1
|
Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov 2023; 9:412. [PMID: 37957155 PMCID: PMC10643445 DOI: 10.1038/s41420-023-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a prevalent public health concern, with beta-cell dysfunction involved in its pathogenesis. Bone marrow adipose tissue (BMAT) increases in both the quantity and area in individuals with T2DM along with heightened monocyte chemotactic protein-1 (MCP-1) secretion. This study aims to investigate the influence and underlying mechanisms of MCP-1 originating from bone marrow adipocytes (BMAs) on systemic glucose homeostasis in T2DM. Initially, a substantial decrease in the proliferation and glucose-stimulated insulin secretion (GSIS) of islet cells was observed. Moreover, a comparative analysis between the control (Ctrl) group and db/db mice revealed significant alterations in the gene expression profiles of whole bone marrow cells, with a noteworthy upregulation of Mcp-1. And the primary enriched pathways included chemokine signaling pathway and AGE-RAGE signaling pathway in diabetic complications. In addition, the level of MCP-1 was distinctly elevated in BMA-derived conditional media (CM), leading to a substantial inhibition of proliferation, GSIS and the protein level of phosphorylated Akt (p-Akt) in Min6 cells. After blocking MCP-1 pathway, we observed a restoration of p-Akt and the proliferation of islet cells, resulting in a marked improvement in disordered glucose homeostasis. In summary, there is an accumulation of BMAs in T2DM, which secrete excessive MCP-1, exacerbating the abnormal accumulation of BMAs in the bone marrow cavity through paracrine signaling. The upregulated MCP-1, in turn, worsens glucose metabolism disorder by inhibiting the proliferation and insulin secretion of islet cells through an endocrine pathway. Inhibiting MCP-1 signaling can partially restore the proliferation and insulin secretion of islet cells, ultimately ameliorating glucose metabolism disorder. It's worth noting that to delve deeper into the impact of MCP-1 derived from BMAs on islet cells and its potential mechanisms, it is imperative to develop genetically engineered mice with conditional Mcp-1 knockout from BMAs.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Liang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wu T, Shao Y, Li X, Wu T, Yu L, Liang J, Zhang Y, Wang J, Sun T, Zhu Y, Chang X, Wang S, Chen F, Han X. NR3C1/Glucocorticoid receptor activation promotes pancreatic β-cell autophagy overload in response to glucolipotoxicity. Autophagy 2023; 19:2538-2557. [PMID: 37039556 PMCID: PMC10392762 DOI: 10.1080/15548627.2023.2200625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Diabetes is a complex and heterogeneous disorder characterized by chronic hyperglycemia. Its core cause is progressively impaired insulin secretion by pancreatic β-cell failures, usually upon a background of preexisting insulin resistance. Recent studies demonstrate that macroautophagy/autophagy is essential to maintain architecture and function of β-cells, whereas excessive autophagy is also involved in β-cell dysfunction and death. It has been poorly understood whether autophagy plays a protective or harmful role in β-cells, while we report here that it is dependent on NR3C1/glucocorticoid receptor activation. We proved that deleterious hyperactive autophagy happened only upon NR3C1 activation in β-cells under glucolipotoxic conditions, which eventually promoted diabetes. The transcriptome and the N6-methyladenosine (m6A) methylome revealed that NR3C1-enhancement upregulated the RNA demethylase FTO (fat mass and obesity associated) protein in β-cells, which caused diminished m6A modifications on mRNAs of four core Atg (autophagy related) genes (Atg12, Atg5, Atg16l2, Atg9a) and, hence, hyperactive autophagy and defective insulin output; by contrast, FTO inhibition, achieved by the specific FTO inhibitor Dac51, prevented NR3C1-instigated excessive autophagy activation. Importantly, Dac51 effectively alleviated impaired insulin secretion and glucose intolerance in hyperglycemic β-cell specific NR3C1 overexpression mice. Our results determine that the NR3C1-FTO-m6A modifications-Atg genes axis acts as a key mediator of balanced autophagic flux in pancreatic β-cells, which offers a novel therapeutic target for the treatment of diabetes.