1
|
Rana JN, Mumtaz S. Prunin: An Emerging Anticancer Flavonoid. Int J Mol Sci 2025; 26:2678. [PMID: 40141319 PMCID: PMC11942023 DOI: 10.3390/ijms26062678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Despite the substantial advances in cancer therapies, developing safe and effective treatment methodologies is critical. Natural (plant-derived compounds), such as flavonoids, might be crucial in developing a safe treatment methodology without toxicity toward healthy tissues. Prunin is a flavonoid with the potential to be used in biomedical applications. Prunin has yet to undergo thorough scientific research, and its precise molecular mechanisms of action remain largely unexplored. This review summarizes the therapeutic potential of prunin for the first time, focusing on its underlying mechanisms as an anticancer compound. Prunin has gained significant attention due to its antioxidant, anti-inflammatory, and anticancer effects. This review aims to unlock how prunin functions at the molecular level to exert its anticancer effects, primarily modulating key cellular pathways. Furthermore, we have discussed the prunin's potential as an adjunctive therapy with conventional treatments, highlighting its ability to strengthen treatment responses while decreasing drug resistance. Moreover, the discussion probes into innovative delivery methods, particularly nanoformulations, that might address prunin's bioavailability, solubility, and stability limitations and optimize its therapeutic application. By providing a comprehensive analysis of prunin's properties, this review aims to stimulate further exploration of using prunin as an anticancer agent, thereby progressing the development of targeted, selective, safe, and effective therapeutic methods.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sohail Mumtaz
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
2
|
Zhang C, Sui C, Ma X, Ma C, Sun X, Zhai C, Cao P, Zhang Y, Cheng J, Li T, Sai J. Therapeutic potential of Xihuang Pill in colorectal cancer: Metabolomic and microbiome-driven approaches. Front Pharmacol 2024; 15:1402448. [PMID: 39687297 PMCID: PMC11646767 DOI: 10.3389/fphar.2024.1402448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction The Xihuang Pill (XHP), a venerated traditional Chinese medicine, has demonstrated significant anti-cancer capabilities. Despite its proven efficacy, the scarcity of comprehensive pharmacological studies limits the widespread application of XHP. This research endeavor seeks to demystify the therapeutic underpinnings of XHP, particularly in the realm of colorectal cancer (CRC) therapy. Methods In this study, mice harboring CT26 tumors were divided into four groups, each administered with either XHP monotherapy, 5-fluorouracil (5-FU), or a combination of both. The tumor growth trajectory was closely monitored to evaluate the effectiveness of these anti-neoplastic interventions. Advanced techniques, including 16S-rDNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), were harnessed to scrutinize the gut microbiota and serum metabolite profiles. Immunohistochemical assays were employed to gauge the expression levels of CD4, CD8, and Foxp3, thereby providing insights into the dynamics of tumor-infiltrating lymphocytes within the tumor microenvironment. Results Our findings indicate that XHP effectively suppresses the initiation and progression of colorectal tumors. The combinatorial therapy of XHP with 5-FU exhibited an enhanced inhibitory effect on tumor growth. Metabolic profiling revealed that XHP induced notable metabolic shifts, particularly impacting pathways such as steroid hormone synthesis, arachidonic acid metabolism, purine biosynthesis, and renin secretion. Notably, 17α-ethinyl estradiol and α-ergocryptine were identified as serum metabolites with the most substantial increase following XHP administration. Analysis of the gut microbiome suggested that XHP promoted the expansion of specific bacterial taxa, including Lachnospiraceae_NK4A136_group, Clostridiales, Desulfovibrionaceae, and Anaerotignum_sp., while suppressing the proliferation of others such as Ligilactobacilus, Lactobacillus_taiwanensis, and Candidatus_saccharimonas. Immunohistochemical staining indicated an upregulation of CD4 and CD8 post-XHP treatment. Conclusion This study delineates a potential mechanism by which XHP inhibits CRC tumorigenesis through modulating the gut microbiota, serum metabolites, and reshaping the tumor immune microenvironment in a murine CRC model. These findings contribute to a more profound understanding and potentially broaden the clinical utility of XHP in oncology.
Collapse
Affiliation(s)
- Chen Zhang
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Conglu Sui
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaona Ma
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinhui Sun
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Cao
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayang Sai
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Salah A, Mohammed El-Laban N, Mafiz Alam S, Shahidul Islam M, Abdalla Hussein M, Roshdy T. Optimization of Naringenin-loaded nanoparticles for targeting of Vanin-1, iNOS, and MCP-1 signaling pathway in HFD-induced obesity. Int J Pharm 2024; 654:123967. [PMID: 38438083 DOI: 10.1016/j.ijpharm.2024.123967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Naringenin, a natural dihydrochalcone flavonoid, exhibits diverse pharmacological properties. This study investigates the hypolipidemic effects of Nar-NPs on obese mice. The characteristics of Nar-NPs, including morphology, particle size, zeta potential, UV-vis, and FT-IR spectra, were examined. The anti-obesity properties of Nar-NPs were evaluated in obese rats, considering LD50, 1/20 LD50, and 1/50 LD50 for treatment preparation. Results indicated that synthesized Nar-NPs were uniform, spherical, and well-dispersed, with a size of 130.06 ± 1.98 nm and with a zeta potential of -25.6 ± 0.8 mV. Nar-NPs exhibited enhancement in the cumulative release of naringenin (56.87 ± 2.45 %) as compared to pure naringenin suspension 87.83 ± 1.84 % in 24 h of the study. The LD50 of Nar-NPs was determined as 412.5 mg/kg.b.w. HFD induced elevated glycemic, oxidative stress, and inflammatory biomarkers while reducing HDL-C, GSH, and superoxide dismutase (SOD) levels. Administration of Nar-NPs significantly mitigated body weight, glucose, insulin, leptin, TC, TG, SREBP1c, pAMPK, PPAR-α, as well as vanin-1, MCP-1, and iNOS mRNA gene expression. Histological investigations supported the biochemical and PCR findings. In a nutshell, the study suggests that the Nar-NPs could serve as a promising and viable pharmacological strategy for the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Nada Mohammed El-Laban
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
4
|
Raish M, Ahmad A, Karim BA, Jardan YAB, Ahad A, Iqbal M, Alkharfy KM, Al-Jenoobi FI, Mohammed OM. Pharmacokinetics of Dasatinib in Rats: a Potential Food-Drug Interaction with Naringenin. Eur J Drug Metab Pharmacokinet 2024; 49:239-247. [PMID: 38376657 DOI: 10.1007/s13318-024-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND OBJECTIVES The novel tyrosine kinase inhibitor (TKI) dasatinib, a multitarget inhibitor of Bcr-Abl and Src family kinases, has been licensed for the treatment of Ph+ acute lymphoblastic leukemia and chronic myeloid leukemia. Many citrus-based foods include the flavonoid naringenin, which is commonly available. Dasatinib is a Cyp3a4, P-gp, and Bcrp1 substrate, which makes it sensitive to potential food-drug interactions. The concurrent use of naringenin may change the pharmacokinetics of dasatinib, which could result in adverse effects and toxicity. The present investigation examined the impact of naringenin on the pharmacokinetics interactions of DAS and proposes a possible interaction mechanism in Wistar rats. METHODS Rats were provided with a single oral dose of dasatinib (25 mg/kg) with or without naringenin pretreatment (150 mg/kg p.o. daily for 7 days, n = 6 in each group). Dasatinib was quantified in plasma by UHPLC MS/MS assay. Noncompartmental analysis was used to compute the pharmacokinetic parameters, and immunoblot was used to assess the protein expression in the hepatic and intestinal tissues. RESULTS Following 7 days of naringenin pretreatment, the plasma mean concentration of dasatinib was enhanced compared with without pretreatment. In rats that were pretreated with naringenin, the pharmacokinetics of the orally administered dasatinib (25 mg/kg) was shown to be significantly different from that of dasatinib given without pretreatment (p < 0.05). There was a significant enhancement in pharmacokinetic parameters elimination half-life (T1/2), time to maximum concentration ( Tmax), maximum concentration )Cmax), area under the concentration-time curve (AUC0-t), area under the moment curve (AUMC0-∞), and mean residence time (MRT) by 28.41%, 50%, 103.54%, 72.64%, 115.08%, and 15.19%, respectively (p < 0.05) and suppression in elimination rate constant (Kel), volume of distribution (Vd), and clearance (CL) by 21.09%, 31.13%, and 46.25%, respectively, in comparison with dasatinib alone group (p < 0.05). The enhancement in dasatinib bioavailability and systemic exposure resulted from the significant inhibition of Cyp3a2, Mdr1/P-gp, and Bcrp1 expression and suppression of the dasatinib hepatic and intestinal metabolism, which enhanced the rate of dasatinib absorption and decreased its elimination. CONCLUSION Concurrent use of naringenin-containing supplements, herbs, or foods with dasatinib may cause serious and potentially life-threatening drug interactions. Further studies are necessary to determine the clinical significance of these findings.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Badr Abdul Karim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Omer Mansour Mohammed
