1
|
Rostami A, Palomer X, Pizarro-Delgado J, Barroso E, Valenzuela-Alcaraz B, Crispi F, Nistal JF, Hurlé MA, García R, Wahli W, Vázquez-Carrera M. PPARβ/δ prevents inflammation and fibrosis during diabetic cardiomyopathy. Pharmacol Res 2024; 210:107515. [PMID: 39577755 DOI: 10.1016/j.phrs.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a specific type of myocardial disease that often develops in patients suffering from diabetes, which has become the foremost cause of death among them. It is an insidious multifactorial disease caused by complex and partially unknown mechanisms that include metabolic dysregulation, local inflammation, fibrosis, and cardiomyocyte apoptosis. Despite its severity and poor prognosis, it often goes undiagnosed, and there are currently no approved specific drugs to prevent or even treat it. Peroxisome proliferator-activated receptor (PPAR)β/δ is a key metabolic regulator that has been proposed as a potential target for DCM due to its pleiotropic anti-inflammatory properties. Diabetes was induced by multiple low-dose streptozotocin (STZ) administration in wild-type and PPARβ/δ knockout male mice treated with the PPARβ/δ agonist GW0742 or vehicle. Human cardiomyocytes (AC16) and mouse atrial myocytes (HL-1) exposed to hyperglycemia and treated with PPARβ/δ agonists were also used. PPARβ/δ deletion in mice negatively impacted cardiac morphology and function, which was accompanied by interstitial fibrosis and structural remodeling of the heart. This phenotype was further exacerbated in knockout diabetic mice. At the molecular level, PPARβ/δ suppression resulted in increased expression of pro-inflammatory and pro-fibrotic markers. Some of these markers were also induced by diabetes in wild-type mice and were exacerbated in diabetic knockout mice. The activity of the transcription factors nuclear factor κB (NF-κB) and activator protein-1 (AP-1) correlated with most of these changes. Remarkably, PPARβ/δ activation partially prevented inflammation and fibrosis in the heart, as well as cardiac atrophy, induced during diabetes in mice, and also in cultured cardiomyocytes exposed to hyperglycemia. Finally, our results suggest that the beneficial effects of PPARβ/δ activation are mediated by the inhibition of mitogen-activated protein kinases (MAPK) activity and subsequent downregulation of the transcriptional activities of NF-κB and AP-1. Overall, the data suggest that PPARβ/δ agonists might be useful in preventing inflammation and fibrosis progression in DCM.
Collapse
Affiliation(s)
- Adel Rostami
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain.
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Brenda Valenzuela-Alcaraz
- aBCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Rare Diseases (CIBERER), Barcelona, Spain
| | - Fátima Crispi
- aBCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Rare Diseases (CIBERER), Barcelona, Spain
| | - J Francisco Nistal
- Servicio de Cirugía Cardiovascular, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Departamento de Ciencias Médicas y Quirúrgicas, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Spanish Biomedical Research Center in Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Santander, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, Cedex, Toulouse F-31300, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain.
| |
Collapse
|
2
|
Gan L, Guo H, Yang Q, Zhou X, Xie Y, Ma X, Gou L, Fang J, Zuo Z. Alkaline Mineral Complex Water Attenuates Transportation-Induced Hepatic Lipid Metabolism Dysregulation by AMPKα-SREBP-1c/PPARα Pathways. Int J Mol Sci 2024; 25:11373. [PMID: 39518926 PMCID: PMC11545688 DOI: 10.3390/ijms252111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Transportation, an unavoidable process in livestock farming, causes metabolic disorders in the body, which then lead to endocrine disruption, being immunocompromised, and growth suppression. Lipid metabolism dysregulation is a critical phenotype induced by transportation. The liver is a vital organ in lipid metabolism, with a role in both lipid synthesis and lipolysis. However, the specific mechanisms by which transportation affects hepatic lipid metabolism remain unclear. This study employed rats as a model to investigate the effects of transportation on hepatic lipid metabolism. Rats subjected to transportation showed altered serum lipid profiles, including decreased serum triglyceride (TG), low-density lipoprotein cholesterol (VLDL-C), and non-esterified fatty acid (NEFA) immediately after transportation (IAT) and serum total cholesterol (TC) on day 3, and increasing serum TG, TC, and low-density lipoprotein cholesterol (LDL-C) on day 10. Meanwhile, fatty droplets in the liver were also reduced at IAT and increased on days 3 and 10. Notably, transportation also affected hepatic-lipid-metabolism-related enzyme activities and signaling pathways, such as increased AMP-activated protein kinase alpha (AMPKα) phosphorylation and modulations in key proteins and genes related to lipid metabolism, decreased hepatic acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) activities at IAT, and increased carnitine palmitoyl transferase 1 alpha (CPT-1α) at IAT and ACC and CPT-1α activities on days 3 and 10. Supplementation with alkaline mineral complex water (AMC) before and after transportation mitigated the adverse effects on hepatic lipid metabolism by modulating the AMPKα-SREBP-1c/PPARα pathway, enhancing lipid synthesis, and reducing the oxidative catabolism of fatty acids. AMC inhibited the transportation-induced activation of AMPKα and restored the balance of lipid-metabolism-related enzymes and pathways. These findings highlight AMC's potential as a therapeutic intervention to alleviate transportation-induced lipid metabolism disorders, offering significant implications for improving animal welfare and reducing economic losses in livestock farming.
Collapse
Affiliation(s)
- Linli Gan
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Qiyuan Yang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China;
| | - Xueke Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
3
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Igoshin AV, Mishakova TM, Aitnazarov RB, Ilina AV, Larkin DM, Yudin NS. Association of three single nucleotide polymorphisms in the LPIN1 gene with milk production traits in cows of the Yaroslavl breed. Vavilovskii Zhurnal Genet Selektsii 2024; 28:117-125. [PMID: 38465251 PMCID: PMC10917680 DOI: 10.18699/vjgb-24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 03/12/2024] Open
Abstract
Lipin-1 is a member of the evolutionarily conserved family of proteins and is expressed predominantly in adipose tissue and skeletal muscle. On the one hand, lipin-1 is an enzyme that catalyzes the dephosphorylation of phosphatidic acid to diacylglycerol (DAG) and thus participates in the metabolic pathways of biosynthesis of storage lipids in the cell, membrane phospholipids, and intracellular signaling molecules. On the other hand, lipin-1 is able to be transported from the cytoplasm to the nucleus and is a coactivator of lipid metabolism gene transcription. It was shown, using the analysis of single nucleotide polymorphism (SNP) associations, that the lipin-1 coding gene (LPIN1) is a promising candidate gene for milk production traits in Holstein and Brown Swiss cows. However, it is unclear how much of its effect depends on the breed. The Yaroslavl dairy cattle breed was created in the 18-19 centuries in Russia by breeding northern Great Russian cattle, which were short and poor productive, but well adapted to local climatic conditions and bad food base. It was shown by whole genome genotyping and sequencing that the Yaroslavl breed has unique genetics compared to Russian and other cattle breeds. The aim of the study was to assess the frequency of alleles and genotypes of three SNPs in the LPIN1 gene and to study the association of these SNPs with milk production traits in Yaroslavl cows. Blood samples from 142 cows of the Yaroslavl breed were obtained from two farms in the Yaroslavl region. Genotyping of SNPs was carried out by polymerase chain reaction-restriction fragment length polymorphism method. Associations of SNPs with 305-day milk yield, fat yield, fat percentages, protein yield, and protein percentages were studied from the first to the fourth lactation. Statistical tests were carried out using a mixed linear model, taking into account the relationship between individuals. We identified three SNPs - rs110871255, rs207681322 and rs109039955 with a frequency of a rare allele of 0.042-0.261 in Yaroslavl cows. SNP rs110871255 was associated with fat yield during the third and fourth lactations. SNP rs207681322 was associated with milk yield for the second, third and fourth lactations, as well as protein yield for the third lactation. Thus, we identified significant associations of SNPs rs207681322 and rs110871255 in the LPIN1 gene with a number of milk production traits during several lactations in Yaroslavl cows.