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; Ac: acetylation; Ad: adenovirus; AL: autolysosome; ATG: autophagy related; AUC: area under curve; Baf A1: bafilomycin A1; βNR3C1 mice: pancreatic β-cell-specific NR3C1 overexpression mice; cFBS: charcoal-stripped FBS; Ctrl: control; ER: endoplasmic reticulum; FTO: fat mass and obesity associated; GC: glucocorticoid; GRE: glucocorticoid response element; GSIS: glucose-stimulated insulin secretion assay; HFD: high-fat diet; HG: high glucose; HsND: non-diabetic human; HsT2D: type 2 diabetic human; i.p.: intraperitoneal injected; KSIS: potassium-stimulated insulin secretion assay; m6A: N6-methyladenosine; MeRIP-seq: methylated RNA immunoprecipitation sequencing; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NR3C1-Enhc.: NR3C1-enhancement; NC: negative control; Palm.: palmitate; RNA-seq: RNA sequencing; T2D: type 2 diabetes; TEM: transmission electron microscopy; UTR: untranslated region; WT: wild-type.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xirui Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaru Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Kutpruek S, Suksri K, Maneethorn P, Semprasert N, Yenchitsomanus PT, Kooptiwut S. Imatinib prevents dexamethasone-induced pancreatic β-cell apoptosis via decreased TRAIL and DR5. J Cell Biochem 2023; 124:1309-1323. [PMID: 37555250 DOI: 10.1002/jcb.30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic β-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic β-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic β-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Suchanoot Kutpruek
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Research Department, Division of Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Chen YC, Lutkewitte AJ, Basavarajappa HD, Fueger PT. Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death. Metabolites 2023; 13:627. [PMID: 37233668 PMCID: PMC10222246 DOI: 10.3390/metabo13050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023] Open
Abstract
A loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: (1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and (2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in beta cells; the elevated Mig6 desensitizes EGFR signaling and induces beta cell death, suggesting Mig6 could be a novel therapeutic target for T2D.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J. Lutkewitte
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Halesha D. Basavarajappa
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Bauer BM, Irimia JM, Bloom-Saldana E, Jeong JW, Fueger PT. Pancreatic loss of Mig6 alters murine endocrine cell fate and protects functional beta cell mass in an STZ-induced model of diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536046. [PMID: 37066257 PMCID: PMC10104126 DOI: 10.1101/2023.04.07.536046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Maintaining functional beta cell mass (BCM) to meet glycemic demands is essential to preventing or reversing the progression of diabetes. Yet the mechanisms that establish and regulate endocrine cell fate are incompletely understood. We sought to determine the impact of deletion of mitogen-inducible gene 6 (Mig6), a negative feedback inhibitor of epidermal growth factor receptor (EGFR) signaling, on mouse endocrine cell fate. The extent to which loss of Mig6 might protect against loss of functional BCM in a multiple very low dose (MVLD) STZ-induced model of diabetes was also determined. Methods Ten-week-old male mice with whole pancreas (Pdx1:Cre, PKO) and beta cell-specific (Ins1:Cre, BKO) knockout of Mig6 were used alongside control (CON) littermates. Mice were given MVLD STZ (35 mg/kg for five days) to damage beta cells and induce hyperglycemia. In vivo fasting blood glucose and glucose tolerance were used to assess beta cell function. Histological analyses of isolated pancreata were utilized to assess islet morphology and beta cell mass. We also identified histological markers of beta cell replication, dedifferentiation, and death. Isolated islets were used to reveal mRNA and protein markers of beta cell fate and function. Results PKO mice had significantly increased alpha cell mass with no detectable changes to beta or delta cells. The increase in alpha cells alone did not impact glucose tolerance, BCM, or beta cell function. Following STZ treatment, PKO mice had 18±8% higher BCM than CON littermates and improved glucose tolerance. Interestingly, beta cell-specific loss of Mig6 was insufficient for protection, and BKO mice had no discernable differences compared to CON mice. The increase in BCM in PKO mice was the result of decreased beta cell loss and increased beta cell replication. Finally, STZ-treated PKO mice had more Ins+/Gcg+ bi-hormonal cells compared to controls suggesting alpha to beta cell transdifferentiation. Conclusions Mig6 exerted differential effects on alpha and beta cell fate. Pancreatic loss of Mig6 reduced beta cell loss and promoted beta cell growth following STZ. Thus, suppression of Mig6 may provide relief of diabetes.
