1
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
2
|
Gulbins A, Horstmann M, Keitsch S, Soddemann M, Wilker B, Wilson GC, Zeidan R, Hammer GD, Daser A, Bechrakis NE, Görtz GE, Eckstein A. Potential involvement of the bone marrow in experimental Graves' disease and thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1252727. [PMID: 37810891 PMCID: PMC10558005 DOI: 10.3389/fendo.2023.1252727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gregory C. Wilson
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Gulbins A, Horstmann M, Daser A, Flögel U, Oeverhaus M, Bechrakis NE, Banga JP, Keitsch S, Wilker B, Krause G, Hammer GD, Spencer AG, Zeidan R, Eckstein A, Philipp S, Görtz GE. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1211473. [PMID: 37435490 PMCID: PMC10331459 DOI: 10.3389/fendo.2023.1211473] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Michael Oeverhaus
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Fallahi P, Ragusa F, Paparo SR, Elia G, Balestri E, Mazzi V, Patrizio A, Botrini C, Benvenga S, Ferrari SM, Antonelli A. Teprotumumab for the treatment of thyroid eye disease. Expert Opin Biol Ther 2023; 23:123-131. [PMID: 36695097 DOI: 10.1080/14712598.2023.2172328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Thyroid eye disease (TED) is an autoimmune disease characterized by inflammation of orbital and extraocular muscles. It induces proptosis and diplopia, leading to a worsening of quality of life (QoL) because of its impact on physical appearance, and visual function. The natural history involves an 'active TED,' which is an autoimmune inflammatory response targeting orbital soft tissues, and 'inactive TED,' where there is tissue expansion remodeling. To date, glucocorticoids represent the main medical therapy, even if often ineffective and associated with side effects. AREAS COVERED In TED, the autoimmune process leads to production of TSH-R and IGF-1 R autoantibodies. This induces inflammatory changes in the orbital tissue, and activation of fibroblasts with accumulation of glycosaminoglycans, leading to consequent proptosis, and diplopia. In two previous randomized, double-masked, placebo-controlled, parallel-group, multicenter trials, teprotumumab has been shown to be effective in improving proptosis, inflammation, diplopia, and QoL. More recently, it has been shown that teprotumumab is also effective in chronic-inactive TED. Teprotumumab was approved by the FDA on 21 January 2020 for the treatment of TED. EXPERT OPINION For the above-mentioned reasons teprotumumab represents a potential first line therapy for TED that could replace the use of steroids in the next future.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Cui X, Wang F, Liu C. A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 2023; 14:1062045. [PMID: 36742308 PMCID: PMC9893276 DOI: 10.3389/fimmu.2023.1062045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Graves' orbitopathy (GO) is an organ-specific autoimmune disease, but its pathogenesis remains unclear. There are few review articles on GO research from the perspective of target cells and target antigens. A systematic search of PubMed was performed, focusing mainly on studies published after 2015 that involve the role of target cells, orbital fibroblasts (OFs) and orbital adipocytes (OAs), target antigens, thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R), and their corresponding antibodies, TSHR antibodies (TRAbs) and IGF-1R antibodies (IGF-1R Abs), in GO pathogenesis and the potentially effective therapies that target TSHR and IGF-1R. Based on the results, OFs may be derived from bone marrow-derived CD34+ fibrocytes. In addition to CD34+ OFs, CD34- OFs are important in the pathogenesis of GO and may be involved in hyaluronan formation. CD34- OFs expressing Slit2 suppress the phenotype of CD34+ OFs. β-arrestin 1 can be involved in TSHR/IGF-1R crosstalk as a scaffold. Research on TRAbs has gradually shifted to TSAbs, TBAbs and the titre of TRAbs. However, the existence and role of IGF-1R Abs are still unknown and deserve further study. Basic and clinical trials of TSHR-inhibiting therapies are increasing, and TSHR is an expected therapeutic target. Teprotumumab has become the latest second-line treatment for GO. This review aims to effectively describe the pathogenesis of GO from the perspective of target cells and target antigens and provide ideas for its fundamental treatment.
