1
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Huber AK, Kaczorowski A, Schneider F, Böning S, Görtz M, Langhoff D, Schwab C, Stenzinger A, Hohenfellner M, Duensing A, Duensing S. Digital spatial profiling identifies the tumor center as a topological niche in prostate cancer characterized by an upregulation of BAD. Sci Rep 2024; 14:20281. [PMID: 39217197 PMCID: PMC11366015 DOI: 10.1038/s41598-024-71070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer is characterized by a high degree of intratumoral heterogeneity. However, little is known about the spatial distribution of cancer cells with respect to specific functional characteristics and the formation of spatial niches. Here, we used digital spatial profiling (DSP) to investigate differences in protein expression in the tumor center versus the tumor periphery. Thirty-seven regions of interest were analyzed for the expression of 47 proteins, which included components of the PI3K-AKT, MAPK, and cell death signaling pathways as well as immune cell markers. A total of 1739 data points were collected from five patients. DSP identified the BCL-2 associated agonist of cell death (BAD) protein as the most significantly upregulated protein in the tumor center. BAD upregulation was confirmed by conventional immunohistochemistry, which furthermore showed a phosphorylation of BAD at serine 112 indicating its inactivation. Knockdown of BAD in prostate cancer cells in vitro led to decreased cell viability and colony growth. Clinically, high BAD expression was associated with a shorter time to biochemical recurrence in 158 mostly high-risk prostate cancer patients. Collectively, our results suggest that the tumor center is a topological niche with high BAD expression that may drive prostate cancer progression.
Collapse
Affiliation(s)
- Ann-Kathrin Huber
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Felix Schneider
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Sarah Böning
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Magdalena Görtz
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - David Langhoff
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Brustolin Braga C, Milan JC, Andrade Meirelles M, Zavan B, Ferreira-Silva GÁ, Caixeta ES, Ionta M, Pilli RA. Furoxan-piplartine hybrids as effective NO donors and ROS inducers in PC3 cancer cells: design, synthesis, and biological evaluation. RSC Med Chem 2024:d4md00281d. [PMID: 39290383 PMCID: PMC11403579 DOI: 10.1039/d4md00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Conjugation of the naturally occurring product piplartine (PPT, 1), which is a potent cytotoxic compound and ROS inducer, with a diphenyl sulfonyl-substituted furoxan moiety (namely, 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide), an important type of NO donor, via an ether linker of different chain lengths is described, characterized and screened for the anticancer potential. The cytotoxicity of the new hybrids was evaluated on a panel of human cancer cell lines (MCF-7, PC3 and OVCAR-3) and two non-cancer human cells (MCF10A and PNT2). In general, the synthesized hybrids were more cytotoxic and selective compared to their furoxan precursors 4-6 and PPT in the above cancer cells. Particularly, PC3 cells are the most sensitive to hybrids 7 and 9 (IC50 values of 240 nM and 50 nM, respectively), while a lower potency was found for the prostate normal cells (IC50 = 17.8 μM and 14.1 μM, respectively), corresponding to selectivity indices of ca. 75 and 280, respectively. NO generation by the PPT-furoxan compounds in PC3 cells was confirmed using the Griess reaction. Furthermore, the cell growth inhibitory effect of 9 was significantly attenuated by the NO scavenger carboxy-PTIO. The intracellular ROS generation by 7 and 9 was also verified, and different assays showed that co-treatment with the antioxidant N-acetyl-l-cysteine (NAC) provided protection against PPT-induced ROS generation. Further mechanistic studies revealed that 7 and 9 had strong cytotoxicity to induce apoptosis in PC3 cells, being mediated, at least in part, by the NO-release and increase in ROS production. Notably, the ability of 9 to induce apoptosis was stronger than that of 7, which may be attributed to higher levels of NO released by 9. Compounds 7 and 9 modulated the expression profiles of critical regulators of cell cycle, such as CDKN1A (p21), c-MYC, and CCND1 (cyclin D1), as well as induced DNA damage. Overall, tethering the furoxan NO-releasing moiety to the cytotoxic natural product PPT had significant impact on the potential anticancer activity and selectivity of the novel hybrid drug candidates, especially 9, as a result of synergistic effects of both furoxan and PPT's ability to release NO, generate ROS, induce DNA damage, and trigger apoptosis.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Julio Cesar Milan
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| |
Collapse
|
4
|
Li J, Wang X, Xue L, He Q. Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon 2024; 10:e33103. [PMID: 39022084 PMCID: PMC11253540 DOI: 10.1016/j.heliyon.2024.e33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Curcumin, a phenolic compound extracted from turmeric rhizomes, exhibits antitumour effects in preclinical models of tumours. However, its mechanism of action in prostate cancer remains unclear. Exploring the molecular mechanisms of curcumin in prostate cancer based on network pharmacology and molecular docking provides a new theoretical basis for prostate cancer treatment. Method Using tools such as PharmMapper, SuperPred, TargetNet, and SwissTargetPrediction, we obtained information on curcumin-related targets. We comprehensively collected prostate cancer-related targets from several databases, including GeneCards, CTD, DisGeNET, OMIM, and PharmGKB. Cross-cutting drug-disease targets were then derived by screening using the Venny 2.1.0 tool. Subsequently, we used the DAVID platform to perform in-depth GO and KEGG enrichment analyses of the drug-disease-shared targets. To construct a PPI network map of the cross-targets and screen the 10 core targets, we combined the STRING database and Cytoscape 3.7.2. Molecular docking experiments were performed using AutoDockTools 1.5.7 software. Finally, we used several databases such as GEPIA, HPA, cBioPortal, and TIMER to further analyse the screened core targets in detail. Result We identified 307 key targets of curcumin in cancer treatment. After GO functional enrichment analysis, we obtained 1119 relevant entries, including 782 biological progression (BP) entries, 112 cellular component (CC) entries, and 225 molecular function (MF) entries. In addition, KEGG pathway enrichment analysis revealed 126 signalling pathways, which were mainly involved in the cancer pathway, such as lipid and atherosclerosis pathway, PI3K-Akt signal pathway, MAPK signal pathway, Ras signal pathways, and chemical carcinogenesis-reactive oxygen species. By applying Cytoscape 3.7.2 software, we identified SRC, PIK3R1, STAT3, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1 as core targets. Molecular docking experiments showed that the binding energies of curcumin to these core targets were all below -1.85 kJ mol-1, which fully demonstrated that curcumin could spontaneously bind to these core targets. Finally, these results were validated at multiple levels, including mRNA expression, protein expression, and immune infiltration. Conclusion Through in-depth network pharmacology and molecular docking studies, we have found that curcumin may have anticancer potential by upregulating the expression of PIK3R1 and STAT3, and downregulating the binding ability of molecules such as SRC, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1. In addition, curcumin may interfere with the cyclic process of prostate cancer cells by inhibiting key signalling pathways such as the PI3K-Akt signalling pathway, MAPK signalling pathway, and Ras, thereby inhibiting their growth. This study not only reveals the potential molecular mechanism of curcumin in the treatment of prostate cancer but also provides an important theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Xi'an Jiaotong University, China
- Department of Urology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Xiong Wang
- Department of Pharmacology, Ankang Maternity and Child Health Care Hospital, Ankang, 725000, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| |
Collapse
|
5
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
6
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|
7
|
