1
|
Giri D, Govindaraj V, Kumar S, Ungati H, Mugesh G. A Highly Selective Fluorescent Probe for Monitoring the Thyroid Hormone Transporter Activity in Mammalian Cells. Chemistry 2024; 30:e202401719. [PMID: 38995511 DOI: 10.1002/chem.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
Monocarboxylate transporter 8 (MCT8) is a trans-membrane transporter, which mediates the cellular delivery of thyroid hormones, L-thyroxine (T4) and 3,5,3'-triiodo-L-thyronine (T3). In humans, the MCT8 protein is encoded by the SLC16A2 gene and mutations in the transporter cause a genetic neurological disorder known as Allan-Herndon-Dudley Syndrome (AHDS). MCT8 deficiency leads to impaired transport of thyroid hormones in the brain. Radiolabelled T4 and T3 or LC/MS-MS methods have been used to monitor the thyroid hormone uptake through MCT8. Herein, we developed a fluorescent based assay to monitor the thyroid hormone uptake through MCT8. A dansyl-based fluorescent probe having L-thyroxine moiety is found to be highly selective towards MCT8 in living cells. The high selectivity of the probe towards MCT8 can be attributed to the halogen bond-mediated recognition by the transporter protein. The presence of a free carboxylic acid group is essential for the specificity of the probe towards MCT8. Additionally, the selectivity of the probe for MCT8 is abolished upon esterification of the carboxylic group. Similarly, MCT8 does not recognize the probe when it contains a free amine group.
Collapse
Affiliation(s)
- Debasish Giri
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vijayakumar Govindaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Sagar Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Harinarayana Ungati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Wasserman-Bartov T, Admati I, Lebenthal-Loinger I, Sharabany J, Lerer-Goldshtein T, Appelbaum L. Tsh Induces Agrp1 Neuron Proliferation in Oatp1c1-Deficient Zebrafish. J Neurosci 2022; 42:8214-8224. [PMID: 36150888 PMCID: PMC9653277 DOI: 10.1523/jneurosci.0002-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs), thyroxine (T4), and triiodothyronine (T3), regulate growth, metabolism, and neurodevelopment. THs secretion is controlled by the pituitary thyroid-stimulating hormone (TSH) and the hypothalamic-pituitary-thyroid (HPT) axis. The organic anion-transporting polypeptide 1C1 (OATP1C1/SLCO1C1) and the monocarboxylate transporter 8 (MCT8/SLC16A2) actively transport THs, which bind to their nuclear receptors and induce gene expression. A mutation in OATP1C1 is associated with brain hypometabolism, gradual neurodegeneration, and impaired cognitive and motor functioning in adolescent patients. To understand the role of Oatp1c1 and the mechanisms of the disease, we profiled the transcriptome of oatp1c1 mutant (oatp1c1 -/-) and mct8 -/- xoatp1c1 -/- adult male and female zebrafish brains. Among dozens of differentially expressed genes, agouti-related neuropeptide 1 (agrp1) expression increased in oatp1c1 -/- adult brains. Imaging in the hypothalamus revealed enhanced proliferation of Agrp1 neurons in oatp1c1 -/- larvae and adults, and increased food consumption in oatp1c1 -/- larvae. Similarly, feeding and the number of Agrp1 neurons increased in thyroid gland-ablated zebrafish. Pharmacological treatments showed that the T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid), but not T4, normalized the number of Agrp1 neurons in oatp1c1 -/- zebrafish. Since the HPT axis is hyperactive in the oatp1c1 -/- brain, we used the CRISPR-Cas9 system to knockdown tsh in oatp1c1 -/- larvae, and inducibly enhanced the HPT axis in wild-type larvae. These manipulations showed that Tsh promotes proliferation of Agrp1 neurons and increases food consumption in zebrafish. The results revealed upregulation of both the HPT axis-Agrp1 circuitry and feeding in a zebrafish model for OATP1C1 deficiency.SIGNIFICANCE STATEMENT Mutation in the thyroid hormone (TH) transporter OATP1C1 is associated with cognitive and motor functioning disturbances in humans. Here, we used an oatp1c1 -/- zebrafish to understand the role of organic anion-transporting polypeptide 1C1 (Oatp1c1), and the characteristics of OATP1C1 deficiency. Transcriptome profiling identified upregulation of agrp1 expression in the oatp1c1 -/- brain. The oatp1c1 -/- larvae showed increased thyroid-stimulating hormone (tsh) levels, proliferation of Agrp1 neurons and food consumption. Genetic manipulations of the hypothalamic-pituitary-thyroid (HPT) axis showed that Tsh increases the number of Agrp1 neurons and food consumption. The T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid) normalizes the number of Agrp1 neurons and may have potential for the treatment of Oatp1c1 deficiency. The findings demonstrate a functional interaction between the thyroid and feeding systems in the brain of zebrafish and suggest a neuroendocrinological mechanism for OATP1C1 deficiency.
Collapse
Affiliation(s)
- Talya Wasserman-Bartov
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Admati
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Julia Sharabany
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
3
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
4
|
Orije JEMJ, Raymaekers SR, Majumdar G, De Groof G, Jonckers E, Ball GF, Verhoye M, Darras VM, Van der Linden A. Unraveling the Role of Thyroid Hormones in Seasonal Neuroplasticity in European Starlings ( Sturnus vulgaris). Front Mol Neurosci 2022; 15:897039. [PMID: 35836548 PMCID: PMC9275473 DOI: 10.3389/fnmol.2022.897039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones clearly play a role in the seasonal regulation of reproduction, but any role they might play in song behavior and the associated seasonal neuroplasticity in songbirds remains to be elucidated. To pursue this question, we first established seasonal patterns in the expression of thyroid hormone regulating genes in male European starlings employing in situ hybridization methods. Thyroid hormone transporter LAT1 expression in the song nucleus HVC was elevated during the photosensitive phase, pointing toward an active role of thyroid hormones during this window of possible neuroplasticity. In contrast, DIO3 expression was high in HVC during the photostimulated phase, limiting the possible effect of thyroid hormones to maintain song stability during the breeding season. Next, we studied the effect of hypothyroidism on song behavior and neuroplasticity using in vivo MRI. Both under natural conditions as with methimazole treatment, circulating thyroid hormone levels decreased during the photosensitive period, which coincided with the onset of neuroplasticity. This inverse relationship between thyroid hormones and neuroplasticity was further demonstrated by the negative correlation between plasma T3 and the microstructural changes in several song control nuclei and cerebellum. Furthermore, maintaining hypothyroidism during the photostimulated period inhibited the increase in testosterone, confirming the role of thyroid hormones in activating the hypothalamic-pituitary-gonadal (HPG) axis. The lack of high testosterone levels influenced the song behavior of hypothyroid starlings, while the lack of high plasma T4 during photostimulation affected the myelination of several tracts. Potentially, a global reduction of circulating thyroid hormones during the photosensitive period is necessary to lift the brake on neuroplasticity imposed by the photorefractory period, whereas local fine-tuning of thyroid hormone concentrations through LAT1 could activate underlying neuroplasticity mechanisms. Whereas, an increase in circulating T4 during the photostimulated period potentially influences the myelination of several white matter tracts, which stabilizes the neuroplastic changes. Given the complexity of thyroid hormone effects, this study is a steppingstone to disentangle the influence of thyroid hormones on seasonal neuroplasticity.