- Experimental Animal Care Facility, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Tchamgoue J, Tchokokam YRW, Ngouonpe AW, Ngandjui YAT, Tiani GLM, Msagati TAM, Ngadjui BT, Green IR, Kouam SF. The genus Canthium: A comprehensive summary on its traditional use, phytochemistry, and pharmacological activities. Fitoterapia 2024; 172:105754. [PMID: 37992781 DOI: 10.1016/j.fitote.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Canthium Lam. is a genus of flowering plants of the Rubiaceae family with about 80-102 species mainly distributed in Asia, tropical and subtropical Africa. The genus is closely related to Keetia E. Phillips and Psydrax Gaertn. and plants of this genus are used in folk medicine for the treatment of diarrhea, worms, leucorrhoea, constipation, snake bites, diabetes, hypertension, venereal diseases, and malaria. The present review covers a period of 52 years of biological and chemical investigations into the genus Canthium and has resulted in the isolation of about 96 secondary metabolites and several reported biological properties. For the Rubiaceae family, iridoids were reported as being the chemotaxonomic markers of this genus (∼25%). Other reported classes of compounds include alkaloids, flavonoids, phenolic compounds, cyanogenic glycosides, coumarins, sugar alcohols, lignans, triterpenoids, and benzoquinones. The main reported pharmacological properties of most species of this genus include antioxidant, antiplasmodial, antipyretic, anti-inflammatory, antidiabetic, neuroprotective and antimicrobial activities with the latter being the most prominent. Considering the diversity of compounds reported from plants of this genus and their wide range of biological activities, it is considered to be worthy to further investigate them for the discovery of potentially new and cost effective drugs.
Collapse
Affiliation(s)
- Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Yvan Romuald W Tchokokam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Alain W Ngouonpe
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Yvan Anderson T Ngandjui
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Gesquière Laure M Tiani
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Fundamental Science, University Institute for Wood Technology Mbalmayo, P.O. Box 306, Mbalmayo, Cameroon
| | - Titus A M Msagati
- College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, P/Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
7
|
Zhao L, Jin L, Yang B. Diosmetin alleviates S. aureus-induced mastitis by inhibiting SIRT1/GPX4 mediated ferroptosis. Life Sci 2023; 331:122060. [PMID: 37652155 DOI: 10.1016/j.lfs.2023.122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
AIMS Microbial infection is the main factor that induces mastitis. Staphylococcus aureus (S. aureus) is a major pathogen associated with mastitis. The purpose of this study was to investigate the effects of diosmetin on S. aureus-induced mastitis. MATERIALS AND METHODS The mice were divided into six groups: control group, S. aureus group, diosmetin (12.5, 25, 50 mg/kg) + S. aureus groups, and diosmetin (50 mg/kg) + S. aureus + EX-527 (10 mg/kg) group. S. aureus was injected into the mammary gland to establish a mouse mastitis model. Diosmetin was administered 1 h before S. aureus treatment. KEY FINDINGS Our results showed that diosmetin significantly alleviated the pathological changes of mammary gland induced by S. aureus. Diosmetin alleviated myeloperoxidase (MPO) activity, and the release of TNF-α and IL-1β, and nuclear factor kappa-B (NF-κB) activation. Moreover, diosmetin inhibited malondialdehyde (MDA) and Fe2+ levels induced by S. aureus. Diosmetin upregulated ATP, glutathione (GSH) production and glutathione peroxidase 4 (GPX4) expression, which were decreased by S. aureus. Furthermore, the expression of Sirtuin 1 (SIRT1), nuclear factor erythroid2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) was upregulated by diosmetin. In addition, the inhibitory effects of diosmetin on S. aureus-induced inflammation and ferroptosis were prevented by the SIRT1 inhibitor EX-527. SIGNIFICANCE In conclusion, the data indicated that diosmetin suppressed S. aureus-induced mastitis by attenuating inflammation and ferroptosis.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Lei Jin
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
8
|
Pipitone RM, Zito R, Gambino G, Di Maria G, Javed A, Lupo G, Giglia G, Sardo P, Ferraro G, Rappa F, Carlisi D, Di Majo D, Grimaudo S. Red and golden tomato administration improves fat diet-induced hepatic steatosis in rats by modulating HNF4α, Lepr, and GK expression. Front Nutr 2023; 10:1221013. [PMID: 37727633 PMCID: PMC10505813 DOI: 10.3389/fnut.2023.1221013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD), characterized by lipid accumulation within hepatocytes exceeding 5% of liver weight, is strongly related to metabolic disorders, obesity, and diabetes and represents a health emergency worldwide. There is no standard therapy available for NAFLD. Lifestyle intervention, including phytonutrient intake, is key in preventing NAFLD development and progression. Methods We used a rat model of NAFLD to evaluate the effect of dietary supplementation with red tomato (RT) and golden tomato (GT)-a patented mix of fruit with varying degrees of ripeness and particularly rich in naringenin and chlorogenic acid-after steatosis development. We assessed the effects on body weight, metabolic profile, and hepatic steatosis. Results and discussion We found a correlation between the amelioration of all the parameters and the liver gene expression. Our results showed that, together with the reversion of steatosis, the consumption of RT and GT can cause a significant reduction in triglycerides, low-density lipoprotein-cholesterol, fasting glucose, and homeostasis model assessment index. Meanwhile, we observed an increase in high-density lipoprotein-cholesterol according to the amelioration of the general lipidic profile. Regarding hepatic gene expression, we found the upregulation of Gk and Hnf4α involved in metabolic homeostasis, Lepr involved in adipokine signaling, and Il6 and Tnf involved in inflammatory response. Taken together, our results suggest that dietary intake of red and golden tomatoes, as a nutraceutical approach, has potential in preventing and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Rosaria Maria Pipitone
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Rossella Zito
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Ayesha Javed
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Lupo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro Mediterranean Institute of Science and Technology- I.E.ME.S.T., Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
11
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
12
|
Akkam Y, Omari D, Alhmoud H, Alajmi M, Akkam N, Aljarrah I. Assessment of Xenoestrogens in Jordanian Water System: Activity and Identification. TOXICS 2023; 11:63. [PMID: 36668789 PMCID: PMC9866086 DOI: 10.3390/toxics11010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity. However, to date, there has been no study to investigate the presence of xenoestrogen pollutants in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan, including dams, surface water, tap or faucet water, and filtered water (drinking water-local company). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant, veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The presence of xenoestrogens in vegetable samples collected from two different locations was also investigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5, 1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal, and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal 16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pollutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown. Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources. Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide monitoring systems and regular inspections should also be established.