Li Z, Ning K, Zhao D, Zhou Z, Zhao J, Long X, Yang Z, Chen D, Cai X, Hong L, Zhang L, Zhou F, Wang J, Li Y. Targeting the Metabolic Enzyme PGAM2 Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer by Inhibiting BCL2 Signaling. Cancer Res 2023; 83:3753-3766. [PMID: 37676279 DOI: 10.1158/0008-5472.can-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The next-generation androgen receptor (AR) inhibitor enzalutamide is the mainstay treatment for metastatic prostate cancer. Unfortunately, resistance occurs rapidly in most patients, and once resistance occurs, treatment options are limited. Therefore, there is an urgent need to identify effective targets to overcome enzalutamide resistance. Here, using a genome-wide CRISPR-Cas9 library screen, we found that targeting a glycolytic enzyme, phosphoglycerate mutase PGAM2, significantly enhanced the sensitivity of enzalutamide-resistant prostate cancer cells to enzalutamide both in vivo and in vitro. Inhibition of PGAM2 together with enzalutamide treatment triggered apoptosis by decreasing levels of the antiapoptotic protein BCL-xL and increasing activity of the proapoptotic protein BAD. Mechanistically, PGAM2 bound to 14-3-3ζ and promoted its interaction with phosphorylated BAD, resulting in activation of BCL-xL and subsequent resistance to enzalutamide-induced apoptosis. In addition, high PGAM2 expression, which is transcriptionally regulated by AR, was associated with shorter survival and rapid development of enzalutamide resistance in patients with prostate cancer. Together, these findings provide evidence of a nonmetabolic function of PGAM2 in promoting enzalutamide resistance and identify PGAM2 inhibition as a promising therapeutic strategy for enzalutamide-resistant prostate cancer. SIGNIFICANCE PGAM2 promotes resistance to enzalutamide by activating antiapoptotic BCL-xL and suppressing apoptosis, indicating that PGAM2 is a potential target for overcoming enzalutamide resistance in prostate cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Kang Ning
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Diwei Zhao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhaohui Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junliang Zhao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xingbo Long
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhenyu Yang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dong Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - XinYang Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lexuan Hong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonghong Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
8
|
Mørk SK, Kongsted P, Westergaard MCW, Albieri B, Granhøj JS, Donia M, Martinenaite E, Holmström MO, Madsen K, Kverneland AH, Kjeldsen JW, Holmstroem RB, Lorentzen CL, Nørgaard N, Andreasen LV, Wood GK, Christensen D, Klausen MS, Hadrup SR, thor Straten P, Andersen MH, Svane IM. First in man study: Bcl-Xl_42-CAF®09b vaccines in patients with locally advanced prostate cancer. Front Immunol 2023; 14:1122977. [PMID: 36999039 PMCID: PMC10043415 DOI: 10.3389/fimmu.2023.1122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundThe B-cell lymphoma-extra-large (Bcl-XL) protein plays an important role in cancer cells’ resistance to apoptosis. Pre-clinical studies have shown that vaccination with Bcl-XL-derived peptides can induce tumor-specific T cell responses that may lead to the elimination of cancer cells. Furthermore, pre-clinical studies of the novel adjuvant CAF®09b have shown that intraperitoneal (IP) injections of this adjuvant can improve the activation of the immune system. In this study, patients with hormone-sensitive prostate cancer (PC) received a vaccine consisting of Bcl-XL-peptide with CAF®09b as an adjuvant. The primary aim was to evaluate the tolerability and safety of IP and intramuscular (IM) administration, determine the optimal route of administration, and characterize vaccine immunogenicity.Patients and methodsTwenty patients were included. A total of six vaccinations were scheduled: in Group A (IM to IP injections), ten patients received three vaccines IM biweekly; after a three-week pause, patients then received three vaccines IP biweekly. In Group B (IP to IM injections), ten patients received IP vaccines first, followed by IM under a similar vaccination schedule. Safety was assessed by logging and evaluating adverse events (AE) according to Common Terminology Criteria for Adverse Events (CTCAE v. 4.0). Vaccines-induced immune responses were analyzed by Enzyme-Linked Immunospot and flow cytometry.ResultsNo serious AEs were reported. Although an increase in T cell response against the Bcl-XL-peptide was found in all patients, a larger proportion of patients in group B demonstrated earlier and stronger immune responses to the vaccine compared to patients in group A. Further, we demonstrated vaccine-induced immunity towards patient-specific CD4, and CD8 T cell epitopes embedded in Bcl-XL-peptide and an increase in CD4 and CD8 T cell activation markers CD107a and CD137 following vaccination. At a median follow-up of 21 months, no patients had experienced clinically significant disease progression.ConclusionThe Bcl-XL-peptide-CAF®09b vaccination was feasible and safe in patients with l hormone-sensitive PC. In addition, the vaccine was immunogenic and able to elicit CD4 and CD8 T cell responses with initial IP administration eliciting early and high levels of vaccine-specific responses in a higher number og patients.Clinical trial registrationhttps://clinicaltrials.gov, identifier NCT03412786.
Collapse
Affiliation(s)
- Sofie Kirial Mørk
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Per Kongsted
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | | | - Benedetta Albieri
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Joachim Stoltenborg Granhøj
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- IO Biotech Aps, Copenhagen, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Madsen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Anders H. Kverneland
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Rikke Boedker Holmstroem
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Cathrine Lund Lorentzen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - Nis Nørgaard
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Grith Krøyer Wood
- Statens Serum Institut, Center for Vaccine Research, Copenhagen, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Center for Vaccine Research, Copenhagen, Denmark
| | | | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark (DTU), HEALTH TECH, Kongens Lyngby, Denmark
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- *Correspondence: Inge Marie Svane,
| |
Collapse
|
9
|
Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int J Mol Sci 2023; 24:ijms24054482. [PMID: 36901912 PMCID: PMC10003184 DOI: 10.3390/ijms24054482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.
Collapse
|
10
|
An effective restoration of one-carbon metabolism in folate-deficient mice with a high-folate corn inbred line. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Gossypol and Its Natural Derivatives: Multitargeted Phytochemicals as Potential Drug Candidates for Oncologic Diseases. Pharmaceutics 2022; 14:pharmaceutics14122624. [PMID: 36559116 PMCID: PMC9787675 DOI: 10.3390/pharmaceutics14122624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the vast amounts of research and remarkable discoveries that have been made in recent decades, cancer remains a leading cause of death and a major public health concern worldwide. Gossypol, a natural polyphenolic compound derived from the seeds, roots, and stems of cotton (Gossypium hirsutum L.), was first used as a male contraceptive agent. Due to its diverse biological properties, including antifertility, antiviral, antioxidant, antibacterial, antimalarial, and most notably antitumor activities, gossypol has been the subject of numerous studies. Nevertheless, no systematic review has been performed that analyzes the antineoplastic potential of gossypol and related natural compounds in an organ-specific manner while delineating the molecular mechanisms of action. Hence, we have performed an extensive literature search for anticancer properties of gossypol and their natural derivatives against various types of cancer cells utilizing PubMed, ScienceDirect, Google Scholar, and Scopus. The sources, distribution, chemical structure, and toxicity of gossypol and its constituents are briefly reviewed. Based on emerging evidence, gossypol and related compounds exhibit significant antineoplastic effects against various cancer types through the modulation of different cancer hallmarks and signaling pathways. Additionally, the synergistic activity of gossypol and its derivatives with chemotherapeutic agents has been observed. Our evaluation of the current literature suggests the potential of gossypol and its derivatives as multitargeting drug candidates to combat multiple human malignancies.