Collapse
Affiliation(s)
- Jasmien E. M. J. Orije
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sander R. Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert De Groof
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Gregory F. Ball
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Marleen Verhoye
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Kakoulidis I, Ilias I, Stergiotis S, Togias S, Michou A, Lekkou A, Mastrodimou V, Pappa A, Milionis C, Venaki E, Koukkou E. Study on the Interaction between Serum Thyrotropin and Semen Parameters in Men. Med Sci (Basel) 2022; 10:medsci10020022. [PMID: 35466230 PMCID: PMC9036276 DOI: 10.3390/medsci10020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effect of thyroid function on semen parameters has been studied in pathological conditions in small studies. With this research work, we aimed to study thyroid hormone effects on semen parameters in 130 men who were evaluated for couple subfertility. Our study was cross-sectional. We noted semen volume, sperm concentration, total sperm count, testosterone levels and thyrotropin (TSH) levels. The analysis included ordinary least squares regression (OLS-R), quantile regression (QR) and segmented line regression (SR). Using OLS-R, a weak negative correlation was found between the logTSH levels and semen volume (r = −0.16, r2 = 0.03, p = 0.05). In Q-R, each incremental unit increase in logTSH decreased the mean semen volume between −0.78 ± 0.44 and −1.33 ± 0.34 mL (40–60th response quantile) and between −1.19 ± 0.71 and −0.61 ± 0.31 mL (70–90th response quantile) (p = 0.049). With SR, a biphasic relationship of sperm concentration with TSH was noted (positive turning to negative, peaking at TSH = 1.22 μIU/mL). Thus, a weak negative association between the TSH levels and semen volume was noted, showing a trough within the usual normal range for TSH. Moreover, a biphasic relationship between the sperm concentration and TSH was also noted, peaking at approximately mid-normal TSH levels. Based on our results, TSH explained slightly less than 3% of the variation in semen volume and 7% of the sperm concentration (thus, other factors, which were not studied here, have a more important effect on it).
Collapse
|
6
|
Genetic and Neurological Deficiencies in the Visual System of mct8 Mutant Zebrafish. Int J Mol Sci 2022; 23:ijms23052464. [PMID: 35269606 PMCID: PMC8910067 DOI: 10.3390/ijms23052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormones (THs; T3 and T4) enter cells using specific transporters and regulate development and metabolism. Mutation in the TH transporter monocarboxylate transporter 8 (MCT8, SLC16A2) is associated with brain hypothyroidism and neurological impairment. We established mct8 mutant (mct8-/-) zebrafish as a model for MCT8 deficiency, which causes endocrinological, neurological, and behavioral alterations. Here, we profiled the transcriptome of mct8-/- larvae. Among hundreds of differentially expressed genes, the expression of a cluster of vision-related genes was distinct. Specifically, the expression of the opsin 1 medium wave sensitive 2 (opn1mw2) decreased in two mct8 mutants: mct8-/- and mct8-25bp-/- larvae, and under pharmacological inhibition of TH production. Optokinetic reflex (OKR) assays showed a reduction in the number of conjugated eye movements, and live imaging of genetically encoded Ca2+ indicator revealed altered neuronal activity in the pretectum area of mct8-25bp-/- larvae. These results imply that MCT8 and THs regulate the development of the visual system and suggest a mechanism to the deficiencies observed in the visual system of MCT8-deficiency patients.
Collapse
|
7
|
Ipek R, Bozdogan ST, Kömür M, Okuyaz C. A Novel Mutation Diagnosing in Allan–Herndon–Dudley's Syndrome. J Pediatr Genet 2021. [DOI: 10.1055/s-0041-1740457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAllan–Herndon–Dudley's syndrome (AHDS) is a rare X-linked recessive disease that causes abnormal serum thyroid function tests, severe hypotonia, intellectual disability, and motor deficit due to a mutation in the monocarboxylate transporter 8, which is a thyroid hormone transporter. A 6-month-old male patient presented to our outpatient clinic with a serious hypotonia complaint. With a preliminary diagnosis of AHDS, a molecular genetic examination was performed. The molecular genetic analysis detected a new previously unidentified variant in the SLC16A2 gene. This case has been presented to report the AHDS, which is a rare cause of hypotonia in patients presenting/consulting with severe hypotonia, global developmental delay, and abnormal thyroid function test results. Besides, a novel pathogenic mutation in the SLC16A2 gene has been described in the present article.
Collapse
Affiliation(s)
- Rojan Ipek
- Department of Pediatrics, Division of Neurology, Training and Research Hospital, Adıyaman University, Adıyaman, Turkey
| | - Sevcan Tug Bozdogan
- Department of Medical Genetics, Medical Faculty, Çukurova University, Adana, Turkey
| | - Mustafa Kömür
- Department of Pediatrics, Division of Neurology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Cetin Okuyaz
- Department of Pediatrics, Division of Neurology, Medical Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
8
|
Modulating Thyroid Hormone Levels in Adult Mice: Impact on Behavior and Compensatory Brain Changes. J Thyroid Res 2021; 2021:9960188. [PMID: 34257897 PMCID: PMC8253651 DOI: 10.1155/2021/9960188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormone (TH) perturbation is a common medical problem. Because of substantial public health impact, prior researchers have studied hyper- and hypothyroidism in animal models. Although most prior research focused on in utero and/or developmental effects, changes in circulating TH levels are commonly seen in elderly individuals: approximately 20% of persons older than 80 years have clinically impactful hypothyroidism and up to 5% have clinical hyperthyroidism, with women being more often affected than men. TH disease model methodology in mice have varied but usually focus on a single sex, and the impact(s) of TH perturbation on the adult brain are not well understood. We administered thyroxine to middle-aged (13 to 14 months) male and female mice to model hyperthyroidism and TH-lowering drugs propylthiouracil (PTU) and methimazole, to induce hypothyroidism. These pharmacological agents are used commonly in adult humans. Circulating TH-level changes were observed when thyroxine was dosed at 20 µg/mL in drinking water for two weeks. By contrast, PTU and methimazole did not elicit a consistent reproducible effect until two months of treatment. No substantial changes in TH levels were detected in brain tissues of treated animals; however, pronounced changes in gene expression, specifically for TH-processing transcripts, were observed following the treatment with thyroxine. Our study indicated a robust compensatory mechanism by which the brain tissue/cells minimize the TH fluctuation in CNS by altering gene expression. Neurobehavioral changes were related to the TH perturbation and suggested potential associations between cognitive status and hyper- and hypothyroidism.
Collapse
|
9
|
von Maltzahn J. Regulation of muscle stem cell function. VITAMINS AND HORMONES 2021; 116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
Collapse
|
10
|
A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 2021; 95:807-836. [PMID: 33398420 DOI: 10.1007/s00204-020-02961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
This review summarises the current state of knowledge regarding the physiology and control of production of thyroid hormones, the effects of chemicals in perturbing their synthesis and release that result in thyroid cancer. It does not consider the potential neurodevelopmental consequences of low thyroid hormones. There are a number of known molecular initiating events (MIEs) that affect thyroid hormone synthesis in mammals and many chemicals are able to activate multiple MIEs simultaneously. AOP analysis of chemical-induced thyroid cancer in rodents has defined the key events that predispose to the development of rodent cancer and many of these will operate in humans under appropriate conditions, if they were exposed to high enough concentrations of the affecting chemicals. There are conditions however that, at the very least, would indicate significant quantitative differences in the sensitivity of humans to these effects, with rodents being considerably more sensitive to thyroid effects by virtue of differences in the biology, transport and control of thyroid hormones in these species as opposed to humans where turnover is appreciably lower and where serum transport of T4/T3 is different to that operating in rodents. There is heated debate around claimed qualitative differences between the rodent and human thyroid physiology, and significant reservations, both scientific and regulatory, still exist in terms of the potential neurodevelopmental consequences of low thyroid hormone levels at critical windows of time. In contrast, the situation for the chemical induction of thyroid cancer, through effects on thyroid hormone production and release, is less ambiguous with both theoretical, and actual data, showing clear dose-related thresholds for the key events predisposing to chemically induced thyroid cancer in rodents. In addition, qualitative differences in transport, and quantitative differences in half life, catabolism and turnover of thyroid hormones, exist that would not operate under normal situations in humans.
