1
|
Aydin SS, Hatipoglu D. Probiotic strategies for mitigating heat stress effects on broiler chicken performance. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2153-2171. [PMID: 39320540 DOI: 10.1007/s00484-024-02779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The primary objective of this study was to evaluate the effects of liquid (Fructose-added lactic acid bacteria, F-LAB) and commercial (Commercial LAB, C-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria (LAB) on broiler chickens experiencing heat stress (HS). The research involved 240 broiler chicks, divided into six groups: control, F-LAB, C-LAB (raised at 24 °C), HS, F-LAB/HS, and C-LAB/HS (exposed to 5-7 h of 34-36 °C daily). The study followed a randomized complete block design, with each group consisting of 40 chicks. F-LAB and HS/F-LAB groups received a natural probiotic added to their drinking water at a rate of 0.5 ml/L, while C-LAB and HS/C-LAB groups were supplemented with a commercial probiotic at the same dosage. Control and HS groups received no probiotic supplementation. The duration of the study was 42 days, with data collected on growth performance, feed intake, feed conversion ratio, and health parameters. Statistical analyses were performed using ANOVA, and significant differences between groups were determined using post hoc tests. The results revealed that without probiotic supplementation, heat stress led to a decrease in body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increase in the feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels (p < 0.05 for all). Heat stress also adversely affected cecal microbiota, reducing lactic acid bacteria count (LABC) while increasing Escherichia coli and coliform bacteria (CBC) counts. However, in the groups receiving probiotic supplementation under heat stress (F-LAB/HS and C-LAB/HS), these effects were alleviated (p < 0.05 for all). Particularly noteworthy was the observation that broiler chickens supplemented with natural lactic acid bacteria (F-LAB) exhibited greater resilience to heat stress compared to those receiving the commercial probiotic, as evidenced by improvements in growth, liver function, hormonal balance, intestinal health, and cecal microbiome ecology (p < 0.05). These findings suggest that the supplementation of naturally sourced probiotics (F-LAB) may positively impact the intestinal health of broiler chickens exposed to heat stress, potentially supporting growth and health parameters.
Collapse
Affiliation(s)
- Sadik Serkan Aydin
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| | - Durmus Hatipoglu
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye.
| |
Collapse
|
2
|
Lei M, Li Y, Li J, Liu J, Dai Z, Chen R, Zhu H. Low Testosterone and High Leptin Activate PPAR Signaling to Induce Adipogenesis and Promote Fat Deposition in Caponized Ganders. Int J Mol Sci 2024; 25:8686. [PMID: 39201373 PMCID: PMC11354323 DOI: 10.3390/ijms25168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Low or insufficient testosterone levels caused by caponization promote fat deposition in animals. However, the molecular mechanism of fat deposition in caponized animals remains unclear. This study aimed to investigate the metabolomics and transcriptomic profiles of adipose tissues and study the effect of testosterone and leptin on the proliferation of adipocytes. We observed a significant enlargement in the areas of adipocytes in the abdominal fat tissues in capon, as well as increased luciferase activity of the serum leptin and a sharp decrease in the serum testosterone in caponized gander. Metabolomics and transcriptomic results revealed differentially expressed genes and differentially expressed metabolites with enhanced PARR signal pathway. The mRNA levels of peroxisome proliferators-activated receptor γ, fatty acid synthase, and suppressor of cytokine signaling 3 in goose primary pre-adipocytes were significantly upregulated with high leptin treatment and decreased significantly with increasing testosterone dose. Hence, reduced testosterone and increased leptin levels after caponization possibly promoted adipocytes proliferation and abdominal fat deposition by altering the expression of PPAR pathway related genes in caponized ganders. This study provides a new direction for the mechanism through which testosterone regulates the biological function of leptin and fat deposition in male animals.
Collapse
Affiliation(s)
- Mingming Lei
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Yaxin Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Jiaying Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Rong Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Huanxi Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| |
Collapse
|
3
|
Volyanskaya AR, Akberdin IR, Kulyashov MA, Yevshin IS, Romanov MN, Shagimardanova EI, Gusev OA, Kolpakov FA. A bird's-eye overview of molecular mechanisms regulating feed intake in chickens-with mammalian comparisons. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:61-74. [PMID: 38737579 PMCID: PMC11087724 DOI: 10.1016/j.aninu.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, a lot of research has been conducted to explore poultry feeding behavior. However, up to now, the processes behind poultry feeding behavior remain poorly understood. The review generalizes modern expertise about the hormonal regulation of feeding behavior in chickens, focusing on signaling pathways mediated by insulin, leptin, and ghrelin and regulatory pathways with a cross-reference to mammals. This overview also summarizes state-of-the-art research devoted to hypothalamic neuropeptides that control feed intake and are prime candidates for predictors of feeding efficiency. Comparative analysis of the signaling pathways that mediate the feed intake regulation allowed us to conclude that there are major differences in the processes by which hormones influence specific neuropeptides and their contrasting roles in feed intake control between two vertebrate clades.
Collapse
Affiliation(s)
- Anastasiia R. Volyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Mikhail A. Kulyashov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Ivan S. Yevshin
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury, UK
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg A. Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement By Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Fedor A. Kolpakov
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
4
|
Saneyasu T. Recent Research on Mechanisms of Feeding Regulation in Chicks. J Poult Sci 2024; 61:2024012. [PMID: 38681189 PMCID: PMC11039390 DOI: 10.2141/jpsa.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Food intake affects poultry productivity. A complete understanding of these regulatory mechanisms provides new strategies to improve productivity. Food intake is regulated by complex mechanisms involving many factors, including the central nervous system, gastrointestinal tract, hormones, and nutrients. Although several studies have been conducted to elucidate regulatory mechanisms in chickens, the mechanisms remain unclear. To update the current knowledge on feeding regulation in chickens, this review focuses on recent findings that have not been summarized in previous reviews, including spexins, adipokines, neurosecretory proteins GL and GM, and central intracellular signaling factors.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501,
Japan
| |
Collapse
|
5
|
Ahmadi S, Nemoto Y, Ohkubo T. Impact of In Ovo Leptin Injection and Dietary Protein Levels on Ovarian Growth Markers and Early Folliculogenesis in Post-Hatch Chicks ( Gallus gallus domesticus). BIOLOGY 2024; 13:69. [PMID: 38392288 PMCID: PMC10886161 DOI: 10.3390/biology13020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Genetically bred for rapid growth, broiler breeder hens develop obesity and ovarian dysfunction when fed ad libitum, resembling a condition that resembles human polycystic ovary syndrome (PCOS). Nutritional control applies to post-hatched chicks from one week onward to prevent the development of a PCOS-like phenotype in adult broilers. This study investigated the impact of a growth marker, leptin, and post-hatch nutritional intake on early-life ovarian function. Fertile broiler eggs were injected in ovo with physiological saline solution or 5 µg of leptin and then incubated. After hatching, female chicks were fed ad libitum a diet containing low protein (17% low crude protein (LP)) or standard protein (22% standard crude protein (SP)). Tissues were collected from 7- and 28-day-old chicks for RT-qPCR and histological analysis. In contrast to the LP diet, the SP diet suppressed the mRNA expression of ovarian growth markers essential for folliculogenesis in post-hatched chicks. Leptin injection did not influence ovarian growth markers but increased pituitary gonadotropin transcripts in 7-day-old chicks fed with LP diet. No treatment effects on follicle activation were noted on day 7, but by day 28, in ovo leptin-treated LP-fed chicks exhibited a higher percentage of primary follicles. These changes may have resulted from the early upregulation of genes by leptin during the first week, including pituitary gonadotropins and ovarian leptin receptors. The decline in ovarian growth markers with the SP diet highlights the importance of precise post-hatch protein calculation, which may influence future ovarian function in animals. These findings may contribute to future dietary strategies to enhance broiler reproduction.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
- Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Yuta Nemoto
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
| |
Collapse
|
6
|
Rossi GS, Welch KC. Leptin Resistance Does Not Facilitate Migratory Fattening in Ruby-Throated Hummingbirds (Archilochus Colubris). Integr Comp Biol 2023; 63:1075-1086. [PMID: 37248054 DOI: 10.1093/icb/icad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
In mammals, leptin is an important energy homeostasis hormone produced by adipose tissue. Circulating leptin concentrations correlate positively with fat mass and act in a negative feedback fashion to inhibit food intake and increase energy expenditure, thereby preventing fat gain. For some species, leptin resistance is advantageous during times of year where fat gain is necessary (e.g., prior to hibernation). While the function of leptin in birds remains controversial, seasonal leptin resistance may similarly benefit migratory species. Here, we used the ruby-throated hummingbird (Archilochus colubris) to test the hypothesis that leptin resistance promotes fattening prior to migration. We predicted that during the migratory fattening period, leptin levels should correlate positively with fat mass but should not inhibit food intake or increase energy expenditure, resulting in fattening. We tracked the body (fat) mass, the concentration of leptin-like protein in the urine, and the food intake of 12 captive hummingbirds from August 2021 to January 2022. In a subset of hummingbirds, we also quantified voluntary physical activity as a proxy for energy expenditure. We found remarkable age-related variation in fattening strategies, with juveniles doubling their body fat by mid-September and adults exhibiting only a 50% increase. Changes in fat mass were strongly associated with increased food intake and reduced voluntary activity. However, we found no correlation between leptin-like protein concentration and fat mass, food intake, or voluntary activity. Since increased torpor use has been shown to accelerate migratory fattening in ruby-throated hummingbirds, we also hypothesized that leptin is a mediator of torpor use. In an experimental manipulation of circulating leptin, however, we found no change in torpor use, body fat, or food intake. Overall, our findings suggest that leptin may not act as an adipostat in hummingbirds, nor does leptin resistance regulate how hummingbirds fatten prior to migration.