Collapse
Affiliation(s)
- Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Derar Omari
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Hassan Alhmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
- Faculty of Pharmacy, Jerash University, Irbid 26110, Jordan
| | - Mohammad Alajmi
- Department of Law and Science Department, Kuwait International Law School, Doha 93151, Kuwait
| | - Nosaibah Akkam
- Department of Anatomy and Cell Biology, Faculty of Medicine, Universität des Saarlandes, 66424 Hamburg, Germany
| | - Islam Aljarrah
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
13
|
Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Agarawal K, Anant Kulkarni Y, Wairkar S. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 2023; 13:18-36. [PMID: 35637334 DOI: 10.1007/s13346-022-01174-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic metabolic disease characterized by an excess of glucose in the blood. If the constant sugar level is not managed correctly in diabetic patients, it may lead to microvascular complications such as diabetic retinopathy, neuropathy, and nephropathy. There are several synthetic drugs for the management of diabetes; however, these drugs produce immense adverse effects in long-term use. Flavonoids are naturally occurring substances categorized in various classes. They are known for their diverse pharmacological actions, and one of them is prominent antihyperglycemic action and their activities in diabetic complications. In the last few decades, many research studies emphasized the potential of flavonoids in diabetes management. Nevertheless, most flavonoids are insoluble in water and cannot produce desired therapeutic action when administered in conventional dosage forms. To overcome this issue, flavonoids were formulated into different nanoformulations to enhance solubility, absorption, and therapeutic efficacy. This review article focuses on flavonoid nanoformulations and in vitro and in vivo studies reported to overcome diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Kopal Agarawal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Yogesh Anant Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
15
|
Mechanism Underlying Naringenin Hypocholesterolemic Effects: Involvement of Estrogen Receptor α Subtype. Int J Mol Sci 2022; 23:ijms232415809. [PMID: 36555447 PMCID: PMC9779308 DOI: 10.3390/ijms232415809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Naringenin (Nar) is one of major citrus flavonoids predominantly found in grapefruit and orange. In vivo studies have demonstrated Nar potential as a normolipidemic agent capable to reduce circulating cholesterol in hypercholesterolemic rabbits, rats, and patients, suggesting a new role for this molecule in cardiovascular disease prevention. Although Nar cholesterol-lowering effects are known, the underlying mechanisms have not yet been elucidated. Interestingly, Nar binds to the estrogen receptors (ERs), modulating both transcriptional and membrane-initiating signals. Although estrogen and ERs are deeply involved in lipid metabolism, no data are available regarding a putative role of these nuclear receptors as mediators of the hypocholesterolemic effect exerted by Nar. Thus, the aim of this work was to study the involvement of ERs in Nar-induced modulation of cholesterol metabolism. Results obtained in HepG2 cell line demonstrate that Nar can modulate the molecular network of cholesterol homeostasis. However, these effects were only partially dependent on the activity of estrogen receptor α. As a whole, our data highlight new molecular mechanisms by which Nar influences cholesterol metabolism, opening a new scenery about dietary impact on human health.
Collapse
|
16
|
Akhter S, Arman MSI, Tayab MA, Islam MN, Xiao J. Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin. Crit Rev Food Sci Nutr 2022; 64:5073-5092. [PMID: 36416093 DOI: 10.1080/10408398.2022.2149466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
17
|
Sharma S, Hafeez A, Usmani SA. Nanoformulation approaches of naringenin- an updated review on leveraging pharmaceutical and preclinical attributes from the bioactive. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Zhang J, Wang N, Zheng Y, Yang B, Wang S, Wang X, Pan B, Wang Z. Naringenin in Si-Ni-San formula inhibits chronic psychological stress-induced breast cancer growth and metastasis by modulating estrogen metabolism through FXR/EST pathway. J Adv Res 2022; 47:189-207. [PMID: 35718080 PMCID: PMC10173160 DOI: 10.1016/j.jare.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Chronic psychological stress is a well-established risk factor for breast cancer development. Si-Ni-San (SNS) is a classical traditional Chinese medicine formula prescribed to psychological disorder patients. However, its action effects, molecular mechanisms, and bioactive phytochemicals against breast cancer are not yet clear. OBJECTIVES This study aimed to explore the modulatory mechanism and bioactive compound of SNS in regulating estrogen metabolism during breast cancer development induced by chronic psychological stress. METHODS Mouse breast cancer xenograft was used to determine the effect of SNS on breast cancer growth and metastasis. Metabolomics analysis was conducted to discover the impact of SNS on metabolic profile changes in vivo. Multiple molecular biology experiments and breast cancer xenografts were applied to verify the anti-metastatic potentials of the screened bioactive compound. RESULTS SNS remarkably inhibited chronic psychological stress-induced breast cancer growth and metastasis in the mouse breast cancer xenograft. Meanwhile, chronic psychological stress increased the level of cholic acid, accompanied by the elevation of estradiol. Mechanistic investigation demonstrated that cholic acid activated farnesoid X receptor (FXR) expression, which inhibited hepatocyte nuclear factor 4α (HNF4α)-mediated estrogen sulfotransferase (EST) transcription in hepatocytes, and finally resulting in estradiol elevation. Notably, SNS inhibited breast cancer growth by suppressing estradiol level via modulating FXR/EST signaling. Furthermore, luciferase-reporting gene assay screened naringenin as the most bioactive compound in SNS for triggering EST activity in hepatocytes. Interestingly, pharmacokinetic study revealed that naringenin had the highest absorption in the liver tissue. Following in vivo and in vitro studies demonstrated that naringenin inhibited stress-induced breast cancer growth and metastasis by promoting estradiol metabolism via FXR/EST signaling. CONCLUSION This study not only highlights FXR/EST signaling as a crucial target in mediating stress-induced breast cancer development, but also provides naringenin as a potential candidate for breast cancer endocrine therapy via promoting estradiol metabolism.