Collapse
|
11
|
Wang H, Ma Z, Cheng X, Tuo B, Liu X, Li T. Physiological and Pathophysiological Roles of Ion Transporter-Mediated Metabolism in the Thyroid Gland and in Thyroid Cancer. Onco Targets Ther 2020; 13:12427-12441. [PMID: 33299328 PMCID: PMC7721308 DOI: 10.2147/ott.s280797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine tumor and has shown an increasing annual incidence, especially among women. Patients with thyroid cancer have a good prognosis, with a high five-year survival rate; however, the recurrence rate and disease status of thyroid cancer remain a burden for patients, which compels us to further elucidate the pathogenesis of this disease. Recently, ion transporters have gradually become a hot topic in the field of thyroid gland biology and cancer research. Additionally, alterations in the metabolic state of tumor cells and protein molecules have gradually become the focus of scientific research. This review focuses on the progress in understanding the physiological and pathophysiological roles of ion transporter-mediated metabolism in both the thyroid gland and thyroid cancer. We also hope to shed light on new targets for the treatment and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,Digestive Disease Institute of Guizhou Province, Zunyi, People's Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,Digestive Disease Institute of Guizhou Province, Zunyi, People's Republic of China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
12
|
Brix K, Szumska J, Weber J, Qatato M, Venugopalan V, Al-Hashimi A, Rehders M. Auto-Regulation of the Thyroid Gland Beyond Classical Pathways. Exp Clin Endocrinol Diabetes 2020; 128:437-445. [PMID: 32074633 DOI: 10.1055/a-1080-2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.
Collapse
Affiliation(s)
- Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.,Present address of JS is Department of Internal Medicine III, Cardiology, Angiology and Respiratory Medicine, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
13
|
Hernandez A, Martinez ME. Thyroid hormone action in the developing testis: intergenerational epigenetics. J Endocrinol 2020; 244:R33-R46. [PMID: 31977317 PMCID: PMC7220832 DOI: 10.1530/joe-19-0550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Male fertility involves the successful transmission of the genetic code to the next generation. It requires appropriately timed cellular processes during testis development, adequate support of spermatogenesis by hormonal cues from the reproductive axis and cellular cross-talk between germ and somatic cells. In addition to being the vessel of the father’s genome, increasing evidence shows that the mature sperm carries valuable epigenetic information – the epigenome – that, after fecundation, influences the development of the next generation, affecting biological traits and disease susceptibility. The epigenome of the germ line is susceptible to environmental factors, including exogenous chemicals and diet, but it is also affected by endogenous molecules and pathophysiological conditions. Factors affecting testis development and the epigenetic information of the germ line are critical for fertility and of relevance to the non-genetic but heritable component in the etiology of complex conditions. Thyroid hormones are one of those factors and their action, when untimely, produces profound effects on the developing testis, affecting spermatogenesis, steroidogenesis, testis size, reproductive hormones and fertility. Altered thyroid hormone states can also change the epigenetic information of the male germ line, with phenotypic consequences for future generations. In the context of past literature concerning the consequences of altered thyroid hormone action for testis development, here we review recent findings about the pathophysiological roles of the principal determinants of testicular thyroid hormone action. We also discuss limited work on the effects of thyroid hormone on the male germ line epigenome and the implications for the intergenerational transmission of phenotypes via epigenetic mechanisms.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - M. Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| |
Collapse
|
14
|
Admati I, Wasserman-Bartov T, Tovin A, Rozenblat R, Blitz E, Zada D, Lerer-Goldshtein T, Appelbaum L. Neural Alterations and Hyperactivity of the Hypothalamic-Pituitary-Thyroid Axis in Oatp1c1 Deficiency. Thyroid 2020; 30:161-174. [PMID: 31797746 DOI: 10.1089/thy.2019.0320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The thyroid hormones (THs) triiodothyronine (T3) and thyroxine (T4) are crucial regulators of brain development and function. Cell-specific transporter proteins facilitate TH uptake and efflux across the cell membrane, and insufficient TH transport causes hypothyroidism and mental retardation. Mutations in the TH transporters monocarboxylate transporter 8 (MCT8, SLC16A2) and the organic anion-transporting polypeptide 1C1 (OATP1C1, SLCO1C1) are associated with the psychomotor retardation Allan-Herndon-Dudley syndrome and juvenile neurodegeneration, respectively. Methods: To understand the mechanisms and test potential treatments for the recently discovered OATP1C1 deficiency, we established an oatp1c1 mutant (oatp1c1-/-) zebrafish. Results:oatp1c1 is expressed in endothelial cells, neurons, and astrocytes in zebrafish. The activity of the hypothalamic-pituitary-thyroid axis and behavioral locomotor activity increased in oatp1c1-/- larvae. Neuropathological analysis revealed structural alteration in radial glial cells and shorter neuronal axons in oatp1c1-/- larvae and adults. Notably, oatp1c1-/- and oatp1c1-/-Xmct8-/- adults exhibit an enlarged thyroid gland (goiter). Pharmacological assays showed that TH analogs, but not THs, can reduce the size and improve the color of the thyroid gland in adult mutant zebrafish. Conclusion: These results establish a vertebrate model for OATP1C1 deficiency that demonstrates endocrinological, neurological, and behavioral alterations mimicking findings observed in an OATP1C1-deficient patient. Further, the curative effect of TH analogs in the oatp1c1-/- zebrafish model may provide a lead toward a treatment modality in human patients.
Collapse
Affiliation(s)
- Inbal Admati
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Talya Wasserman-Bartov
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Adi Tovin
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
15
|
Martinez ME, Lary CW, Karaczyn AA, Griswold MD, Hernandez A. Spermatogonial Type 3 Deiodinase Regulates Thyroid Hormone Target Genes in Developing Testicular Somatic Cells. Endocrinology 2019; 160:2929-2945. [PMID: 31621880 PMCID: PMC6853691 DOI: 10.1210/en.2019-00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Premature overexposure to thyroid hormone causes profound effects on testis growth, spermatogenesis, and male fertility. We used genetic mouse models of type 3 deiodinase (DIO3) deficiency to determine the genetic programs affected by premature thyroid hormone action and to define the role of DIO3 in regulating thyroid hormone economy in testicular cells. Gene expression profiling in the neonatal testis of DIO3-deficient mice identified 5699 differentially expressed genes. Upregulated and downregulated genes were, respectively, involved according to DAVID analysis with cell differentiation and proliferation. They included anti-Müllerian hormone and genes involved in the formation of the blood-testis barrier, which are specific to Sertoli cells (SCs). They also included steroidogenic genes, which are specific to Leydig cells. Comparison with published data sets of genes enriched in SCs and spermatogonia, and responsive to retinoic acid (RA), identified a subset of genes that were regulated similarly by RA and thyroid hormone. This subset of genes showed an expression bias, as they were downregulated when enriched in spermatogonia and upregulated when enriched in SCs. Furthermore, using a genetic approach, we found that DIO3 is not expressed in SCs, but spermatogonia-specific inactivation of DIO3 led to impaired testis growth, reduced SC number, decreased cell proliferation and, especially during neonatal development, altered gene expression specific to somatic cells. These findings indicate that spermatogonial DIO3 protects testicular cells from untimely thyroid hormone signaling and demonstrate a mechanism of cross-talk between somatic and germ cells in the neonatal testis that involves the regulation of thyroid hormone availability and action.