Collapse
Affiliation(s)
- Brandon M. Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Bloom-Saldana
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO 65211
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Basavarajappa HD, Irimia JM, Bauer BM, Fueger PT. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. Int J Mol Sci 2023; 24:ijms24043308. [PMID: 36834720 PMCID: PMC9959170 DOI: 10.3390/ijms24043308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Avoiding the loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective here was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacted dynamically with NumbL, whereas Mig6 associated with NumbL under NG, and this interaction was disrupted under GLT conditions. Further, we demonstrated that the siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking the activation of NF-κB signaling. Using co-immunoprecipitation experiments, we observed that NumbL's interactions with TRAF6, a key component of NFκB signaling, were increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 were dynamic and context-dependent. We proposed a model wherein these interactions activated pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicated that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Halesha D. Basavarajappa
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Brandon M. Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-218-0620
| |
Collapse
|
7
|
Suksri K, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwoot S, Kooptiwut S. Cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis. Sci Rep 2022; 12:12950. [PMID: 35902739 PMCID: PMC9334585 DOI: 10.1038/s41598-022-17372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Steroid-induced diabetes is a well-known metabolic side effect of long-term use of glucocorticoid (GC). Our group recently demonstrated dexamethasone-induced pancreatic β-cell apoptosis via upregulation of TRAIL and TRAIL death receptor (DR5). Genistein protects against pancreatic β-cell apoptosis induced by toxic agents. This study aimed to investigate the cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis in cultured rat insulinoma (INS-1) cell line and in isolated mouse islets. In the absence of genistein, dexamethasone-induced pancreatic β-cell apoptosis was associated with upregulation of TRAIL, DR5, and superoxide production, but downregulation of TRAIL decoy receptor (DcR1). Dexamethasone also activated the expression of extrinsic and intrinsic apoptotic proteins, including Bax, NF-κB, caspase-8, and caspase-3, but suppressed the expression of the anti-apoptotic Bcl-2 protein. Combination treatment with dexamethasone and genistein protected against pancreatic β-cell apoptosis, and reduced the effects of dexamethasone on the expressions of TRAIL, DR5, DcR1, superoxide production, Bax, Bcl-2, NF-κB, caspase-8, and caspase-3. Moreover, combination treatment with dexamethasone and genistein reduced the expressions of TRAIL and DR5 in isolated mouse islets. The results of this study demonstrate the cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis in both cell line and islets via reduced TRAIL and DR5 protein expression.
Collapse
Affiliation(s)
- Kanchana Suksri
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Namoiy Semprasert
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Kooptiwoot
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Kennedy BJ, Lato AM, Fisch AR, Burke SJ, Kirkland JK, Prevatte CW, Dunlap LE, Smith RT, Vogiatzis KD, Collier JJ, Campagna SR. Potent Anti-Inflammatory, Arylpyrazole-Based Glucocorticoid Receptor Agonists That Do Not Impair Insulin Secretion. ACS Med Chem Lett 2021; 12:1568-1577. [PMID: 34676039 DOI: 10.1021/acsmedchemlett.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids (GCs) are widely used in medicine for their role in the treatment of autoimmune-mediated conditions, certain cancers, and organ transplantation. The transcriptional activities GCs elicit include transrepression, postulated to be responsible for the anti-inflammatory activity, and transactivation, proposed to underlie the undesirable side effects associated with long-term use. A GC analogue that could elicit only transrepression and beneficial transactivation properties would be of great medicinal value and is highly sought after. In this study, a series of 1-(4-substituted phenyl)pyrazole-based GC analogues were synthesized, biologically screened, and evaluated for SARs leading to the desired activity. Activity observed in compounds bearing an electron deficient arylpyrazole moiety showed promise toward a dissociated steroid, displaying transrepression while having limited transactivation activity. In addition, compounds 11aa and 11ab were found to have anti-inflammatory efficacy comparable to that of dexamethasone at 10 nM, with minimal transactivation activity and no reduction of insulin secretion in cultured rat 832/13 beta cells.
Collapse
Affiliation(s)
- Brandon J. Kennedy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ashley M. Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexander R. Fisch
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Susan J. Burke
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Justin K. Kirkland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Carson W. Prevatte
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lee E. Dunlap
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Russell T. Smith
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - J. Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
10
|
Aylward A, Okino ML, Benaglio P, Chiou J, Beebe E, Padilla JA, Diep S, Gaulton KJ. Glucocorticoid signaling in pancreatic islets modulates gene regulatory programs and genetic risk of type 2 diabetes. PLoS Genet 2021; 17:e1009531. [PMID: 33983929 PMCID: PMC8183998 DOI: 10.1371/journal.pgen.1009531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/07/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023] Open
Abstract
Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, but the gene regulatory programs driving responses to glucocorticoid signaling in islets and the contribution of these programs to diabetes risk are unknown. In this study we used ATAC-seq and RNA-seq to map chromatin accessibility and gene expression from eleven primary human islet samples cultured in vitro with the glucocorticoid dexamethasone at multiple doses and durations. We identified thousands of accessible chromatin sites and genes with significant changes in activity in response to glucocorticoids. Chromatin sites up-regulated in glucocorticoid signaling were prominently enriched for glucocorticoid receptor binding sites and up-regulated genes were enriched for ion transport and lipid metabolism, whereas down-regulated chromatin sites and genes were enriched for inflammatory, stress response and proliferative processes. Genetic variants associated with glucose levels and T2D risk were enriched in glucocorticoid-responsive chromatin sites, including fine-mapped variants at 51 known signals. Among fine-mapped variants in glucocorticoid-responsive chromatin, a likely casual variant at the 2p21 locus had glucocorticoid-dependent allelic effects on beta cell enhancer activity and affected SIX2 and SIX3 expression. Our results provide a comprehensive map of islet regulatory programs in response to glucocorticoids through which we uncover a role for islet glucocorticoid signaling in mediating genetic risk of T2D.