Collapse
Affiliation(s)
- Giulia S Rossi
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kenneth C Welch
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
7
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Bernardi O, Bourdon G, Estienne A, Brossaud A, Ramé C, Reverchon M, Dupont J. Adipokines expression in reproductive tract, egg white and embryonic annexes in hen. Poult Sci 2023; 102:102908. [PMID: 37478623 PMCID: PMC10387612 DOI: 10.1016/j.psj.2023.102908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
In mammals, molecules mainly secreted by white adipose tissue named adipokines are also synthetized locally in the reproductive tract and are able to influence reproductive functions. In avian species, previous studies indicated that the adipokine chemerin is highly abundant in the albumen, compared to the yolk and this was associated to high chemerin expression in the magnum. In addition, the authors observed that chemerin and its receptors are expressed by allantoic and amniotic membranes and chemerin is present in fluids during the embryo development. Here, we studied other adipokines, including adiponectin, visfatin, apelin, and adipolin in egg white and their known receptors in the active (egg-laying hen) and regressed (hen not laying) oviduct and embryonic annexes during embryo development. By using Western blot, RT-qPCR analysis and immunohistochemistry, we demonstrated the expression of different adipokines in the egg albumen (visfatin) and the reproductive tract (adiponectin, visfatin, apelin, adipolin, and their cognate receptors) according the position of egg in the oviduct. We showed that the expression of adipokines and adipokines receptors was strongly reduced in the regressed oviducts (arrested laying hen). Results indicated that visfatin and adiponectin appeared at ED11 to 14 and increased until ED18 in amniotic fluid whereas it was found from ED7 and was unchanged during embryo development in allantoic fluid. Taken together, adipokines and their receptors are expressed in the egg white, the reproductive tract and the embryonic annexes. Data obtained suggest important functions of theses metabolic hormones during the chicken embryo development. Thus, adipokines could be potential biomarkers to improve the embryo development.
Collapse
Affiliation(s)
- Ophélie Bernardi
- SYSAAF French Poultry and Aquaculture Breeders Technical Center, Research for Agriculture, Food and Environment Institute Val de Loire Center, F-37380 Nouzilly, France; French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Guillaume Bourdon
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Anthony Estienne
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Adeline Brossaud
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Christelle Ramé
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF French Poultry and Aquaculture Breeders Technical Center, Research for Agriculture, Food and Environment Institute Val de Loire Center, F-37380 Nouzilly, France
| | - Joëlle Dupont
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France.
| |
Collapse
|
9
|
Tu W, Zhang Y, Jiang K, Jiang S. Osteocalcin and Its Potential Functions for Preventing Fatty Liver Hemorrhagic Syndrome in Poultry. Animals (Basel) 2023; 13:ani13081380. [PMID: 37106943 PMCID: PMC10135196 DOI: 10.3390/ani13081380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Osteocalcin (OCN) is synthesized and secreted by differentiating osteoblasts. In addition to its role in bone, OCN acts as a hormone in the pancreas, liver, muscle, fat, and other organs to regulate multiple pathophysiological processes including glucose homeostasis and adipic acid metabolism. Fat metabolic disorder, such as excessive fat buildup, is related to non-alcoholic fatty liver disease (NAFLD) in humans. Similarly, fatty liver hemorrhage syndrome (FLHS) is a metabolic disease in laying hens, resulting from lipid accumulation in hepatocytes. FLHS affects hen health with significant impact on poultry egg production. Many studies have proposed that OCN has protective function in mammalian NAFLD, but its function in chicken FLHS and related mechanism have not been completely clarified. Recently, we have revealed that OCN prevents laying hens from FLHS through regulating the JNK pathway, and some pathways related to the disease progression have been identified through both in vivo and vitro investigations. In this view, we discussed the current findings for predicting the strategy for using OCN to prevent or reduce FLHS impact on poultry production.
Collapse
Affiliation(s)
- Wenjun Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuhan Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kunyu Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
10
|
Ramser A, Dridi S. Hormonal regulation of visfatin and adiponectin system in quail muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111425. [PMID: 37044369 DOI: 10.1016/j.cbpa.2023.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Visfatin and adiponectin are two adipokines known to regulate energy homeostasis and stress response within different peripheral tissues. Their role and regulation in highly metabolically active tissue such as the muscle is of particular interest. As modern poultry exhibit insulin resistance, obesity, and hyperglycemia along with a lack of insight into the regulation of these avian adipokines, we undertook the present work to determine the regulation of visfatin and adiponectin system by cytokines and obesity-related hormones in a relevant in vitro model of avian muscle, quail muscle (QM7) cells. Cells were treated with pro-inflammatory cytokine IL-6 (5 and 10 ng/mL) and TNFα (5 and 10 ng/mL), as well as leptin (10 and 100 ng/mL) and both orexin-A and orexin-B (ORX-A/B) (5 and 10 ng/mL). Results showed significant increases in visfatin mRNA abundance under both cytokines (IL-6 and TNFα), and down regulation with ORX-B treatment. Adiponectin expression was also upregulated by pro-inflammatory cytokines (IL-6 and TNFα), but down regulated by leptin, ORX-A, and ORXB. High doses of IL-6 and TNFα up regulated the expression of adiponectin receptors AdipoR1 and AdipoR2, respectively. Leptin and orexin treatments also down regulated both AdipoR1 and AdipoR2 expression. Taken together, this is the first report showing a direct response of visfatin and the adiponectin system to pro-inflammatory and obesity-related hormones in avian muscle cells.
Collapse
Affiliation(s)
- Alison Ramser
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA.
| |
Collapse
|
11
|
Chicken LEAP2 Level Substantially Changes with Feed Intake and May Be Regulated by CDX4 in Small Intestine. Animals (Basel) 2022; 12:ani12243496. [PMID: 36552416 PMCID: PMC9774203 DOI: 10.3390/ani12243496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ghrelin O-acyltransferase (GOAT), ghrelin, and GHSR have been reported to play important roles that influence feed intake in mammals. LEAP2, an endogenous antagonist of GHSR, plays an important role in the regulation of feed intake. However, chicken ghrelin has also been reported to have an inhibitory effect on feed intake. The role of the GOAT-Ghrelin-GHSR-LEAP2 axis in chicken-feed intake remains unclear. Therefore, it is necessary to systematically evaluate the changes in the tissue expression levels of these genes under different energy states. In this study, broiler chicks in different energy states were subjected to starvation and feeding, and relevant gene expression levels were measured using quantitative real-time PCR. Different energy states significantly modulated the expression levels of LEAP2 and GHSR but did not significantly affect the expression levels of GOAT and ghrelin. A high expression level of LEAP2 was detected in the liver and the whole small intestine. Compared to the fed group, the fasted chicks showed significantly reduced LEAP2 expression levels in the liver and the small intestine; 2 h after being refed, the LEAP2 expression of the fasted chicks returned to the level of the fed group. Transcription factor prediction and results of a dual luciferase assay indicated that the transcription factor CDX4 binds to the LEAP2 promoter region and positively regulates its expression. High expression levels of GHSR were detected in the hypothalamus and pituitary. Moreover, we detected GHSR highly expressed in the jejunum-this finding has not been previously reported. Thus, GHSR may regulate intestinal motility, and this aspect needs further investigation. In conclusion, this study revealed the function of chicken LEAP2 as a potential feed-intake regulator and identified the potential mechanism governing its intestine-specific expression. Our study lays the foundations for future studies on avian feed-intake regulation.
Collapse
|
12
|
Murugesan S, Nidamanuri AL. Role of leptin and ghrelin in regulation of physiological functions of chicken. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Ahmadi S, Ohkubo T. Leptin Promotes Primordial Follicle Activation by Regulating Ovarian Insulin-like Growth Factor System in Chicken. Endocrinology 2022; 163:6650339. [PMID: 35882602 DOI: 10.1210/endocr/bqac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Leptin and insulin-like growth factor 1 (IGF-1) regulate follicle development and reproduction in vertebrates. This study investigated the role played by leptin and IGF-1 in primordial follicle activation in the ovary of 7-day-old chicks. Different doses of leptin were intraperitoneally administrated to female layer chicks, and further analyses were performed. While leptin administration did not affect hepatic leptin receptor (LEPR), growth hormone receptor (GHR), or IGF-1, the lower dose of leptin significantly increased the messenger RNA (mRNA) expression of IGF-1, IGF-1 receptor, and IGF-binding protein (IGFBP)-2 and attenuated anti-Müllerian hormone (AMH) gene expression in the ovary. Furthermore, the ovaries of the same age chicks were challenged with leptin and/or IGF-1 in vitro. Leptin at a lower dose increased the mRNA expression of IGF-1, LEPR, and leptin; 100 ng/mL leptin and 10 ng/mL IGF-1 alone or combined with leptin reduced IGFBP-2 mRNA expression. AMH gene expression was also reduced by all doses except 10 ng/mL leptin. Histological studies showed that a lower dose of leptin injection induced the primordial follicle growth in the ovary in vivo, and the number of primordial follicles was higher in all leptin treatments over control in vitro. Moreover, the luciferase assay revealed that leptin enhanced IGF-1 promoter activity in LEPR-expressing CHO-K1 cells. Collectively, these results indicate that leptin directly affects the IGF-1/IGFBP system and promotes primordial follicular growth in the ovary of early posthatch chicks. In addition, the follicular development by leptin-induced IGF-1 is, at least in part, caused by the suppression of AMH in the ovary.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Takeshi Ohkubo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
14
|
Wang Z, Reid AMA, Wilson PW, Dunn IC. Identification of the Core Promoter and Variants Regulating Chicken CCKAR Expression. Genes (Basel) 2022; 13:1083. [PMID: 35741846 PMCID: PMC9222909 DOI: 10.3390/genes13061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Decreased expression of chicken cholecystokinin A receptor (CCKAR) attenuates satiety, which contributes to increased food intake and growth for modern broilers. The study aims to define the core promoter of CCKAR, and to identify variants associated with expression activity. A 21 kb region around the CCKAR was re-sequenced to detect sequence variants. A series of 5'-deleted promoter plasmids were constructed to define the core promoter of CCKAR. The effects of sequence variants located in promoter (PSNP) and conserved (CSNP) regions on promoter activity were analyzed by comparing luciferase activity between haplotypes. A total of 182 variants were found in the 21 kb region. There were no large structural variants around CCKAR. pNL-328/+183, the one with the shortest insertion, showed the highest activity among the six promoter constructs, implying that the key cis elements regulating CCKAR expression are mainly distributed 328 bp upstream. We detected significant activity differences between high- and low-growth associated haplotypes in four of the six promoter constructs. The high-growth haplotypes of constructs pNL-1646/+183, pNL-799/+183 and pNL-528/+183 showed lower activities than the low-growth haplotypes, which is consistent with decreased expression of CCKAR in high-growth chickens. Lower expression of the high-growth allele was also detected for the CSNP5-containing construct. The data suggest that the core promoter of CCKAR is located the 328 bp region upstream from the transcription start site. Lower expression activities shown by the high-growth haplotypes in the reporter assay suggest that CSNP5 and variants located between 328 bp and 1646 bp upstream form a promising molecular basis for decreased expression of CCKAR and increased growth in chickens.