Collapse
Affiliation(s)
- A V Igoshin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T M Mishakova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R B Aitnazarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Ilina
- Federal Williams Research Center for Forage Production and Agroecology, Scientific Research Institute of Livestock Breeding and Forage Production, Yaroslavl Region, Russia
| | - D M Larkin
- Royal Veterinary College, University of London, London, United Kingdom
| | - N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Choi YJ, Johnson JD, Lee JJ, Song J, Matthews M, Hellerstein MK, McWherter CA. Seladelpar combined with complementary therapies improves fibrosis, inflammation, and liver injury in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G120-G132. [PMID: 38014444 PMCID: PMC11208022 DOI: 10.1152/ajpgi.00158.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.
Collapse
Affiliation(s)
- Yun-Jung Choi
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jeff D Johnson
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jin-Ju Lee
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jiangao Song
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Marcy Matthews
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States
| | | |
Collapse
|
7
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Zhang M, Barroso E, Ruart M, Peña L, Peyman M, Aguilar-Recarte D, Montori-Grau M, Rada P, Cugat C, Montironi C, Zarei M, Jurado-Aguilar J, Camins A, Balsinde J, Valverde ÁM, Wahli W, Palomer X, Vázquez-Carrera M. Elafibranor upregulates the EMT-inducer S100A4 via PPARβ/δ. Biomed Pharmacother 2023; 167:115623. [PMID: 37783154 DOI: 10.1016/j.biopha.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and β/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARβ/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.
Collapse
Affiliation(s)
- Meijian Zhang
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Maria Ruart
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mona Peyman
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Patricia Rada
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Clara Cugat
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carla Montironi
- Pathology Department, Hospital Clínic, Barcelona, Spain; Liver Cancer Translational Research Group, Liver Unit, IDIBAPS-Hospital Clínic, University of Barcelona, Spain
| | - Mohammad Zarei
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA; Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jesús Balsinde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Ángela M Valverde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, F-31027 Toulouse Cedex 3, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
9
|
Rivera CN, Hinkle JS, Watne RM, Macgowan TC, Wommack AJ, Vaughan RA. PPAR β/ δ Agonism with GW501516 Increases Myotube PGC-1 α Content and Reduces BCAA Media Content Independent of Changes in BCAA Catabolic Enzyme Expression. PPAR Res 2023; 2023:4779199. [PMID: 37325367 PMCID: PMC10264138 DOI: 10.1155/2023/4779199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism with reduced expression of genes governing metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, increased circulating BCAA in diabetics may be partially explained by reduced PGC-1α expression. PGC-1α functions in-part through interactions with peroxisome proliferator-activated receptor β/δ (PPARβ/δ). The present report examined the effects of the PPARβ/δ agonism on cell metabolism and related gene/protein expression of cultured myotubes, with a primary emphasis on determining the effects of GW on BCAA disposal and catabolic enzyme expression. Methods C2C12 myotubes were treated with GW501516 (GW) for up to 24 hours. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Media BCAA content was assessed via liquid chromatography-mass spectrometry (LC/MS). Results GW significantly increased PGC-1α protein expression, mitochondrial content, and mitochondrial function. GW also significantly reduced BCAA content within culture media following 24-hour treatment; however, expression of BCAA catabolic enzymes/transporter was unchanged. Conclusion These data confirm the ability of GW to increase muscle PGC-1α content and decrease BCAA media content without affecting BCAA catabolic enzymes/transporter. These findings suggest heightened BCAA uptake (and possibly metabolism) may occur without substantial changes in the protein levels of related cell machinery.
Collapse
Affiliation(s)
- Caroline N. Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Jason S. Hinkle
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Rachel M. Watne
- Department of Chemistry, High Point University, High Point, NC, USA
| | | | | | - Roger A. Vaughan
- Department of Exercise Science, High Point University, High Point, NC, USA
| |
Collapse
|
10
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
11
|
Lee HS, Heo CU, Song YH, Lee K, Choi CI. Naringin promotes fat browning mediated by UCP1 activation via the AMPK signaling pathway in 3T3-L1 adipocytes. Arch Pharm Res 2023; 46:192-205. [PMID: 36840853 DOI: 10.1007/s12272-023-01432-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Induction of the brown adipocyte-like phenotype in white adipocytes (fat browning) is considered a promising therapeutic strategy to treat obesity. Naringin, a citrus flavonoid, has antioxidant, anti-inflammatory, and anticancer activities. We examined the application of naringin as an anti-obesity compound based on an investigation of its induction of fat browning in 3T3-L1 adipocytes. Naringin did not induce lipid accumulation in differentiated 3T3-L1 adipocytes. Additionally, naringin reduced the expression levels of proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) involved in adipogenesis during lipid metabolism and increased the levels of PPARα and adiponectin involved in fatty acid oxidation. The expression levels of fat browning markers uncoupling protein 1 (UCP1; involved in thermogenesis) and PR domain containing 16 (PRDM16) increased. In addition, naringin treatment resulted in the activation of PPARγ coactivator 1-alpha (PGC-1α), a factor related to UCP1 transcription and mitochondrial biogenesis. Moreover, the expression of beige adipocyte-specific genes such as Cd137, Cited1, Tbx1, and Tmem26 was also induced. The small multi-lipid droplets characteristic of beige adipocytes indicated that naringin treatment increased the levels of all lipolysis markers (hormone-sensitive lipase [HSL], adipose triglyceride lipase [ATGL], perilipin [PLIN], and protein kinase A [PKA]). Adenosine monophosphate-activated protein kinase (AMPK) and UCP1 levels increased by treatment with naringin alone; this was possibly mediated by the stimulation of the AMPK signaling pathway. According to mechanistic studies, naringin activated the thermogenic protein UCP1 via the AMPK signaling pathway. In conclusion, naringin induces fat browning and is a promising therapeutic agent for metabolic disorders based on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ho Seon Lee
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Chan Uk Heo
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Young-Ho Song
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea.
| |
Collapse
|
12
|
Alsenousy AHA, El-Tahan RA, Ghazal NA, Piñol R, Millán A, Ali LMA, Kamel MA. The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues. Pharmaceutics 2022; 14:pharmaceutics14102134. [PMID: 36297569 PMCID: PMC9607364 DOI: 10.3390/pharmaceutics14102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Obesity is a pandemic disease that is rapidly growing into a serious health problem and has economic impact on healthcare systems. This bleak image has elicited creative responses, and nanotechnology is a promising approach in obesity treatment. This study aimed to investigate the anti-obesity effect of superparamagnetic iron oxide nanoparticles (SPIONs) on a high-fat-diet rat model of obesity and compared their effect to a traditional anti-obesity drug (orlistat). METHODS The obese rats were treated daily with orlistat and/or SPIONs once per week for 8 weeks. At the end of the experiment, blood samples were collected for biochemical assays. Then, the animals were sacrificed to obtain white adipose tissues (WAT) and brown adipose tissues (BAT) for assessment of the expression of thermogenic genes and mitochondrial DNA copy number (mtDNA-CN). RESULTS For the first time, we reported promising ameliorating effects of SPIONs treatments against weight gain, hyperglycemia, adiponectin, leptin, and dyslipidemia in obese rats. At the molecular level, surprisingly, SPIONs treatments markedly corrected the disturbed expression and protein content of inflammatory markers and parameters controlling mitochondrial biogenesis and functions in BAT and WAT. CONCLUSIONS SPIONs have a powerful anti-obesity effect by acting as an inducer of WAT browning and activator of BAT functions.