Collapse
Affiliation(s)
- Anthony Aylward
- Bioinformatics and Systems Biology graduate program, University of California San Diego, La Jolla, California, United States of America
| | - Mei-Lin Okino
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Joshua Chiou
- Biomedical Sciences graduate program, University of California San Diego, La Jolla, California, United States of America
| | - Elisha Beebe
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Jose Andres Padilla
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Sharlene Diep
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
11
|
Tamarindo GH, Góes RM. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158766. [PMID: 32712248 DOI: 10.1016/j.bbalip.2020.158766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 μM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.
Collapse
Affiliation(s)
| | - Rejane Maira Góes
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
13
|
Kooptiwut S, Samon K, Semprasert N, Suksri K, Yenchitsomanus PT. Prunetin Protects Against Dexamethasone-Induced Pancreatic Β-Cell Apoptosis via Modulation of p53 Signaling Pathway. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20916328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long-term administration of dexamethasone results in insulin resistance and pancreatic β-cell apoptosis. Prunetin (an O-methylated isoflavone, a type of flavonoid) is demonstrated to protect diabetes, but the molecular mechanism of this protection is still unclear. This study thus aims to investigate how prunetin protects against dexamethasone-induced pancreatic β-cell apoptosis. Rat insulinoma (INS-1) cells were cultured in medium with or without dexamethasone in the presence or absence of prunetin or pifithrin-α, a p53 inhibitor. Cell apoptosis was measured by Annexin V/propidium iodide staining. Dexamethasone significantly induced INS-1 apoptosis but dexamethasone plus prunetin significantly reduced INS-1 apoptosis. Dexamethasone-treated INS-1 upregulated p53 protein expression; the induction of p53 was also reduced in the presence of RU486, a glucocorticoid receptor (GR) inhibitor. This suggested that dexamethasone induced P53 via GR. Dexamethasone-treated INS-1 significantly increased p53, Bax, and Rb protein expressions, whereas treatments of dexamethasone plus prunetin or pifithrin-α significantly decreased these protein expressions. In addition, dexamethasone significantly decreased B-cell lymphoma 2 (Bcl2), while dexamethasone plus prunetin or pifithrin-α significantly increased Bcl2. Dexamethasone significantly increased caspase-3 activity while co-treatment of dexamethasone plus prunetin or pifithrin-α significantly decreased caspase-3 activity to the control level. Taken together, our results revealed that prunetin protected against dexamethasone-induced pancreatic β-cells apoptosis via modulation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Samon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Wan S, Zhang J, Chen X, Lang J, Li L, Chen F, Tian L, Meng Y, Yu X. MicroRNA-17-92 Regulates Beta-Cell Restoration After Streptozotocin Treatment. Front Endocrinol (Lausanne) 2020; 11:9. [PMID: 32038500 PMCID: PMC6989481 DOI: 10.3389/fendo.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: To clarify the role and mechanism of miR-17-92 cluster in islet beta-cell repair after streptozotocin intervention. Methods: Genetically engineered mice (miR-17-92βKO) and control RIP-Cre mice were intraperitoneally injected with multiple low dose streptozotocin. Body weight, random blood glucose (RBG), fasting blood glucose, and intraperitoneal glucose tolerance test (IPGTT) were monitored regularly. Mice were sacrificed for histological analysis 8 weeks later. Morphological changes of pancreas islets, quantity, quality, apoptosis, and proliferation of beta-cells were measured. Islets from four groups were isolated. MiRNA and mRNA were extracted and quantified. Results:MiR-17-92βKO mice showed dramatically elevated fasting blood glucose and impaired glucose tolerance after streptozotocin treatment in contrast to control mice, the reason of which is reduced beta-cell number and total mass resulting from reduced proliferation, enhanced apoptosis of beta-cells. Genes related to cell proliferation and insulin transcription repression were significantly elevated in miR-17-92βKO mice treated with streptozotocin. Furthermore, genes involved in DNA biosynthesis and damage repair were dramatically increased in miR-17-92βKO mice with streptozotocin treatment. Conclusion: Collectively, our results demonstrate that homozygous deletion of miR-17-92 cluster in mouse pancreatic beta-cells promotes the development of experimental diabetes, indicating that miR-17-92 cluster may be positively related to beta-cells restoration and adaptation after streptozotocin-induced damage.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangli Lang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|
15
|
Akbib S, Stichelmans J, Stangé G, Ling Z, Assefa Z, Hellemans KH. Glucocorticoids and checkpoint tyrosine kinase inhibitors stimulate rat pancreatic beta cell proliferation differentially. PLoS One 2019; 14:e0212210. [PMID: 30779812 PMCID: PMC6380609 DOI: 10.1371/journal.pone.0212210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cell therapy for diabetes could benefit from the identification of small-molecule compounds that increase the number of functional pancreatic beta cells. Using a newly developed screening assay, we previously identified glucocorticoids as potent stimulators of human and rat beta cell proliferation. We now compare the stimulatory action of these steroid hormones to a selection of checkpoint tyrosine kinase inhibitors that were also found to activate the cell cycle-in beta cells and analyzed their respective effects on DNA-synthesis, beta cell numbers and expression of cell cycle regulators. Our data using glucocorticoids in combination with a receptor antagonist, mifepristone, show that 48h exposure is sufficient to allow beta cells to pass the cell cycle restriction point and to become committed to cell division