Collapse
|
12
|
Asano S, Maetani Y, Ago Y, Kanematsu T. Phospholipase C-related catalytically inactive protein enhances cisplatin-induced apoptotic cell death. Eur J Pharmacol 2022; 933:175273. [PMID: 36108738 DOI: 10.1016/j.ejphar.2022.175273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
Cisplatin is one of the most widely used chemotherapeutic agents and induces caspase-9-mediated apoptosis. Here, we examined whether phospholipase C-related catalytically inactive protein (PRIP) enhances cisplatin-induced apoptosis of breast cancer cells. PRIP depletion increased expression of X-linked inhibitor of apoptosis protein (XIAP) by inhibiting protein degradation, which is downstream of the phosphatidylinositol 3-kinase/AKT pathway and inhibits apoptotic signaling by blocking caspase-9 activation. Conversely, the viability of MCF-7 cells transfected with Prip1 was significantly lower than that of control cells in the presence of cisplatin. The number of apoptotic nuclei and expression levels of cleaved caspase-9 and downstream cleaved caspase-7 and poly-ADP ribose polymerase were greater in PRIP1-expressing MCF-7 cells treated with cisplatin than in control cells. XIAP was decreased by expression of pleckstrin homology domain of PRIP1 (PRIP1-PH domain) that blocked phosphatidylinositol 4,5 bisphosphate metabolism. In an orthotopic transplantation model, combined administration of PRIP1-PH domain-containing liposomes and cisplatin reduced the size of MCF-7 tumors compared with cisplatin alone. Our findings demonstrate that PRIP promotes XIAP degradation by inhibiting PI(3,4,5)P3/AKT signaling and enhances cisplatin-induced apoptotic cell death. Therefore, we propose that PRIP1-PH liposomes are a novel agent to avoid cisplatin resistance.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yuka Maetani
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Shen Y, Eng JS, Fajardo F, Liang L, Li C, Collins P, Tedesco D, Nolan-Stevaux O. Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway. J Immunother Cancer 2022; 10:jitc-2021-004348. [PMID: 35296559 PMCID: PMC8928392 DOI: 10.1136/jitc-2021-004348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background Bispecific T-cell engager (BiTE) molecules induce redirected lysis of cancer cells by T cells and are an emerging modality for solid tumor immunotherapy. While signs of clinical activity have been demonstrated, efficacy of T-cell engagers (TCEs) in solid tumors settings, molecular determinants of response, and underlying mechanisms of resistance to BiTE therapy require more investigation. Methods To uncover cancer cell-intrinsic genetic modifiers of TCE-mediated cytotoxicity, we performed genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loss-of-function and CRISPRa (CRISPR activation) gain-of-function screens using TCEs against two distinct tumor-associated antigens (TAAs). By using in vitro T-cell cytotoxicity assays and in vivo efficacy studies, we validated the roles of two common pathways identified in our screen, T-cell costimulation pathway and apoptosis pathway, as key modifiers of BiTE activity. Results Our genetic screens uncovered TAAs-independent cancer cell-intrinsic genes with functions in autophagy, T-cell costimulation, the apoptosis pathway, chromatin remodeling, and cytokine signaling that altered responsiveness to BiTE-mediated killing. Notably, loss of CD58 (the ligand of the CD2 T-cell costimulatory receptor), a gene frequently altered in cancer, led to decreased TCE-mediated cytotoxicity, T-cell activation and antitumor efficacy in vitro and in vivo. Moreover, the effects of CD58 loss were synergistically compounded by concurrent loss of CD80/CD86 (ligands for the CD28 T-cell costimulatory receptor), whereas joint CD2 and CD28 costimulation additively enhanced TCE-mediated killing, indicating non-redundant costimulatory mechanisms between the two pathways. Additionally, loss of CFLAR (Caspase-8 and FADD Like Apoptosis Regulator), BCL2L1, and BID (BH3 Interacting Domain Death Agonist) induced profound changes in sensitivity to TCEs, indicating that key regulators of apoptosis, which are frequently altered in cancer, impact tumor responsiveness to BiTE therapy. Conclusions This study demonstrates that genetic alterations central to carcinogenesis and commonly detected in cancer samples lead to significant modulation of BiTE antitumor activity in vitro and in vivo, findings with relevance for a better understanding of patient responses to BiTE therapy and novel combinations that enhance TCE efficacy.
Collapse
Affiliation(s)
- Ye Shen
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Jason S Eng
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | | | - Lingming Liang
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Cong Li
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Patrick Collins
- Genome Analysis Unit, Amgen Inc, South San Francisco, California, USA
| | | | | |
Collapse
|
14
|
Yu Z, Guo J, Meng T, Ge L, Liu L, Wang H, Yang X. Bcl-xL DNAzymes promote radiosensitivity and chemosensitivity in colorectal cancer cells via enhancing apoptosis. BMC Pharmacol Toxicol 2022; 23:13. [PMID: 35123593 PMCID: PMC8817578 DOI: 10.1186/s40360-022-00553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background RNA-cleaving deoxyribozymes (DNAzymes) are catalytic deoxyribonucleic acid molecules that have become a promising new class of gene suppressors by binding and cleaving target mRNA. This study investigated whether DNAzymes targeting Bcl-xL enhanced the effectiveness of radiotherapy and chemotherapy in colorectal cancer (CRC) cells. Methods Two types of CRC cells, SW480 and SW837, were transfected with five DNAzymes. Cell viability, Bcl-xL expression and apoptosis were examined. SW480 xenograft model was used to examine the combined effects of Bcl-xL DNAzymes and 5-FU (or X-rays) on tumor growth. Results Three Bcl-xL DNAzymes, DT882, DT883, and DT884 were identified to be effective in suppressing Bcl-xL expression and causing cell apoptosis. Furthermore, DT882 combined with 5-FU or radiotherapy addictively promoted cell apoptosis and significantly inhibited the growth of SW480 xenografts in vivo. Conclusions These results suggest that Bcl-xL DNAzymes can enhance the radiosensitivity and chemosensitivity in CRC cells via inducing apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00553-x.
Collapse
|
15
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
16
|
Ahani M, Ghaderian SMH, Mehr Azma M, Kamali K, Naghavi Gargari B, Bahramali G, Akbarzadeh R. Differential gene expression of BCL-2, ZEB2-AS1 and BALR-2 in prostate cancer and benign prostatic hyperplasia. Andrologia 2021; 54:e14344. [PMID: 34866225 DOI: 10.1111/and.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) and benign prostate hyperplasia (BPH) are highly prevalent heterogeneous disorders among men. Whereas PCa and BPH underline common pathological features, apoptotic-related genes might be differentially expressed in these diseases. This study was aimed at testing BCL-2 as well as BALR-2 and ZEB2-AS1 apoptosis-related long non-coding RNA (lncRNA) in patients with PCa and BPH. The expression levels of the BCL-2 gene and ZEB2-AS1 lncRNA were upregulated in tumoural tissues in comparison to adjacent non-cancerous tissues (ANCTs) and BPH tissues. In contrast, the expression level of BALR-2 lncRNA was significantly higher in BPH compared with tumoural tissues. Furthermore, while no association was noticed between the relative expression of ZEB2-AS1 and the tumour grade, the relative expression of BCL-2 and BALR-2 is strongly associated with a higher grade of the tumour in PCa samples compared with the ANCTs. The receiver operating characteristic (ROC) curve analysis indicated the highest specificity and diagnostic value in distinguishing PCa and ANCTs as well as PCa and BPH, respectively. In conclusion, altered expression of BCL-2 and BALR-2 was observed to be associated with tumoural progression and could be used as potential candidates for distinguishing PCa tissues from ANCTs or BPH samples.
Collapse
Affiliation(s)
- Maryam Ahani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Mehr Azma
- Aliasghar Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Koosha Kamali
- Department of Urology, Hasheminejad Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Naghavi Gargari
- Department of Basic Sciences, Faculty of Nursing & Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis, AIDS and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Akbarzadeh
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Caryophyllene Oxide, the Active Compound Isolated from Leaves of Hymenaea courbaril L. (Fabaceae) with Antiproliferative and Apoptotic Effects on PC-3 Androgen-Independent Prostate Cancer Cell Line. Molecules 2021; 26:molecules26206142. [PMID: 34684723 PMCID: PMC8538860 DOI: 10.3390/molecules26206142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer treatment frequently carries side effects, therefore, the search for new selective and effective molecules is indispensable. Hymenaea courbaril L. has been used in traditional medicine in South America to treat several diseases, including prostate cancer. Leaves’ extracts from different polarities were evaluated using the 3-(4,5-methyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) cell viability assay to determine the cytotoxicity in prostate p53-null cells, followed by bio-guided fractionations to obtain the most cytotoxic fraction considering the selectivity index. The most cytotoxic fraction was analyzed by GC/MS to identify the active compounds. The majority compound, caryophyllene oxide, induced early and late apoptosis, depolarized the mitochondrial membrane, leading to several morphological changes and shifts in apoptotic proteins, and caspases were evidenced. Depolarization of the mitochondrial membrane releases the pro-apoptotic protein Bax from Bcl-xL. The apoptosis process is caspase-7 activation-dependent. Caryophyllene oxide is a safe anti-proliferative agent against PC-3 cells, inducing apoptosis with low toxicity towards normal cells.