Collapse
Affiliation(s)
- Zhepeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Angus M. A. Reid
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Peter W. Wilson
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| |
Collapse
|
15
|
Kim JE, Bennett DC, Wright K, Cheng KM. Seasonal and sexual variation in mRNA expression of selected adipokine genes affecting fat deposition and metabolism of the emu (Dromaius novaehollandiae). Sci Rep 2022; 12:6325. [PMID: 35428830 PMCID: PMC9012844 DOI: 10.1038/s41598-022-10232-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Emus are farmed for fat production. Oil rendered from their back and abdominal fat pads has good anti-oxidant and anti-inflammatory properties and has ingredients that promote cell growth. Our objective is to examine the mRNA expression of 7 emu adipokine genes (eFABP4, eSCD1, eAdipoQ, eAdipoR1, eAdipoR2, eLEP and eLepR) to identify gene markers that may help improve emu fat production. Back and abdominal fat tissues from 11 adult emus were biopsied at four time points (April, June, August and November). Total RNA was isolated and cDNA was synthesized. Gene specific primers were designed for partial cloning fragments to amplify the open reading frame of the 7 genes. eLEP was not expressed in emu fat tissue. Nucleotides and amino acids sequences of the 6 expressed gene were compared with homologs from other species and phylogenetic relationships established. Seasonal mRNA expression of each gene was assessed by quantitative RT-PCR and differential expression analysed by the 2-ΔΔCT method. The 6 expressed genes showed seasonal variation in expression and showed association of expression level with back fat adiposity. More whole-genome scanning studies are needed to develop novel molecular markers that can be applied to improve fat production in emus.
Collapse
Affiliation(s)
- Ji Eun Kim
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Darin C Bennett
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Wright
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Kimberly M Cheng
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
16
|
Lindholm C, Batakis P, Altimiras J, Lees J. Intermittent fasting induces chronic changes in the hepatic gene expression of Red Jungle Fowl (Gallus gallus). BMC Genomics 2022; 23:304. [PMID: 35421924 PMCID: PMC9009039 DOI: 10.1186/s12864-022-08533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intermittent fasting (IF), the implementation of fasting periods of at least 12 consecutive hours on a daily to weekly basis, has received a lot of attention in recent years for imparting the life-prolonging and health-promoting effects of caloric restriction with no or only moderate actual restriction of caloric intake. IF is also widely practiced in the rearing of broiler breeders, the parent stock of meat-type chickens, who require strict feed restriction regimens to prevent the serious health problems associated with their intense appetites. Although intermittent fasting has been extensively used in this context to reduce feed competition and its resulting stress, the potential of IF in chickens as an alternative and complementary model to rodents has received less investigation. In both mammals and birds, the liver is a key component of the metabolic response to IF, responding to variations in energy balance. Here we use a microarray analysis to examine the liver transcriptomics of wild-type Red Jungle Fowl chickens fed either ad libitum, chronically restricted to around 70% of ad libitum daily or intermittently fasted (IF) on a 2:1 (2 days fed, 1 day fasted) schedule without actual caloric restriction. As red junglefowl are ancestral to domestic chicken breeds, these data serve as a baseline to which existing and future transcriptomic results from farmed birds such as broiler breeders can be compared. Results We find large effects of feeding regimen on liver transcriptomics, with most of the affected genes relating to energy metabolism. A cluster analysis shows that IF is associated with large and reciprocal changes in genes related to lipid and carbohydrate metabolism, but also chronic changes in genes related to amino acid metabolism (generally down-regulated) and cell cycle progression (generally up-regulated). The overall transcription pattern appears to be one of promoting high proliferative plasticity in response to fluctuations in available energy substrates. A small number of inflammation-related genes also show chronically changed expression profiles, as does one circadian rhythm gene. Conclusions The increase in proliferative potential suggested by the gene expression changes reported here indicates that birds and mammals respond similarly to intermittent fasting practices. Our findings therefore suggest that the health benefits of periodic caloric restriction are ubiquitous and not restricted to mammals alone. Whether a common fundamental mechanism, for example involving leptin, underpins these benefits remains to be elucidated. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08533-5.
Collapse
|
17
|
Hafez MH, El-Kazaz SE, Alharthi B, Ghamry HI, Alshehri MA, Sayed S, Shukry M, El-Sayed YS. The Impact of Curcumin on Growth Performance, Growth-Related Gene Expression, Oxidative Stress, and Immunological Biomarkers in Broiler Chickens at Different Stocking Densities. Animals (Basel) 2022; 12:ani12080958. [PMID: 35454205 PMCID: PMC9024619 DOI: 10.3390/ani12080958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The primary goal of global poultry production is to optimize the amount of chicken produced per square meter of floor area. Consequently, stocking density (SD) and curcumin supplementation on broiler performance were investigated. Our results revealed that supplemental curcumin improved birds’ growth, behaviours, and immunity by lowering oxidative stress, enhancing humoral immune response, and modulating the suppression of growth-related gene expressions in broilers raised in high stocking density circumstances. Abstract Curcumin’s antioxidant properties reduce free radicals and may improve broiler growth. Therefore, the influence of stocking density (SD) and administration of curcumin in the diet on broiler performance was explored to clarify the impact of HSD and curcumin on the performance of growth, behavioural patterns, haematological, oxidant/antioxidant parameters, immunity markers, and the growth-related genes expression in broiler chickens. A total of 200 broiler chickens (Cobb 500, 2-weeks old) were allotted into 4 groups; SD (moderate and high) and curcumin (100 and 200 mg/kg diet)-supplemented HSD, respectively. Behavioural observations were performed. After a 28-day experimental period, tissue and blood samples were collected for analysis. Expressions of mRNA for insulin-like growth factor-1 (IGF-1), growth hormone receptor (GHR), myostatin (MSTN), and leptin in liver tissues were examined. HSD birds exhibited lower growth performance measurements, haematological parameters, circulating 3,5,3-triiodothyronine and thyroxine levels, antioxidant activities (GSH-Px, catalase, superoxide dismutase), immunoglobulins (A, G, M), and hepatic GHR and IGF-1 expression values. However, HSD birds even had an increment of serum corticosterone, malondialdehyde, pro-inflammatory cytokine (TNF-a, IL-2, IL-6) levels, hepatic leptin and MSTN expression. Moreover, HSD decreased drinking, feeding, crouching, body care, and increased standing and walking behaviour. The addition of curcumin, particularly at a 200 mg/kg diet, alleviated the effect of HSD through amending growth-related gene expression in the chickens. In conclusion, curcumin can enhance birds’ growth performance, behavioural patterns, and immunity by reducing oxidative stress and up-regulating the growth-related gene expressions of broilers under stressful conditions due to a high stocking density.
Collapse
Affiliation(s)
- Mona H. Hafez
- Physiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
- Correspondence: (M.H.H.); (M.S.)
| | - Sara E. El-Kazaz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mohammed A. Alshehri
- Biology Department, College of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (M.H.H.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
18
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
19
|
Huttener R, Thorrez L, Veld TI, Granvik M, Van Lommel L, Waelkens E, Derua R, Lemaire K, Goyvaerts L, De Coster S, Buyse J, Schuit F. Sequencing refractory regions in bird genomes are hotspots for accelerated protein evolution. BMC Ecol Evol 2021; 21:176. [PMID: 34537008 PMCID: PMC8449477 DOI: 10.1186/s12862-021-01905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 1000 protein encoding genes common for vertebrates are still unannotated in avian genomes. Are these genes evolutionary lost or are they not yet found for technical reasons? Using genome landscapes as a tool to visualize large-scale regional effects of genome evolution, we reexamined this question. Results On basis of gene annotation in non-avian vertebrate genomes, we established a list of 15,135 common vertebrate genes. Of these, 1026 were not found in any of eight examined bird genomes. Visualizing regional genome effects by our sliding window approach showed that the majority of these "missing" genes can be clustered to 14 regions of the human reference genome. In these clusters, an additional 1517 genes (often gene fragments) were underrepresented in bird genomes. The clusters of “missing” genes coincided with regions of very high GC content, particularly in avian genomes, making them “hidden” because of incomplete sequencing. Moreover, proteins encoded by genes in these sequencing refractory regions showed signs of accelerated protein evolution. As a proof of principle for this idea we experimentally characterized the mRNA and protein products of four "hidden" bird genes that are crucial for energy homeostasis in skeletal muscle: ALDOA, ENO3, PYGM and SLC2A4. Conclusions A least part of the “missing” genes in bird genomes can be attributed to an artifact caused by the difficulty to sequence regions with extreme GC% (“hidden” genes). Biologically, these “hidden” genes are of interest as they encode proteins that evolve more rapidly than the genome wide average. Finally we show that four of these “hidden” genes encode key proteins for energy metabolism in flight muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01905-7.