regardless of sustained glucocorticoid-signaling. To reach the end-point of mitosis another 40h is required. Within 14 days glucocorticoids stimulate up to 75% of the cells to undergo mitosis, which indicates that these steroid hormones act as proliferation competence-inducing factors. In contrast, by correlating thymidine-analogue incorporation to changes in absolute cell numbers, we show that the checkpoint kinase inhibitors, as compared to glucocorticoids, stimulate DNA-synthesis only during a short time-window in a minority of cells, insufficient to give a measurable increase of beta cell numbers. Glucocorticoids, but not the kinase inhibitors, were also found to induce changes in the expression of checkpoint regulators. Our data, using checkpoint kinase-specific inhibitors further point to a role for Chk1 and Cdk1 in G1/S transition and progression of beta cells through the cell cycle upon stimulation with glucocorticoids.
Collapse
Affiliation(s)
- Sarah Akbib
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jordy Stichelmans
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Stangé
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Beta Cell Bank, University Hospital Brussels, Brussels, Belgium
| | - Zerihun Assefa
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine H. Hellemans
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| |
Collapse
|
16
|
Grancini V, Resi V, Palmieri E, Pugliese G, Orsi E. Management of diabetes mellitus in patients undergoing liver transplantation. Pharmacol Res 2019; 141:556-573. [PMID: 30690071 DOI: 10.1016/j.phrs.2019.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is a common feature in cirrhotic individuals both before and after liver transplantation and negatively affects prognosis. Certain aetiological agents of chronic liver disease and loss of liver function per se favour the occurrence of pre-transplant diabetes in susceptible individuals, whereas immunosuppressant treatment, changes in lifestyle habits, and donor- and procedure-related factors contribute to diabetes development/persistence after transplantation. Challenges in the management of pre-transplant diabetes include the profound nutritional alterations characterizing cirrhotic individuals and the limitations to the use of drugs with liver metabolism. Special issues in the management of post-transplant diabetes include the diabetogenic potential of immunosuppressant drugs and the increased cardiovascular risk characterizing solid organ transplant survivors. Overall, the pharmacological management of cirrhotic patients undergoing liver transplantation is complicated by the lack of specific guidelines reflecting the paucity of data on the impact of glycaemic control and the safety and efficacy of anti-hyperglycaemic agents in these individuals.
Collapse
Affiliation(s)
- Valeria Grancini
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Veronica Resi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eva Palmieri
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Chen W, Zhong H, Wang X, Pang Q, Zhuang J, Hu J, Chen Y, Hu J, Liu J, Tang J. Mig6 reduces inflammatory mediators production by regulating the activation of EGFR in LPS‐induced endotoxemia. J Cell Physiol 2018; 233:6975-6983. [DOI: 10.1002/jcp.26488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Wenting Chen
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Hanhui Zhong
- The Department of Anesthesia, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaofei Wang
- The Department of Anesthesia, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qiongni Pang
- The Department of Anesthesia, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinling Zhuang
- The Department of Anesthesia, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Hu
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburgh, Pennsylvania
| | - Yeming Chen
- The Department of AnesthesiaThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| | - Jijie Hu
- The Department of Orthopaedics and Traumatology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jing Tang
- The Department of Anesthesia, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- The Department of AnesthesiaAffiliated hospital of Guangdong Medical UniversityGuangdongChina
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologySouthern Medical SciencesGuangzhouChina
| |
Collapse
|
18
|
Peláez-Jaramillo MJ, Cárdenas-Mojica AA, Gaete PV, Mendivil CO. Post-Liver Transplantation Diabetes Mellitus: A Review of Relevance and Approach to Treatment. Diabetes Ther 2018; 9:521-543. [PMID: 29411291 PMCID: PMC6104273 DOI: 10.1007/s13300-018-0374-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
Post-liver transplantation diabetes mellitus (PLTDM) develops in up to 30% of liver transplant recipients and is associated with increased risk of mortality and multiple morbid outcomes. PLTDM is a multicausal disorder, but the main risk factor is the use of immunosuppressive agents of the calcineurin inhibitor (CNI) family (tacrolimus and cyclosporine). Additional factors, such as pre-transplant overweight, nonalcoholic steatohepatitis and hepatitis C virus infection, may further increase risk of developing PLTDM. A diagnosis of PLTDM should be established only after doses of CNI and steroids are stable and the post-operative stress has been overcome. The predominant defect induced by CNI is insulin secretory dysfunction. Plasma glucose control must start immediately after the transplant procedure in order to improve long-term results for both patient and transplant. Among the better known antidiabetics, metformin and DPP-4 inhibitors have a particularly benign profile in the PLTDM context and are the preferred oral agents for long-term management. Insulin therapy is also an effective approach that addresses the prevailing pathophysiological defect of the disorder. There is still insufficient evidence about the impact of newer families of antidiabetics (GLP-1 agonists, SGLT-2 inhibitors) on PLTDM. In this review, we summarize current knowledge on the epidemiology, pathogenesis, course of disease and medical management of PLTDM.