Collapse
|
18
|
Evasion of cell death: A contributory factor in prostate cancer development and treatment resistance. Cancer Lett 2021; 520:213-221. [PMID: 34343635 DOI: 10.1016/j.canlet.2021.07.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
Cell death is a natural process in organismal development, homeostasis and response to disease or infection that eliminates unnecessary or potentially dangerous cells and acts as an innate barrier to oncogenesis. Inactivation of cell death is a key step in tumour development and also impedes effective response to cancer therapy. Precise execution of unwanted cells is achieved through regulated cell death processes including the intrinsic apoptotic pathway that is governed by the BCL-2 (B-cell lymphoma 2) protein family. There is compelling evidence that intrinsic apoptosis is defective in prostate cancer, particularly in metastatic and castration resistant advanced disease, currently a lethal diagnosis. New therapeutics have been developed to target pro-survival BCL-2 proteins (including BCL-2, BCL-XL and MCL-1) and show promise in reinstating apoptosis to destroy tumour cells in haematological cancers. Here we discuss perturbation of cell death in prostate cancer and how new therapeutics could improve treatment outcome in prostate cancer.
Collapse
|
19
|
Soliman L, De Souza A, Srinivasan P, Danish M, Bertone P, El-Deiry WS, Carneiro BA. The Role of BCL-2 Proteins in the Development of Castration-resistant Prostate Cancer and Emerging Therapeutic Strategies. Am J Clin Oncol 2021; 44:374-382. [PMID: 34014842 DOI: 10.1097/coc.0000000000000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of androgen resistance in advanced prostate cancer remains a challenging clinical problem. Because androgen deprivation therapy constitutes the backbone of first-line treatments for metastatic prostate cancer, the phenotypic switch from an androgen-dependent to an androgen-independent growth state limits the treatment options for these patients. This critical change from an androgen-dependent to an androgen-independent growth state can be regulated by the B-cell lymphoma gene 2 (BCL-2) family of apoptotic proteins. While the roles of BCL-2 protein family members in the carcinogenesis of prostate cancer have been well-studied, emerging data also delineates their modulation of disease progression to castration-resistant prostate cancer (CRPC). Over the past 2 decades, investigators have sought to describe the mechanisms that underpin this development at the molecular level, yet no recent literature has consolidated these findings in a dedicated review. As new classes of BCL-2 family inhibitors are finding indications for other cancer types, it is time to evaluate how such agents might find stable footing for the treatment of CRPC. Several trials to date have investigated BCL-2 inhibitors as therapeutic agents for CRPC. These therapies include selective BCL-2 inhibitors, pan-BCL-2 inhibitors, and novel inhibitors of MCL-1 and BCL-XL. This review details the research regarding the role of BCL-2 family members in the pathogenesis of prostate cancer and contextualizes these findings within the contemporary landscape of prostate cancer treatment.
Collapse
Affiliation(s)
- Luke Soliman
- Warren Alpert Medical School of Brown University
| | - Andre De Souza
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | | | - Matthew Danish
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
| | - Paul Bertone
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | - Wafik S El-Deiry
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI
| | - Benedito A Carneiro
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| |
Collapse
|
20
|
Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-Level Dysregulation of BCL2 Family Genes in Acute Myeloblastic Leukemia. Cancers (Basel) 2021; 13:cancers13133175. [PMID: 34202143 PMCID: PMC8267690 DOI: 10.3390/cancers13133175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
The expression of apoptosis-related BCL2 family genes, fine-tuned in normal cells, is dysregulated in many neoplasms. In acute myeloid leukemia (AML), this problem has not been studied comprehensively. To address this issue, RNA-seq data were used to analyze the expression of 26 BCL2 family members in 27 AML FAB M1 and M2 patients, divided into subgroups differently responding to chemotherapy. A correlation analysis, analysis of variance, and Kaplan-Meier analysis were applied to associate the expression of particular genes with other gene expression, clinical features, and the presence of mutations detected by exome sequencing. The expression of BCL2 family genes was dysregulated in AML, as compared to healthy controls. An upregulation of anti-apoptotic and downregulation of pro-apoptotic genes was observed, though only a decrease in BMF, BNIP1, and HRK was statistically significant. In a group of patients resistant to chemotherapy, overexpression of BCL2L1 was manifested. In agreement with the literature data, our results reveal that BCL2L1 is one of the key players in apoptosis regulation in different types of tumors. An exome sequencing data analysis indicates that BCL2 family genes are not mutated in AML, but their expression is correlated with the mutational status of other genes, including those recurrently mutated in AML and splicing-related. High levels of some BCL2 family members, in particular BIK and BCL2L13, were associated with poor outcome.
Collapse
Affiliation(s)
- Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: ; Tel.: +48-618-528-503
| | - Pawel Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| |
Collapse
|
21
|
Caprioglio D, Salamone S, Pollastro F, Minassi A. Biomimetic Approaches to the Synthesis of Natural Disesquiterpenoids: An Update. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040677. [PMID: 33916090 PMCID: PMC8065479 DOI: 10.3390/plants10040677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Natural disesquiterpenoids represent a small group of secondary metabolites characterized by complex molecular scaffolds and interesting pharmacological profiles. In the last decade, more than 400 new disesquiterpenoids have been discovered and fully characterized, pointing out once more the "magic touch" of nature in the design of new compounds. The perfect blend of complex and unique architectures and biological activity has made sesquiterpene dimers an attractive and challenging synthetic target, inspiring organic chemists to find new and biomimetic approaches to replicate the efficiency and the selectivity of natural processes under laboratory conditions. In this work, we present a review covering the literature from 2010 to 2020 reporting all the efforts made in the total synthesis of complex natural disesquiterpenoids.
Collapse
Affiliation(s)
- Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
- PlantaChem srls, via Canobio 4/6, 28100 Novara, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
- PlantaChem srls, via Canobio 4/6, 28100 Novara, Italy
| |
Collapse
|
22
|
Signaling Pathways That Control Apoptosis in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13050937. [PMID: 33668112 PMCID: PMC7956765 DOI: 10.3390/cancers13050937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy and the fifth leading cancer-caused death in men worldwide. Therapies that target the androgen receptor axis induce apoptosis in normal prostates and provide temporary relief for advanced disease, yet prostate cancer that acquired androgen independence (so called castration-resistant prostate cancer, CRPC) invariably progresses to lethal disease. There is accumulating evidence that androgen receptor signaling do not regulate apoptosis and proliferation in prostate epithelial cells in a cell-autonomous fashion. Instead, androgen receptor activation in stroma compartments induces expression of unknown paracrine factors that maintain homeostasis of the prostate epithelium. This paradigm calls for new studies to identify paracrine factors and signaling pathways that control the survival of normal epithelial cells and to determine which apoptosis regulatory molecules are targeted by these pathways. This review summarizes the recent progress in understanding the mechanism of apoptosis induced by androgen ablation in prostate epithelial cells with emphasis on the roles of BCL-2 family proteins and "druggable" signaling pathways that control these proteins. A summary of the clinical trials of inhibitors of anti-apoptotic signaling pathways is also provided. Evidently, better knowledge of the apoptosis regulation in prostate epithelial cells is needed to understand mechanisms of androgen-independence and implement life-extending therapies for CRPC.