Collapse
Affiliation(s)
- M Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Christine W Lary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, Maine
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | - Aldona A Karaczyn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Michael D Griswold
- School for Molecular Sciences, Washington State University, Pullman, Washington
- Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, Maine
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
- Correspondence: Arturo Hernandez, PhD, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074. E-mail:
| |
Collapse
|
16
|
Islam MS, Namba N, Ohata Y, Fujiwara M, Nakano C, Takeyari S, Miyata K, Nakano Y, Yamamoto K, Nakayama H, Kitaoka T, Kubota T, Ozono K. Functional analysis of monocarboxylate transporter 8 mutations in Japanese Allan-Herndon-Dudley syndrome patients. Endocr J 2019; 66:19-29. [PMID: 30369548 DOI: 10.1507/endocrj.ej18-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates T3 uptake into cells. Mutations in MCT8 lead to Allan-Herndon-Dudley syndrome (AHDS), which is characterized by severe psychomotor retardation and abnormal thyroid hormone profile. Nine uncharacterized MCT8 mutations in Japanese patients with severe neurocognitive impairment and elevated serum T3 levels were studied regarding the transport of T3. Human MCT8 (hMCT8) function was studied in wild-type (WT) or mutant hMCT8-transfected human placental choriocarcinoma cells (JEG3) by visualizing the locations of the proteins in the cells, detecting specific proteins, and measuring T3 uptake. We identified 6 missense (p.Arg445Ser, p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, and p.Gly312Arg), 2 frameshift (p.Arg355Profs*64 and p.Tyr550Serfs*17), and 1 deletion (p.Pro561del) mutation(s) in the hMCT8 gene. All patients exhibited clinical characteristics of AHDS with high free T3, low-normal free T4, and normal-elevated TSH levels. All tested mutants were expressed at the protein level, except p.Arg355Profs*64 and p.Tyr550Serfs*17, which were truncated, and were inactive in T3 uptake, excluding p.Arg445Ser and p.Pro561del mutants, compared with WT-hMCT8. Immunocytochemistry revealed plasma membrane localization of p.Arg445Ser and p.Pro561del mutants similar with WT-hMCT8. The other mutants failed to localize in significant amount(s) in the plasma membrane and instead localized in the cytoplasm. These data indicate that p.Arg445Ser and p.Pro561del mutants preserve residual function, whereas p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, p.Gly312Arg, p.Arg355Profs*64, and p.Tyr550Serfs*17 mutants lack function. These findings suggest that the mutations in MCT8 cause loss of function by reducing protein expression, impairing trafficking of protein to plasma membrane, and disrupting substrate channel.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Chiho Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kei Miyata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
17
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|
18
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
19
|
De Vincentis S, Monzani ML, Brigante G. Crosstalk between gonadotropins and thyroid axis. ACTA ACUST UNITED AC 2018; 70:609-620. [PMID: 29999286 DOI: 10.23736/s0026-4784.18.04271-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gonadotropins and thyroid hormones are essential, respectively, for reproduction and metabolism. The classical endocrinological approach is based on the detection of axes that start from the hypothalamus and arrive at the final effector organ, in this case gonads and thyroid. However, several clues suggest that these axes do not work in parallel, but they dialogue with each other. In this article, we review evidences demonstrating crosstalk between gonadotropins and thyroid axis. Firstly, there is an undeniable structural similarity of both hormones and receptors, maybe due to a common ancient origin. This structural similarity leads to possible interaction at the receptor level, explaining the influence of thyroid stimulating hormone on gonadal development and vice versa. Indeed, altered levels of thyroid hormones could lead to different disorders of gonadal development and function throughout entire life, especially during puberty and fertile life. We here report the current knowledge on this item both in males and in females. In particular, we deepen the interaction between thyroid and gonads in two situations in females: polycystic ovary syndrome, the most frequent cause of menstrual alteration, and pregnancy.
Collapse
Affiliation(s)
- Sara De Vincentis
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, OCSAE, Modena, Italy
| | - Maria L Monzani
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, OCSAE, Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy - .,Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, OCSAE, Modena, Italy
| |
Collapse
|
20
|
Hernandez A, Stohn JP. The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int J Mol Sci 2018; 19:ijms19061804. [PMID: 29921775 PMCID: PMC6032375 DOI: 10.3390/ijms19061804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) influence multiple processes in the developing and adult central nervous system, and their local availability needs to be maintained at levels that are tailored to the requirements of their biological targets. The local complement of TH transporters, deiodinase enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type 3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during development introduces an additional level of control to deliver specific levels of hormone action in the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to exogenous treatments and environmental exposures, with potential implications for the etiology of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
21
|
Mayerl S, Schmidt M, Doycheva D, Darras VM, Hüttner SS, Boelen A, Visser TJ, Kaether C, Heuer H, von Maltzahn J. Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration. Stem Cell Reports 2018; 10:1959-1974. [PMID: 29706500 PMCID: PMC5993536 DOI: 10.1016/j.stemcr.2018.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) transporters are required for the transmembrane passage of TH in target cells. In humans, inactivating mutations in the TH transporter MCT8 cause the Allan-Herndon-Dudley syndrome, characterized by severe neuromuscular symptoms and an abnormal TH serum profile, which is fully replicated in Mct8 knockout mice and Mct8/Oatp1c1 double-knockout (M/O DKO) mice. Analysis of tissue TH content and expression of TH-regulated genes indicate a thyrotoxic state in Mct8-deficient skeletal muscles. Both TH transporters are upregulated in activated satellite cells (SCs). In M/O DKO mice, we observed a strongly reduced number of differentiated SCs, suggesting an impaired stem cell function. Moreover, M/O DKO mice and mice lacking both transporters exclusively in SCs showed impaired skeletal muscle regeneration. Our data provide solid evidence for a unique gate-keeper function of MCT8 and OATP1C1 in SC activation, underscoring the importance of a finely tuned TH signaling during myogenesis. MCT8 and OATP1C1 expression increases upon activation of muscle stem cells Loss of MCT8 and OATP1C1 expression inhibits muscle stem cell differentiation Mct8- and Oatp1c1-deficient mice display impaired muscle regeneration
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Manuel Schmidt
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany
| | - Denica Doycheva
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sören S Hüttner
- Leibniz Institute on Aging/Fritz Lipmann Institute, Jena, Germany
| | - Anita Boelen
- Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Theo J Visser
- Erasmus Medical Center (EMC), Rotterdam, The Netherlands
| | | | - Heike Heuer
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Duisburg-Essen, University Hospital Essen, Department of Endocrinology, Essen, Germany.
| | | |
Collapse
|
22
|
Groeneweg S, van den Berge A, Meima ME, Peeters RP, Visser TJ, Visser WE. Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology 2018; 159:1290-1302. [PMID: 29309566 DOI: 10.1210/en.2017-00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) result in severe intellectual and motor disability. At present, no effective therapy is available to restore TH signaling in MCT8-dependent tissues. Recent in vitro studies in stable overexpression cell models suggested that the function of certain mutant MCT8 proteins, specifically those that affect protein stability and intracellular trafficking (e.g., p.F501del), could be partially recovered by chemical chaperones. However, the effects of chaperones have not been demonstrated in other commonly used models for MCT8 deficiency, including transient overexpression models and patient-derived fibroblasts. Here, we demonstrate that the chemical chaperone 4-phenylbutyric acid (PBA) similarly potentiates the T3 transport function of wild-type and p.F501del mutant MCT8 in transiently transfected COS-1 cells by increasing MCT8 messenger RNA, total protein, and cell surface expression levels. Although PBA also increased the cell surface expression levels of the p.R445L mutant, no functional improvement was observed, which is in line with the proposed important role of Arg445 in substrate translocation. In contrast, PBA showed only minimal effects in ex vivo studies using control or p.F501del patient-derived fibroblasts. Moreover, the MCT8-specific inhibitor silychristin did not change these minimal effects, suggesting that the underlying mechanism is unrelated to the rescue of functional MCT8. Together, these findings indicate that the potency of chaperones to rescue mutant MCT8 function strongly depends on the cellular model and stress the need for further preclinical studies before clinically available chaperones should be considered as a treatment option in patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Amanda van den Berge
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
23
|
Calzà L, Baldassarro VA, Fernandez M, Giuliani A, Lorenzini L, Giardino L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. VITAMINS AND HORMONES 2018; 106:253-281. [DOI: 10.1016/bs.vh.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Sacripanti G, Nguyen NM, Lorenzini L, Frascarelli S, Saba A, Zucchi R, Ghelardoni S. 3,5-Diiodo-l-Thyronine Increases Glucose Consumption in Cardiomyoblasts Without Affecting the Contractile Performance in Rat Heart. Front Endocrinol (Lausanne) 2018; 9:282. [PMID: 29899732 PMCID: PMC5988897 DOI: 10.3389/fendo.2018.00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
3,5-diiodo-l-thyronine (T2) is an endogenous derivative of thyroid hormone that has been suggested to regulate energy expenditure, resting metabolic rate and oxygen consumption with a mechanism that involves the activation of mitochondrial function. In this study, we focused on the cardiac effects of T2, which have been poorly investigated so far, by using both in vitro and ex vivo models. As a comparison, the response to T3 and T4 was also determined. Rat cardiomyoblasts (H9c2 cells) were used to determine T2, T3, and T4 uptake by high-performance liquid chromatography-tandem mass spectrometry. In the same experimental model, MTT test, crystal violet staining, and glucose consumption were investigated, using T2 concentrations ranging from 0.1 to 10 µM. To assess cardiac functional effects, isolated working rat hearts were perfused with T2, T3, or T4 in Krebs-Ringer buffer, and the hemodynamic variables were recorded. T2 was taken up by cardiomyoblasts, and in cell lysate T2 levels increased slowly over time, reaching higher concentrations than in the incubation medium. T2 significantly decreased MTT staining at 0.5-10 µM concentration (P < 0.05). Crystal violet staining confirmed a reduction of cell viability only upon treatment with 10 µM T2, while equimolar T3 and T4 did not share this effect. Glucose consumption was also significantly affected as indicated by glucose uptake being increased by 24 or 35% in cells exposed to 0.1 or 1.0 µM T2 (P < 0.05 in both cases). On the contrary, T3 did not affect glucose consumption which, in turn, was significantly reduced by 1 and 10 µM T4 (-24 and -41% vs control, respectively, P < 0.05 and P < 0.01). In the isolated perfused rat heart, 10 µM T2 produced a slight and transient reduction in cardiac output, while T3 and T4 did not produce any hemodynamic effect. Our findings indicate that T2 is taken up by cardiomyoblasts, and at 0.1-1.0 µM concentration it can modulate cardiac energy metabolism by increasing glucose consumption. Some evidence of toxicity and a transient impairment of contractile performance are observed only at 10 µM concentration. These effects appear to be specific for T2, since they are not reproduced by T3 or T4.