Collapse
Affiliation(s)
- Aisha H. A. Alsenousy
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| | - Rasha A. El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Nesma A. Ghazal
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Rafael Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Angel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lamiaa M. A. Ali
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| |
Collapse
|
13
|
Busato S, Ford HR, Abdelatty AM, Estill CT, Bionaz M. Peroxisome Proliferator-Activated Receptor Activation in Precision-Cut Bovine Liver Slices Reveals Novel Putative PPAR Targets in Periparturient Dairy Cows. Front Vet Sci 2022; 9:931264. [PMID: 35903133 PMCID: PMC9315222 DOI: 10.3389/fvets.2022.931264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic challenges experienced by dairy cows during the transition between pregnancy and lactation (also known as peripartum), are of considerable interest from a nutrigenomic perspective. The mobilization of large amounts of non-esterified fatty acids (NEFA) leads to an increase in NEFA uptake in the liver, the excess of which can cause hepatic accumulation of lipids and ultimately fatty liver. Interestingly, peripartum NEFA activate the Peroxisome Proliferator-activated Receptor (PPAR), a transcriptional regulator with known nutrigenomic properties. The study of PPAR activation in the liver of periparturient dairy cows is thus crucial; however, current in vitro models of the bovine liver are inadequate, and the isolation of primary hepatocytes is time consuming, resource intensive, and prone to errors, with the resulting cells losing characteristic phenotypical traits within hours. The objective of the current study was to evaluate the use of precision-cut liver slices (PCLS) from liver biopsies as a model for PPAR activation in periparturient dairy cows. Three primiparous Jersey cows were enrolled in the experiment, and PCLS from each were prepared prepartum (−8.0 ± 3.6 DIM) and postpartum (+7.7± 1.2 DIM) and treated independently with a variety of PPAR agonists and antagonists: the PPARα agonist WY-14643 and antagonist GW-6471; the PPARδ agonist GW-50156 and antagonist GSK-3787; and the PPARγ agonist rosiglitazone and antagonist GW-9662. Gene expression was assayed through RT-qPCR and RNAseq, and intracellular triacylglycerol (TAG) concentration was measured. PCLS obtained from postpartum cows and treated with a PPARγ agonist displayed upregulation of ACADVL and LIPC while those treated with PPARδ agonist had increased expression of LIPC, PPARD, and PDK4. In PCLS from prepartum cows, transcription of LIPC was increased by all PPAR agonists and NEFA. TAG concentration tended to be larger in tissue slices treated with PPARδ agonist compared to CTR. Use of PPAR isotype-specific antagonists in PCLS cultivated in autologous blood serum failed to decrease expression of PPAR targets, except for PDK4, which was confirmed to be a PPARδ target. Transcriptome sequencing revealed considerable differences in response to PPAR agonists at a false discovery rate-adjusted p-value of 0.2, with the most notable effects exerted by the PPARδ and PPARγ agonists. Differentially expressed genes were mainly related to pathways involved with lipid metabolism and the immune response. Among differentially expressed genes, a subset of 91 genes were identified as novel putative PPAR targets in the bovine liver, by cross-referencing our results with a publicly available dataset of predicted PPAR target genes, and supplementing our findings with prior literature. Our results provide important insights on the use of PCLS as a model for assaying PPAR activation in the periparturient dairy cow.
Collapse
Affiliation(s)
- Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Hunter R. Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Charles T. Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- *Correspondence: Massimo Bionaz
| |
Collapse
|
14
|
Erol SA, Anuk AT, Tanaçan A, Semiz H, Keskin HL, Neşelioğlu S, Erel Ö, Moraloğlu Tekin Ö, Şahin D. An evaluation of maternal serum dynamic thiol-disulfide homeostasis and ischemia modified albumin changes in pregnant women with COVID-19. Turk J Obstet Gynecol 2022; 19:21-27. [PMID: 35343216 PMCID: PMC8966320 DOI: 10.4274/tjod.galenos.2022.72929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: It is thought that oxidative stress, free radicals, reactive oxygen species and reactive nitrogen species affect the pathophysiology of coronavirus disease-2019 (COVID-19). This study aimed to evaluate the oxidative status in pregnant patients with COVID-19 infection according to the changes seen in the levels of maternal serum thiol-disulfide and ischemia-modified albumin (IMA). Materials and Methods: A study group was formed of 40 pregnant women with confirmed COVID-19 infection (study group) and a control group of 40 healthy pregnant women with no risk factors determined. In this prospective, case-controlled study, analyses were made of the maternal serum native thiol, total thiol, disulfide, IMA, and disulfide/native thiol concentrations. Results: The maternal serum native thiol and total thiol concentrations in the study group were determined to be statistically significantly lower (p=0.007 and p=0.006, respectively), and the disulfide/native thiol ratio was higher but not to a level of statistical significance (p=0.473). There was no difference between the two groups regarding IMA levels (p=0.731). Conclusion: The thiol-disulfide balance was seen to shift in the oxidant direction in pregnancies with COVID-19, which might support the view that ischemic processes play a role in the etiopathogenesis of this novel disease.
Collapse
|
15
|
Agosta F, Cozzini P. Food contact materials as possible endocrine disruptors for PPARs: a consensus scoring analysis. Int J Food Sci Nutr 2022; 73:760-769. [DOI: 10.1080/09637486.2022.2050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Federica Agosta
- Molecular Modelling Lab, Food and Drug Department, University of Parma, Parma, Italy
| | - Pietro Cozzini
- Molecular Modelling Lab, Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Guisantes-Batan E, Mazuecos L, Rubio B, Pereira-Caro G, Moreno-Rojas JM, Andrés A, Gómez-Alonso S, Gallardo N. Grape seed extract supplementation modulates hepatic lipid metabolism in rats. Implication of PPARβ/δ. Food Funct 2022; 13:11353-11368. [DOI: 10.1039/d2fo02199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed extract supplementationat low doses (25 mg per kg BW per day) modulates the transcriptional programs that controls the hepatic lipid metabolism in lean normolipidemic Wistar rats through PPARβ/δ activation.
Collapse
Affiliation(s)
- Eduardo Guisantes-Batan
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, Avenida Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Blanca Rubio
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Antonio Andrés
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, Avenida Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
17
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
18
|
Dou JY, Jiang YC, Hu ZH, Yao KC, Yuan MH, Bao XX, Zhou MJ, Liu Y, Li ZX, Lian LH, Nan JX, Wu YL. Betulin Targets Lipin1/2-Meidated P2X7 Receptor as a Therapeutic Approach to Attenuate Lipid Accumulation and Metaflammation. Biomol Ther (Seoul) 2021; 30:246-256. [PMID: 34815367 PMCID: PMC9047492 DOI: 10.4062/biomolther.2021.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 μM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhong-He Hu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Kun-Chen Yao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiao-Xue Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yue Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhao-Xu Li
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
19
|
Koga T, Peters JM. Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for the Treatment or Prevention of Alcoholic Liver Disease. Biol Pharm Bull 2021; 44:1598-1606. [PMID: 34719638 DOI: 10.1248/bpb.b21-00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- Laboratory of Hygienic Chemistry, Department of Health Science and Hygiene, Daiichi University of Pharmacy
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University
| |
Collapse
|
20
|
Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells 2021; 10:cells10102639. [PMID: 34685618 PMCID: PMC8533934 DOI: 10.3390/cells10102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise itself is fundamental for good health, and when practiced regularly confers a myriad of metabolic benefits in a range of tissues. These benefits are mediated by a range of adaptive responses in a coordinated, multi-organ manner. The continued understanding of the molecular mechanisms of action which confer beneficial effects of exercise on the body will identify more specific pathways which can be manipulated by therapeutic intervention in order to prevent or treat various metabolism-associated diseases. This is particularly important as exercise is not an available option to all and so novel methods must be identified to confer the beneficial effects of exercise in a therapeutic manner. This review will focus on key emerging molecular mechanisms of mitochondrial biogenesis, autophagy and mitophagy in selected, highly metabolic tissues, describing their regulation and contribution to beneficial adaptations to exercise.
Collapse
|
21
|
Aguilar-Recarte D, Barroso E, Gumà A, Pizarro-Delgado J, Peña L, Ruart M, Palomer X, Wahli W, Vázquez-Carrera M. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep 2021; 36:109501. [PMID: 34380027 DOI: 10.1016/j.celrep.2021.109501] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates AMP-activated protein kinase (AMPK) and plays a crucial role in glucose and lipid metabolism. Here, we examine whether PPARβ/δ activation effects depend on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy metabolism. Pharmacological PPARβ/δ activation increases GDF15 levels and ameliorates glucose intolerance, fatty acid oxidation, endoplasmic reticulum stress, and inflammation, and activates AMPK in HFD-fed mice, whereas these effects are abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15-/- mice. The AMPK-p53 pathway is involved in the PPARβ/δ-mediated increase in GDF15, which in turn activates again AMPK. Consistently, Gdf15-/- mice show reduced AMPK activation in skeletal muscle, whereas GDF15 administration results in AMPK activation in this organ. Collectively, these data reveal a mechanism by which PPARβ/δ activation increases GDF15 levels via AMPK and p53, which in turn mediates the metabolic effects of PPARβ/δ by sustaining AMPK activation.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Anna Gumà
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Maria Ruart
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
22
|
Aguilar-Recarte D, Palomer X, Wahli W, Vázquez-Carrera M. The PPARβ/δ-AMPK Connection in the Treatment of Insulin Resistance. Int J Mol Sci 2021; 22:8555. [PMID: 34445261 PMCID: PMC8395240 DOI: 10.3390/ijms22168555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatment options for type 2 diabetes mellitus do not adequately control the disease in many patients. Consequently, there is a need for new drugs to prevent and treat type 2 diabetes mellitus. Among the new potential pharmacological strategies, activators of peroxisome proliferator-activated receptor (PPAR)β/δ show promise. Remarkably, most of the antidiabetic effects of PPARβ/δ agonists involve AMP-activated protein kinase (AMPK) activation. This review summarizes the recent mechanistic insights into the antidiabetic effects of the PPARβ/δ-AMPK pathway, including the upregulation of glucose uptake, muscle remodeling, enhanced fatty acid oxidation, and autophagy, as well as the inhibition of endoplasmic reticulum stress and inflammation. A better understanding of the mechanisms underlying the effects resulting from the PPARβ/δ-AMPK pathway may provide the basis for the development of new therapies in the prevention and treatment of insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine of the University of Barcelona (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII 27-31, 08028 Barcelona, Spain; (D.A.-R.); (X.P.)