Collapse
Affiliation(s)
- R Huttener
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.,Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - T In't Veld
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - M Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - E Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - R Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - K Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - S De Coster
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
20
|
Intestinal Microbiota, Anti-Inflammatory, and Anti-Oxidative Status of Broiler Chickens Fed Diets Containing Mushroom Waste Compost By-Products. Animals (Basel) 2021; 11:ani11092550. [PMID: 34573516 PMCID: PMC8464814 DOI: 10.3390/ani11092550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary This study investigated the effects of Pennisetum purpureum waste mushroom compost (PWMC) supplementation on microbiota, as well as its effects on the antioxidant capacities and inflammatory response characteristics of broiler chickens. Results showed that a 5% replacement of a soybean meal via PWMC feeds could enhance the health of chickens by maintaining intestinal microbiota balance, improving antioxidant capacities, and decreasing inflammatory response. Supplementation also further increased the appetite of broilers, thereby improving their growth performances. Furthermore, the number of Lactobacillus also increased in the intestinal tracts. High-fiber mushroom waste compost effectively increased the mRNA expression of appetite-related genes in broilers. The broilers’ gut barrier function also increased, while the number of Turicibacter in the cecum decreased. It was concluded that a 5% replacement of a soybean meal via PWMC could enhance intestinal health; therefore, it is recommended for the broiler chickens’ diet. Abstract This study investigated the effects of using mushroom waste compost as the residue medium for Pleurotus eryngii planting, which was used as a feed replacement; its consequent influence on broiler chickens’ intestinal microbiota, anti-inflammatory responses, and anti-oxidative status was likewise studied. A total of 240 male broilers were used and allocated to four treatment groups: the basal diet—control group (corn–soybean); 5% replacement of a soybean meal via PWMC (Pennisetum purpureum Schum No. 2 waste mushroom compost); 5% replacement of a soybean meal via FPW (Saccharomyces cerevisiae fermented PWMC); 5% replacement of a soybean meal via PP (Pennisetum purpureum Schum No. 2). Each treatment had three replicates and 20 birds per pen. The levels of glutathione peroxidase and superoxide dismutase mRNA as well as protein increased in the liver and serum in chickens, respectively; mRNA levels of inflammation-related genes were also suppressed 2 to 10 times in all treatments as compared to those in the control group. The tight junction and mucin were enhanced 2 to 10 times in all treatment groups as compared to those in the control, especially in the PWMC group. Nevertheless, the appetite-related mRNA levels were increased in the PWMC and FPW groups by at least two times. In ileum and cecum, the Firmicutes/Bacteroidetes ratios in broilers were decreased in the PWMC, FPW, and PP groups. The Lactobacillaceae in the ileum were increased mainly in the PWMC and control groups. Overall, high-fiber feeds (PWMC, FPW, and PP) could enhance the broilers’ health by improving their antioxidant capacities and decreasing their inflammatory response as compared to the control. Based on the results, a 5% replacement of the soybean meal via PWMC is recommended in the broiler chickens’ diet.
Collapse
|
21
|
Bernardi O, Estienne A, Reverchon M, Bigot Y, Froment P, Dupont J. Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol Cell Endocrinol 2021; 534:111370. [PMID: 34171419 DOI: 10.1016/j.mce.2021.111370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Adipose tissue is now recognized as an active endocrine organ, which synthesizes and secretes numerous peptides factors called adipokines. In mammals, they exert pleiotropic effects affecting energy metabolism but also fertility. In mammals, secretion of adipokines is altered in adipose tissue dysfunctions and may participate to obesity-associated disorders. Thus, adipokines are promising candidates both for novel pharmacological treatment strategies and as diagnostic tools. As compared to mammals, birds exhibit several unique physiological features, which make them an interesting model for comparative studies on endocrine control of metabolism and adiposity and reproductive functions. Some adipokines such as leptin and visfatin may have different roles in avian species as compared to mammals. In addition, some of them found in mammals such as CCL2 (chemokine ligand 2), resistin, omentin and FGF21 (Fibroblast Growth factor 21) have not yet been mapped to the chicken genome model and among its annotated gene models. This brief review aims to summarize data (structure, metabolic and reproductive roles and molecular mechanisms involved) related to main avian adipokines (leptin, adiponectin, visfatin, and chemerin) and we will briefly discuss the adipokines that are still lacking in avian species.
Collapse
Affiliation(s)
- Ophélie Bernardi
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France; SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
22
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
23
|
Shaikat AH, Ochiai M, Sasaki A, Takeda M, Arima A, Ohkubo T. Leptin Modulates the mRNA Expression of Follicle Development Markers in Post-hatch Chicks in an Age-Dependent Manner. Front Physiol 2021; 12:657527. [PMID: 34305632 PMCID: PMC8293390 DOI: 10.3389/fphys.2021.657527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is involved in regulating reproductive function in chickens, and the development of the leptin system is initiated during the early embryonic stage; however, whether leptin has a specific role in regulating the ovarian development in early post-hatch days is still not fully understood. This study investigated the expression of ovarian functional markers in growing juvenile chickens, along with the effects of leptin on gene expression in the hypothalamus–pituitary–gonadal (HPG) axis on specific ovarian-remodeling days. Leptin receptor (LEPR), follicle-stimulating hormone receptor (FSHR), and the mRNA expression of aromatase (CYP19A1) tended to increase with age in the ovaries of growing chicks. In the ovaries of 7-day-old chicks, intraperitoneally injected leptin significantly increased the mRNA expressions of LEPR, FSHR, and CYP19A1, and this resulted in the increased serum estradiol levels. However, leptin had no effect on hypothalamic LEPR, gonadotropin-releasing hormone 1 (GnRH1), or gonadotropin-inhibitory hormone (GnIH) mRNAs; however, in the pituitary gland, leptin significantly increased the mRNA expression of luteinizing hormone beta subunit (LHB) but had no effect on the mRNA expression of follicle-stimulating hormone beta subunit (FSHB). In 28-day-old chicks, hypothalamic and pituitary mRNAs were unaffected by leptin administration, except hypothalamic LEPR mRNA that was upregulated by a high dose of leptin. In the ovary, leptin dose-dependently decreased the mRNA expression of LEPR; low doses of leptin significantly increased the mRNA expression of FSHR, whereas high doses significantly decreased this expression; leptin did not affect the mRNA expression of CYP19A1; and high leptin doses significantly reduced the serum estradiol levels. Collectively, the results of this study show that leptin modulates ovarian development and folliculogenesis marker genes by primarily acting on ovaries on the specific ovarian-remodeling days in post-hatch chicks, which may alter folliculogenesis and ovarian development toward puberty in chicken.
Collapse
Affiliation(s)
- Amir Hossan Shaikat
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Masami Ochiai
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Akari Sasaki
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Misa Takeda
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Akari Arima
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
24
|
Nidamanuri AL, Prince LLL, Mahapatra RK, Murugesan S. Effect on physiological and production parameters upon supplementation of fermented yeast culture to Nicobari chickens during and post summer. J Anim Physiol Anim Nutr (Berl) 2021; 106:284-295. [PMID: 34110055 DOI: 10.1111/jpn.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Nicobari is an indigenous bird reared for meat and eggs. This study evaluated the effect of heat stress on plasma levels of leptin, growth hormone and their receptors, liver AMP kinase, plasma cholesterol and lipid peroxide (MDA). The laying period coincided with the post summer period. The birds were equally divided into three groups, control group was offered ad libitum feed and treatment groups were supplemented with fermented yeast culture at 700 mg (T1) and 1.4 g/kg (T2) of feed/day. The levels of plasma Leptin and GH hormones were higher (p < 0.05) in the control group when compared to the treatment groups. The expression of the hormone receptors was higher in the brain, and MMP3 gene expression in the magnum was lower in the treatment group. Plasma cholesterol, MDA and AMP kinase were significantly higher (p < 0.05) in the control group. Fermented yeast culture supplementation decreased feed intake and increased egg production parameters, which indicates a greater efficiency of supplementation. Supplementation reduced the severity of necrosis of villi in the jejunum when compared to control. In conclusion, higher ambient temperature during summer had negative effect on production parameters through modulation of physiological parameters which could be ameliorated by supplementation of FYC.
Collapse
|
25
|
Lei MM, Dai ZC, Zhu HX, Chen R, Chen Z, Shao CR, Shi ZD. Impairment of testes development in Yangzhou ganders by augmentation of leptin receptor signaling. Theriogenology 2021; 171:94-103. [PMID: 34051590 DOI: 10.1016/j.theriogenology.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the cellular and molecular mechanisms of leptin (LEP) and the leptin receptor (LEPR) in testicular development of prepubertal ganders. In an in vivo animal experiment, active immunization against LEPR severely depressed prepubertal testicular development by significantly reducing testicular weights at 200 and 227 days of age. The number of elongated spermatids in the seminiferous tubules was also significantly decreased by immunization with LEPR at ages of 200 and 227 days. Inhibition of testicular development by LEPR immunization was associated with decreases in LHR, StAR, 3β-HSD, CYP11A1, CYP17A1, and PRLR mRNA expression levels in testicular tissue, which resulted in a significant decrease in testosterone synthesis. In the in vitro experiments, the addition of LEP combined with anti-LEPR antibodies strengthened LEPR signal transduction, and inhibited significantly testosterone production in cultured Leydig cells isolated from prepubertal gander testes. The mRNA expression of LHR, StAR, 3β-HSD, CYP11A1, CYP17A1 also decreased significantly after treatment with LEP combined with anti-LEPR antibodies in cultured Leydig cells. These results suggest that anti-LEPR antibodies strengthen LEPR signaling transduction in the presence of LEP, and immunization against LEPR inhibited testes development and testosterone secretion in prepubertal ganders.