Collapse
|
25
|
Manto M, Hampe CS. Endocrine disorders and the cerebellum: from neurodevelopmental injury to late-onset ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:353-368. [PMID: 29891071 DOI: 10.1016/b978-0-444-64189-2.00023-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hormonal disorders are a source of cerebellar ataxia in both children and adults. Normal development of the cerebellum is critically dependent on thyroid hormone, which crosses both the blood-brain barrier and the blood-cerebrospinal fluid barrier thanks to specific transporters, including monocarboxylate transporter 8 and the organic anion-transporting polypeptide 1C1. In particular, growth and dendritic arborization of Purkinje neurons, synaptogenesis, and myelination are dependent on thyroid hormone. Disturbances of thyroid hormone may also impact on cerebellar ataxias of other origin, decompensating or aggravating the pre-existing ataxia manifesting with motor ataxia, oculomotor ataxia, and/or Schmahmann syndrome. Parathyroid disorders are associated with a genuine cerebellar syndrome, but symptoms may be subtle. The main conditions combining diabetes and cerebellar ataxia are Friedreich ataxia, ataxia associated with anti-GAD antibodies, autoimmune polyglandular syndromes, aceruloplasminemia, and cerebellar ataxia associated with hypogonadism (especially Holmes ataxia/Boucher-Neuhäuser syndrome). The general workup of cerebellar disorders should include the evaluation of hormonal status, including thyroid-stimulating hormone and free thyroxine levels, and hormonal replacement should be considered depending on the laboratory results. Cerebellar deficits may be reversible in some cases.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
26
|
Hernandez A. Thyroid Hormone Role and Economy in the Developing Testis. VITAMINS AND HORMONES 2018; 106:473-500. [DOI: 10.1016/bs.vh.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Thyroid Hormone Signaling in the Development of the Endochondral Skeleton. VITAMINS AND HORMONES 2018; 106:351-381. [PMID: 29407442 PMCID: PMC9830754 DOI: 10.1016/bs.vh.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone (TH) is an established regulator of skeletal growth and maintenance both in clinical studies and in laboratory models. The clinical consequences of altered thyroid status on the skeleton during development and in adulthood are well known, and genetic mouse models in which elements of the TH signaling axis have been manipulated illuminate the mechanisms which underlie TH regulation of the skeleton. TH is involved in the regulation of the balance between proliferation and differentiation in several skeletal cell types including chondrocytes, osteoblasts, and osteoclasts. The effects of TH are mediated primarily via the thyroid hormone receptors (TRs) α and β, ligand-inducible nuclear receptors which act as transcription factors to regulate target gene expression. Both TRα and TRβ signaling are important for different stages of skeletal development. The molecular mechanisms of TH action in bone are complex and include interaction with a number of growth factor signaling pathways. This review provides an overview of the regulation and mechanisms of TH action in bone, focusing particularly on the role of TH in endochondral bone formation during postnatal growth.
Collapse
|
28
|
Weiner J, Hankir M, Heiker JT, Fenske W, Krause K. Thyroid hormones and browning of adipose tissue. Mol Cell Endocrinol 2017; 458:156-159. [PMID: 28089823 DOI: 10.1016/j.mce.2017.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/12/2016] [Accepted: 01/09/2017] [Indexed: 01/10/2023]
Abstract
Thyroid hormone (TH) disorders are associated with profound changes in whole body energy metabolism. A major TH target is thermogenic brown adipose tissue (BAT), which can be stimulated directly through thyroid hormone receptors (TRs) expressed in brown adipocytes and indirectly, through TRs expressed in hypothalamic neurons. White adipose tissue (WAT) adopts BAT characteristics by a diverse range of stimuli in a process referred to as browning. It is now understood that TH also induce WAT browning through peripheral and central mechanisms. In this review, we discuss evidence from animal and human studies that TH disorders are associated with changes in both BAT thermogenesis and WAT browning, thereby influencing body temperature and body weight regulation.
Collapse
Affiliation(s)
- Juliane Weiner
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Mohammed Hankir
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - John T Heiker
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Wiebke Fenske
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.
| |
Collapse
|
29
|
Groeneweg S, Lima de Souza EC, Meima ME, Peeters RP, Visser WE, Visser TJ. Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology 2017; 158:3292-3306. [PMID: 28977587 DOI: 10.1210/en.2017-00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). Mutations in MCT8 result in severe intellectual and motor disability known as the Allan-Herndon-Dudley syndrome (AHDS). Previous studies have provided valuable insights into the putative mechanism of substrate binding in the inward-open conformation, required for TH efflux. The current study aims to delineate the mechanism of substrate binding in the outward-open conformation, required for TH uptake. Extensive chemical modification and site-directed mutagenesis studies were used to guide protein homology modeling of MCT8 in the outward-open conformation. Arg271 and Arg445 were modified by phenylglyoxal, which was partially prevented in the presence of substrate. Substrate docking in our outward-open model suggested an important role for His192 and Arg445 in substrate binding. Interestingly, mutations affecting these residues have been identified in patients who have AHDS. In addition, our outward-open model predicted the location of Phe189, Met227, Phe279, Gly282, Phe287, and Phe501 at the substrate-binding center, and their Ala substitution differentially affected the apparent Vmax and Km of T3 transport, with F189A, F279A, and F287A showing the highest impact. Thus, here we present an MCT8 homology model in the outward-open conformation, which supports the important role of His192 and Arg445 in substrate docking and identifies critical residues at the putative substrate-binding center. Our findings provide insights into MCT8 structure and function, which add to our understanding of the pathogenic mechanism of mutations found in patients who have AHDS and can be used to screen for novel substrates and inhibitors.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Delbaere J, Van Herck SLJ, Bourgeois NMA, Vancamp P, Yang S, Wingate RJT, Darras VM. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum. THE CEREBELLUM 2017; 15:710-725. [PMID: 26559893 DOI: 10.1007/s12311-015-0744-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may serve as a buffering mechanism against high T3 levels during early embryonic development, a hypothesis supported by the pattern of expression of a fluorescent TH reporter in this lineage. Overall, this study builds a picture of the TH dependency in multiple cerebellar cell types starting from early embryonic development.