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine of the University of Barcelona (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII 27-31, 08028 Barcelona, Spain; (D.A.-R.); (X.P.)
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, CEDEX, 31300 Toulouse, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine of the University of Barcelona (IBUB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII 27-31, 08028 Barcelona, Spain; (D.A.-R.); (X.P.)
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Zhang C, Yang M. The Emerging Factors and Treatment Options for NAFLD-Related Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13153740. [PMID: 34359642 PMCID: PMC8345138 DOI: 10.3390/cancers13153740] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is an increasing factor in the cause of hepatocellular carcinoma (HCC). The incidence of NAFLD has increased in recent decades, accompanied by an increase in the prevalence of other metabolic diseases, such as obesity and type 2 diabetes. However, current treatment options are limited. Both genetic factors and non-genetic factors impact the initiation and progression of NAFLD-related HCC. The early diagnosis of liver cancer predicts curative treatment and longer survival. Some key molecules play pivotal roles in the initiation and progression of NAFLD-related HCC, which can be targeted to impede HCC development. In this review, we summarize some key factors and important molecules in NAFLD-related HCC development, the latest progress in HCC diagnosis and treatment options, and some current clinical trials for NAFLD treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, followed by cholangiocarcinoma (CCA). HCC is the third most common cause of cancer death worldwide, and its incidence is rising, associated with an increased prevalence of obesity and nonalcoholic fatty liver disease (NAFLD). However, current treatment options are limited. Genetic factors and epigenetic factors, influenced by age and environment, significantly impact the initiation and progression of NAFLD-related HCC. In addition, both transcriptional factors and post-transcriptional modification are critically important for the development of HCC in the fatty liver under inflammatory and fibrotic conditions. The early diagnosis of liver cancer predicts curative treatment and longer survival. However, clinical HCC cases are commonly found in a very late stage due to the asymptomatic nature of the early stage of NAFLD-related HCC. The development of diagnostic methods and novel biomarkers, as well as the combined evaluation algorithm and artificial intelligence, support the early and precise diagnosis of NAFLD-related HCC, and timely monitoring during its progression. Treatment options for HCC and NAFLD-related HCC include immunotherapy, CAR T cell therapy, peptide treatment, bariatric surgery, anti-fibrotic treatment, and so on. Overall, the incidence of NAFLD-related HCC is increasing, and a better understanding of the underlying mechanism implicated in the progression of NAFLD-related HCC is essential for improving treatment and prognosis.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
24
|
Orabi D, Berger NA, Brown JM. Abnormal Metabolism in the Progression of Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma: Mechanistic Insights to Chemoprevention. Cancers (Basel) 2021; 13:3473. [PMID: 34298687 PMCID: PMC8307710 DOI: 10.3390/cancers13143473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the rise and becoming a major contributor to the development of hepatocellular carcinoma (HCC). Reasons for this include the rise in obesity and metabolic syndrome in contrast to the marked advances in prevention and treatment strategies of viral HCC. These shifts are expected to rapidly propel this trend even further in the coming decades, with NAFLD on course to become the leading etiology of end-stage liver disease and HCC. No Food and Drug Administration (FDA)-approved medications are currently available for the treatment of NAFLD, and advances are desperately needed. Numerous medications with varying mechanisms of action targeting liver steatosis and fibrosis are being investigated including peroxisome proliferator-activated receptor (PPAR) agonists and farnesoid X receptor (FXR) agonists. Additionally, drugs targeting components of metabolic syndrome, such as antihyperglycemics, have been found to affect NAFLD progression and are now being considered in the treatment of these patients. As NAFLD drug discovery continues, special attention should be given to their relationship to HCC. Several mechanisms in the pathogenesis of NAFLD have been implicated in hepatocarcinogenesis, and therapies aimed at NAFLD may additionally harbor independent antitumorigenic potential. This approach may provide novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nathan A. Berger
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
| |
Collapse
|
25
|
Adiponectin/SIRT1 Axis Induces White Adipose Browning After Vertical Sleeve Gastrectomy of Obese Rats with Type 2 Diabetes. Obes Surg 2021; 30:1392-1403. [PMID: 31781938 DOI: 10.1007/s11695-019-04295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE White adipose tissue (WAT) browning plays a crucial role in energy metabolism. However, it remains unclear whether WAT browning is involved in the adipose reduction following sleeve gastrectomy (SG). Adiponectin is upregulated after Roux-en-Y gastric bypass surgery. The role of adiponectin in SG was further investigated in the current study. MATERIALS AND METHODS Diabetic Sprague Dawley rats were randomly divided into control, sham + libitum, sham + food restriction, and sleeve groups. Browning markers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor (PPAR) γ, and PPARγ coactivator-1 alpha (PGC-1α), were examined 4 weeks after the operation. RESULTS UCP1, PPARγ, and PGC-1α expression were significantly higher in the sleeve group compared to the other study groups. The adipose tissue of the sleeve group exhibited tissue weight loss and additional morphological browning features. In addition, adiponectin expression in the sleeve group was significantly increased. Adiponectin upregulated the expression of the browning genes and sirtuin 1 (SIRT1) in 3T3-L1 adipocytes. SIRT1 could increase the WAT browning levels, revealing that adiponectin induced the browning process via the upregulation of SIRT1. Furthermore, SIRT1 represented a positive regulatory feedback loop for adiponectin. SIRT1 activated adenosine monophosphate-activated protein kinase (AMPK), which can mediate WAT browning. Inhibition of the AMPK signaling pathway by dorsomorphin decreased UCP1, PPARγ, and PGC-1α expression. However, additional studies are needed to understand the relationship between adiponectin and glucose homeostasis. CONCLUSIONS Sleeve gastrectomy increased adiponectin levels, which in turn upregulated SIRT1. Thus, SIRT1 may function as an endocrine signal to mediate WAT browning.
Collapse
|
26
|
PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166097. [PMID: 33524529 DOI: 10.1016/j.bbadis.2021.166097] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and transcriptional modulators with crucial functions in hepatic and whole-body energy homeostasis. Besides their well-documented roles in lipid and glucose metabolism, emerging evidence also implicate PPARs in the control of other processes such as inflammatory responses. Recent technological advances, such as single-cell RNA sequencing, have allowed to unravel an unexpected complexity in the regulation of PPAR expression, activity and downstream signaling. Here we provide an overview of the latest advances in the study of PPARs in liver physiology, with a specific focus on formerly neglected aspects of PPAR regulation, such as tissular zonation, cellular heterogeneity, circadian rhythms, sexual dimorphism and species-specific features.