Collapse
Affiliation(s)
- Juping Zhang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Bowen Yang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Bo Pan
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
19
|
Rauf A, Shariati MA, Imran M, Bashir K, Khan SA, Mitra S, Emran TB, Badalova K, Uddin MS, Mubarak MS, Aljohani ASM, Alhumaydhi FA, Derkho M, Korpayev S, Zengin G. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31025-31041. [PMID: 35119637 DOI: 10.1007/s11356-022-18754-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Though the incidence of several cancers in Western societies is regulated wisely, some cancers such as breast, lung, and colorectal cancer are currently rising in many low- and middle-income countries due to increased risk factors triggered by societal and development problems. Surgery, chemotherapy, hormone, radiation, and targeted therapies are examples of traditional cancer treatment approaches. However, multiple short- and long-term adverse effects may also significantly affect patient prognosis depending on treatment-associated clinical factors. More and more research has been carried out to find new therapeutic agents in natural products, among which the bioactive compounds derived from plants have been increasingly studied. Naringin and naringenin are abundantly found in citrus fruits, such as oranges and grapefruits. A variety of cell signaling pathways mediates their anti-carcinogenic properties. Naringin and naringenin were also documented to overcome multidrug resistance, one of the major challenges to clinical practice due to multiple defense mechanisms in cancer. The effective parameters underlying the anticancer effects of naringenin and naringin include GSK3β inactivation, suppression of the gene and protein activation of NF-kB and COX-2, JAK2/STAT3 downregulation, downregulation of intracellular adhesion molecules-1, upregulation of Notch1 and tyrocite-specific genes, and activation of p38/MAPK and caspase-3. Thus, this review outlines the potential of naringin and naringenin in managing different types of cancers.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management, The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russia
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Pakistan
- Food, nutrition and lifestyle Unit, King Fahed Medical Research Center, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Kashif Bashir
- Department of Microbiology and Biotechnology, Abasyan University Peshawar, Peshawar, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kamala Badalova
- General Toxicological Chemistry Department, Azerbaijan Medical University Azerbaijan, Baku, Azerbaijan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Abdullah S M Aljohani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Marina Derkho
- Institute of Veterinary Medicine, South-Ural State Agrarian University, Chelyabinsk Region, 13 Gagarin St, Troitsk, 454700, Russian Federation
| | - Serdar Korpayev
- Biotechnology Institute, Ankara University, 06135, Ankara, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| |
Collapse
|
20
|
Polyphenols as a Diet Therapy Concept for Endometriosis-Current Opinion and Future Perspectives. Nutrients 2021; 13:nu13041347. [PMID: 33919512 PMCID: PMC8074087 DOI: 10.3390/nu13041347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Endometriosis represents an often painful, estrogen-dependent gynecological disorder, defined by the existence of endometrial glands and stroma exterior to the uterine cavity. The disease provides a wide range of symptoms and affects women’s quality of life and reproductive functions. Despite research efforts and extensive investigations, this disease’s pathogenesis and molecular basis remain unclear. Conventional endometriosis treatment implies surgical resection, hormonal therapies, and treatment with nonsteroidal anti-inflammatory drugs, but their efficacy is currently limited due to many side effects. Therefore, exploring complementary and alternative therapy strategies, minimizing the current treatments’ adverse effects, is needed. Plants are sources of bioactive compounds that demonstrate broad-spectrum health-promoting effects and interact with molecular targets associated with endometriosis, such as cell proliferation, apoptosis, invasiveness, inflammation, oxidative stress, and angiogenesis. Anti-endometriotic properties are exhibited mainly by polyphenols, which can exert a potent phytoestrogen effect, modulating estrogen activity. The available evidence derived from preclinical research and several clinical studies indicates that natural biologically active compounds represent promising candidates for developing novel strategies in endometriosis management. The purpose of this review is to provide a comprehensive overview of polyphenols and their properties valuable for natural treatment strategy by interacting with different cellular and molecular targets involved in endometriosis progression.
Collapse
|
21
|
Ferramosca A, Lorenzetti S, Di Giacomo M, Lunetti P, Murrieri F, Capobianco L, Dolce V, Coppola L, Zara V. Modulation of Human Sperm Mitochondrial Respiration Efficiency by Plant Polyphenols. Antioxidants (Basel) 2021; 10:antiox10020217. [PMID: 33540578 PMCID: PMC7912874 DOI: 10.3390/antiox10020217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Plant bioactives, such as polyphenols, can differentially affect (positively or negatively) sperm quality, depending on their concentration. These molecules have been proposed as natural scavengers of reactive oxygen species (ROS) for male infertility treatment. However, few data are available about their effects on the molecular mechanisms related to sperm quality and, in particular, to sperm mitochondrial function. We investigated the effects of quercetin, naringenin, genistein, apigenin, luteolin, and resveratrol at the concentration of 0.1-1000 nM on mitochondrial respiration efficiency. Upon chemical exposure, spermatozoa were swollen in a hypotonic solution and used for polarographic assays of mitochondrial respiration. All tested compounds, except for apigenin, caused a significant increase in the mitochondrial respiration efficiency at the concentration of 0.1 nM, and a significant decrease starting from concentrations of 10 nM. The analysis of oxygen consumption rate in the active and in the resting state of mitochondrial respiration suggested different mechanisms by which the tested compounds modulate mitochondrial function. Therefore, by virtue of their ability to stimulate the respiration active state, quercetin, genistein, and luteolin were found to improve mitochondrial function in asthenozoospermic samples. Our results are relevant to the debate on the promises and perils of natural antioxidants in nutraceutical supplementation.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
- Correspondence: ; Tel.: +39-0832-298705; Fax: +39-0832-298626
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, I-00161 Rome, Italy;
| | - Mariangela Di Giacomo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Francesco Murrieri
- Biological Medical Center “Tecnomed”, I-73048 Nardò (LE), Italy; (F.M.); (L.C.)
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (Cosenza), Italy;
| | - Lamberto Coppola
- Biological Medical Center “Tecnomed”, I-73048 Nardò (LE), Italy; (F.M.); (L.C.)
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| |
Collapse
|
22
|
Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. PLANTS 2020; 9:plants9121784. [PMID: 33339267 PMCID: PMC7766900 DOI: 10.3390/plants9121784] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.
Collapse
|
23
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
24
|
Mechanistic inhibition of non-enzymatic glycation and aldose reductase activity by naringenin: Binding, enzyme kinetics and molecular docking analysis. Int J Biol Macromol 2020; 159:87-97. [DOI: 10.1016/j.ijbiomac.2020.04.226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
|
25
|
Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a Signal for Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:399-424. [DOI: 10.1007/978-981-15-3266-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Oliveira MA, Heimfarth L, Passos FRS, Miguel-Dos-Santos R, Mingori MR, Moreira JCF, Lauton SS, Barreto RSS, Araújo AAS, Oliveira AP, Oliveira JT, Baptista AF, Martinez AMB, Quintans-Júnior LJ, Quintans JSS. Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75 NTR and JNK pathway. Life Sci 2020; 241:117102. [PMID: 31790691 DOI: 10.1016/j.lfs.2019.117102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Peripheral nerve injuries are common conditions that often lead to dysfunctions. Although much knowledge exists on the several factors that mediate the complex biological process involved in peripheral nerve regeneration, there is a lack of effective treatments that ensure full functional recovery. Naringenin (NA) is the most abundant flavanone found in citrus fruits and it has promising neuroprotective, anti-inflammatory and antioxidant effects. This study aimed to enhance peripheral nerve regeneration using an inclusion complex containing NA and hydroxypropyl-β-cyclodextrin (HPβCD), named NA/HPβCD. A mouse sciatic nerve crush model was used to evaluate the effects of NA/HPβCD on nerve regeneration. Sensory and motor parameters, hyperalgesic behavior and the sciatic functional index (SFI), respectively, improved with NA treatment. Western blot analysis revealed that the levels of p75NTR ICD and p75NTR full length as well phospho-JNK/total JNK ratios were preserved by NA treatment. In addition, NA treatment was able to decrease levels of caspase 3. The concentrations of TNF-α and IL-1β were decreased in the lumbar spine, on the other hand there was an increase in IL-10. NA/HPβCD presented a better overall morphological profile but it was not able to increase the number of myelinated fibers. Thus, NA was able to enhance nerve regeneration, and NA/HPβCD decreased effective drug doses while maintaining the effect of the pure drug, demonstrating the advantage of using the complex over the pure compound.