Collapse
Affiliation(s)
| | | | - Paula V Gaete
- Universidad de los Andes School of Medicine, Bogotá, Colombia
| | - Carlos O Mendivil
- Universidad de los Andes School of Medicine, Bogotá, Colombia.
- Endocrinology Section, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
19
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
20
|
Scaroni C, Zilio M, Foti M, Boscaro M. Glucose Metabolism Abnormalities in Cushing Syndrome: From Molecular Basis to Clinical Management. Endocr Rev 2017; 38:189-219. [PMID: 28368467 DOI: 10.1210/er.2016-1105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
An impaired glucose metabolism, which often leads to the onset of diabetes mellitus (DM), is a common complication of chronic exposure to exogenous and endogenous glucocorticoid (GC) excess and plays an important part in contributing to morbidity and mortality in patients with Cushing syndrome (CS). This article reviews the pathogenesis, epidemiology, diagnosis, and management of changes in glucose metabolism associated with hypercortisolism, addressing both the pathophysiological aspects and the clinical and therapeutic implications. Chronic hypercortisolism may have pleiotropic effects on all major peripheral tissues governing glucose homeostasis. Adding further complexity, both genomic and nongenomic mechanisms are directly induced by GCs in a context-specific and cell-/organ-dependent manner. In this paper, the discussion focuses on established and potential pathologic molecular mechanisms that are induced by chronically excessive circulating levels of GCs and affect glucose homeostasis in various tissues. The management of patients with CS and DM includes treating their hyperglycemia and correcting their GC excess. The effects on glycemic control of various medical therapies for CS are reviewed in this paper. The association between DM and subclinical CS and the role of screening for CS in diabetic patients are also discussed.
Collapse
Affiliation(s)
- Carla Scaroni
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Marialuisa Zilio
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Genèva, Switzerland
| | - Marco Boscaro
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| |
Collapse
|
21
|
Pullen TJ, Huising MO, Rutter GA. Analysis of Purified Pancreatic Islet Beta and Alpha Cell Transcriptomes Reveals 11β-Hydroxysteroid Dehydrogenase (Hsd11b1) as a Novel Disallowed Gene. Front Genet 2017; 8:41. [PMID: 28443133 PMCID: PMC5385341 DOI: 10.3389/fgene.2017.00041] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/23/2017] [Indexed: 11/30/2022] Open
Abstract
We and others have previously identified a group of genes, dubbed "disallowed," whose expression is markedly lower in pancreatic islets than in other mammalian cell types. Forced mis-expression of several members of this family leads to defective insulin secretion, demonstrating the likely importance of disallowance for normal beta cell function. Up to now, transcriptomic comparisons have been based solely on data from whole islets. This raises the possibilities that (a) there may be important differences in the degree of disallowance of family members between beta and other either neuroendocrine cells; (b) beta (or alpha) cell disallowed genes may have gone undetected. To address this issue, we survey here recent massive parallel sequencing (RNA-Seq) datasets from purified mouse and human islet cells. Our analysis reveals that the most strongly disallowed genes are similar in beta and alpha cells, with 11β-hydroxysteroid dehydrogenase (Hsd11b1) mRNA being essentially undetectable in both cell types. The analysis also reveals that several genes involved in cellular proliferation, including Yap1 and Igfbp4, and previously assumed to be disallowed in both beta and alpha cells, are selectively repressed only in the beta cell. The latter finding supports the view that beta cell growth is selectively restricted in adults, providing a mechanism to avoid excessive insulin production and the risk of hypoglycaemia. Approaches which increase the expression or activity of selected disallowed genes in the beta cell may provide the basis for novel regenerative therapies in type 2 diabetes.