Collapse
|
27
|
Wu L, Li J, Feng J, Ji J, Yu Q, Li Y, Zheng Y, Dai W, Wu J, Guo C. Crosstalk between PPARs and gut microbiota in NAFLD. Biomed Pharmacother 2021; 136:111255. [PMID: 33485064 DOI: 10.1016/j.biopha.2021.111255] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disorder in both China and worldwide. It ranges from simple steatosis and progresses over time to nonalcoholic steatohepatitis (NASH), advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma(HCC). Furthermore, NAFLD and its complications impose a huge health burden to society. The microbiota is widely connected and plays an active role in human physiology and pathology, and it is a hidden 'organ' in determining the state of the host, in terms of homeostasis, or disease. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptorsuperfamily and can regulate multiple pathways involved in metabolism, and serve as effective targets forthe treatment of many types of metabolic syndromes, including NAFLD. The purpose of this review is to integrate related articles on gut microbiota, PPARs and NAFLD, and present a balanced overview on how the microbiota can possibly influence the development of NAFLD through PPARs.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China; Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China; Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Li
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China; Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
28
|
Zarei M, Aguilar-Recarte D, Palomer X, Vázquez-Carrera M. Revealing the role of peroxisome proliferator-activated receptor β/δ in nonalcoholic fatty liver disease. Metabolism 2021; 114:154342. [PMID: 32810487 DOI: 10.1016/j.metabol.2020.154342] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a form of chronic liver disease that occurs in individuals with no significant alcohol abuse, has become an increasing concern for global health. NAFLD is defined as the presence of lipid deposits in hepatocytes and it ranges from hepatic steatosis (fatty liver) to steatohepatitis. Emerging data from both preclinical studies and clinical trials suggest that the peroxisome proliferator-activated receptor (PPAR)β/δ plays an important role in the control of carbohydrate and lipid metabolism in liver, and its activation might hinder the progression of NAFLD. Here, we review the latest information on the effects of PPARβ/δ on NAFLD, including its capacity to reduce lipogenesis, to alleviate inflammation and endoplasmic reticulum stress, to ameliorate insulin resistance, and to attenuate liver injury. Because of these effects, activation of hepatic PPARβ/δ through synthetic or natural ligands provides a promising therapeutic option for the management of NAFLD.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
29
|
Tracey TJ, Kirk SE, Steyn FJ, Ngo ST. The role of lipids in the central nervous system and their pathological implications in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2020; 112:69-81. [PMID: 32962914 DOI: 10.1016/j.semcdb.2020.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Lipids play an important role in the central nervous system (CNS). They contribute to the structural integrity and physical characteristics of cell and organelle membranes, act as bioactive signalling molecules, and are utilised as fuel sources for mitochondrial metabolism. The intricate homeostatic mechanisms underpinning lipid handling and metabolism across two major CNS cell types; neurons and astrocytes, are integral for cellular health and maintenance. Here, we explore the various roles of lipids in these two cell types. Given that changes in lipid metabolism have been identified in a number of neurodegenerative diseases, we also discuss changes in lipid handling and utilisation in the context of amyotrophic lateral sclerosis (ALS), in order to identify key cellular processes affected by the disease, and inform future areas of research.
Collapse
Affiliation(s)
- T J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
| | - S E Kirk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - F J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - S T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
30
|
Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation. Arch Pharm Res 2020; 43:744-754. [PMID: 32715385 DOI: 10.1007/s12272-020-01256-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 01/04/2023]
Abstract
Ganoderic Acid A (GA) has many pharmacological effects such as anti-tumor, antibacterial, anti-inflammatory, and immunosuppressive effects. However, the protective effect of GA on liver injury has not been reported. This study aimed to investigate the action of GA on insufficient methionine and choline combined with high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats. NAFLD model was established by insufficient methionine and choline combined with high fat feeding to rats. The levels of Acetyl-CoA carboxylase, fatty acid synthase, sterol regulatory element binding protein, liver X receptors, AMP-activated protein kinase, peroxisome proliferator-activated receptor α, PPARg coactivator 1α and NF-κB pathway in the liver were detected by western blot. The results of this study demonstrated that the expression of GA can not only significantly decrease the live weight and liver weight per body weight of HFD mice, but also restore the alanine aminotransferase, aspartate aminotransferase, total bilirubin levels, triglyceride and cholesterol in serum. In addition, the expression of GA increased the levels of high-density lipoprotein cholesterol in serum, ameliorated pathological changes and decreased NAS score of mice's liver. In conclusion, the treatment with GA could improve NAFLD in rats by regulating the levels of signaling events involved in free fatty acid production, lipid oxidation and liver inflammation.
Collapse
|
31
|
Kadayat TM, Shrestha A, Jeon YH, An H, Kim J, Cho SJ, Chin J. Targeting Peroxisome Proliferator-Activated Receptor Delta (PPARδ): A Medicinal Chemistry Perspective. J Med Chem 2020; 63:10109-10134. [DOI: 10.1021/acs.jmedchem.9b01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| |
Collapse
|
32
|
Li Y, Wu J, Cao C, Zhu X, Sun X, Wu R. Effects of skim milk fermented with Lactobacillus plantarum WW on the constitutions of rats fed a high-fat diet. J Dairy Sci 2020; 103:5019-5029. [DOI: 10.3168/jds.2019-17560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
|
33
|
PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int J Mol Sci 2020; 21:ijms21062061. [PMID: 32192216 PMCID: PMC7139552 DOI: 10.3390/ijms21062061] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ modulate lipid homeostasis. PPARα regulates lipid metabolism in the liver, the organ that largely controls whole-body nutrient/energy homeostasis, and its abnormalities may lead to hepatic steatosis, steatohepatitis, steatofibrosis, and liver cancer. PPARβ/δ promotes fatty acid β-oxidation largely in extrahepatic organs, and PPARγ stores triacylglycerol in adipocytes. Investigations using liver-specific PPAR-disrupted mice have revealed major but distinct contributions of the three PPARs in the liver. This review summarizes the findings of liver-specific PPAR-null mice and discusses the role of PPARs in the liver.
Collapse
|
34
|
Phytochemical, Antioxidant and Mitochondrial Permeability Transition Studies on Fruit-Skin Ethanol Extract of Annona muricata. J Toxicol 2020; 2019:7607031. [PMID: 32089679 PMCID: PMC7024090 DOI: 10.1155/2019/7607031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Uncontrolled cell proliferation hallmarks cancer and most cancer cells have developed multiple resistance to the drugs employed for their treatment. The study examined the phytochemical and antioxidant properties of the fruit-skin ethanol extract of Annona muricata Linn. (ESA) and its effect on rat liver mitochondrial membrane permeability transition (MMPT). Qualitative phytochemical study and antioxidant assays were carried out following established protocols while the opening of the MMPT pore in the presence of varying concentrations of the extract was assayed spectrophotometrically under succinate-energized conditions. Calcium chloride (CaCl2) and spermine were used to trigger and inhibit pore opening respectively. Cytochrome c release was assayed for using ELISA kit. Terpenoids, steroids, phenols among other phytochemicals were found present in ESA and the extract showed very low antioxidant properties at the tested concentrations based on the diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity assay. Lipid peroxidation was induced in a concentration-dependent manner on both the cytosolic and mitochondrial hepatocyte fractions in vitro. In the absence of CaCl2 0.84 mg/mL concentration of ESA induced MMPT pore opening by 129% while the extracts showed no inhibitory activity in its presence. The induction fold corresponded with the concentrations of cytochrome c released. The fruit-skin ethanol extract of Annona muricata at certain concentrations may possibly contain bioactive compounds that induce apoptosis.