Collapse
|
23
|
Wyżewski Z, Świtlik W, Mielcarska MB, Gregorczyk-Zboroch KP. The Role of Bcl-xL Protein in Viral Infections. Int J Mol Sci 2021; 22:ijms22041956. [PMID: 33669408 PMCID: PMC7920434 DOI: 10.3390/ijms22041956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Bcl-xL represents a family of proteins responsible for the regulation of the intrinsic apoptosis pathway. Due to its anti-apoptotic activity, Bcl-xL co-determines the viability of various virally infected cells. Their survival may determine the effectiveness of viral replication and spread, dynamics of systemic infection, and viral pathogenesis. In this paper, we have reviewed the role of Bcl-xL in the context of host infection by eight different RNA and DNA viruses: hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (IAV), Epstein-Barr virus (EBV), human T-lymphotropic virus type-1 (HTLV-1), Maraba virus (MRBV), Schmallenberg virus (SBV) and coronavirus (CoV). We have described an influence of viral infection on the intracellular level of Bcl-xL and discussed the impact of Bcl-xL-dependent cell survival control on infection-accompanying pathogenic events such as tissue damage or oncogenesis. We have also presented anti-viral treatment strategies based on the pharmacological regulation of Bcl-xL expression or activity.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-815 Warsaw, Poland
- Correspondence: ; Tel.: +48 728-208-338
| | - Weronika Świtlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | |
Collapse
|
24
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
25
|
Song IS, Jeong YJ, Kim J, Seo KH, Baek NI, Kim Y, Kim CS, Jang SW. Pharmacological inhibition of androgen receptor expression induces cell death in prostate cancer cells. Cell Mol Life Sci 2020; 77:4663-4673. [PMID: 31894360 PMCID: PMC11104930 DOI: 10.1007/s00018-019-03429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/27/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
The androgen receptor (AR) plays an important role in the pathogenesis and development of prostate cancer (PCa). Mostly, PCa progresses to androgen-independent PCa, which has activated AR signaling from androgen-dependent PCa. Thus, inhibition of AR signaling may be an important therapeutic target in androgen-dependent and castration-resistant PCa. In this study, we determined the anticancer effect of a newly found natural compound, sakurasosaponin (S-saponin), using androgen-dependent and castration-resistant PCa cell lines. S-saponin induces mitochondrial-mediated cell death in both androgen-dependent (LNCaP) and castration-resistant (22Rv1 and C4-2) PCa cells, via AR expression. S-saponin treatment induces a decrease in AR expression in a time- and dose-dependent manner and a potent decrease in the expression of its target genes, including prostate-specific antigen (PSA), transmembrane protease, serin 2 (TMPRSS2), and NK3 homeobox 1 (NKX3.1). Furthermore, S-saponin treatment decreases B-cell lymphoma-extra large (Bcl-xL) and mitochondrial membrane potential, thereby increasing the release of cytochrome c into the cytosol. Moreover, Bcl-xL inhibition and subsequent mitochondria-mediated cell death caused by S-saponin were reversed by Bcl-xL or AR overexpression. Interestingly, S-saponin-mediated cell death was significantly reduced by a reactive oxygen species (ROS) scavenger, N-acetylcystein. Animal xenograft experiments showed that S-saponin treatment significantly reduced tumor growth of AR-positive 22Rv1 xenografts but not AR-negative PC-3 xenografts. Taken together, for the first time, our results revealed that S-saponin induces mitochondrial-mediated cell death in androgen-dependent and castration-resistant cells through regulation of AR mechanisms, including downregulation of Bcl-xL expression and induction of ROS stress by decreasing mitochondrial membrane potential.
Collapse
Affiliation(s)
- In-Sung Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Yu Jeong Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
- Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Jueun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
- Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Kyoung-Hwa Seo
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 446-701, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 446-701, Republic of Korea
| | - Yunlim Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
- Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| |
Collapse
|
26
|
Das PK, Zahan T, Abdur Rakib M, Khanam JA, Pillai S, Islam F. Natural Compounds Targeting Cancer Stem Cells: A Promising Resource for Chemotherapy. Anticancer Agents Med Chem 2020; 19:1796-1808. [PMID: 31272363 DOI: 10.2174/1871520619666190704111714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) are the subpopulation of cancer cells which are directly involved in drug resistance, metastases to distant organ and cancer recurrence. METHODS A systematic literature search was conducted through various electronic databases including, Pubmed, Scopus, Google scholar using the keywords "cancer stem cells" and "natural compounds" in the present study. Articles published between 1999 and 2019 were reviewed. All the expositions concerning CSCs associated cancer pathogenesis and therapy resistance, as well as targeting these properties of CSCs by natural compounds were selected for the current study. RESULTS Natural compounds have always been thought as a rich source of biologically active principles, which target aberrantly activated signaling pathways and other modalities of CSCs, while tethering painful side effects commonly involved in the first-line and second-line chemo-radiotherapies. In this review, we have described the key signaling pathways activated in CSCs to maintain their survival and highlighted how natural compounds interrupt these signaling pathways to minimize therapy resistance, pathogenesis and cancer recurrence properties of CSCs, thereby providing useful strategies to treat cancer or aid in cancer therapy improvement. Like normal stem cells, CSCs rely on different signaling pathways and other properties for their maintenance. Therefore, the success of cancer treatment depends on the development of proper anti-neoplastic drugs capable of intercepting those signaling pathways as well as other properties of CSCs in order to eradicate this evasive subpopulation of cancer cells. CONCLUSION Compounds of natural origin might act as an outstanding source to design novel therapies against cancer stem cells.
Collapse
Affiliation(s)
- Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Tasnim Zahan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Jahan A Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Masilamani AP, Dettmer-Monaco V, Monaco G, Cathomen T, Kuckuck I, Schultze-Seemann S, Huber N, Wolf P. An Anti-PSMA Immunotoxin Reduces Mcl-1 and Bcl2A1 and Specifically Induces in Combination with the BAD-Like BH3 Mimetic ABT-737 Apoptosis in Prostate Cancer Cells. Cancers (Basel) 2020; 12:cancers12061648. [PMID: 32580291 PMCID: PMC7352695 DOI: 10.3390/cancers12061648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Upregulation of anti-apoptotic Bcl-2 proteins in advanced prostate cancer leads to therapeutic resistance by prevention of cell death. New therapeutic approaches aim to target the Bcl-2 proteins for the restoration of apoptosis. Methods: The immunotoxin hD7-1(VL-VH)-PE40 specifically binds to the prostate specific membrane antigen (PSMA) on prostate cancer cells and inhibits protein biosynthesis. It was tested with respect to its effects on the expression of anti-apoptotic Bcl-2 proteins. Combination with the BAD-like mimetic ABT-737 was examined on prostate cancer cells and 3D spheroids and in view of tumor growth and survival in the prostate cancer SCID mouse xenograft model. Results: The immunotoxin led to a specific inhibition of Mcl-1 and Bcl2A1 expression in PSMA expressing target cells. Its combination with ABT-737, which inhibits Bcl-2, Bcl-xl, and Bcl-w, led to an induction of the intrinsic apoptotic pathway and to a synergistic cytotoxicity in prostate cancer cells and 3D spheroids. Furthermore, combination therapy led to a significantly prolonged survival of mice bearing prostate cancer xenografts based on an inhibition of tumor growth. Conclusion: The combination therapy of anti-PSMA immunotoxin plus ABT-737 represents the first tumor-specific therapeutic approach on the level of Bcl-2 proteins for the induction of apoptosis in prostate cancer.
Collapse
Affiliation(s)
- Anie P. Masilamani
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.P.M.); (I.K.); (S.S.-S.); (N.H.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106 Freiburg, Germany
| | - Gianni Monaco
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106 Freiburg, Germany
| | - Toni Cathomen
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106 Freiburg, Germany
| | - Irina Kuckuck
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.P.M.); (I.K.); (S.S.-S.); (N.H.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.P.M.); (I.K.); (S.S.-S.); (N.H.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
| | - Nathalie Huber
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.P.M.); (I.K.); (S.S.-S.); (N.H.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
| | - Philipp Wolf
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.P.M.); (I.K.); (S.S.-S.); (N.H.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (V.D.-M.); (G.M.); (T.C.)