Collapse
Affiliation(s)
- Xuejiao Cui
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Futao Wang
- Department of Endocrinology, Changchun Central Hospital, Changchun, China
| | - Cong Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Jiang M, Zhao J, Wang P, Yan S, Wang Y. Research progress in Th17 cells and the relevant cytokines in Graves ' ophthalmopathy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1748-1753. [PMID: 36748387 PMCID: PMC10930278 DOI: 10.11817/j.issn.1672-7347.2022.220205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Graves' ophthalmopathy is the most common clinical orbital disease, and T helper (Th) cells play an important role in the development of Graves' ophthalmopathy. Th17 cells are a major subpopulation of Th cells and abnormally highly expressed in patients with Graves' ophthalmopathy. Th17 cells and the related cytokines interleukin (IL)-17A, IL-21 and IL-23 are involved in regulating the inflammatory response, fibrosis and adipogenesis. Th17 cells are unstable and exhibit a degree of plasticity, and they can differentiate into IL-17A and interferon (IFN)-γ dual-producing Th17.1 cells, which exacerbate the pathogenicity of Th17 cells. In addition, Th17 cells and the relevant factors are strongly associated with disease activity and severity in Graves' ophthalmopathy.
Collapse
Affiliation(s)
- Minmin Jiang
- Graduate Student of 2021, Henan University of Chinese Medicine, Zhengzhou 450046.
| | - Jingxiao Zhao
- Graduate Student of 2021, Henan University of Chinese Medicine, Zhengzhou 450046
| | - Ping Wang
- Graduate Student of 2021, Henan University of Chinese Medicine, Zhengzhou 450046
| | - Shuxun Yan
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450099.
| | - Ying Wang
- Department of International Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
7
|
Zheng J, Duan H, You S, Liang B, Chen Y, Huang H. Research progress on the pathogenesis of Graves’ ophthalmopathy: Based on immunity, noncoding RNA and exosomes. Front Immunol 2022; 13:952954. [PMID: 36081502 PMCID: PMC9445982 DOI: 10.3389/fimmu.2022.952954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Graves’ ophthalmopathy (GO), also known as thyroid-associated ophthalmopathy, is a common potentially vision-threatening organ-specific autoimmune disease and the most common extrathyroidal manifestation of Graves’ disease. It can happen to those who have hyperthyroidism or euthyroidism. At present, the pathogenesis of GO has not been fully elucidated, and the majority of clinical treatments are symptomatic. Therefore, we are eager to discover any new therapeutic strategies that target the etiology of GO. To provide fresh ideas for the creation of new therapeutic techniques, this study primarily discusses the research state and progress of GO-related pathogenesis from the perspectives of GO’s cellular immunity, autoantigens, non-coding RNAs, and exosomes.
Collapse
Affiliation(s)
- Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Honghong Duan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bo Liang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuping Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Huibin Huang,
| |
Collapse
|
8
|
Gupta V, Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. Thinking inside the box: Current insights into targeting orbital tissue remodeling and inflammation in thyroid eye disease. Surv Ophthalmol 2022; 67:858-874. [PMID: 34487739 PMCID: PMC8891393 DOI: 10.1016/j.survophthal.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Thyroid eye disease (TED) is an autoimmune disorder that manifests in the orbit. In TED, the connective tissue behind the eye becomes inflamed and remodels with increased fat accumulation and/or increased muscle and scar tissue. As orbital tissue expands, patients develop edema, exophthalmos, diplopia, and optic neuropathy. In severe cases vision loss may occur secondary to corneal scarring from exposure or optic nerve compression. Currently there is no cure for TED, and treatments are limited. A major breakthrough in TED therapy occurred with the FDA approval of teprotumumab, a monoclonal insulin-like growth factor 1 receptor (IGF1R) blocking antibody. Yet, teprotumumab therapy has limitations, including cost, infusion method of drug delivery, variable response, and relapse. We describe approaches to target orbital fibroblasts and the complex pathophysiology that underlies tissue remodeling and inflammation driving TED. Further advances in the elucidation of the mechanisms of TED may lead to prophylaxis based upon early biomarkers as well as lead to more convenient, less expensive therapies.