Collapse
|
35
|
Zhang W, Dong Z, Xu M, Zhang S, Liu C, Chen S. SWI/SNF complex subunit BAF60a represses hepatic ureagenesis through a crosstalk between YB-1 and PGC-1α. Mol Metab 2019; 32:85-96. [PMID: 32029232 PMCID: PMC6953711 DOI: 10.1016/j.molmet.2019.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/28/2023] Open
Abstract
Objective Ureagenesis predominantly occurs in the liver and functions to remove ammonia, and the dysregulation of ureagenesis leads to the development of hyperammonemia. Recent studies have shown that ureagenesis is under the control of nutrient signals, but the mechanism remains elusive. Therefore, intensive investigation of the molecular mechanism underlying ureagenesis will shed some light on the pathology of metabolic diseases related to ammonia imbalance. Methods Mice were fasted for 24 h or fed a high-fat diet (HFD) for 16 weeks. For human evaluation, we obtained a public data set including 41 obese patients with and without hepatic steatosis. We analyzed the expression levels of hepatic BAF60a under different nutrient status. The impact of BAF60a on ureagenesis and hyperammonemia was assessed by using gain- and loss-of-function strategies. The molecular chaperons mediating the effects of BAF60a on ureagenesis were validated by molecular biological strategies. Results BAF60a was induced in the liver of both fasted and HFD-fed mice and was positively correlated with body mass index in obese patients. Liver-specific overexpression of BAF60a inhibited hepatic ureagenesis, leading to the increase of serum ammonia levels. Mechanistically, BAF60a repressed the transcription of Cps1, a rate-limiting enzyme, through interaction with Y-box protein 1 (YB-1) and by switching the chromatin structure of Cps1 promoter into an inhibitory state. More importantly, in response to different nutrient status, PGC-1α (as a transcriptional coactivator) and YB-1 competitively bound to BAF60a, thus selectively regulating hepatic fatty acid β-oxidation and ureagenesis. Conclusion The BAF60a-YB-1 axis represses hepatic ureagenesis, thereby contributing to hyperammonemia under overnutrient status. Therefore, hepatic BAF60a may be a novel therapeutic target for the treatment of overnutrient-induced urea cycle disorders and their associated diseases. HFD-feeding increases hepatic BAF60a expression, while inhibits ureagenesis genes. BAF60a represses Cps1 transcription and ureagenesis, causing ammonia accumulation. YB-1 binds to BAF60a and mediates the inhibitory effects of BAF60a on ureagenesis. BAF60a mediates crosstalk between hepatic ureagenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhewen Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shiyao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 211198, China.
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
36
|
Fang J, Wang F, Song H, Wang Z, Zuo Z, Cui H, Jia Y, Deng J, Yu S, Hu Y, Shen L, Ma X, Ren Z, Gou L. AMPKα pathway involved in hepatic triglyceride metabolism disorder in diet-induced obesity mice following Escherichia coli Infection. Aging (Albany NY) 2019; 10:3161-3172. [PMID: 30398974 PMCID: PMC6286859 DOI: 10.18632/aging.101623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/27/2018] [Indexed: 01/13/2023]
Abstract
To investigate the different effects of acute pulmonary infection induced by Escherichia coli (E. coli) on lipid metabolism between diet-induced obesity (DIO, fed with high-fat diet) mice and lean mice. A total of 180 ICR mice were selected to be challenged intranasally with phosphate-buffered saline or 109 CFUs/mL of E. coli, and the body character indexes, biochemical indexes and expressions of genes and proteins involved in lipid metabolism were examined pre- and post-infection. Results revealed that, before infection, DIO mice had significantly higher body weight, adipose and liver indexes, free fatty acid and triglyceride contents than lean mice. After infection, increased free fatty acid and triglyceride contents, increased expressions of resistin, SREBP-1c, ACC1, FAS and SCD-1, and declined PPARα, CPT-1α expressions and AMPKα phosphorylation were detected in the infected group, while the change rates were more serious in the lean mice than the DIO mice. The above-mentioned findings verified that, after being infected with E. coli, hepatic lipid metabolism disorder was aggravated by activating SREBP-1c related lipid synthesis pathway and inhibiting PPARα related fatty acid oxidation pathway. However, infection-induced lipid metabolic disorders was slighter in the DIO mice than the lean mice through AMPKα pathway.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fengyuan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hetao Song
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengyi Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Sichuan Center for Animal Disease Control and Prevention, Chengdu, Sichuan 610041, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yiping Jia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Heze Animal Husbandry and Veterinary Bureau, Heze, Shandong 274000, PR China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
37
|
Germeys C, Vandoorne T, Bercier V, Van Den Bosch L. Existing and Emerging Metabolomic Tools for ALS Research. Genes (Basel) 2019; 10:E1011. [PMID: 31817338 PMCID: PMC6947647 DOI: 10.3390/genes10121011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that aberrant energy metabolism could play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, studies applying advanced technologies to investigate energy metabolism in ALS remain scarce. The rapidly growing field of metabolomics offers exciting new possibilities for ALS research. Here, we review existing and emerging metabolomic tools that could be used to further investigate the role of metabolism in ALS. A better understanding of the metabolic state of motor neurons and their surrounding cells could hopefully result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
38
|
Ginseng berry extract enhances metformin efficacy against obesity and hepatic steatosis in mice fed high-fat diet through increase of metformin uptake in liver. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Li Y, Wang C, Lu J, Huang K, Han Y, Chen J, Yang Y, Liu B. PPAR δ inhibition protects against palmitic acid-LPS induced lipidosis and injury in cultured hepatocyte L02 cell. Int J Med Sci 2019; 16:1593-1603. [PMID: 31839747 PMCID: PMC6909814 DOI: 10.7150/ijms.37677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its pathogenesis and mechanism are intricate. In the present study, we aimed to evaluate the role of PPAR δ in LPS associated NAFLD and to investigate the signal transduction pathways underlying PPAR δ treatment in vitro. Material and Methods: L02 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of PPAR δ inhibition and/or activation. Results: LPS treatment markedly increased lipid deposition, FFA contents, IL-6 and TNF-α levels, and cell apoptosis in PA treatment (NAFLD model). PPAR δ inhibition protects L02 cells against LPS-induced lipidosis and injury. Conversely, the result of PPAR δ activation showed the reverse trend. LPS+PA treatment group significantly decreases the relative expression level of IRS-1, PI3K, AKT, phosphorylation of AKT, TLR-4, MyD88, phosphorylation of IKKα, NF-κB, Bcl-2 and increases the relative expression level of Bax, cleaved caspase 3 and cleaved caspase 8, compared with the cells treated with NAFLD model. PPAR δ inhibition upregulated the related proteins' expression level in insulin resistance and inflammation pathway and downregulated apoptotic relevant proteins. Instead, PPAR δ agonist showed the reverse trend. Conclusion: Our data show that PPAR δ inhibition reduces steatosis, inflammation and apoptosis in LPS-related NAFLD damage, in vitro. PPAR δ may be a potential therapeutic implication for NAFLD.
Collapse
Affiliation(s)
- Yi Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenwei Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiyuan Lu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Ke Huang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yu Han
- College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Junlin Chen
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yan Yang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Chen J, Zhuang Y, Sng MK, Tan NS, Wahli W. The Potential of the FSP1cre- Pparb/d-/- Mouse Model for Studying Juvenile NAFLD. Int J Mol Sci 2019; 20:ijms20205115. [PMID: 31618976 PMCID: PMC6830345 DOI: 10.3390/ijms20205115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) can progress from steatosis to non-alcoholic steatohepatitis (NASH) characterized by liver inflammation, possibly leading to cirrhosis and hepatocellular carcinoma (HCC). Mice with impaired macrophage activation, when fed a high-fat diet, develop severe NASH. Evidence is mounting that Kupffer cells are implicated. However, it is unknown whether the resident CD68+ or bone marrow-derived CD11b+ Kupffer cells are involved. Characterization of the FSP1cre-Pparb/d-/- mouse liver revealed that FSP1 is expressed in CD11b+ Kupffer cells. Although these cells only constitute a minute fraction of the liver cell population, Pparb/d deletion in these cells led to remarkable hepatic phenotypic changes. We report that a higher lipid content was present in postnatal day 2 (P2) FSP1cre-Pparb/d-/- livers, which diminished after weaning. Quantification of total lipids and triglycerides revealed that P2 and week 4 of age FSP1cre-Pparb/d-/- livers have higher levels of both. qPCR analysis also showed upregulation of genes involved in fatty acid β-oxidation, and fatty acid and triglyceride synthesis pathways. This result is further supported by western blot analysis of proteins in these pathways. Hence, we propose that FSP1cre-Pparb/d-/- mice, which accumulate lipids in their liver in early life, may represent a useful animal model to study juvenile NAFLD.
Collapse
Affiliation(s)
- Jiapeng Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (J.C.); (Y.Z.); (M.K.S.); (N.S.T.)
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yan Zhuang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (J.C.); (Y.Z.); (M.K.S.); (N.S.T.)
| | - Ming Keat Sng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (J.C.); (Y.Z.); (M.K.S.); (N.S.T.)
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (J.C.); (Y.Z.); (M.K.S.); (N.S.T.)
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (J.C.); (Y.Z.); (M.K.S.); (N.S.T.)