Collapse
Affiliation(s)
- M M Lei
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z C Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - H X Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - R Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - C R Shao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z D Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.
| |
Collapse
|
26
|
Honda K. Peripheral regulation of food intake in chickens: adiposity signals, satiety signals and others. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1898296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- K. Honda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
27
|
Kalyesubula M, Mopuri R, Asiku J, Rosov A, Yosefi S, Edery N, Bocobza S, Moallem U, Dvir H. High-dose vitamin B1 therapy prevents the development of experimental fatty liver driven by overnutrition. Dis Model Mech 2021; 14:dmm.048355. [PMID: 33608323 PMCID: PMC7988776 DOI: 10.1242/dmm.048355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Fatty liver is an abnormal metabolic condition of excess intrahepatic fat. This condition, referred to as hepatic steatosis, is tightly associated with chronic liver disease and systemic metabolic morbidity. The most prevalent form in humans, i.e. non-alcoholic fatty liver, generally develops due to overnutrition and sedentary lifestyle, and has as yet no approved drug therapy. Previously, we have developed a relevant large-animal model in which overnourished sheep raised on a high-calorie carbohydrate-rich diet develop hyperglycemia, hyperinsulinemia, insulin resistance, and hepatic steatosis. Here, we tested the hypothesis that treatment with thiamine (vitamin B1) can counter the development of hepatic steatosis driven by overnutrition. Remarkably, the thiamine-treated animals presented with completely normal levels of intrahepatic fat, despite consuming the same amount of liver-fattening diet. Thiamine treatment also decreased hyperglycemia and increased the glycogen content of the liver, but it did not improve insulin sensitivity, suggesting that steatosis can be addressed independently of targeting insulin resistance. Thiamine increased the catalytic capacity for hepatic oxidation of carbohydrates and fatty acids. However, at gene-expression levels, more-pronounced effects were observed on lipid-droplet formation and lipidation of very-low-density lipoprotein, suggesting that thiamine affects lipid metabolism not only through its known classic coenzyme roles. This discovery of the potent anti-steatotic effect of thiamine may prove clinically useful in managing fatty liver-related disorders.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Mugagga Kalyesubula
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel.,Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ramgopal Mopuri
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel
| | - Jimmy Asiku
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Alexander Rosov
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel
| | - Sara Yosefi
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel
| | - Nir Edery
- Pathology Laboratory, Kimron Veterinary Institute, Veterinary Services, Rishon LeZion 50250, Israel
| | - Samuel Bocobza
- Institute of Plant Sciences, Volcani Center - ARO, Rishon LeZion 7528809, Israel
| | - Uzi Moallem
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel
| | - Hay Dvir
- Institute of Animal Science, Volcani Center - Agricultural Research Organization (ARO), Rishon LeZion 7528809, Israel
| |
Collapse
|
28
|
Annie L, Gurusubramanian G, Roy VK. Changes in the localization of ovarian visfatin protein and its possible role during estrous cycle of mice. Acta Histochem 2020; 122:151630. [PMID: 32992122 DOI: 10.1016/j.acthis.2020.151630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Visfatin is a crucial adipokine, which also regulates ovarian functions in many animals. Mice estrous cycle is characterized by a dynamic complex physiological process in the reproductive system. Expression of various factors changes during the estrous cycle in the ovary. To the best of our knowledge, no previous study has been conducted on the expression of visfatin in mice ovaries during the estrous cycle. Therefore, we investigated the localization and expression of visfatin protein in the ovary of mice during the estrous cycle. Western blot analysis showed the elevated expression of visfatin in proestrus and lowest in diestrus. Immunohistochemical localization of visfatin showed intense staining in the corpus luteum of proestrus and diestrus ovaries. Thecal cells, granulosa cells, and oocytes also showed the presence of visfatin. Expression of ovarian visfatin was correlated to BCL2 and active caspase3 expression and exhibited a significant positive correlation. Furthermore, in vivo inhibition of visfatin by FK866 in the proestrus ovary down-regulated active caspase3 and PCNA expression, and up-regulated the BCL2 expression. These results suggest the role of visfatin in the proliferation and apoptosis of the follicles and specific localization of visfatin in the corpus luteum also indicate its role in corpus luteum function, which may be in progesterone biosynthesis and regression of old corpus luteum. However, further study is required to support these findings. In conclusion, visfatin may also be regulating follicular growth during the estrous cycle by regulating proliferation and apoptosis.
Collapse
|
29
|
Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals (Basel) 2020; 10:ani10081282. [PMID: 32727133 PMCID: PMC7460314 DOI: 10.3390/ani10081282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The weight of an animal conforms to a certain growth pattern. Among others, feed, environment, and body composition, in addition to genetics, affect the animal’s feed consumption and body weight. Under normal circumstances, the body weight of an animal is mainly affected by feed intake, and body composition may significantly influence feed intake. Therefore, this report sets out the effects of fat accumulation on lipid metabolism and appetite, and finally introduces the effects of feeding patterns on animal feed intake. Abstract In addition to the influence of genes, the quality of poultry products is mainly controlled by the rearing environment or feed composition during rearing, and has to meet human use and economical needs. As the only source of energy for poultry, feed considerably affects the metabolic pattern of poultry and further affects the regulation of appetite-related endocrine secretion in poultry. Under normal circumstances, the accumulation of lipid in adipose reduces feed intake in poultry and increases the rate of adipose metabolism. When the adipose content in cells decreases, endocrines that promote food intake are secreted and increase nutrient concentrations in serum and cells. By regulating the balance between appetite and adipose metabolism, the poultry’s growth and posture can maintain a balanced state. In addition, increasing fiber composition in feed can effectively increase poultry welfare, body weight, lean composition and antioxidant levels in poultry. According to this, the concept that proper fiber content should be added to feed should be considered for better economic benefits, poultry welfare and meat productivity.
Collapse
|
30
|
Hanlon C, Ramachandran R, Zuidhof MJ, Bédécarrats GY. Should I Lay or Should I Grow: Photoperiodic Versus Metabolic Cues in Chickens. Front Physiol 2020; 11:707. [PMID: 32670092 PMCID: PMC7332832 DOI: 10.3389/fphys.2020.00707] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
While photoperiod has been generally accepted as the primary if not the exclusive cue to stimulate reproduction in photoperiodic breeders such as the laying hen, current knowledge suggests that metabolism, and/or body composition can also play an influential role to control the hypothalamic-pituitary gonadal (HPG)-axis. This review thus intends to first describe how photoperiodic and metabolic cues can impact the HPG axis, then explore and propose potential common pathways and mechanisms through which both cues could be integrated. Photostimulation refers to a perceived increase in day-length resulting in the stimulation of the HPG. While photoreceptors are present in the retina of the eye and the pineal gland, it is the deep brain photoreceptors (DBPs) located in the hypothalamus that have been identified as the potential mediators of photostimulation, including melanopsin (OPN4), neuropsin (OPN5), and vertebrate-ancient opsin (VA-Opsin). Here, we present the current state of knowledge surrounding these DBPs, along with their individual and relative importance and, their possible downstream mechanisms of action to initiate the activation of the HPG axis. On the metabolic side, specific attention is placed on the hypothalamic integration of appetite control with the stimulatory (Gonadotropin Releasing Hormone; GnRH) and inhibitory (Gonadotropin Inhibitory Hormone; GnIH) neuropeptides involved in the control of the HPG axis. Specifically, the impact of orexigenic peptides agouti-related peptide (AgRP), and neuropeptide Y (NPY), as well as the anorexigenic peptides pro-opiomelanocortin (POMC), and cocaine-and amphetamine regulated transcript (CART) is reviewed. Furthermore, beyond hypothalamic control, several metabolic factors involved in the control of body weight and composition are also presented as possible modulators of reproduction at all three levels of the HPG axis. These include peroxisome proliferator-activated receptor gamma (PPAR-γ) for its impact in liver metabolism during the switch from growth to reproduction, adiponectin as a potential modulator of ovarian development and follicular maturation, as well as growth hormone (GH), and leptin (LEP).
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Ramesh Ramachandran
- Center for Reproductive Biology and Health, Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - Martin J. Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
31
|
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters gene expression associated with hormonal signaling, cellular differentiation, and protein metabolism in muscle of newly hatch chicks. Gen Comp Endocrinol 2020; 292:113445. [PMID: 32135160 DOI: 10.1016/j.ygcen.2020.113445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Birds rely solely on utilization of the yolk sac as a means of nutritional support throughout embryogenesis and early post-hatch, before first feeding occurs. Newly hatched broiler (meat-type) chickens are frequently not given immediate access to feed, and this can result in numerous alterations to developmental processes, including those that occur in muscle. The objective of this study was to characterize the gene expression profile of newly hatched chicks' breast muscle with regards to hormonal regulation of growth and metabolism and development and differentiation of muscle tissue, and determine impacts of delayed access to feed on these profiles. Within 3 h of hatch, birds were placed in battery pens and given immediate access to feed (Fed) or delayed access to feed for 48 h (Delayed Fed). Breast muscle collected from male birds at hatch, or 4 h, 1 day (D), 2D, 4D, and 8D after hatch was used for analysis of mRNA expression by reverse transcription-quantitative PCR. Under fully fed conditions, insulin-like growth factor receptor and leptin receptor mRNA expression decreased as birds aged; however, delayed access to feed resulted in prolonged upregulation of these genes so their mRNA levels were higher in Delayed Fed birds at 2D. These expression profiles suggest that delayed feed access alters sensitivity to hormones that may regulate muscle development. Myogenin, a muscle differentiation factor, showed increasing mRNA expression in Fed birds through 2D, after which expression decreased. A similar expression pattern in Delayed Fed birds was deferred until 4D. Levels of myostatin, a negative regulator of muscle growth, increased in Fed birds starting at 2D, while levels in Delayed Fed birds began to increase at 4D. In Fed birds, levels of transcripts for two genes associated with protein catabolism, F-box protein 32 and forkhead box O3, were lower at 2D, while Delayed Fed mRNA levels did not decrease until 4D. Mechanistic target of rapamycin mRNA levels decreased from 1D through 8D in both treatments, except for a transient increase in the Delayed Fed birds between 1D and 2D. These data suggest that within breast muscle, delayed feeding alters hormonal signaling, interrupts tissue differentiation, postpones onset of growth, and may lead to increased protein catabolism. Together, these processes could ultimately contribute to a reduction in proper growth and development of birds not given feed immediately after hatch, and ultimately hinder the long-term potential of muscle accretion in meat type birds.