Collapse
Affiliation(s)
- Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College LondonLondon, UK
| | - Mark O. Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, DavisCA, USA
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
22
|
Barrosa KH, Mecchi MC, Rando DG, Ferreira AJS, Sartorelli P, Valle MM, Bordin S, Caperuto LC, Lago JHG, Lellis-Santos C. Polygodial, a sesquiterpene isolated from Drimys brasiliensis (Winteraceae), triggers glucocorticoid-like effects on pancreatic β-cells. Chem Biol Interact 2016; 258:245-56. [DOI: 10.1016/j.cbi.2016.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
|
23
|
Li FX, Liu Y, Miao XP, Fu GQ, Curry TE. Expression and regulation of the differentiation regulators ERBB Receptor Feedback Inhibitor 1 (ERRFI1) and Interferon-related Developmental Regulator 1 (IFRD1) during the periovulatory period in the rat ovary. Mol Reprod Dev 2016; 83:714-23. [DOI: 10.1002/mrd.22673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Fei-xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Ying Liu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Xiao-ping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Guo-quan Fu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center; University of Kentucky; Lexington Kentucky
| |
Collapse
|
24
|
He B, Zhang N, Zhao R. Dexamethasone Downregulates SLC7A5 Expression and Promotes Cell Cycle Arrest, Autophagy and Apoptosis in BeWo Cells. J Cell Physiol 2016; 231:233-42. [PMID: 26094588 DOI: 10.1002/jcp.25076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Synthetic glucocorticoids (GCs) such as dexamethasone (Dex) are widely given to pregnant women to induce maturation and improve viability of preterm infants. Despite the beneficial effects, synthetic GCs have adverse effects on placental growth and nutrient transport system. However, the molecular mechanisms involved in these events remain unknown. Here we use a human placental choriocarcinoma cell line (BeWo) as model to explore the pathway linking amino acids transport with cell viability under Dex challenge. BeWo cells treated with Dex (100 nM) for 24 h demonstrated G1/S cell cycle arrest together with enhanced autophagy and apoptosis. Concurrently, the amino acid carrier SLC7A5 was down-regulated in association with impaired cellular amino acids uptake and inhibition of mammalian target of rapamycin (mTOR) signaling. Similar cellular responses were observed in BeWo cells treated with BCH, a classical System L inhibitor which inactivates SLC7A5. The glucocorticoid receptor (GR) antagonist RU486 was able to diminish Dex-induced translocation of GR into nucleus and to abolish these effects. Furthermore, Dex treatment significantly promoted the binding of GR to the proximal promoter sequence of SLC7A5 gene. Taken together, our results show that Dex downregulates SLC7A5 expression via GR-mediated transrepression. The impaired amino acids uptake leads to inhibition of mTOR signaling which in turn causes inhibited proliferation and enhanced autophagy and apoptosis in BeWo cells. These findings indicate that SLC7A5 mediates the effect of Dex on cell viability, thus providing a novel molecular target for the prevention and treatment of Dex-induced cell cycle arrest and apoptosis in placental cells.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nana Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Burke SJ, May AL, Noland RC, Lu D, Brissova M, Powers AC, Sherrill EM, Karlstad MD, Campagna SR, Stephens JM, Collier JJ. Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function. J Biol Chem 2015; 290:13401-16. [PMID: 25851902 DOI: 10.1074/jbc.m114.632190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity.