- INRA UMR1331, ToxAlim, 180 Chemin de Tournefeuille, 31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: ; Tel.: +65-6904-7012
| |
Collapse
|
41
|
Hong F, Pan S, Guo Y, Xu P, Zhai Y. PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 2019; 24:molecules24142545. [PMID: 31336903 PMCID: PMC6680900 DOI: 10.3390/molecules24142545] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
It has been more than 36 years since peroxisome proliferator-activated receptors (PPARs) were first recognized as enhancers of peroxisome proliferation. Consequently, many studies in different fields have illustrated that PPARs are nuclear receptors that participate in nutrient and energy metabolism and regulate cellular and whole-body energy homeostasis during lipid and carbohydrate metabolism, cell growth, cancer development, and so on. With increasing challenges to human health, PPARs have attracted much attention for their ability to ameliorate metabolic syndromes. In our previous studies, we found that the complex functions of PPARs may be used as future targets in obesity and atherosclerosis treatments. Here, we review three types of PPARs that play overlapping but distinct roles in nutrient and energy metabolism during different metabolic states and in different organs. Furthermore, research has emerged showing that PPARs also play many other roles in inflammation, central nervous system-related diseases, and cancer. Increasingly, drug development has been based on the use of several selective PPARs as modulators to diminish the adverse effects of the PPAR agonists previously used in clinical practice. In conclusion, the complex roles of PPARs in metabolic networks keep these factors in the forefront of research because it is hoped that they will have potential therapeutic effects in future applications.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
42
|
Prieto I, Zambrano A, Laso J, Aranda A, Samper E, Monsalve M. Early induction of senescence and immortalization in PGC-1α-deficient mouse embryonic fibroblasts. Free Radic Biol Med 2019; 138:23-32. [PMID: 31029787 DOI: 10.1016/j.freeradbiomed.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
AIMS Oxidative stress is known to induce early replicative senescence. Senescence has been proposed to work as a barrier to immortalization and tumor development. Here, we aimed to evaluate the impact of the loss of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), a master regulator of oxidative metabolism and mitochondrial reactive oxygen species (ROS) generation, on replicative senescence and immortalization in mouse embryonic fibroblasts (MEFs). RESULTS We found that primary MEFs lacking PGC-1α showed higher levels of ROS than wild-type MEFs at all cell passages tested. The elevated production of ROS was associated with higher levels of oxidative DNA damage and the increased formation of DNA double-strand breaks. Evaluation of the induction of DNA repair systems in response to γ-radiation indicated that the loss of PGC-1α also resulted in a small but significant reduction in their activity. DNA damage induced the early activation of senescence markers, including an increase in the number of β-galactosidase-positive cells, the induction of p53 phosphorylation, and the increase in p16 and p19 protein. These changes were, however, not sufficient to reduce proliferation rates of PGC-1α-deficient MEFs at any cell passage tested. Moreover, PGC-1α-deficient cells escaped replicative senescence. INNOVATION & CONCLUSION PGC-1α plays an important role in the control of cellular senescence and immortalization.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4. 28029, Madrid, Spain.
| | - Alberto Zambrano
- Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III. Ctra. Majadahonda-Pozuelo km 2. 28220, Madrid, Spain.
| | - Javier Laso
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4. 28029, Madrid, Spain.
| | - Enrique Samper
- NIMGenetics, Genómica y Medicina S.L. Faraday, 7. 28049, Madrid, Spain.
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4. 28029, Madrid, Spain.
| |
Collapse
|
43
|
Roth JD, Veidal SS, Fensholdt LKD, Rigbolt KTG, Papazyan R, Nielsen JC, Feigh M, Vrang N, Young M, Jelsing J, Adorini L, Hansen HH. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep 2019; 9:9046. [PMID: 31227742 PMCID: PMC6588626 DOI: 10.1038/s41598-019-45178-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obeticholic acid (OCA) and elafibranor (ELA) are selective and potent agonists for the farnesoid X receptor (FXR) and dual peroxisome proliferator-activated receptor α/δ (PPAR-α/δ), respectively. Both agents have demonstrated clinical efficacy in nonalcoholic steatohepatitis (NASH). The present study used OCA and ELA to compare the effects of mono- and combination therapies on metabolic and histological endpoints in Lepob/ob mice with established diet-induced and biopsy-confirmed NASH (ob/ob-NASH). ob/ob-NASH mice were fed the AMLN diet high in trans-fat, fructose and cholesterol for 15 weeks, whereafter they received vehicle, OCA (30 mg/kg, PO, QD), ELA (3, 10 mg/kg, PO, QD), or combinations (OCA + ELA) for eight weeks. Within-subject comparisons were performed on histomorphometric changes, including fractional area of liver fat, galectin-3 and Col1a1. OCA and ELA monotherapies improved all quantitative histopathological parameters and OCA + ELA combinations exerted additive effects on metabolic and histological endpoints. In agreement with their different molecular mechanisms of action, OCA and ELA monotherapies elicited distinct hepatic gene expression profiles and their combination led to profound transcriptome changes associated with further improvements in lipid handling and insulin signaling, suppression of immune responses and reduced extracellular matrix formation. In conclusion, these findings provide preclinical proof-of-concept for combined FXR and PPAR-α/δ agonist-based therapies in NASH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Young
- Intercept Pharmaceuticals, San Diego, CA, USA
| | | | | | | |
Collapse
|
44
|
Comparative Evaluation of Gemcabene and Peroxisome Proliferator-Activated Receptor Ligands in Transcriptional Assays of Peroxisome Proliferator-Activated Receptors: Implication for the Treatment of Hyperlipidemia and Cardiovascular Disease. J Cardiovasc Pharmacol 2019; 72:3-10. [PMID: 29621036 PMCID: PMC6039382 DOI: 10.1097/fjc.0000000000000580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gemcabene, a late-stage clinical candidate, has shown efficacy for LDL-C, non-HDL cholesterol, apoB, triglycerides, and hsCRP reduction, all risk factors for cardiovascular disease. In rodents, gemcabene showed changes in targets, including apoC-III, apoA-I, peroxisomal enzymes, considered regulated through peroxisome proliferator-activated receptor (PPAR) gene activation, suggesting a PPAR-mediated mechanism of action for the observed hypolipidemic effects observed in rodents and humans. In the current study, the gemcabene agonist activity against PPAR subtypes of human, rat, and mouse were compared with known lipid lowering PPAR activators. Surprisingly, gemcabene showed no or little PPAR-α transactivation compared with reference agonists, which showed concentration-dependent transactivation against human PPAR-α of 2.4- to 30-fold (fenofibric acid), 17-fold (GW590735), and 2.3- to 25-fold (WY-14643). These agents also showed robust transactivation of mouse and rat PPAR-α in a concentration-dependent manner. The known PPAR-δ agonists, GW1516, L165041, and GW0742, showed potent agonist activity against human, mouse, and rat receptors (ranging from 165- to 396-fold). By contrast, gemcabene at the highest concentration tested (300 μM) showed no response in mouse and rat and a marginal response against human PPAR-δ receptors (3.2-fold). For PPAR-γ, gemcabene showed no agonist activity against all 3 species at 100 μM and marginal activity (3.6- to 5-fold) at 300 μM. By contrast, the known agonists, rosiglitazone, indomethacin, and muraglitazar showed strong activation against the mouse, rat, and human PPAR-γ receptors. No clear antagonist activity was observed with gemcabene against any PPAR subtypes for all 3 species over a wide range of concentrations. In summary, the transactivation studies rule out gemcabene as a direct agonist or antagonist of PPAR-α, PPAR-γ, and PPAR-δ receptors of these 3 species. These data suggest that the peroxisomal effects observed in rodents and the lipid regulating effects observed in rodents and humans are not related to a direct activation of PPAR receptors by gemcabene.