Collapse
Affiliation(s)
- Marlange A Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rodrigo Miguel-Dos-Santos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Moara R Mingori
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sandra S Lauton
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI 64.049-550, Brazil
| | - Júlia T Oliveira
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Maria B Martinez
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| |
Collapse
|
27
|
Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent Effects of Daidzein and its Metabolites on Estrogen-Induced Survival of Breast Cancer Cells. Cancers (Basel) 2020; 12:E167. [PMID: 31936631 PMCID: PMC7017042 DOI: 10.3390/cancers12010167] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023] Open
Abstract
Although soy consumption is associated with breast cancer prevention, the low bioavailability and the extensive metabolism of soy-active components limit their clinical application. Here, the impact of daidzein (D) and its metabolites on estrogen-dependent anti-apoptotic pathway has been evaluated in breast cancer cells. In estrogen receptor α-positive breast cancer cells treated with D and its metabolites, single or in mixture, ERα activation and Neuroglobin (NGB) levels, an anti-apoptotic estrogen/ERα-inducible protein, were evaluated. Moreover, the apoptotic cascade activation, as well as the cell number after stimulation was assessed in the absence/presence of paclitaxel to determine the compound effects on cell susceptibility to a chemotherapeutic agent. Among the metabolites, only D-4'-sulfate maintains the anti-estrogenic effect of D, reducing the NGB levels and rendering breast cancer cells more prone to the paclitaxel treatment, whereas other metabolites showed estrogen mimetic effects, or even estrogen independent effects. Intriguingly, the co-stimulation of D and gut metabolites strongly reduced D effects. The results highlight the important and complex influence of metabolic transformation on isoflavones physiological effects and demonstrate the need to take biotransformation into account when assessing the potential health benefits of consumption of soy isoflavones in cancer.
Collapse
Affiliation(s)
| | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (E.M.); (M.C.); (P.C.); (M.F.)
| |
Collapse
|
28
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Fernandes RD, Hall A, Ferguson M, Lorenzen‐Schmidt I, Balasubramaniam V, Pyle WG. Cardiac changes during the peri-menopausal period in a VCD-induced murine model of ovarian failure. Acta Physiol (Oxf) 2019; 227:e13290. [PMID: 31050200 PMCID: PMC7379283 DOI: 10.1111/apha.13290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023]
Abstract
AIM Cardiovascular disease (CVD) risk is lower in pre-menopausal females vs age matched males. After menopause risk equals or exceeds that of males. CVD protection of pre-menopausal females is ascribed to high circulating oestrogen levels. Despite experimental evidence that oestrogen are cardioprotective, oestrogen replacement therapy trials have not shown clear benefits. One hypothesis to explain the discrepancy proposed hearts remodel during peri-menopause. Peri-menopasual myocardial changes have never been investigated, nor has the ability of oestrogen to regulate heart function during peri-menopause. METHODS We injected female mice with 4-vinylcyclohexene diepoxide (VCD, 160 mg/kg/d IP) to cause gradual ovarian failure over 120d and act as a peri-menopausal model RESULTS: Left ventricular function assessed by Langendorff perfusion found no changes in VCD-injected mice at 60 or 120 days compared to intact mice. Cardiac myofilament activity was altered at 60 and 120 days indicating a molecular remodelling in peri-menopause. Myocardial TGF-β1 increased at 60 days post-VCD treatment along with reduced Akt phosphorylation. Acute activation of oestrogen receptor-α (ERα) or -β (ERβ) depressed left ventricular contractility in hearts from intact mice. ER-regulation of myocardial and myofilament function, and myofilament phosphorylation, were disrupted in the peri-menopausal model. Disruption occurred without alterations in total ERα or ERβ expression. CONCLUSIONS This is the first study to demonstrate remodelling of the heart in a model of peri-menopause, along with a disruption in ER-dependent regulation of the heart. These data indicate that oestrogen replacement therapy initiated after menopause affects a heart that is profoundly different from that found in reproductively intact animals.
Collapse
Affiliation(s)
| | - Alexandra Hall
- Department of Biomedical Sciences University of Guelph Guelph Ontario Canada
| | - Melissa Ferguson
- Department of Biomedical Sciences University of Guelph Guelph Ontario Canada
| | | | | | - W. Glen Pyle
- Department of Biomedical Sciences University of Guelph Guelph Ontario Canada
| |
Collapse
|
30
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
31
|
Al-Oanzi ZH. Erectile dysfunction attenuation by naringenin in streptozotocin-induced diabetic rats. J Food Biochem 2019; 43:e12885. [PMID: 31353690 DOI: 10.1111/jfbc.12885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus is associated with sexual dysfunction, which leads to infertility in animal models. The aim of this study was to evaluate sexual behavior in diabetic rats administered with naringenin. Rats were classified into five groups including healthy controls, those with STZ-induced diabetes, and those with STZ-induced diabetes then treated with 25, 50, or 100 mg kg-1 day-1 of naringenin. Male rats were introduced to sexually receptive females, and data were collected regarding sexual behavior and erectile activity. Blood samples were taken and histopathological analyses were carried out. ANOVA and the Student-Newman-Keuls t test were used for statistical comparisons. Sexual behavioral, mount latency, intromission latency, ejaculation latency, and postejaculatory interval were significantly increased in diabetic rates compared with controls (p < 0.001). The NG-treated rats showed a significant improvement in testosterone and cyclic guanosine monophosphate levels, and testicular oxidative stress and inflammatory biomarkers were corrected in a dose-dependent manner compared with controls. The treatment protocol used in this study led to the elimination of sexual impairment resulting from DM, and naringenin showed significant antiinflammatory and antioxidant effects in testicular cells. PRACTICAL APPLICATIONS: Erectile dysfunction occurs in more than 50% of men who are diagnosed with diabetes mellitus. The prevalence of ED is 25% in patients younger than 50 years and 75% in those older than 50 years. Chronic DM leads to oxidative stress, which has significant effects on sexual behavior, spermatogenesis, and sperm biology. Phenolic compounds have been reported to reduce streptozotocin-induced oxidative stress in experimental animal models. In addition, they have significant effects on the generation of sperm (spermatogenesis), which is involved in the pathogenesis of chronic DM. Our study was designed to examine the effect of naringenin, a flavone flavonoid, on oxidative stress, the inflammatory process, sexual behavior, erectile activity through spermatogenesis, and cavernous cyclic guanosine monophosphate in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Ziad H Al-Oanzi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
32
|
Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol 2019; 187:106-117. [PMID: 30465854 PMCID: PMC6370520 DOI: 10.1016/j.jsbmb.2018.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Estrogen binding to estrogen receptors (ESR) triggers signaling cascades within cells. Historically, a major emphasis has been characterizing estrogen-induced genomic actions resulting from binding to nuclear estrogen receptor 1 (nESR1). However, recent evidence indicates the first receptors estrogens encounter as they enter a cell, membrane ESR1 (mESR1), also play crucial roles. Membrane and nuclear ESR are derived from the same transcripts but the former are directed to the membrane via palmitoylation. Binding and activation of mESR1 leads to rapid fluctuations in cAMP and Ca+2 and stimulation of protein kinase pathways. Endocrine disrupting chemicals (EDC) that mimic 17β-estradiol can signal through mESR1 and elicit non-genomic effects. Most current EDC studies have focused on genomic actions via nESR1. However, increasing number of studies have begun to examine potential EDC effects mediated through mESR1, and some EDC might have higher potency for signaling through mESR1 than nESR1. The notion that such chemicals might also affect mESR1 signaling via palmitoylation and depalmitoylation pathways has also begun to gain currency. Recent development of transgenic mice that lack either mESR1 or nESR1, while retaining functional ESR1 in the other compartment, will allow more precise in vivo approaches to determine EDC effects through nESR1 and/or mESR1. It is increasingly becoming apparent in this quickly evolving field that EDC directly affect mESR and estrogen signaling, but such chemicals can also affect proportion of ESR reaching the membrane. Future EDC studies should be designed to consider the full range of effects through mESR alone and in combination with nESR.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, 65211, USA.