Collapse
Affiliation(s)
- Vardaan Gupta
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA.
| |
Collapse
|
9
|
He Q, Dong H, Gong M, Guo Y, Xia Q, Gong J, Lu F. New Therapeutic Horizon of Graves' Hyperthyroidism: Treatment Regimens Based on Immunology and Ingredients From Traditional Chinese Medicine. Front Pharmacol 2022; 13:862831. [PMID: 35462920 PMCID: PMC9020194 DOI: 10.3389/fphar.2022.862831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Graves’ disease is an autoimmune disease characterized by goiter and hyperthyroidism, and 25% patients develop GO. Traditional treatment options, such as antithyroid drugs, radioiodine or thyroidectomy, have remained largely unchanged over the past 70 years. For many patients, there is a high rate of recurrence after antithyroid drugs and lifelong hypothyroidism after ablation and thyroidectomy. The symptoms and quality of life of some patients have not been effectively improved. The clinical demand for new therapeutic regimens, coupled with a deeper understanding of the pathophysiology and immunobiology of Graves’ disease, has led to the emergence of several new therapeutic ideas, including biologics, small molecule peptides, immunomodulators and teprotumumab, a specific antibody targeting IGF-1R. Besides, the elements of TCM have attracted more and more interests in modern medicine, because some effective components have been successfully used in the treatment of autoimmune diseases. Based on the pathophysiology and efficacy of clinical management and treatment in Graves’ hyperthyroidism, here we review the new strategies under investigation and summarize the effective components of traditional Chinese medicine used for Graves’ hyperthyroidism, and explore their mechanisms. These therapies have opened a new window for the treatment of Graves’ disease, but the exact mechanism and the research direction still need to be further explored.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Längericht J, Mitka KI, Hubalewska-Dydejczyk A, Krämer I, Kahaly GJ. Drug safety in thyroid eye disease - a systematic review. Expert Opin Drug Saf 2022; 21:881-912. [PMID: 35447047 DOI: 10.1080/14740338.2022.2069239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The autoimmune-induced thyroid eye disease (TED) is a frequent extrathyroidal manifestation of Graves' disease and less frequently of Hashimoto's thyroiditis. Pathognomonic clinical signs, i.e. exophthalmos, double vision, and inflammation of the orbital tissue cause physical, ophthalmic, and socio-psychological limitations. AREAS COVERED PubMed and MeSH database were searched for specific guidelines, randomized controlled trials, prospective clinical studies, systematic reviews and meta-analyses pertaining to the safety profile of currently administered immunosuppressive agents for the treatment of TED. Occurred adverse events (AE), severe AE (SAE), side effects (SE), and severe SE (SSE) were classified according to the standardized medical dictionary for regulatory activities (MedDRA). EXPERT OPINION This novel systematic analysis offers an overview of potential AE, SAE and SE for currently recommended immunosuppressive drugs for the treatment of TED. Non-specific, anti-inflammatory drugs and more specific, targeted biologicals are treatment options for active and severe TED. Critical evaluation of the pertinent literature confirms an evidence-based, beneficial efficacy/risk ratio of the current first-line and second-line treatment recommendations endorsed by the European Society of Endocrinology. However, further large, well-conceived trials are mandatory to enhance our knowledge and experience with novel specific small molecules and/or monoclonal antibodies targeting the key autoantigens in TED.