Collapse
Affiliation(s)
- Joke Delbaere
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Shuo Yang
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard J T Wingate
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium.
| |
Collapse
|
31
|
Hinz KM, Neef D, Rutz C, Furkert J, Köhrle J, Schülein R, Krause G. Molecular features of the L-type amino acid transporter 2 determine different import and export profiles for thyroid hormones and amino acids. Mol Cell Endocrinol 2017; 443:163-174. [PMID: 28108384 DOI: 10.1016/j.mce.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
The L-type amino acid transporter 2 (LAT2) imports amino acids (AA) and also certain thyroid hormones (TH), e.g. 3,3'-T2 and T3, but not rT3 and T4. We utilized LAT2 mutations (Y130A, N133S, F242W) that increase 3,3'-T2 import and focus here on import and export capacity for AA, T4, T3, BCH and derivatives thereof to delineate molecular features. Transport studies and analysis of competitive inhibition of import by radiolabelled TH and AA were performed in Xenopus laevis oocytes. Only Y130A, a pocket widening mutation, enabled import for T4 and increased it for T3. Mutant F242W showed increased 3,3'-T2 import but no import rates for other TH derivatives. No export was detected for any TH by LAT2-wild type (WT). Mutations Y130A and N133S enabled only the export of 3,3'-T2, while N133S also increased AA export. Thus, distinct molecular LAT2-features determine bidirectional AA transport but only an unidirectional 3,3'-T2 and T3 import.
Collapse
Affiliation(s)
- Katrin M Hinz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominik Neef
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Claudia Rutz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jens Furkert
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
32
|
Santiago LA, Faustino LC, Pereira GF, Imperio GE, Pazos-Moura CC, Wondisford FE, Bloise FF, Ortiga-Carvalho TM. Gene expression of T3-regulated genes in a mouse model of the human thyroid hormone resistance. Life Sci 2017; 170:93-99. [PMID: 27919825 DOI: 10.1016/j.lfs.2016.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022]
Abstract
AIMS To understand how thyroid hormone (TH) regulates tissue-specific gene expression in patients with the syndrome of resistance to TH (RTHβ), we used a mouse model that replicates the human RTHβ, specifically the ∆337T mutation in the thyroid hormone receptor β (THRβ). MAIN METHODS We investigated the expression of key TH target genes in the pituitary and liver of TRβ∆337T and wild type THRβ mice by qPCR before and after a T3 suppression test consisting of the administration of increasing concentrations of T3 to hypothyroid mice. KEY FINDINGS Pituitary Tshb and Cga expression decreased and Gh expression increased in TRβ∆337T mice after T3 suppression. The stimulation of positively regulated TH genes was heterogeneous in the liver. Levels of liver Me1 and Thsrp were elevated in TRβ∆337T mice after T3 administration. Slc16a2 and Gpd2 did not respond to T3 stimulation in the liver of TRβ∆337T mice whereas Dio1 response was lower than that observed in WT mice. Moreover, although Chdh and Upd1 genes were negatively regulated in the liver, the expression of these genes was elevated after T3 suppression. We did not observe significant changes in THRα expression in the liver and pituitary, while THRβ levels were diminished in the pituitary and increased in the liver. SIGNIFICANCE Using a model expressing a THRβ unable to bind T3, we showed the expression pattern of liver negative and positive regulated genes by T3.
Collapse
Affiliation(s)
- L A Santiago
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L C Faustino
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - G F Pereira
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - G E Imperio
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - C C Pazos-Moura
- Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - F F Bloise
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - T M Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
33
|
Novara F, Groeneweg S, Freri E, Estienne M, Reho P, Matricardi S, Castellotti B, Visser WE, Zuffardi O, Visser TJ. Clinical and Molecular Characteristics of SLC16A2 (MCT8) Mutations in Three Families with the Allan-Herndon-Dudley Syndrome. Hum Mutat 2017; 38:260-264. [PMID: 27805744 DOI: 10.1002/humu.23140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022]
Abstract
Mutations in the thyroid hormone transporter SLC16A2 (MCT8) cause the Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and peripheral thyrotoxicosis. Here, we report three newly identified AHDS patients. Previously documented mutations were identified in probands 1 (p.R271H) and 2 (p.G564R), resulting in a severe clinical phenotype. A novel mutation (p.G564E) was identified in proband 3, affecting the same Gly564 residue, but resulting in a relatively mild clinical phenotype. Functional analysis in transiently transfected COS-1 and JEG-3 cells showed a near-complete inactivation of TH transport for p.G564R, whereas considerable cell-type-dependent residual transport activity was observed for p.G564E. Both mutants showed a strong decrease in protein expression levels, but differentially affected Vmax and Km values of T3 transport. Our findings illustrate that different mutations affecting the same residue may have a differential impact on SLC16A2 transporter function, which translates into differences in severity of the clinical phenotype.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefan Groeneweg
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elena Freri
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Paolo Reho
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sara Matricardi
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy.,Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Barbara Castellotti
- SOSD Genetica delle Malattie Neurodegenerative e Metaboliche, U.O Patologia Clinica, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Kelly T. A hypothesis on the mechanism of action of high-dose thyroid in refractory mood disorders. Med Hypotheses 2016; 97:16-21. [PMID: 27876122 DOI: 10.1016/j.mehy.2016.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
Abstract
Multiple lines of evidence suggest the hypothesis that high dose thyroid therapy corrects for cellular hypothyroidism found in bipolar disorders. Evidence indicates that bipolar disorders are associated with mitochondrial dysfunction which results in low cellular adenosine 5'-triphosphate (ATP) levels. Transport of thyroid hormones into cells is energy intensive and dependent on ATP except in the pituitary gland. Inadequate ATP levels makes it difficult to get thyroid hormone into cells leading to cellular hypothyroidism. This creates a condition where the blood and pituitary levels of thyroid hormone are normal but low in other tissues. High dose thyroid therapy produces a gradient that is sufficient for thyroid hormone to diffuse into cells correcting cellular hypothyroidism. If this hypothesis is correct there are number of implications. The two most important are: On average patients suffering from a bipolar disorder die 10-20years earlier than the general population. The medical sequelae associated with bipolar disorders cause far more deaths than suicide. If high dose thyroid corrects for cellular hypothyroidism it could well decrease the medical morbidity and mortality associated with bipolar disorders that are the result of cellular hypothyroidism. Thus high dose thyroid would be a first treatment that decreases the considerable medical morbidity and mortality associated with the bipolar disorders. This would stand in stark contrast to most psychiatric medications that can that increase morbidity and mortality. It would also reinforce the safety of HDT. The second implication is thyroid hormone blood levels in patients suffering from a bipolar disorder do not accurately reflect the true thyroid status.
Collapse
Affiliation(s)
- Tammas Kelly
- George Washington University, GWU MFA Department of Psychiatry and Behavioral Sciences, 2120 L St NW, Suite 600, Washington DC 20037, United States; The Depression & Bipolar Clinic of Colorado, 400 East Horsetooth Road, Suite 300, Fort Collins, Colorado 80525, United States.
| |
Collapse
|
35
|
Perra A, Plateroti M, Columbano A. T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocr Relat Cancer 2016; 23:R353-69. [PMID: 27353037 DOI: 10.1530/erc-16-0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and its burden is expected to further increase in the next years. Chronic inflammation, induced by multiple viruses or metabolic alterations, and epigenetic and genetic modifications, cooperate in cancer development via a combination of common and distinct aetiology-specific pathways. In spite of the advances of classical therapies, the prognosis of this neoplasm has not considerably improved over the past few years. The advent of targeted therapies and the approval of the systemic treatment of advanced HCC with the kinase inhibitor sorafenib have provided some hope for the future. However, the benefits obtained from this treatment are still disappointing, as it extends the median life expectancy of patients by only few months. It is thus mandatory to find alternative effective treatments. Although the role played by thyroid hormones (THs) and their nuclear receptors (TRs) in human cancer is still unclear, mounting evidence indicates that they behave as oncosuppressors in HCC. However, the molecular mechanisms by which they exert this effect and the consequence of their activation following ligand binding on HCC progression remain elusive. In this review, we re-evaluate the existing evidence of the role of TH/TRs in HCC development; we will also discuss how TR alterations could affect fundamental biological processes, such as hepatocyte proliferation and differentiation, and consequently HCC progression. Finally, we will discuss if and how TRs can be foreseen as therapeutic targets in HCC and whether selective TR modulation by TH analogues may hold promise for HCC treatment.