Collapse
Affiliation(s)
- Jason A Payne
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Northeast Area, 10300 Baltimore Ave, BARC-East, Bldg 200, Beltsville, MD 20705, USA.
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| |
Collapse
|
32
|
Estienne A, Brossaud A, Reverchon M, Ramé C, Froment P, Dupont J. Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds. Int J Mol Sci 2020; 21:E3581. [PMID: 32438614 PMCID: PMC7279299 DOI: 10.3390/ijms21103581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Adeline Brossaud
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380 Nouzilly, France;
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| |
Collapse
|
33
|
Ducrest A, Neuenschwander S, Schmid‐Siegert E, Pagni M, Train C, Dylus D, Nevers Y, Warwick Vesztrocy A, San‐Jose LM, Dupasquier M, Dessimoz C, Xenarios I, Roulin A, Goudet J. New genome assembly of the barn owl ( Tyto alba alba). Ecol Evol 2020; 10:2284-2298. [PMID: 32184981 PMCID: PMC7069322 DOI: 10.1002/ece3.5991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.
Collapse
Affiliation(s)
- Anne‐Lyse Ducrest
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | | | | | - Marco Pagni
- Vital‐ITSwiss Institute of BioinformaticsLausanneSwitzerland
| | - Clément Train
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - David Dylus
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Yannis Nevers
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Alex Warwick Vesztrocy
- Center for Life's Origins and EvolutionDepartment of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Luis M. San‐Jose
- Laboratory Evolution and Biological DiversityUMR 5174CNRSUniversity of Toulouse III Paul SabatierToulouseFrance
| | | | - Christophe Dessimoz
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ioannis Xenarios
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Alexandre Roulin
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Jérôme Goudet
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
34
|
Elleder D, Kaspers B. After TNF-α, still playing hide-and-seek with chicken genes. Poult Sci 2020; 98:4373-4374. [PMID: 31189184 DOI: 10.3382/ps/pez307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Bernd Kaspers
- Department of Veterinary Science, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| |
Collapse
|
35
|
van der Klein SA, Zuidhof MJ, Bédécarrats GY. Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Anim Reprod Sci 2020; 213:106257. [DOI: 10.1016/j.anireprosci.2019.106257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023]
|
36
|
Expression of lysine-mediated neuropeptide hormones controlling satiety and appetite in broiler chickens. Poult Sci 2019; 99:1409-1420. [PMID: 32115028 PMCID: PMC7587822 DOI: 10.1016/j.psj.2019.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022] Open
Abstract
Lysine is the second most limiting amino acid after methionine and is considered the most limiting amino acid for growth in poultry. Lysine requirement for broiler chickens has changed over the years. Leptin and adiponectin represent 2 adipokines that mediate metabolism by eliciting satiety effects whereas ghrelin peptide hormone influences appetite. We hypothesize that this affects growth performance of chicks. This study evaluates the effect of varying dietary lysine homeostasis on performance of broiler chickens through satiety- and appetite-mediating hormones. In 3 replications, 270 one-day-old chicks were reared for 8 wk feeding on diets comprising 0.85, 1.14, and 1.42% lysine during the starter period and 0.75, 1.00, and 1.25% lysine during the grower period. These concentrations of lysine represent 75% (low lysine), 100% (control), and 125% (high lysine) of National Research Council recommendation for broiler chickens. Feed and water were provided for ad libitum consumption. At 8 wk of age, liver, pancreas, brain, and hypothalamus tissues were collected from 18 birds randomly selected from each treatment, snap frozen in liquid nitrogen, and stored at -80°C until use. Total RNA was extracted, and cDNA was synthesized for quantitative real-time PCR assays. Low lysine concentration caused slow growth and high mortality. There was significant upregulation of ghrelin in the hypothalamus and pancreas, and leptin and adiponectin in the hypothalamus and liver, and downregulation of ghrelin in the intestines. At low lysine concentrations, adiponectin was not expressed in both pancreas and intestines. High lysine concentration exhibited increased growth, upregulation of ghrelin in the liver, and downregulation of ghrelin in the intestines, and both adiponectin and leptin in the liver. The expression of ghrelin was negatively correlated with the expression of adiponectin and leptin (P < 0.05) in the liver, hypothalamus, and pancreas. Expression of leptin was positively correlated with adiponectin in the hypothalamus and liver (P < 0.05), exhibiting satiety effects when the concentrations of lysine were low.
Collapse
|
37
|
Niu W, Qazi IH, Li S, Zhao X, Yin H, Wang Y, Zhu Q, Han H, Zhou G, Du X. Expression of FOXL2 and RSPO1 in Hen Ovarian Follicles and Implication of Exogenous Leptin in Modulating Their mRNA Expression in In Vitro Cultured Granulosa Cells. Animals (Basel) 2019; 9:ani9121083. [PMID: 31817265 PMCID: PMC6941104 DOI: 10.3390/ani9121083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, using a laying hen model, we determined the expression of FOXL2 and RSPO1 in different central and peripheral tissue and ovarian follicles at different stages of development. At the same time, mRNA expression of both genes in granulosa and theca cells harvested from follicles at different stages of folliculogenesis was also evaluated. Finally, we assessed the effect of leptin treatment on expression of FOXL2 and RSPO1 in in vitro cultured granulosa cells harvested from 1-5 mm to F3-F1 follicles. Our RT-qPCR results revealed that a comparatively higher expression of FOXL2 and RSPO1 was observed in ovary, hypothalamus, and pituitary. Abundant mRNA expression of FOXL2 was observed in small prehierarchical follicles (1-1.9 and 2-2.9 mm follicles; p < 0.05), whereas mRNA expression of RSPO1 showed an increasing trend in large hierarchical follicles (F5-F1), and its abundant expression was observed in post-ovulatory follicles. FOXL2 mRNA expression was stable in granulosa cells harvested from 3-5 mm to F4 follicles, and exhibited a significantly higher expression in large hierarchical follicles. Conversely, relatively low mRNA expression of FOXL2 was observed in theca cells. RSPO1 mRNA expression was relatively lower in granulosa cells; however, theca cells exhibited a significantly higher mRNA expression of RSPO1 in F4 to F1 follicles. In the next experiment, we treated the in vitro cultured granulosa cells with different concentrations (1, 10, 100, and 1000 ng/mL) of exogenous leptin. Compared to the control group, a significant increase in the expression of FOXL2 was observed in groups treated with 1, 10, and 100 ng/mL leptin, whereas expression of RSPO1 was increased in all leptin-treated groups. When treated with 100 ng/mL leptin, FOXL2 and RSPO1 expression was upregulated in cultured granulosa cells harvested from both large hierarchical (F3-F1) and small prehierarchical follicles (1-5 mm). Based on these findings and evidence from mainstream literature, we envisage that FOXL2 and RSPO1 genes (in connection with hypothalamic-hypophysis axis) and leptin (via modulation of FOXL2 and RSPO1 expression) might have significant physiological roles, at least in part, in modulating the ovarian mechanisms, such as follicle development, selection, and steroidogenesis in laying hens.
Collapse
Affiliation(s)
- Weihe Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Sichen Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Correspondence: (G.Z.); (X.D.)
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Correspondence: (G.Z.); (X.D.)
| |
Collapse
|
38
|
Friedman-Einat M, Seroussi E. Avian Leptin: Bird's-Eye View of the Evolution of Vertebrate Energy-Balance Control. Trends Endocrinol Metab 2019; 30:819-832. [PMID: 31699239 DOI: 10.1016/j.tem.2019.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Discovery of the satiety hormone leptin in 1994 and its characterization in mammals provided a key tool to deciphering the complex mechanism governing adipose tissue regulation of appetite and energy expenditure. Surprisingly, despite the perfectly logical notion of an energy-storing tissue announcing the amount of fat stores using leptin signaling, alternate mechanisms were chosen in bird evolution. This conclusion emerged based on the recent discovery and characterization of genuine avian leptin - after it had been assumed missing by some, and erroneously identified by others. Critical evaluation of the past and present indications of the role of leptin in Aves provides a new perspective on the evolution of energy-balance control in vertebrates; proposing a regulation strategy alternative to the adipostat mechanism.