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
33
|
Development of a new, sensitive, and robust analytical and bio-analytical RP-HPLC method for in-vitro and in-vivo quantification of naringenin in polymeric nanocarriers. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Ranganathan P, Nadig N, Nambiar S. Non-canonical Estrogen Signaling in Endocrine Resistance. Front Endocrinol (Lausanne) 2019; 10:708. [PMID: 31749762 PMCID: PMC6843063 DOI: 10.3389/fendo.2019.00708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer related deaths in women worldwide. The disease is extremely heterogenous. A large percentage of the breast cancers are dependent on estrogen signaling and hence respond to endocrine therapies which essentially block the estrogen signaling. However, many of these tumors emerge as endocrine resistant tumors. Many mechanisms have been proposed to explain the emergence of endocrine resistance, which include mutations in the estrogen receptors, cross-talk with other signaling pathways, cancer stem cells etc. This review is focused on the role of non-canonical estrogen receptor signaling in endocrine resistance. Most of the therapeutics which are used currently are targeting the major receptor of estrogen namely ER-α. Last two decades has witnessed the discovery of alternate forms of ER-α, as well as other receptors for estrogen such as ERRgamma, GPER-1 as well as ER-β, which are activated not only by estrogen, but also by the therapeutic agents such as tamoxifen that are routinely used in treatment of breast cancer. However, when the alternate receptors are activated, they result in activation of membrane signaling which subsequently activates pathways such as MAPK and GPCR leading to cell-proliferation. This renders the anticipated anti-estrogenic effects of tamoxifen less effective or ineffective. Future research in this area has to focus on the alternate mechanisms and develop a combinatorial strategy, which can complement the existing therapeutics to get better outcome of endocrine therapies.
Collapse
|
35
|
Combinatorial anti-proliferative effects of tamoxifen and naringenin: The role of four estrogen receptor subtypes. Toxicology 2018; 410:231-246. [DOI: 10.1016/j.tox.2018.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022]
|
36
|
Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci 2018; 215:43-56. [PMID: 30391464 DOI: 10.1016/j.lfs.2018.10.066] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
Abstract
Phenolic compounds constitute one of the important classes of secondary metabolites in the plants. Flavonoids are primary phenolic compounds found in natural drugs. Naringenin is a flavanone, aglycone of Naringin, predominantly found in citrus fruits with various pharmacological activities. Large number of scientific papers has been published on Naringenin describing its structure, physicochemical properties and its therapeutic use in different diseases. This review provides highlights of Naringenin with respect to its distribution, pharmacokinetic and its use in conditions like oxidative stress, inflammation, cancer, diabetes, cardiovascular diseases and neurological disorders. Furthermore, the review also focuses on molecular level mechanisms of Naringenin for its therapeutic effect. Various attempts have been made to formulate advanced dosage forms to address issue of solubility of Naringenin. Systematic review of data published on formulation aspects of Naringenin has also been presented in the article.
Collapse
Affiliation(s)
- Ruthvika Joshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
37
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
38
|
Park S, Lim W, Bazer FW, Song G. Naringenin induces mitochondria-mediated apoptosis and endoplasmic reticulum stress by regulating MAPK and AKT signal transduction pathways in endometriosis cells. Mol Hum Reprod 2018; 23:842-854. [PMID: 29121349 DOI: 10.1093/molehr/gax057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/31/2017] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Does the flavonoid naringenin inhibit proliferation of human endometriosis cells? SUMMARY ANSWER Naringenin suppresses proliferation and increases apoptosis via depolarization of mitochondrial membrane potential and generation of reactive oxygen species (ROS) in human endometriosis cells. WHAT IS KNOWN ALREADY For management of endometriosis, hormonal therapy is commonly used to decrease production of estrogens by the ovaries, but that has limitations including undesirable side effects with long-term therapies. To overcome these limitations, it is important to discover novel compounds which have no adverse effects, but inhibit expression of target molecules involved in the pathogenesis of endometriosis. STUDY DESIGN SIZE, DURATION Well-established endometriosis cell lines (VK2/E6E7 and End1/E6E7) were purchased from the American Type Culture Collection. Effects of naringenin on VK2/E6E7 and End1/E6E7 cells were assessed in diverse assays in a dose- and time-dependent manner. PARTICIPANTS/MATERIALS, SETTING, METHODS Effects of naringenin on viability, apoptosis (Annexin V expression, propidium iodide staining, TUNEL and invasion assays), mitochondria-mediated apoptosis, production of ROS and endoplasmic reticulum (ER) stress proteins of VK2/E6E7 and End1/E6E7 cells were determined. Signal transduction pathways in VK2/E6E7 and End1/E6E7 cells in response to naringenin were determined by western blot analyses. MAIN RESULTS AND THE ROLE OF CHANCE In the present study, we demonstrated that naringenin suppressed proliferation and increased apoptosis through depolarization of mitochondrial membrane potential and inducing pro-apoptotic proteins, Bax and Bak, in both endometriosis cell lines. In addition, naringenin increased ROS, ER stress, through activation of eIF2α and IRE1α, GADD153 and GRP78 proteins in a dose-dependent manner. Furthermore, the induction of apoptosis by naringenin involved activation of MAPK and inactivation of PI3K pathways in VK2/E6E7 and End1/E6E7 cells. LIMITATIONS REASONS FOR CAUTION Lack of in vivo animal studies is a major limitation of this research. Effectiveness of naringenin to induce apoptosis of human endometriosis cells requires further investigation. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that naringenin is a promising therapeutic compound for treatment of endometriosis in women. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (No. HI15C0810 awarded to G.S. and HI17C0929 awarded to W.L.). The authors declare that there are no conflicts of interest.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Rm 310, Life Science Building (West), 145, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Rm 420, Cheongsong Building, 24, Beomil-ro 579beon-gil, Gangneung-si, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, Rm 442D, Kleberg Center, College Station, TX, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Rm 310, Life Science Building (West), 145, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
39
|
Acconcia F, Fiocchetti M, Marino M. Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Mol Cell Endocrinol 2017; 457:3-12. [PMID: 27816767 DOI: 10.1016/j.mce.2016.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
The hormone 17β-estradiol (E2) contributes to body homeostasis maintenance by regulating many different physiological functions in both male and female organs. E2 actions in reproductive and non-reproductive tissues rely on a complex net of nuclear and extra-nuclear signal transduction pathways triggered by at least two estrogen receptor subtypes (ERα and ERβ). Consequently, the de-regulation of E2:ER signaling contributes to the pathogenesis of many diseases including cancer. Among other factors, the ERα/ERβ ratio is considered one of the pivotal mechanisms at the root of E2 action in cancer progression. Remarkably, several natural or synthetic exogenous chemicals, collectively called xenoestrogens, bind to ERs and interfere with their signals and intracellular functions. In this review, the molecular mechanism(s) through which xenoestrogens influence ERα and ERβ intracellular concentrations and the consequences of this influence on E2-related cancer will be discussed.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