Collapse
|
45
|
Zarei M, Barroso E, Palomer X, Escolà-Gil JC, Cedó L, Wahli W, Vázquez-Carrera M. Pharmacological PPARβ/δ activation upregulates VLDLR in hepatocytes. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 31:111-118. [PMID: 30987865 DOI: 10.1016/j.arteri.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
The very low-density lipoprotein receptor (VLDLR) plays an important function in the control of serum triglycerides and in the development of non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the role of peroxisome proliferator-activated receptor (PPAR)β/δ activation in hepatic VLDLR regulation. Treatment of mice fed a high-fat diet with the PPARβ/δ agonist GW501516 increased the hepatic expression of Vldlr. Similarly, exposure of human Huh-7 hepatocytes to GW501516 increased the expression of VLDLR and triglyceride accumulation, the latter being prevented by VLDLR knockdown. Finally, treatment with another PPARβ/δ agonist increased VLDLR levels in the liver of wild-type mice, but not PPARβ/δ-deficient mice, confirming the regulation of hepatic VLDLR by this nuclear receptor. Our results suggest that upregulation of hepatic VLDLR by PPARβ/δ agonists might contribute to the hypolipidemic effect of these drugs by increasing lipoprotein delivery to the liver. Overall, these findings provide new effects by which PPARβ/δ regulate VLDLR levels and may influence serum triglyceride levels and NAFLD development.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Cedó
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
46
|
Lee S, Kang S, Ang MJ, Kim J, Kim JC, Kim SH, Jeon TI, Jung C, Im SS, Moon C. Deficiency of sterol regulatory element-binding protein-1c induces schizophrenia-like behavior in mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12540. [PMID: 30430717 DOI: 10.1111/gbb.12540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/26/2018] [Accepted: 11/11/2018] [Indexed: 01/12/2023]
Abstract
Schizophrenia is a hereditary disease that approximately 1% of the worldwide population develops. Many studies have investigated possible underlying genes related to schizophrenia. Recently, clinical studies suggested sterol regulatory element-binding protein (SREBP) as a susceptibility gene in patients with schizophrenia. SREBP controls cellular lipid homeostasis by three isoforms: SREBP-1a, SREBP-1c and SREBP-2. This study used SREBP-1c knockout (KO) mice to examine whether a deficiency in SREBP-1c would affect their emotional and psychiatric behaviors. Altered mRNA expression in genes downstream from SREBP-1c was confirmed in the brains of SREBP-1c KO mice. Schizophrenia-like behavior, including hyperactivity during the dark phase, depressive-like behavior, aggressive behavior and deficits in social interaction and prepulse inhibition, was observed in SREBP-1c KO mice. Furthermore, increased volume of the lateral ventricle was detected in SREBP-1c KO mice. The mRNA levels of several γ-aminobutyric acid (GABA)-receptor subtypes and/or glutamic acid decarboxylase 65/67 decreased in the hippocampus and medial prefrontal cortex of SREBP-1c KO mice. Thus, SREBP-1c deficiency may contribute to enlargement of the lateral ventricle and development of schizophrenia-like behaviors and be associated with altered GABAergic transmission.
Collapse
Affiliation(s)
- Sueun Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Juhwan Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Jong Choon Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
47
|
Silva AKS, Peixoto CA. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell Mol Life Sci 2018; 75:2951-2961. [PMID: 29789866 PMCID: PMC11105365 DOI: 10.1007/s00018-018-2838-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have been identified as the most important risk factors for many diseases, including cardiovascular disease, type 2 diabetes and lipid disorders, such as non-alcoholic fatty liver disease (NAFLD). The metabolic changes associated with obesity are grouped to define metabolic syndrome, which is one of the main causes of morbidity and mortality in industrialized countries. NAFLD is considered to be the hepatic manifestation of metabolic syndrome and is one of the most prevalent liver diseases worldwide. Inflammation plays an important role in the development of numerous liver diseases, contributing to the progression to more severe stages, such as non-alcoholic steatohepatitis and hepatocellular carcinoma. Peroxisome proliferator-activated receptors (PPARs) are binder-activated nuclear receptors that are involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation and atherosclerosis. Three isotypes are known: PPAR-α, PPARδ/β and PPAR-γ. These isotypes play different roles in diverse tissues and cells, including the inflammatory process. In this review, we discuss current knowledge on the role PPARs in the hepatic inflammatory process involved in NAFLD as well as new pharmacological strategies that target PPARs.
Collapse
Affiliation(s)
- Amanda Karolina Soares Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Biological Sciences of the Federal University of Pernambuco, Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Dethlefsen MM, Kristensen CM, Tøndering AS, Lassen SB, Ringholm S, Pilegaard H. Impact of liver PGC-1α on exercise and exercise training-induced regulation of hepatic autophagy and mitophagy in mice on HFF. Physiol Rep 2018; 6:e13731. [PMID: 29962089 PMCID: PMC6026591 DOI: 10.14814/phy2.13731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/01/2023] Open
Abstract
Hepatic autophagy has been shown to be regulated by acute exercise and exercise training. Moreover, high-fat diet-induced steatosis has been reported to be associated with impaired hepatic autophagy. In addition, autophagy has been shown to be regulated by acute exercise and exercise training in a PGC-1α dependent manner in skeletal muscle. The aim of this study was to test the hypotheses that high-fat high-fructose (HFF) diet changes hepatic autophagy and mitophagy, that exercise training can restore this through a PGC-1α-mediated mechanism, and that acute exercise regulates autophagy and mitophagy in the liver. Liver samples were obtained from liver-specific PGC-1α KO mice and their littermate Lox/Lox mice fed a HFF diet or a control diet for 13 weeks. The HFF mice were either exercise trained (ExT) on a treadmill the final 5 weeks or remained sedentary (UT). In addition, half of each group performed at the end of the intervention an acute 1 h exercise bout. HFF resulted in increased hepatic BNIP3 dimer and Parkin protein, while exercise training increased BNIP3 total protein without affecting the elevated BNIP3 dimer protein. In addition, exercise training reversed a HFF-induced increase in hepatic LC3II/LC3I protein ratio, as well as a decreased PGC-1α mRNA level. Acute exercise increased hepatic PGC-1α mRNA in HFF UT mice only. In conclusion, this indicates that exercise training in part reverses a HFF-induced increase in hepatic autophagy and capacity for mitophagy in a PGC-1α-independent manner. Moreover, HFF may blunt acute exercise-induced regulation of hepatic autophagy.
Collapse
Affiliation(s)
- Maja M. Dethlefsen
- Department of BiologySection for Cell Biology and PhysiologyUniversity of CopenhagenKobenhavnDenmark
| | - Caroline M. Kristensen
- Department of BiologySection for Cell Biology and PhysiologyUniversity of CopenhagenKobenhavnDenmark
| | - Anna S. Tøndering
- Department of BiologySection for Cell Biology and PhysiologyUniversity of CopenhagenKobenhavnDenmark
| | - Signe B. Lassen
- Department of BiologySection for Cell Biology and PhysiologyUniversity of CopenhagenKobenhavnDenmark
| | - Stine Ringholm
- Department of BiologySection for Cell Biology and PhysiologyUniversity of CopenhagenKobenhavnDenmark
| | - Henriette Pilegaard
- Department of BiologySection for Cell Biology and PhysiologyUniversity of CopenhagenKobenhavnDenmark
| |
Collapse
|
49
|
Chen J, Montagner A, Tan NS, Wahli W. Insights into the Role of PPARβ/δ in NAFLD. Int J Mol Sci 2018; 19:ijms19071893. [PMID: 29954129 PMCID: PMC6073272 DOI: 10.3390/ijms19071893] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue in developed countries. Although usually associated with obesity, NAFLD is also diagnosed in individuals with low body mass index (BMI) values, especially in Asia. NAFLD can progress from steatosis to non-alcoholic steatohepatitis (NASH), which is characterized by liver damage and inflammation, leading to cirrhosis and hepatocellular carcinoma (HCC). NAFLD development can be induced by lipid metabolism alterations; imbalances of pro- and anti-inflammatory molecules; and changes in various other factors, such as gut nutrient-derived signals and adipokines. Obesity-related metabolic disorders may be improved by activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)β/δ, which is involved in metabolic processes and other functions. This review is focused on research findings related to PPARβ/δ-mediated regulation of hepatic lipid and glucose metabolism and NAFLD development. It also discusses the potential use of pharmacological PPARβ/δ activation for NAFLD treatment.
Collapse
Affiliation(s)
- Jiapeng Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Alexandra Montagner
- ToxAlim, Research Center in Food Toxicology, National Institute for Agricultural Research (INRA), 180 Chemin de Tournefeuille, 31300 Toulouse, France.
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, 31027 Toulouse, France.
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
- KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science Technology & Research, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
- ToxAlim, Research Center in Food Toxicology, National Institute for Agricultural Research (INRA), 180 Chemin de Tournefeuille, 31300 Toulouse, France.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A 2018; 115:E5896-E5905. [PMID: 29891721 DOI: 10.1073/pnas.1801745115] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicine Scutellaria baicalensis, has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.
Collapse
|