Collapse
Affiliation(s)
- Miriam Friedman-Einat
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel.
| | - Eyal Seroussi
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| |
Collapse
|
39
|
Beauclair L, Ramé C, Arensburger P, Piégu B, Guillou F, Dupont J, Bigot Y. Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies. BMC Genomics 2019; 20:734. [PMID: 31610792 PMCID: PMC6792250 DOI: 10.1186/s12864-019-6131-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Background More and more eukaryotic genomes are sequenced and assembled, most of them presented as a complete model in which missing chromosomal regions are filled by Ns and where a few chromosomes may be lacking. Avian genomes often contain sequences with high GC content, which has been hypothesized to be at the origin of many missing sequences in these genomes. We investigated features of these missing sequences to discover why some may not have been integrated into genomic libraries and/or sequenced. Results The sequences of five red jungle fowl cDNA models with high GC content were used as queries to search publicly available datasets of Illumina and Pacbio sequencing reads. These were used to reconstruct the leptin, TNFα, MRPL52, PCP2 and PET100 genes, all of which are absent from the red jungle fowl genome model. These gene sequences displayed elevated GC contents, had intron sizes that were sometimes larger than non-avian orthologues, and had non-coding regions that contained numerous tandem and inverted repeat sequences with motifs able to assemble into stable G-quadruplexes and intrastrand dyadic structures. Our results suggest that Illumina technology was unable to sequence the non-coding regions of these genes. On the other hand, PacBio technology was able to sequence these regions, but with dramatically lower efficiency than would typically be expected. Conclusions High GC content was not the principal reason why numerous GC-rich regions of avian genomes are missing from genome assembly models. Instead, it is the presence of tandem repeats containing motifs capable of assembling into very stable secondary structures that is likely responsible.
Collapse
Affiliation(s)
- Linda Beauclair
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Christelle Ramé
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Benoît Piégu
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Florian Guillou
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Joëlle Dupont
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Yves Bigot
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
40
|
Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals. Int J Mol Sci 2019; 20:ijms20184489. [PMID: 31514326 PMCID: PMC6770569 DOI: 10.3390/ijms20184489] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge about the function of avian leptin and TNF is limited and they are absent or lowly expressed in adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC) region. This mapping position suggests that avian TNF has a role in regulating immune response. To test its possible interaction with leptin within the immune system and beyond, we compared the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals, in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique to mammals.
Collapse
|
41
|
Qanbari S, Rubin CJ, Maqbool K, Weigend S, Weigend A, Geibel J, Kerje S, Wurmser C, Peterson AT, Brisbin IL, Preisinger R, Fries R, Simianer H, Andersson L. Genetics of adaptation in modern chicken. PLoS Genet 2019; 15:e1007989. [PMID: 31034467 PMCID: PMC6508745 DOI: 10.1371/journal.pgen.1007989] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/09/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
We carried out whole genome resequencing of 127 chicken including red jungle fowl and multiple populations of commercial broilers and layers to perform a systematic screening of adaptive changes in modern chicken (Gallus gallus domesticus). We uncovered >21 million high quality SNPs of which 34% are newly detected variants. This panel comprises >115,000 predicted amino-acid altering substitutions as well as 1,100 SNPs predicted to be stop-gain or -loss, several of which reach high frequencies. Signatures of selection were investigated both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during domestication and breed development. Contrasting wild and domestic chicken we confirmed selection at the BCO2 and TSHR loci and identified 34 putative sweeps co-localized with ALX1, KITLG, EPGR, IGF1, DLK1, JPT2, CRAMP1, and GLI3, among others. Analysis of enrichment between groups of wild vs. commercials and broilers vs. layers revealed a further panel of candidate genes including CORIN, SKIV2L2 implicated in pigmentation and LEPR, MEGF10 and SPEF2, suggestive of production-oriented selection. SNPs with marked allele frequency differences between wild and domestic chicken showed a highly significant deficiency in the proportion of amino-acid altering mutations (P<2.5×10-6). The results contribute to the understanding of major genetic changes that took place during the evolution of modern chickens and in poultry breeding.
Collapse
Affiliation(s)
- Saber Qanbari
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Department of Animal Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Carl-Johan Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Khurram Maqbool
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Steffen Weigend
- Friedrich-Loeffler-Institut, Neustadt, Germany.,Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | | | - Johannes Geibel
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Susanne Kerje
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Christine Wurmser
- Chair of Animal Breeding, Technical University Munich, Freising, Germany
| | | | - I Lehr Brisbin
- Savannah River Ecology Laboratory, Odum School of Ecology, University of Georgia, Aiken, South Carolina, United States of America
| | | | - Ruedi Fries
- Chair of Animal Breeding, Technical University Munich, Freising, Germany
| | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, United States of America
| |
Collapse
|
42
|
Hennin HL, Legagneux P, Gilchrist HG, Bêty J, McMurtry JP, Love OP. Plasma mammalian leptin analogue predicts reproductive phenology, but not reproductive output in a capital-income breeding seaduck. Ecol Evol 2019; 9:1512-1522. [PMID: 30805178 PMCID: PMC6374671 DOI: 10.1002/ece3.4873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022] Open
Abstract
To invest in energetically demanding life history stages, individuals require a substantial amount of resources. Physiological traits, particularly those related to energetics, can be useful for examining variation in life history decisions and trade-offs because they result from individual responses to environmental variation. Leptin is a protein hormone found in mammals that is proportional to the amount of endogenous fat stores within an individual. Recently, researchers have confirmed that a mammalian leptin analogue (MLA), based on the mammalian sequence of leptin, is present with associated receptors and proteins in avian species, with an inhibitory effect on foraging and body mass gain at high circulating levels. While MLA has been both quantified and manipulated in avian species, little is currently known regarding whether plasma MLA in wild-living species and individuals is associated with key reproductive decisions. We quantified plasma MLA in wild, Arctic-nesting female common eiders (Somateria mollissima) at arrival on the breeding grounds and followed them to determine subsequent breeding propensity, and reproductive phenology, investment, and success. Common eiders are capital-income breeding birds that require the accumulation of substantial fat stores to initiate laying and successfully complete incubation. We found that females with lower plasma MLA initiated breeding earlier and in a shorter period of time. However, we found no links between plasma MLA levels and breeding propensity, clutch size, or reproductive success. Although little is still known about plasma MLA, based on these results and its role in influencing foraging behaviors and condition gain, plasma MLA appears to be closely linked to reproductive timing and is therefore likely to underlie trade-offs surrounding life history decisions.
Collapse
Affiliation(s)
- Holly L. Hennin
- Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada
| | - Pierre Legagneux
- CNRS – Centre d'Etudes Biologique de ChizéVilliers‐en‐boisFrance
- Département de biologie et Centre d'etudes nordiquesUniversité LavalQuébec CityQuebecCanada
| | - H. Grant Gilchrist
- Environment and Climate Change CanadaNational Wildlife Research Centre, Carleton UniversityOttawaOntarioCanada
| | - Joël Bêty
- Départment de Biologie, chimie et géographie and Centre d’études nordiquesUniversité du Québec à RimouskiRimouskiQuebecCanada
| | - John P. McMurtry
- Southern Plains Agricultural Research CenterUnited States Department of AgricultureCollege StationTexas
| | - Oliver P. Love
- Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
43
|
Yin ZT, Zhu F, Lin FB, Jia T, Wang Z, Sun DT, Li GS, Zhang CL, Smith J, Yang N, Hou ZC. Revisiting avian 'missing' genes from de novo assembled transcripts. BMC Genomics 2019; 20:4. [PMID: 30611188 PMCID: PMC6321700 DOI: 10.1186/s12864-018-5407-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/25/2018] [Indexed: 01/02/2023] Open
Abstract
Background Argument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation. High quality-reference gene sets are necessary for precisely evaluating gene gain and loss. It is essential to explore new reference transcripts from large-scale de novo assembled transcriptomes to recover the potential hidden genes in avian genomes. Results We explored 196 high quality transcriptomic datasets from five bird species to reconstruct transcripts for the purpose of discovering potential hidden genes in the avian genomes. We constructed a relatively complete and high-quality bird transcript database (1,623,045 transcripts after quality control in five birds) from a large amount of avian transcriptomic data, and found most of the presumed missing genes (83.2%) could be recovered in at least one bird species. Most of these genes have been identified for the first time in birds. Our results demonstrate that 67.94% genes have GC content over 50%, while 2.91% genes are AT-rich (AT% > 60%). In our results, 239 (53.59%) genes had a tissue-specific expression index of more than 0.9 in chicken. The missing genes also have lower Ka/Ks values than average (genome-wide: Ka/Ks = 0.99; missing gene: Ka/Ks = 0.90; t-test = 1.25E-14). Among all presumed missing genes, there were 135 for which we did not find any meaningful orthologues in any of the 5 species studied. Conclusion Insufficient reference genome quality is the major reason for wrongly inferring missing genes in birds. Those presumably missing genes often have a very strong tissue-specific expression pattern. We show multi-tissue transcriptomic data from various species are necessary for inferring gene family evolution for species with only draft reference genomes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5407-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fang-Bin Lin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Zhen Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Ting Sun
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Guang-Shen Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cheng-Lin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Barnes NE, Mendoza KM, Strasburg GM, Velleman SG, Reed KM. Thermal challenge alters the transcriptional profile of the breast muscle in turkey poults. Poult Sci 2019; 98:74-91. [PMID: 30239949 DOI: 10.3382/ps/pey401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Extremes in temperature represent environmental stressors that impact the well-being and economic value of poultry. As homeotherms, young poultry with immature thermoregulatory systems are especially susceptible to thermal extremes. Genetic variation and differences in gene expression resulting from selection for production traits, likely contribute to thermal stress response. This study was designed to investigate in vivo transcriptional changes in the breast muscle of young turkey poults from an unselected randombred line and one selected for 16 wk body weight under hot and cold thermal challenge. Newly hatched turkey poults were brooded for 3 d at one of 3 temperatures: control (35°C), cold (31°C), or hot (39°C). Samples of the pectoralis major were harvested and subjected to deep RNA sequencing. Significant differential gene expression was observed in both growth-selected and randombred birds at both temperature extremes when compared to control-brooded poults. Growth-selected birds responded to thermal stress through changes in genes predicted to have downstream transcriptional effects and that would result in reduced muscle growth. Slower growing randombred birds responded to thermal stress through modulation of lipid-related genes, suggesting reduction in lipid storage, transport, and synthesis, consistent with changes in energy metabolism required to maintain body temperature.