Collapse
Affiliation(s)
- Susan J Burke
- From the Laboratory of Islet Biology and Inflammation, the Departments of Nutrition and
| | - Amanda L May
- Chemistry, University of Tennessee, Knoxville, Tennessee 37996
| | | | - Danhong Lu
- the Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina 27701
| | - Marcela Brissova
- the Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and
| | - Alvin C Powers
- the Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and the Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, the Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee 37212
| | | | - Michael D Karlstad
- the Department of Surgery, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee 37920, and
| | | | - Jacqueline M Stephens
- the Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - J Jason Collier
- From the Laboratory of Islet Biology and Inflammation, the Departments of Nutrition and the Department of Surgery, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee 37920, and
| |
Collapse
|
26
|
Chen YC, Colvin ES, Griffin KE, Maier BF, Fueger PT. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes. Diabetologia 2014; 57:2066-75. [PMID: 24989997 PMCID: PMC4156529 DOI: 10.1007/s00125-014-3311-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development. METHODS We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6 (+/-)) and their wild-type littermates (Mig6 (+/+)) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells. RESULTS Whereas STZ-treated Mig6 (+/+) mice became diabetic, STZ-treated Mig6 (+/-) mice remained glucose tolerant. In addition, STZ-treated Mig6 (+/-) mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6 (+/-) and Mig6 (+/+) mice, the preserved glucose tolerance in STZ-treated Mig6 (+/-) mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6 (+/-) mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits DNA damage repair. STZ-treated Mig6 (+/-) mice also have increased beta cell mass recovery. CONCLUSIONS/INTERPRETATION Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cells.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - E. Scott Colvin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katherine E. Griffin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bernhard F. Maier
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Patrick T. Fueger
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
27
|
Patel SS, Udayabanu M. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice. Metab Brain Dis 2014; 29:121-30. [PMID: 24435938 DOI: 10.1007/s11011-014-9480-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Association Learning/drug effects
- Avoidance Learning/drug effects
- Blood Glucose/analysis
- Corticosterone/blood
- Depression/drug therapy
- Depression/etiology
- Dexamethasone/toxicity
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/psychology
- Drug Evaluation, Preclinical
- Female
- Glucose Transporter Type 4/biosynthesis
- Glucose Transporter Type 4/genetics
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Immobilization
- Insulin/blood
- Male
- Maze Learning/drug effects
- Memory Disorders/drug therapy
- Memory Disorders/etiology
- Mice
- Oxidative Stress/drug effects
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- RNA, Messenger/biosynthesis
- Rosiglitazone
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Swimming
- Thiazolidinediones/pharmacology
- Thiazolidinediones/therapeutic use
- Urtica dioica
Collapse
Affiliation(s)
- Sita Sharan Patel
- Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | | |
Collapse
|
28
|
Barella LF, de Oliveira JC, Mathias PCDF. Pancreatic islets and their roles in metabolic programming. Nutrition 2013; 30:373-9. [PMID: 24206821 DOI: 10.1016/j.nut.2013.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022]
Abstract
Experimental and epidemiologic data have confirmed that undernutrition or overnutrition during critical periods of life can result in metabolic dysfunction, leading to the development of obesity, hypertension, and type 2 diabetes, later in life. These studies have contributed to the concept of the developmental origins of health and disease (DOHaD), which involves metabolic programming patterns. Beyond the earlier phases of development, puberty can be an additional period of plasticity, during which any insult can lead to changes in metabolism. Impaired brain development, associated with imbalanced autonomous nervous system activity due to metabolic programming, is pivotal to the creation of pathophysiology. Excess glucocorticoid exposure, due to hypothalamic-pituitary-adrenal axis deregulation, is also involved in malprogramming in early life. Additionally, the pancreatic islets appear to play a decisive role in the setup and maintenance of these metabolic dysfunctions as key targets of metabolic programming, and epigenetic mechanisms may underlie these changes. Moreover, studies have indicated the possibility that deprogramming renders the islets able to recover their functioning after malprogramming. In this review, we discuss the key roles of the pancreatic islets as targets of malprogramming; however, we also discuss their roles as important targets for the treatment and prevention of metabolic diseases.
Collapse
Affiliation(s)
- Luiz Felipe Barella
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil.
| | - Júlio Cezar de Oliveira
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
29
|
Linderoth E, Pilia G, Mahajan NP, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem 2013; 288:32922-31. [PMID: 24085293 DOI: 10.1074/jbc.m113.481507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) holds promise for treatment of cancer due to its ability to selectively kill cancer cells while sparing normal cells. Ligand-induced translocation of TRAIL receptors (TRAIL-R) 1 and 2 (also called DR4 and DR5, respectively) into lipid raft membrane microdomains is required for TRAIL-induced cell death by facilitating receptor clustering and formation of the death-inducing signaling complex, yet the underlying regulatory mechanisms remain largely unknown. We show here that the non-receptor tyrosine kinase Ack1, previously implicated in the spatiotemporal regulation of the EGF receptor, is required for TRAIL-induced cell death in multiple epithelial cell lines. TRAIL triggered a transient up-regulation of Ack1 and its recruitment to lipid rafts along with TRAIL-R1/2. siRNA-mediated depletion of Ack1 disrupted TRAIL-induced accumulation of TRAIL-R1/2 in lipid rafts and efficient recruitment of caspase-8 to the death-inducing signaling complex. Pharmacological inhibition of Ack1 did not affect TRAIL-induced cell death, indicating that Ack1 acts in a kinase-independent manner to promote TRAIL-R1/2 accumulation in lipid rafts. These findings identify Ack1 as an essential player in the spatial regulation of TRAIL-R1/2.
Collapse
Affiliation(s)
- Emma Linderoth
- From the Wolfson Institute for Biomedical Research, University College London, WC1E 6BT London, United Kingdom
| | | | | | | |
Collapse
|