- Correspondence: ; Tel.: +49-761-270-28921
| |
Collapse
|
28
|
Rabiee N, Ahmadi S, Arab Z, Bagherzadeh M, Safarkhani M, Nasseri B, Rabiee M, Tahriri M, Webster TJ, Tayebi L. Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review. Int J Nanomedicine 2020; 15:4237-4256. [PMID: 32606675 PMCID: PMC7314593 DOI: 10.2147/ijn.s248736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Arab
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, Beytepe, Ankara06800, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
29
|
Udayakumar TS, Betancourt DM, Ahmad A, Tao W, Totiger TM, Patel M, Marples B, Barber G, Pollack A. Radiation Attenuates Prostate Tumor Antiviral Responses to Vesicular Stomatitis Virus Containing IFNβ, Resulting in Pronounced Antitumor Systemic Immune Responses. Mol Cancer Res 2020; 18:1232-1243. [PMID: 32366674 DOI: 10.1158/1541-7786.mcr-19-0836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/26/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Vesicular stomatitis virus (VSV) expressing IFNβ induces apoptosis in multiple tumor models while maintaining an excellent safety profile. VSV-IFNβ is oncoselective due to permissive replication in cells with an altered IFN pathway. The human VSV-IFNβ (hIFNβ) vector is currently used in clinical trials as a standalone therapy; however, we hypothesized that oncolytic virotherapy might be more effective when used in combination with radiotherapy (RT). We investigated the synergistic effects of RT and VSV-hIFNβ in the subcutaneous PC3 and orthotopic LNCaP prostate xenograft models and a syngeneic RM9 prostate tumor model. VSV-IFNβ combined with RT amplified tumor killing for PC3 and LNCaP xenografts, and RM9 tumors. This was attributed to the induction of proapoptotic genes leading to increased VSV-IFNβ infection and replication, VSV expression, and oncolysis. In the RM9 tumors, combination therapy resulted in a robust antitumor immune response. Treated RM9 tumor-bearing mice demonstrated an increase in CD8+ and CD4+ T-cell numbers, 100% resistance to tumor rechallenge, and reduced resistance to reimplantation challenge with CD8+ knockdown. RT enhanced the activity of VSV-mediated oncolysis via attenuation of the innate antiviral response, resulting in increased VSV replication and the generation of an adaptive immune response earmarked by an increase in CD8+ lymphocyte numbers and antitumor activity. Local tumor irradiation combined with VSV-IFNβ affects tumor cell death through direct and systemic activity in conjunction with pronounced antitumor immunity. IMPLICATIONS: Radiotherapy enhances VSV-mediated oncolysis and anti-tumor immunity, indicating that the ombination has promise for very high risk prostate cancer.
Collapse
Affiliation(s)
- Thirupandiyur S Udayakumar
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Dillon M Betancourt
- Department of Cell Biology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Wensi Tao
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Tulasigeri M Totiger
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Mausam Patel
- Department of Radiology, Memorial Health, Savannah, Georgia
| | - Brian Marples
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Glen Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
30
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
31
|
Caggiano C, Pieraccioli M, Panzeri V, Sette C, Bielli P. c-MYC empowers transcription and productive splicing of the oncogenic splicing factor Sam68 in cancer. Nucleic Acids Res 2020; 47:6160-6171. [PMID: 31066450 PMCID: PMC6614821 DOI: 10.1093/nar/gkz344] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
The splicing factor Sam68 is upregulated in many human cancers, including prostate cancer (PCa) where it promotes cell proliferation and survival. Nevertheless, in spite of its frequent upregulation in cancer, the mechanism(s) underlying its expression are largely unknown. Herein, bioinformatics analyses identified the promoter region of the Sam68 gene (KHDRBS1) and the proto-oncogenic transcription factor c-MYC as a key regulator of Sam68 expression. Upregulation of Sam68 and c-MYC correlate in PCa patients. c-MYC directly binds to and activates the Sam68 promoter. Furthermore, c-MYC affects productive splicing of the nascent Sam68 transcript by modulating the transcriptional elongation rate within the gene. Importantly, c-MYC-dependent expression of Sam68 is under the tight control of external cues, such as androgens and/or mitogens. These findings uncover an unexpected coordination of transcription and splicing of Sam68 by c-MYC, which may represent a key step in PCa tumorigenesis.
Collapse
Affiliation(s)
- Cinzia Caggiano
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Marco Pieraccioli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Valentina Panzeri
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.,Department of Science medical/chirurgic and translational medicine, University of Rome Sapienza,00189 Rome, Italy
| | - Claudio Sette
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy
| | - Pamela Bielli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
32
|
Kim HJ, Seo BG, Kim KD, Yoo J, Lee JH, Min BS, Lee JH, Hwangbo C. C5, A Cassaine Diterpenoid Amine, Induces Apoptosis via the Extrinsic Pathways in Human Lung Cancer Cells and Human Lymphoma Cells. Int J Mol Sci 2020; 21:ijms21041298. [PMID: 32075108 PMCID: PMC7072863 DOI: 10.3390/ijms21041298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/12/2023] Open
Abstract
Apoptosis pathways in cells are classified into two pathways: the extrinsic pathway, mediated by binding of the ligand to a death receptor and the intrinsic pathway, mediated by mitochondria. Apoptosis is regulated by various proteins such as Bcl-2 (B-cell lymphoma 2) family and cellular FLICE (Fas-associated Death Domain Protein Interleukin-1β-converting enzyme)-inhibitory protein (c-FLIP), which have been reported to inhibit caspase-8 activity. In this study, it was found that C5 (3β-Acetyl-nor-erythrophlamide), a compound of cassaine diterpene amine from Erythrophleum fordii, induced cell apoptosis in a variety of types of cancer cells. Induction of apoptosis in cancer cells by C5 was inversely related to the level of Bcl-2 expression. Overexpression of Bcl-2 into cancer cells significantly decreased C5-induced apoptosis. It was also found that treatment of cancer cells with a caspase-8 inhibitor significantly suppressed C5-induced apoptosis; however, treatment with caspase-9 inhibitors did not affect C5-induced apoptosis, suggesting that C5 may induce apoptosis via the extrinsic pathway by activating caspase-8. It was confirmed that treatment with C5 alone induced an association of FADD with procaspase-8; however, overexpression of c-FLIP decreased C5-induced caspase-8 activation. In conclusion, C5 could be utilized as a new useful lead compound for the development of an anti-cancer agent that has the goal of apoptosis.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (B.-G.S.); (K.D.K.); (J.Y.)
- Division of Applied Life Science (BK21 Plus), PMBBRC and Research institute of Life Sciences, Geongsang National University, Jinju 52828, Korea
| | - Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (B.-G.S.); (K.D.K.); (J.Y.)
- Division of Applied Life Science (BK21 Plus), PMBBRC and Research institute of Life Sciences, Geongsang National University, Jinju 52828, Korea
| | - Kwang Dong Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (B.-G.S.); (K.D.K.); (J.Y.)
- Division of Applied Life Science (BK21 Plus), PMBBRC and Research institute of Life Sciences, Geongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (B.-G.S.); (K.D.K.); (J.Y.)
- Division of Applied Life Science (BK21 Plus), PMBBRC and Research institute of Life Sciences, Geongsang National University, Jinju 52828, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Daegu 38430, Korea;
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (J.-H.L.); (C.H.)
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (B.-G.S.); (K.D.K.); (J.Y.)