Collapse
Affiliation(s)
- Andrea Perra
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| | - Michelina Plateroti
- Cancer Research Center of Lyon INSERM U1052CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la Recherche, Lyon, France
| | - Amedeo Columbano
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| |
Collapse
|
36
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
37
|
Little AG. A review of the peripheral levels of regulation by thyroid hormone. J Comp Physiol B 2016; 186:677-88. [DOI: 10.1007/s00360-016-0984-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
38
|
Kim JH, Kim YM, Yum MS, Choi JH, Lee BH, Kim GH, Yoo HW. Clinical and endocrine features of two Allan-Herndon-Dudley syndrome patients with monocarboxylate transporter 8 mutations. Horm Res Paediatr 2016; 83:288-92. [PMID: 25896225 DOI: 10.1159/000371466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022] Open
Abstract
The monocarboxylate transporter 8 (MCT8) gene, located on chromosome Xq13.2, encodes a thyroid hormone transporter that is involved in triiodothyronine (T3) uptake into central neurons. MCT8 mutations cause an X-linked syndromic disorder known as Allan-Herndon-Dudley syndrome (AHDS) that is characterized by severe psychomotor delays, abnormal thyroid function, and hypomyelinated leukodystrophies. We identified 2 AHDS patients with developmental delays, truncal hypotonia, and spastic paraplegia. These patients presented with psychomotor retardation and characteristic thyroid function abnormalities, such as elevated T3 and low T4 levels. Direct MCT8 sequencing identified heterozygous mutations in each patient: p.I114N and p.A224V, respectively. Because it is difficult to suspect AHDS solely according to neurological features, thyroid function, including the T3 level, should be screened in male patients with X-linked mental retardation. Although the clinical features of hypothyroidism cannot be improved by only administering levothyroxine treatment, early diagnosis, management, and appropriate genetic counseling should be provided to at-risk families.
Collapse
Affiliation(s)
- Ja Hye Kim
- Division of Pediatric Endocrinology and Metabolism, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Choi J, Moskalik CL, Ng A, Matter SF, Buchholz DR. Regulation of thyroid hormone-induced development in vivo by thyroid hormone transporters and cytosolic binding proteins. Gen Comp Endocrinol 2015; 222:69-80. [PMID: 26188717 DOI: 10.1016/j.ygcen.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
Abstract
Differential tissue sensitivity/responsivity to hormones can explain developmental asynchrony among hormone-dependent events despite equivalent exposure of each tissue to circulating hormone levels. A dramatic vertebrate example is during frog metamorphosis, where transformation of the hind limb, brain, intestine, liver, and tail are completely dependent on thyroid hormone (TH) but occurs asynchronously during development. TH transporters (THTs) and cytosolic TH binding proteins (CTHBPs) have been proposed to affect the timing of tissue transformation based on expression profiles and in vitro studies, but they have not been previously tested in vivo. We used a combination of expression pattern, relative expression level, and in vivo functional analysis to evaluate the potential for THTs (LAT1, OATP1c1, and MCT8) and CTHBPs (PKM2, CRYM, and ALDH1) to control the timing of TH-dependent development. Quantitative PCR analysis revealed complex expression profiles of THTs and CTHBPs with respect to developmental stage, tissue, and TH receptor β (TRβ) expression. For some tissues, the timing of tissue transformation was associated with a peak in the expression of some THTs or CTHBPs. An in vivo overexpression assay by tail muscle injection showed LAT1, PKM2, and CRYM increased TH-dependent tail muscle cell disappearance. Co-overexpression of MCT8 and CRYM had a synergistic effect on cell disappearance. Our data show that each tissue examined has a unique developmental expression profile of THTs and CTHBPs and provide direct in vivo evidence that the ones tested are capable of affecting the timing of developmental responses to TH.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Christine L Moskalik
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Allison Ng
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA.
| |
Collapse
|
40
|
Wittmann G, Mohácsik P, Balkhi MY, Gereben B, Lechan RM. Endotoxin-induced inflammation down-regulates L-type amino acid transporter 1 (LAT1) expression at the blood-brain barrier of male rats and mice. Fluids Barriers CNS 2015; 12:21. [PMID: 26337286 PMCID: PMC4559167 DOI: 10.1186/s12987-015-0016-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
Background We recently reported that bacterial lipopolysaccharide (LPS)-induced inflammation decreases the expression of the primary thyroid hormone transporters at the blood–brain barrier, organic anion-transporting polypeptide 1c1 (OATP1c1) and monocarboxylate transporter 8 (MCT8). l-type amino acid transporters 1 and 2 (LAT1 & LAT2) are regarded as secondary thyroid hormone transporters, and are expressed in cells of the blood–brain or blood-cerebrospinal fluid barrier and by neurons. The purpose of this study was to examine the effect of LPS-induced inflammation on the expression of LAT1 and LAT2, as these may compensate for the downregulation of OATP1c1 and MCT8. Methods LPS (2.5 mg/kg body weight) was injected intraperitoneally to adult, male, Sprague–Dawley rats and C57Bl/6 mice, which were euthanized 2, 4, 9, 24 or 48 h later. LAT1 and LAT2 mRNA expression were studied on forebrain sections using semiquantitative radioactive in situ hybridization. LAT1 protein levels in brain vessels were studied using LAT1 immunofluorescence. Statistical comparisons were made by the non-parametric Kruskal–Wallis and Dunn’s tests. Results In both species, LAT1 mRNA decreased in brain blood vessels as soon as 2 h after LPS injection and was virtually undetectable at 4 h and 9 h. During recovery from endotoxemia, 48 h after LPS injection, LAT1 mRNA in brain vessels increased above control levels. A modest but significant decrease in LAT1 protein levels was detected in the brain vessels of mice at 24 h following LPS injection. LPS did not affect LAT1 and LAT2 mRNA expression in neurons and choroid plexus epithelial cells. Conclusions The results demonstrate that LPS-induced inflammation rapidly decreases LAT1 mRNA expression at the blood–brain barrier in a very similar manner to primary thyroid hormone transporters, while changes in LAT1 protein level follow a slower kinetics. The data raise the possibility that inflammation may similarly down-regulate other blood–brain barrier transport systems at the transcriptional level. Future studies are required to examine this possibility and the potential pathophysiological consequences of inflammation-induced changes in blood–brain barrier transport functions. Electronic supplementary material The online version of this article (doi:10.1186/s12987-015-0016-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gábor Wittmann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.
| | - Petra Mohácsik
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary. .,Semmelweis University, János Szentágothai PhD School of Neurosciences, Budapest, Hungary.
| | - Mumtaz Yaseen Balkhi
- Division of Hematology/Oncology, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA. .,Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
41
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Van Herck SLJ, Delbaere J, Bourgeois NMA, McAllan BM, Richardson SJ, Darras VM. Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: Insights into the regulation of thyroid hormone availability during neurodevelopment. Gen Comp Endocrinol 2015; 214:30-9. [PMID: 25745816 DOI: 10.1016/j.ygcen.2015.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 02/02/2023]
Abstract
Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the general circulation. We conclude that the tight regulation of TH exchange at the brain barriers from early embryonic stages is one of the factors needed to allow the brain to develop within a relative microenvironment.