40
|
Citrus flavanones mildly interfere with pituitary-thyroid axis in old-aged male rats. Acta Histochem 2017; 119:292-301. [PMID: 28262328 DOI: 10.1016/j.acthis.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
Citrus flavanones naringenin (NAR) and hesperetin (HES) are potent antioxidants that may contribute to maintenance of health at old age by improving cardiovascular and metabolic status. However, they may also affect thyroid hormone economy. Keeping in mind impaired thyroid function at older age, in this study we tested wheather NAR or HES administration potentiate this decline. NAR or HES were administrated orally (15mg/kg) to male 24-month-old Wistar rats during 4 weeks. Control groups received vehicle, sunflower oil. Qualitative and quantitative immunohistochemical and immunofluorescent expression of specific proteins and stereological analyses of thyroid tissue were performed. Thyroid stimulating hormone (TSH) and total thyroxine (T4) concentrations were measured in serum. Thyroid parenchyma of both flavanone-treated groups was characterized by lower (p<0.05) absolute and relative volume of luminal colloid, accompanied by elevated (p<0.05) relative volume of stroma in comparison with the controls. No hypertrophy or absolute thyroid volume change was detected. Intensity of immunopositive signal for thyroglobulin (Tg) and T4 bound to Tg (T4-Tg) increased (p<0.05) in the colloid of thyroid follicles after both flavanone treatments. Serum TSH increased (p<0.05) after NAR, while T4 remained unchanged after both treatments. In conclusion, NAR elevated serum TSH in old-aged males, thus being more potent than HES in altering pituitary-thyroid axis. However, changes in thyroid structure, namely moderate colloid depletion and higher Tg and T4-Tg protein expressions after both treatments, indicate preserved capacity of the gland to compensate flavanone interfering, and maintain T4 production in old-aged males.
Collapse
|
41
|
Marcoccia D, Pellegrini M, Fiocchetti M, Lorenzetti S, Marino M. Food components and contaminants as (anti)androgenic molecules. GENES AND NUTRITION 2017; 12:6. [PMID: 28239427 PMCID: PMC5312591 DOI: 10.1186/s12263-017-0555-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023]
Abstract
Androgens, the main male sex steroids, are the critical factors responsible for the development of the male phenotype during embryogenesis and for the achievement of sexual maturation and puberty. In adulthood, androgens remain essential for the maintenance of male reproductive function and behavior. Androgens, acting through the androgen receptor (AR), regulate male sexual differentiation during development, sperm production beginning from puberty, and maintenance of prostate homeostasis. Several substances present in the environment, now classified as endocrine disruptors (EDCs), strongly interfere with androgen actions in reproductive and non-reproductive tissues. EDCs are a heterogeneous group of xenobiotics which include synthetic chemicals used as industrial solvents/lubricants, plasticizers, additives, agrochemicals, pharmaceutical agents, and polyphenols of plant origin. These compounds are even present in the food as components (polyphenols) or food/water contaminants (pesticides, plasticizers used as food packaging) rendering the diet as the main route of exposure to EDCs for humans. Although huge amount of literature reports the (anti)estrogenic effects of different EDCs, relatively scarce information is available on the (anti)androgenic effects of EDCs. Here, the effects and mechanism of action of phytochemicals and pesticides and plasticizers as possible modulators of AR activities will be reviewed taking into account that insight derived from principles of endocrinology are required to estimate EDC consequences on endocrine deregulation and disease.
Collapse
Affiliation(s)
- Daniele Marcoccia
- Dpt. of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità - ISS, Viale Regina Elena 299, I-00161 Rome, Italy.,Present address: Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, via A. Bianchi 9, 25124 Brescia, Italy
| | - Marco Pellegrini
- Department of Science, University Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy.,Present address: Department of Molecular Medicine, University of Padova, Via Ugo Bassi, 58/b, 35131 Padova, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy
| | - Stefano Lorenzetti
- Dpt. of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità - ISS, Viale Regina Elena 299, I-00161 Rome, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy
| |
Collapse
|
42
|
Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 2016; 16:4-20. [PMID: 29259445 PMCID: PMC5715874 DOI: 10.1002/rmb2.12006] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
17β‐Estradiol (E2), as the main circulating estrogen hormone, regulates many tissue and organ functions in physiology. The effects of E2 on cells are mediated by the transcription factors and estrogen receptor (ER)α and ERβ that are encoded by distinct genes. Localized at the peri‐membrane, mitochondria, and the nucleus of cells that are dependent on estrogen target tissues, the ERs share similar, as well as distinct, regulatory potentials. Different intracellular localizations of the ERs result in dynamically integrated and finely tuned E2 signaling cascades that orchestrate cellular growth, differentiation, and death. The deregulation of E2–ER signaling plays a critical role in the initiation and progression of target tissue malignancies. A better understanding of the complex regulatory mechanisms that underlie ER actions in response to E2 therefore holds a critical trajectory for the development of novel prognostic and therapeutic approaches with substantial impacts on the systemic management of target tissue diseases.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Gamze Ayaz
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Sırma Damla User
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Gizem Güpür
- Department of Biological Sciences Middle East Technical University Ankara Turkey.,Present address: Cell and Molecular Biology Program Duke University Durham North Carolina USA
| | - Mesut Muyan
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
43
|
Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol 2016; 17:783-797. [PMID: 27729652 PMCID: PMC5649368 DOI: 10.1038/nrm.2016.122] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Steroid hormone receptors mediate numerous crucial biological processes and are classically thought to function as transcriptional regulators in the nucleus. However, it has been known for more than 50 years that steroids evoke rapid responses in many organs that cannot be explained by gene regulation. Mounting evidence indicates that most steroid receptors in fact exist in extranuclear cellular pools, including at the plasma membrane. This latter pool, when engaged by a steroid ligand, rapidly activates signals that affect various aspects of cellular biology. Research into the mechanisms of signalling instigated by extranuclear steroid receptor pools and how this extranuclear signalling is integrated with responses elicited by nuclear receptor pools provides novel understanding of steroid hormone signalling and its roles in health and disease.