- Division of Applied Life Science (BK21 Plus), PMBBRC and Research institute of Life Sciences, Geongsang National University, Jinju 52828, Korea
- Correspondence: (J.-H.L.); (C.H.)
| |
Collapse
|
33
|
Pilling AB, Hwang C. Targeting prosurvival BCL2 signaling through Akt blockade sensitizes castration-resistant prostate cancer cells to enzalutamide. Prostate 2019; 79:1347-1359. [PMID: 31228231 PMCID: PMC6617752 DOI: 10.1002/pros.23843] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer that recurs after initial treatment inevitably progresses to castration-resistant prostate cancer (CRPC), the lethal stage of the disease. Despite improvements in outcomes from next generation androgen receptor (AR)-axis inhibitors, CRPC remains incurable. Therapeutic strategies to target AR antagonist resistance are urgently needed to improve outcomes for men with this lethal form of prostate cancer. METHODS Apoptosis and BCL2 family signaling were characterized in cell line models of CRPC. Quantitative real-time polymerase chain reaction and Western blot analysis were used to determine BCL2 expression levels. Drug sensitivity was determined by proliferation, survival and apoptosis analysis. Protein-protein interactions were evaluated by coimmunoprecipitation followed by Western blot detection. RESULTS In the present study, we identify antiapoptotic BCL2 protein signaling as a mechanism of resistance to AR antagonist enzalutamide. In CRPC cell line models, we found that BCL-xL and MCL-1 proteins block apoptosis through binding and sequestering proapoptotic proteins BIM and BAX, resulting in cell survival in response to enzalutamide. Treatment with BH3-mimetics targeting BCL-xL or MCL-1 disrupts these interactions and activates apoptosis, sensitizing CRPC cells to enzalutamide. Importantly, we demonstrate that PI3K/Akt signaling is activated in response to enzalutamide and mediates apoptosis evasion through inactivation of BAD, a BH3-only protein that activates proapoptotic signlaing through inhbition of BCL-xL. Inhibition of Akt activates BAD, resulting in increased apoptosis and sensitivity to enzalutamide, demonstrating an alternative therapeutic strategy to target drug resistance. CONCLUSIONS These results demonstrate that CRPC cells employ multiple mechanisms to mediate apoptosis evasion through BCL2 signaling, suggesting this pathway is critical for survival. This study provides a strong preclinical rationale for developing therapeutic strategies to target antiapoptotic BCL2 signaling in combination with AR antagonists to improve treatment options for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Amanda B. Pilling
- Department of Internal Medicine, Division of Hematology/Oncology, Henry Ford Health SystemHenry Ford Cancer InstituteDetroitMichigan
| | - Clara Hwang
- Department of Internal Medicine, Division of Hematology/Oncology, Henry Ford Health SystemHenry Ford Cancer InstituteDetroitMichigan
| |
Collapse
|
34
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
35
|
Wolf P. Tumor-Specific Induction of the Intrinsic Apoptotic Pathway-A New Therapeutic Option for Advanced Prostate Cancer? Front Oncol 2019; 9:590. [PMID: 31312616 PMCID: PMC6614431 DOI: 10.3389/fonc.2019.00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Wang L, Kim D, Wise JTF, Shi X, Zhang Z, DiPaola RS. p62 as a therapeutic target for inhibition of autophagy in prostate cancer. Prostate 2018; 78:390-400. [PMID: 29368435 DOI: 10.1002/pros.23483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. METHODS Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. RESULTS Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. CONCLUSIONS p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition.
Collapse
Affiliation(s)
- Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - James T F Wise
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Robert S DiPaola
- College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
37
|
Zhou QM, Sun Y, Lu YY, Zhang H, Chen QL, Su SB. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int 2017; 17:84. [PMID: 28959140 PMCID: PMC5615796 DOI: 10.1186/s12935-017-0453-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/16/2017] [Indexed: 12/23/2022] Open
Abstract
Background Curcumin, a natural compound derived from the turmeric rhizome Curcuma longa Linn, has anticancer and chemoresistance reduction biological activities. We evaluated the efficacy of curcumin in sensitizing chemotherapy drugs through regulation of Bcl-2-mediated apoptosis in breast cancer stem-like cells (BCSCs). Methods Cell survival was measured using MTT assay. Apoptosis-related proteins were observed using western blot analysis. Apoptosis was detected with flow cytometric analysis and by Hoechst 33258 staining. The mitochondrial membrane potential was observed with flow cytometric analysis. Results The ability of BCSCs to propagate decreased gradually along the passages and was completely lost at the fifth passage [0.1 μmol/L mitomycin C (MMC) with 5 μmol/L curcumin in MCF-7 and 0.5 μmol/L MMC with 5 μmol/L curcumin in MDA-MB-231 cells]. Curcumin combined with MMC treatment significantly decreased the levels of antiapoptotic Bcl-2 and Bcl-w expression, increased the levels of proapoptotic Bax, Bak, Bad, Bik, and Bim expression, and activated caspase-3 and caspase-9 in MCF-7 BCSCs. In the presence of Bcl-2 siRNA, the apoptosis rate increased by 15% in cells treated with curcumin and MMC. The mitochondrial membrane potential decreased by approximately 20% in MCF-7 BCSCs undergoing the combination treatment of curcumin and MMC. The combination-induced decrease in Bcl-2 was regulated by the presence of the Wnt-specific inhibitor PFK115-584 and PI3k inhibitor LY294002. Conclusions Our study indicates that curcumin might represent a novel therapeutic agent for treating breast cancer chemoresistance induced by MMC.
Collapse
Affiliation(s)
- Qian-Mei Zhou
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yang Sun
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yi-Yu Lu
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Hui Zhang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Qi-Long Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
38
|
Wolf P. BH3 Mimetics for the Treatment of Prostate Cancer. Front Pharmacol 2017; 8:557. [PMID: 28868037 PMCID: PMC5563364 DOI: 10.3389/fphar.2017.00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Despite improved diagnostic and therapeutic intervention, advanced prostate cancer (PC) remains incurable. The acquired resistance of PC cells to current treatment protocols has been traced to apoptosis resistance based on the upregulation of anti-apoptotic proteins of the Bcl-2 family. The use of BH3 mimetics, mimicking pro-apoptotic activator or sensitizer proteins of the intrinsic apoptotic pathway, is therefore a promising treatment strategy. The present review gives an overview of preclinical and clinical studies with pan- and specific BH3 mimetics as sensitizers for cell death and gives an outlook how they could be effectively used for the therapy of advanced PC in future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburg, Germany
| |
Collapse
|
39
|
Fehl DJ, Ahmed M. Curcumin promotes the oncoltyic capacity of vesicular stomatitis virus for the treatment of prostate cancers. Virus Res 2017; 228:14-23. [DOI: 10.1016/j.virusres.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
|
40
|
Abstract
The BCL2-selective BH3 mimetic venetoclax was recently approved for the treatment of relapsed, chromosome 17p-deleted chronic lymphocytic leukemia (CLL) and is undergoing extensive testing, alone and in combination, in lymphomas, acute leukemias, and solid tumors. Here we summarize recent advances in understanding of the biology of BCL2 family members that shed light on the action of BH3 mimetics, review preclinical and clinical studies leading to the regulatory approval of venetoclax, and discuss future investigation of this new class of antineoplastic agent.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Medical Physics and Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - X Wei Meng
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
41
|
Xu L, Wang Z, He SY, Zhang SF, Luo HJ, Zhou K, Li XF, Qiu SP, Cao KY. Bax-interacting factor-1 inhibits cell proliferation and promotes apoptosis in prostate cancer cells. Oncol Rep 2016; 36:3513-3521. [PMID: 27748942 DOI: 10.3892/or.2016.5172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors and the second leading cause of cancer-related death among males. Bax-interacting factor-1 (Bif-1) is a member of Endophilin family, which binds to and activates the BAX protein in response to the apoptosis signaling pathway. Loss of Bif-1 may suppress the intrinsic pathway of apoptosis and promote tumorigenesis, but there is also converse evidence that Bif-1 could in part be responsible for the tumorigenesis and the role of Bif-1 in PCa development is not clear. In the present study, we aimed to understand the relationships between Bif-1 expression and PCa development. The mRNA and protein expression levels of Bif-1 in PCa cell lines, benign prostatic hyperplasia (BPH) (n=100) and PCa tissues (n=100, including low Gleason-scored PCa n=43 and high Gleason-scored PCa n=57) were detected and the effects of Bif-1 overexpression on the apoptosis, proliferation and migration in LNCaP cells were explored. Bif-1 mRNA levels of PCa cell lines were analyzed by real-time PCR and the protein levels were detected by western blotting. Bif-1 expression in BPH and PCa samples was detected by immunohistochemistry. To build Bif-1 overexpression PCa cells, Bif-1 gene was transfected into LNCaP cells by pcDNA3.1(+)‑Bif-1 vector. Cell apoptosis was detected by flow cytometric analysis, cell proliferation measured by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and cell migration was analyzed by wound‑healing assay. The results proved that Bif-1 is downregulated in both PCa cell lines (P<0.01) and clinical samples (P<0.05), and Bif-1 expression is suppressed with the cancer progression (BPH vs. PCa P<0.01, and low Gleason-scored PCa vs. high Gleason-scored PCa P<0.05). Overexpression of Bif-1 could significantly inhibit cell proliferation (P<0.05) and enhancing PCa cell apoptosis (P<0.05), but it did not affect the migration ability (P>0.05). Our findings give strong evidence that Bif-1 is involved in PCa tumorigenesis and acts as a suppressor in PCa progression, and may have significance in understanding the process of PCa development.