Collapse
Affiliation(s)
- Stijn L J Van Herck
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Joke Delbaere
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Nele M A Bourgeois
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Bronwyn M McAllan
- The University of Sydney, Physiology, School of Medical Sciences, and Bosch Institute, Sydney, Australia
| | | | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium.
| |
Collapse
|
43
|
Alkemade A. Thyroid hormone and the developing hypothalamus. Front Neuroanat 2015; 9:15. [PMID: 25750617 PMCID: PMC4335174 DOI: 10.3389/fnana.2015.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/02/2015] [Indexed: 01/12/2023] Open
Abstract
Thyroid hormone (TH) plays an essential role in normal brain development and function. Both TH excess and insufficiency during development lead to structural brain abnormalities. Proper TH signaling is dependent on active transport of the prohormone thyroxine (T4) across the blood-brain-barrier and into brain cells. In the brain T4 undergoes local deiodination into the more active 3,3′,5-triiodothyronine (T3), which binds to nuclear TH receptors (TRs). TRs are already expressed during the first trimester of pregnancy, even before the fetal thyroid becomes functional. Throughout pregnancy, the fetus is largely dependent on the maternal TH supply. Recent studies in mice have shown that normal hypothalamic development requires intact TH signaling. In addition, the development of the human lateral hypothalamic zone coincides with a strong increase in T3 and TR mRNA concentrations in the brain. During this time the fetal hypothalamus already shows evidence for TH signaling. Expression of components crucial for central TH signaling show a specific developmental timing in the human hypothalamus. A coordinated expression of deiodinases in combination with TH transporters suggests that TH concentrations are regulated to prevent untimely maturation of brain cells. Even though the fetus depends on the maternal TH supply, there is evidence suggesting a role for the fetal hypothalamus in the regulation of TH serum concentrations. A decrease in expression of proteins involved in TH signaling towards the end of pregnancy may indicate a lower fetal TH demand. This may be relevant for the thyrotropin (TSH) surge that is usually observed after birth, and supports a role for the hypothalamus in the regulation of TH concentrations during the fetal period anticipating birth.
Collapse
Affiliation(s)
- Anneke Alkemade
- Amsterdam Brain and Cognition Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
44
|
Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol 2014; 171:R197-208. [PMID: 25005935 DOI: 10.1530/eje-14-0285] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis represents a classical example of an endocrine feedback loop. This review discusses dynamic changes in HPT axis setpoint regulation, identifying their molecular and cellular determinants, and speculates about their functional role. Hypothalamic thyrotropin-releasing hormone neurons were identified as key components of thyroid hormone (TH) setpoint regulation already in the 1980s, and this was followed by the demonstration of a pivotal role for the thyroid hormone receptor beta in negative feedback of TH on the hypothalamic and pituitary level. Gradually, the concept emerged of the HPT axis setpoint as a fixed entity, aiming at a particular TH serum concentration. However, TH serum concentrations appear to be variable and highly responsive to physiological and pathophysiological environmental factors, including the availability or absence of food, inflammation and clock time. During food deprivation and inflammation, TH serum concentrations decrease without a concomitant rise in serum TSH, reflecting a deviation from negative feedback regulation in the HPT axis. Surprisingly, TH action in peripheral organs in these conditions cannot be simply predicted by decreased serum TH concentrations. Instead, diverse environmental stimuli have differential effects on local TH metabolism, e.g. in liver and muscle, occurring quite independently from decreased TH serum concentrations. The net effect of these differential local changes is probably a major determinant of TH action at the tissue level. In sum, hypothalamic HPT axis setpoint regulation as well as TH metabolism at the peripheral organ level is flexible and dynamic, and may adapt the organism in an optimal way to a range of environmental challenges.
Collapse
Affiliation(s)
- Eric Fliers
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHypothalamic Integration MechanismsNetherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHypothalamic Integration MechanismsNetherlands Institute for Neuroscience, Amsterdam, The Netherlands Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHypothalamic Integration MechanismsNetherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHypothalamic Integration MechanismsNetherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Rodrigues F, Grenha J, Ortez C, Nascimento A, Morte B, M-Belinchón M, Armstrong J, Colomer J. Hypotonic male infant and MCT8 deficiency - a diagnosis to think about. BMC Pediatr 2014; 14:252. [PMID: 25284458 PMCID: PMC4287395 DOI: 10.1186/1471-2431-14-252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/01/2014] [Indexed: 11/17/2022] Open
Abstract
Background Thyroid hormone is crucial in the development of different organs, particularly the brain. MCT8 is a specific transporter of triiodothyronine (T3) hormone and MCT8 gene mutations cause a rare X-linked disorder named MCT8 deficiency, also known as Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation and hypotonia. Typically, elevation of T3 and delayed myelination in cerebral magnetic resonance imaging are found. Case presentation We present a 24-month-old boy, born from non-consanguineous healthy parents, with severe motor and cognitive delay and global hypotonia, being unable to hold head upright or sit without support. Deep tendon reflexes were absent bilaterally at the ankles. T3 was elevated and thyroxine slightly decreased, consistent with MCT8 deficiency. Genetic studies confirmed the diagnosis. Conclusions Although a rare disease (MCT8 mutations have been reported in about 50 families all around the world), we illustrate the importance of excluding Allan-Herndon-Dudley syndrome in the evaluation of floppy male infants with development delay, without history of perinatal asphyxia. The simple evaluation of thyroid status, including T3, T4 and TSH can guide the diagnosis, avoiding a number of useless, expensive and invasive investigations and allowing appropriate genetic counseling to the affected families.
Collapse
Affiliation(s)
- Filipa Rodrigues
- Neuromuscular Unit, Neurology Department, Fundación Sant Joan de Déu, Hospital Materno-Infantil Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Duarte-Guterman P, Navarro-Martín L, Trudeau VL. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen Comp Endocrinol 2014; 203:69-85. [PMID: 24685768 DOI: 10.1016/j.ygcen.2014.03.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/20/2023]
Abstract
Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
47
|
Abstract
Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
Collapse
|
48
|
Yao R, Yasuoka A, Kamei A, Ushiama S, Kitagawa Y, Rogi T, Shibata H, Abe K, Misaka T. Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages. PLoS One 2014; 9:e87142. [PMID: 24498295 PMCID: PMC3911942 DOI: 10.1371/journal.pone.0087142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/18/2013] [Indexed: 12/22/2022] Open
Abstract
To elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages.
Collapse
Affiliation(s)
- Ruiqing Yao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihito Yasuoka
- Department of Biological Engineering, Maebashi Institute of Technology, Maebashi-shi, Gunma, Japan
- Kanagawa Academy of Science and Technology, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan
- * E-mail: (AY); (TM)
| | - Asuka Kamei
- Kanagawa Academy of Science and Technology, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan
| | - Shota Ushiama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshinori Kitagawa
- Institute for Health Care Science, Suntory Wellness Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Kanagawa Academy of Science and Technology, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (AY); (TM)
| |
Collapse
|
49
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
50
|
Müller J, Heuer H. Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol (Lausanne) 2014; 5:92. [PMID: 24994998 PMCID: PMC4061481 DOI: 10.3389/fendo.2014.00092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 11/19/2022] Open
Abstract
For a comprehensive description of the tissue-specific thyroidal state under normal as well as under pathophysiological conditions it is of utmost importance to include thyroid hormone (TH) transporters in the analysis as well. The current knowledge of the cell-specific repertoire of TH transporters, however, is still rather limited, although several TH transporting proteins have been identified. Here, we describe the temporal and spatial distribution pattern of the most prominent TH transporters in the postnatal mouse brain. For that purpose, we performed radioactive in situ hybridization studies in order to analyze the cellular mRNA expression pattern of the monocarboxylate transporters Mct8 and Mct10, the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting peptide Oatp1c1 at different postnatal time points. Highest TH transporter expression levels in the CNS were observed at postnatal day 6 and 12, while hybridization signal intensities visibly declined after the second postnatal week. The only exception was Mct10 for which the strongest signals could be observed in white matter regions at postnatal day 21 indicating that this transporter is preferentially expressed in mature oligodendrocytes. Whereas Mct8 and Lat2 showed an overlapping neuronal mRNA expression pattern in the cerebral cortex, hippocampus, and in the hypothalamus, Oatp1c1 and Lat1 specific signals were most prominent in capillary endothelial cells throughout the CNS. In the choroid plexus, expression of three transporters (Mct8, Lat2, and Oatp1c1) could be detected, whereas in other brain areas (e.g., striatum, thalamus, and brain stem nuclei) only one of the transporter candidates appeared to be present. Overall, our study revealed a distinct mRNA distribution pattern for each of the TH transporter candidates. Further studies will reveal to which extent these transporters contribute to the cell-specific TH uptake and efflux in the mouse CNS.
Collapse
Affiliation(s)
- Julia Müller
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Heike Heuer
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- *Correspondence: Heike Heuer, Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstr. 11, Jena D-07745, Germany e-mail:
| |
Collapse
|