Collapse
Affiliation(s)
- Ellis R. Levin
- Department of Medicine and Biochemistry, University of California,
Irvine and the Long Beach VA Medical Center, California 90822, USA
| | - Stephen R. Hammes
- Departments of Medicine and Pharmacology, University of Rochester,
Rochester, New York 14642, USA
| |
Collapse
|
44
|
Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells. BIOCHIMIE OPEN 2016; 3:64-71. [PMID: 29450133 PMCID: PMC5801822 DOI: 10.1016/j.biopen.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022]
Abstract
Estrogen receptor (ER) antagonists such as tamoxifen (Tam) have been used successfully to treat ER+ breast cancers for more than 30 years. Unfortunately, long term use of Tam can result in resistance. Tam resistance is associated with the activation of growth factor signaling pathways that promote cell proliferation and survival. The mitogen-activated protein kinase (MAPK), is up-regulated in Tam resistant (Tam-R) cells. Previous studies have reported that the flavanone, naringenin (Nar) can inhibit cell proliferation and induce apoptosis in ER+ breast cancer cells. Furthermore, Nar has been shown to inhibit the MAPK signaling pathways in MCF-7 cells. In this report we investigated whether inhibition of MAPK alone is mediating the effects of Nar on cell proliferation and viability. These studies will determine the mechanism of action of Nar. Tam-R MCF-7 breast cancer cells were treated with Nar or U0126, a MAPK kinase inhibitor. Our studies show that while both U0126 and Nar impaired cell proliferation and viability the combination of U0126 and Nar resulted in greater inhibition of cell viability than either compound alone. It has been previously reported that Nar can bind the ER. Our lab has also shown that Nar localizes ERα to a peri-nuclear region of the cell. Confocal microscopy revealed that in U0126 treated cells ERα displayed an even distribution across the cytoplasm as seen in untreated Tam-R cells. These studies suggest that MAPK is not the only target of Nar. Both Nar and U0126 reduce protein levels of ERK1/2. Nar and U0126 impair viability by different mechanisms. Nar does not mediate ERα localization via inhibition of MAPK.
Collapse
|
45
|
Abstract
Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
46
|
Lai YJ, Yu D, Zhang JH, Chen GJ. Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Mol Neurobiol 2016; 54:4113-4126. [PMID: 27324789 PMCID: PMC5509832 DOI: 10.1007/s12035-016-9979-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.
Collapse
Affiliation(s)
- Yu-Jie Lai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
47
|
Identification of 3',4'-Dimethoxy Flavonol-3-β-d-Glucopyranoside Metabolites in Rats by Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry. Molecules 2016; 21:470. [PMID: 27070571 PMCID: PMC6273979 DOI: 10.3390/molecules21040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/17/2022] Open
Abstract
A method using liquid chromatography-electrospray ionization ion trap mass spectrometry was established for the identification of metabolites in feces, urine and bile in rats after oral administration of 3',4'-dimethoxy flavonol-3-β-d-glucopyranoside (abbreviated DF3G). Seven metabolites in rat feces, urine and bile were firstly identified on the basis of their MS fragmentation behaviors. Three metabolites were identified in the feces, 6 in the urine and 2 in the bile, which suggested that demethylation, deglycosylation and deglycosylation followed by glucuronide conjugation were the major metabolic pathways for DF3G in vivo. Hydrolyzation might be the first step in the absorption and metabolism of DF3G. The possible metabolic pathway was proposed for the first time. The established method was simple, reliable and sensitive, revealing that it could be used to rapidly screen and identify the structures of metabolites of DF3G to better understand its metabolism in vivo.
Collapse
|
48
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
49
|
Song HM, Park GH, Eo HJ, Lee JW, Kim MK, Lee JR, Lee MH, Koo JS, Jeong JB. Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells. Biomol Ther (Seoul) 2015; 23:339-44. [PMID: 26157550 PMCID: PMC4489828 DOI: 10.4062/biomolther.2015.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022] Open
Abstract
Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. However, more detailed mechanism by which NAR exerts anti-cancer properties still remains unanswered. Thus, in this study, we have shown that NAR down-regulates the level of cyclin D1 in human colorectal cancer cell lines, HCT116 and SW480. NAR inhibited the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. Inhibition of proteasomal degradation by MG132 blocked NAR-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with NAR. In addition, NAR increased the phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine blocked cyclin D1 downregulation by NAR. p38 inactivation attenuated cyclin D1 downregulation by NAR. From these results, we suggest that NAR-mediated cyclin D1 downregulation may result from proteasomal degradation through p38 activation. The current study provides new mechanistic link between NAR, cyclin D1 downregulation and cell growth in human colorectal cancer cells.
Collapse
Affiliation(s)
- Hun Min Song
- Department of Bioresource Sciences, Andong National University, Andong 760-749
| | - Gwang Hun Park
- Department of Bioresource Sciences, Andong National University, Andong 760-749
| | - Hyun Ji Eo
- Department of Bioresource Sciences, Andong National University, Andong 760-749
| | - Jin Wook Lee
- Department of Bioresource Sciences, Andong National University, Andong 760-749
| | - Mi Kyoung Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749
| | - Jeong Rak Lee
- Gyeongbuk Institute for Bio-industry, Andong 760-380
| | - Man Hyo Lee
- Gyeongbuk Institute for Bio-industry, Andong 760-380
| | - Jin Suk Koo
- Department of Bioresource Sciences, Andong National University, Andong 760-749 ; Insititute of Agricultural Science and Technology, Andong National University, Andong 760-749, Republic of Korea
| | - Jin Boo Jeong
- Department of Bioresource Sciences, Andong National University, Andong 760-749 ; Insititute of Agricultural Science and Technology, Andong National University, Andong 760-749, Republic of Korea
| |
Collapse
|
50
|
Protein S-palmitoylation and cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:107-20. [PMID: 26112306 DOI: 10.1016/j.bbcan.2015.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/16/2022]
Abstract
Protein S-palmitoylation is a reversible posttranslational modification of proteins with fatty acids, an enzymatic process driven by a recently discovered family of protein acyltransferases (PATs) that are defined by a conserved catalytic domain characterized by a DHHC sequence motif. Protein S-palmitoylation has a prominent role in regulating protein location, trafficking and function. Recent studies of DHHC PATs and their functional effects have demonstrated that their dysregulation is associated with human diseases, including schizophrenia, X-linked mental retardation, and Huntington's Disease. A growing number of reports indicate an important role for DHHC proteins and their substrates in tumorigenesis. Whereas DHHC PATs comprise a family of 23 enzymes in humans, a smaller number of enzymes that remove palmitate have been identified and characterized as potential therapeutic targets. Here we review current knowledge of the enzymes that mediate reversible palmitoylation and their cancer-associated substrates and discuss potential therapeutic applications.
Collapse
|