Collapse
Affiliation(s)
- Lin Xu
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Zhu Wang
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Shan-Yang He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Su-Fen Zhang
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Hong-Jiao Luo
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Kai Zhou
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Xiao-Fei Li
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Shao-Peng Qiu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Kai-Yuan Cao
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
42
|
Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 2016; 161:201-210. [PMID: 27112371 DOI: 10.1016/j.mad.2016.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
Bcl-2 family members form a network of protein-protein interactions that regulate apoptosis through permeabilization of the mitochondrial outer membrane. Deciphering this intricate network requires streamlined experimental models, including the heterologous expression in yeast. This approach had previously enabled researchers to identify domains and residues that underlie the conformational changes driving the translocation, the insertion and the oligomerization of the pro-apoptotic protein Bax at the level of the mitochondrial outer membrane. Recent studies that combine experiments in yeast and in mammalian cells have shown the unexpected effect of the anti-apoptotic protein Bcl-xL on the priming of Bax. As demonstrated with the BH3-mimetic molecule ABT-737, this property of Bcl-xL, and of Bcl-2, is crucial to elaborate about how apoptosis could be reactivated in tumoral cells.
Collapse
Affiliation(s)
- Thibaud T Renault
- Helmholtz Center for Infection Research, Junior Research Group Infection Biology of Salmonella, Inhoffenstraße 7, 38124 Braunschweig, Germany; Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Laurent M Dejean
- California State University of Fresno, Department of Chemistry, 2555 E. San Ramon Ave M/S SB70, Fresno, CA 93740-8034, USA
| | - Stéphen Manon
- CNRS, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
43
|
Pandey MK, Prasad S, Tyagi AK, Deb L, Huang J, Karelia DN, Amin SG, Aggarwal BB. Targeting Cell Survival Proteins for Cancer Cell Death. Pharmaceuticals (Basel) 2016; 9:11. [PMID: 26927133 PMCID: PMC4812375 DOI: 10.3390/ph9010011; 10.3390/biomedicines5020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Amit Kumar Tyagi
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lokesh Deb
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiamin Huang
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Deepkamal N Karelia
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Shantu G Amin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Targeting Cell Survival Proteins for Cancer Cell Death. Pharmaceuticals (Basel) 2016; 9:ph9010011. [PMID: 26927133 PMCID: PMC4812375 DOI: 10.3390/ph9010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise.
Collapse
|
45
|
Delbridge ARD, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 2016; 16:99-109. [PMID: 26822577 DOI: 10.1038/nrc.2015.17] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 'hallmarks of cancer' are generally accepted as a set of genetic and epigenetic alterations that a normal cell must accrue to transform into a fully malignant cancer. It follows that therapies designed to counter these alterations might be effective as anti-cancer strategies. Over the past 30 years, research on the BCL-2-regulated apoptotic pathway has led to the development of small-molecule compounds, known as 'BH3-mimetics', that bind to pro-survival BCL-2 proteins to directly activate apoptosis of malignant cells. This Timeline article focuses on the discovery and study of BCL-2, the wider BCL-2 protein family and, specifically, its roles in cancer development and therapy.
Collapse
Affiliation(s)
- Alex R D Delbridge
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Stephanie Grabow
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - David L Vaux
- Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Yang MC, Lin RW, Huang SB, Huang SY, Chen WJ, Wang S, Hong YR, Wang C. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53. Cell Cycle 2016; 15:394-402. [PMID: 26694174 PMCID: PMC4943702 DOI: 10.1080/15384101.2015.1127470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/16/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022] Open
Abstract
Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.
Collapse
Affiliation(s)
- Min-Chi Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ru-Wei Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Bo Huang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Yuan Huang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jie Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Yi-Ren Hong
- Department of Biochemistry & Graduate Institute of Medicine, Medical University, Kaohsiung, Taiwan
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Meadows DN, Bahous RH, Best AF, Rozen R. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection. PLoS One 2015; 10:e0143738. [PMID: 26599510 PMCID: PMC4658061 DOI: 10.1371/journal.pone.0143738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022] Open
Abstract
Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host’s immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.
Collapse
Affiliation(s)
- Danielle N. Meadows
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Renata H. Bahous
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Ana F. Best
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Rima Rozen
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
48
|
Askarian S, Abnous K, Taghavi S, Oskuee RK, Ramezani M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf B Biointerfaces 2015; 136:355-64. [PMID: 26433348 DOI: 10.1016/j.colsurfb.2015.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/05/2015] [Accepted: 09/12/2015] [Indexed: 12/22/2022]
Abstract
Introduction of an efficient gene delivery vector is still the main challenge of gene therapy. Both polyethylenimine (PEI) and poly(l-lysine) (PLL) comprise disadvantages which limited their application. To explore whether their deficiencies could be compensated by preparing copolymers consisting of both PLL and PEI, we generated several combinations of PLL-alkyl-PEI copolymers conjugated to aptamer and evaluated their both gene delivery efficiency and down-regulation of Bcl-XL, an anti-apoptotic gene, in lung cancer cell line. PLL was conjugated to either 10% or 50% of PEI by grafting different percentages of PEI to alkylated-PLL as core. The properties of modified polymers including size, surface charge density, DNA condensation ability, buffering capacity and cytotoxicity were evaluated. According to transfection results, aptamer conjugated PLL-alkyl-10%-PEI (PLPE8%) was selected for further gene silencing study by plasmid shRNA. Decrease in Bcl-XL gene expression was estimated by both RT-PCR and western-blot experiments. The obtained results revealed that the new copolymers had appropriate nano-scale size (117-128 nm) even after aptamer conjugation (168-183 nm). Moreover, they exhibited increased transfection efficiencies by up to 1.8-5 folds and acceptable cytotoxicity. The apoptosis was induced in transfected cells by shRNA-aptamer-copolymer due to the down-regulation of mRNA and protein levels. This study suggested a new vector for targeted non-viral gene delivery with high transfection efficiency in lung cancer or pulmonary systems.
Collapse
Affiliation(s)
- Saeedeh Askarian
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sahar Taghavi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Renault TT, Teijido O, Missire F, Ganesan YT, Velours G, Arokium H, Beaumatin F, Llanos R, Athané A, Camougrand N, Priault M, Antonsson B, Dejean LM, Manon S. Bcl-xL stimulates Bax relocation to mitochondria and primes cells to ABT-737. Int J Biochem Cell Biol 2015; 64:136-46. [DOI: 10.1016/j.biocel.2015.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
50
|
Sensitizing osteosarcoma stem cells to doxorubicin-induced apoptosis through retention of doxorubicin and modulation of apoptotic-related proteins. Life Sci 2015; 130:47-56. [DOI: 10.1016/j.lfs.2015.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/27/2015] [Accepted: 03/11/2015] [Indexed: 01/13/2023]
|