department of Developmental, Molecular, and Chemical Biology
| | - David Dickson
- Department of Developmental, Molecular, and Chemical Biology
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Larry A. Feig
- Department of Developmental, Molecular, and Chemical Biology
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
- communicating author P- 617-636-6956,
| |
Collapse
|
50
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|