Collapse
Affiliation(s)
- Natalie E Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
45
|
Proszkowiec-Weglarz M, Dupont J, Rideau N, Gespach C, Simon J, Porter TE. Insulin immuno-neutralization decreases food intake in chickens without altering hypothalamic transcripts involved in food intake and metabolism. Poult Sci 2018; 96:4409-4418. [PMID: 29053815 PMCID: PMC5850116 DOI: 10.3382/ps/pex247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/10/2017] [Indexed: 12/04/2022] Open
Abstract
In mammals, insulin regulates blood glucose levels and plays a key regulatory role in appetite via the hypothalamus. In contrast, chickens are characterized by atypical glucose homeostasis, with relatively high blood glucose levels, reduced glucose sensitivity of pancreatic beta cells, and large resistance to exogenous insulin. The aim of the present study was to investigate in chickens the effects of 5 h fasting and 5 h insulin immuno-neutralization on hypothalamic mRNA levels of 23 genes associated with food intake, energy balance, and glucose metabolism. We observed that insulin immune-neutralization by administration of anti-porcine insulin guinea pig serum (AI) significantly decreased food intake and increased plasma glucose levels in chickens, while 5 h fasting produced a limited and non-significant reduction in plasma glucose. In addition, 5 h fasting increased levels of NPY, TAS1R1, DIO2, LEPR, GLUT1, GLUT3, GLUT8, and GCK mRNA. In contrast, AI had no impact on the levels of any selected mRNA. Therefore, our results demonstrate that in chickens, food intake inhibition or satiety mechanisms induced by insulin immuno-neutralization do not rely on hypothalamic abundance of the 23 transcripts analyzed. The hypothalamic transcripts that were increased in the fasted group are likely components of a mechanism of adaptation to fasting in chickens.
Collapse
Affiliation(s)
- M Proszkowiec-Weglarz
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - J Dupont
- Station de Recherches Avicoles (UR 83), INRA, 37380 Nouzilly, France
| | - N Rideau
- Station de Recherches Avicoles (UR 83), INRA, 37380 Nouzilly, France
| | - C Gespach
- INSERM U938, Molecular and Clinical Oncology, Hôpital Saint Antoine, Université Pierre et Marie Curie Paris 6, 75012 Paris, France
| | - J Simon
- Station de Recherches Avicoles (UR 83), INRA, 37380 Nouzilly, France
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| |
Collapse
|
46
|
Henderson LJ, Cockcroft RC, Kaiya H, Boswell T, Smulders TV. Peripherally injected ghrelin and leptin reduce food hoarding and mass gain in the coal tit ( Periparus ater). Proc Biol Sci 2018; 285:rspb.2018.0417. [PMID: 29794047 DOI: 10.1098/rspb.2018.0417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022] Open
Abstract
In birds little is known about the hormonal signals that communicate nutritional state to the brain and regulate appetitive behaviours. In mammals, the peptide hormones ghrelin and leptin elevate and inhibit consumption and food hoarding, respectively. But in birds, administration of both ghrelin and leptin inhibit food consumption. The role of these hormones in the regulation of food hoarding in avian species has not been examined. To investigate this, we injected wild caught coal tits (Periparus ater) with leptin, high-dose ghrelin, low-dose ghrelin and a saline control in the laboratory. We then measured food hoarding and mass gain, as a proxy of food consumption, every 20 min for 2 h post-injection. Both high-dose ghrelin and leptin injections significantly reduced hoarding and mass gain compared with controls. Our results provide the first evidence that hoarding behaviour can be reduced by both leptin and ghrelin in a wild bird. These findings add to evidence that the hormonal control of food consumption and hoarding in avian species differs from that in mammals. Food hoarding and consumptive behaviours consistently show the same response to peripheral signals of nutritional state, suggesting that the hormonal regulation of food hoarding has evolved from the consumption regulatory system.
Collapse
Affiliation(s)
- Lindsay J Henderson
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK .,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rowan C Cockcroft
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hiroyuki Kaiya
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Timothy Boswell
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tom V Smulders
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
47
|
Piekarski A, Nagarajan G, Ishola P, Flees J, Greene ES, Kuenzel WJ, Ohkubo T, Maier H, Bottje WG, Cline MA, Dridi S. AMP-Activated Protein Kinase Mediates the Effect of Leptin on Avian Autophagy in a Tissue-Specific Manner. Front Physiol 2018; 9:541. [PMID: 29867578 PMCID: PMC5963154 DOI: 10.3389/fphys.2018.00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
Autophagy, a highly conserved intracellular self-digestion process, plays an integral role in maintaining cellular homeostasis. Although emerging evidence indicate that the endocrine system regulates autophagy in mammals, there is still a scarcity of information on autophagy in avian (non-mammalian) species. Here, we show that intracerebroventricular administration of leptin reduces feed intake, modulates the expression of feeding-related hypothalamic neuropeptides, activates leptin receptor and signal transducer and activator of transcription (Ob-Rb/STAT) pathway, and significantly increases the expression of autophagy-related proteins (Atg3, Atg5, Atg7, beclin1, and LC3B) in chicken hypothalamus, liver, and muscle. Similarly, leptin treatment activates Ob-Rb/STAT pathway and increased the expression of autophagy-related markers in chicken hypothalamic organotypic cultures, muscle (QM7) and hepatocyte (Sim-CEL) cell cultures as well as in Chinese Hamster Ovary (CHO-K1) cells-overexpressing chicken Ob-Rb and STAT3. To define the downstream mediator(s) of leptin's effects on autophagy, we determined the role of the master energy sensor AMP-activated protein kinase (AMPK). Leptin treatment significantly increased the phosphorylated levels of AMPKα1/2 at Thr172 site in chicken hypothalamus and liver, but not in muscle. Likewise, AMPKα1/2 was activated by leptin in chicken hypothalamic organotypic culture and Sim-CEL, but not in QM7 cells. Blocking AMPK activity by compound C reverses the autophagy-inducing effect of leptin. Together, these findings indicate that AMPK mediates the effect of leptin on chicken autophagy in a tissue-specific manner.
Collapse
Affiliation(s)
- Alissa Piekarski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Gurueswar Nagarajan
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Peter Ishola
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S. Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Wayne J. Kuenzel
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Helena Maier
- Nidovirus-Cell Interactions Group, The Pirbright Institute, Woking, United Kingdom
| | - Walter G. Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
48
|
Adipogenic genes expression in relation to hepatic steatosis in the liver of two duck species. Animal 2018; 12:2571-2577. [PMID: 29720294 DOI: 10.1017/s1751731118000897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some studies have shown that expression of peroxisome proliferator-activated receptor gamma (PPARG), a key regulator of adipogenesis, and of some adipocyte-specific genes or adipokines are expressed in hepatic steatosis, leading to the concept of 'adipogenic hepatic steatosis' or 'hepatic adiposis.' Most of these studies were conducted in genetic obese mouse models or after manipulation of gene expression. The relevance of this concept to other species and more physiological models was here addressed in ducks which are able to develop hepatic steatosis after overfeeding. The expression of PPARG and other adipocyte-specific genes was thus analyzed in the liver of ducks fed ad libitum or overfed and compared with those observed in adipose tissues. Pekin (Anas platyrhynchos) and Muscovy ducks (Cairina moschata) were analyzed, as metabolic responses to overfeeding differ according to these two species, Muscovy ducks having a greater ability to synthesize and store lipids in the liver than Pekin ducks. Our results indicate that adipocyte-specific genes are expressed in the liver of ducks, PPARG and fatty acid-binding protein 4 being upregulated and adiponectin and leptin receptor downregulated by overfeeding. However, these expression levels are much lower than those observed in adipose tissue suggesting that fatty liver cells are not transformed to adipocytes, although some hepato-specific functions are decreased in fatty liver when compared with normal liver.
Collapse
|
49
|
Bornelöv S, Seroussi E, Yosefi S, Benjamini S, Miyara S, Ruzal M, Grabherr M, Rafati N, Molin AM, Pendavis K, Burgess SC, Andersson L, Friedman-Einat M. Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction. BMC Genomics 2018; 19:295. [PMID: 29695257 PMCID: PMC5922311 DOI: 10.1186/s12864-018-4675-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/15/2018] [Indexed: 02/18/2023] Open
Abstract
Background The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. Results Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. Conclusions Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4675-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Bornelöv
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.,Present Address: Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Eyal Seroussi
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Sara Yosefi
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Sharon Benjamini
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Shoval Miyara
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Mark Ruzal
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Manfred Grabherr
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.,Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Nima Rafati
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Anna-Maja Molin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Ken Pendavis
- College of Agriculture and Life Sciences, University of Arizona, Tucson, USA
| | - Shane C Burgess
- College of Agriculture and Life Sciences, University of Arizona, Tucson, USA
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | | |
Collapse
|
50
|
Rohde F, Schusser B, Hron T, Farkašová H, Plachý J, Härtle S, Hejnar J, Elleder D, Kaspers B. Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds. Front Immunol 2018; 9:605. [PMID: 29719531 PMCID: PMC5913325 DOI: 10.3389/fimmu.2018.00605] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.
Collapse
Affiliation(s)
- Franziska Rohde
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, Department of Animal Sciences, Technical University Munich, Munich, Germany
| | - Tomáš Hron
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Farkašová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Plachý
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Sonja Härtle
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Daniel Elleder
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Bernd Kaspers
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|