Collapse
Affiliation(s)
- Jan Längericht
- Department of Medicine I., Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Kamila I Mitka
- Department of Medicine I., Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany.,Department of Endocrinology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Irene Krämer
- Department of Pharmacy, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - George J Kahaly
- Department of Medicine I., Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| |
Collapse
|
11
|
Krieger CC, Sui X, Kahaly GJ, Neumann S, Gershengorn MC. Inhibition of TSH/IGF-1 Receptor Crosstalk by Teprotumumab as a Treatment Modality of Thyroid Eye Disease. J Clin Endocrinol Metab 2022; 107:e1653-e1660. [PMID: 34788857 PMCID: PMC8947786 DOI: 10.1210/clinem/dgab824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT We previously presented evidence that TSH receptor (TSHR)-stimulating autoantibodies (TSAbs) bind to and activate TSHRs but do not bind to IGF1 receptors (IGF1Rs). Nevertheless, we showed that IGF1Rs were involved in thyroid eye disease (TED) pathogenesis because TSAbs activated crosstalk between TSHR and IGF1R. Teprotumumab, originally generated to inhibit IGF1 binding to IGF1R, was recently approved for the treatment of TED (Tepezza). OBJECTIVE To investigate the role of TSHR/IGF1R crosstalk in teprotumumab treatment of TED. DESIGN We used orbital fibroblasts from patients with TED (TEDOFs) and measured stimulated hyaluronan (HA) secretion as a measure of orbital fibroblast activation by TED immunoglobulins (TED-Igs) and monoclonal TSAb M22. We previously showed that M22, which does not bind to IGF1R, stimulated HA in a biphasic dose-response with the higher potency phase dependent on TSHR/IGF1R crosstalk and the lower potency phase independent of IGF1R. Stimulation by TED-Igs and M22 was measured in the absence or presence of teprotumumab biosimilar (Tepro) or K1-70, an antibody that inhibits TSHR. RESULTS We show: (1) Tepro dose-dependently inhibits stimulation by TED-Igs; (2) Tepro does not bind to TSHRs; (3) Tepro inhibits IGF1R-dependent M22-induced HA production, which is mediated by TSHR/IGF1R crosstalk, but not IGF1R-independent M22 stimulation; and (4) β-arrestin 1 knockdown, which blocks TSHR/IGF1R crosstalk and prevents Tepro inhibition of HA production by M22 and by a pool of TED-Igs. CONCLUSION We conclude that Tepro inhibits HA production by TEDOFs by inhibiting TSHR/IGF1R crosstalk and suggest that inhibition of TSHR/IGF1R crosstalk is the mechanism of its action in treating TED.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiangliang Sui
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz 55131, Germany
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: Marvin C. Gershengorn, MD, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr., Building 50, Room 4134, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Krieger CC, Kahaly GJ, Azam A, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. Graves' Autoantibodies Exhibit Different Stimulating Activities in Cultures of Thyrocytes and Orbital Fibroblasts Not Reflected by Clinical Assays. Thyroid 2022; 32:90-96. [PMID: 34714162 PMCID: PMC8792498 DOI: 10.1089/thy.2021.0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: The pathogenesis of Graves' hyperthyroidism (GH) and associated Graves' orbitopathy (GO) appears to involve stimulatory autoantibodies (thyrotropin receptor [TSHR]-stimulating antibodies [TSAbs]) that bind to and activate TSHRs on thyrocytes and orbital fibroblasts. In general, measurement of circulating TSHR antibodies by clinical assays correlates with the status of GH and GO. However, most clinical measurements of TSHR antibodies use competitive binding assays that do not distinguish between TSAbs and antibodies that bind to but do not activate TSHRs. Moreover, clinical assays for TSAbs measure stimulation of only one signaling pathway, the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, in engineered cells that are not thyrocytes or orbital fibroblasts. We determined whether measuring TSAbs by a cAMP-PKA readout in engineered cells accurately reveals the efficacies of stimulation by these antibodies on thyrocytes and orbital fibroblasts. Methods: We measured TSAb stimulation of normal human thyrocytes and orbital fibroblasts from patients with GO in primary cultures in vitro. In thyrocytes, we measured secretion of thyroglobulin (TG) and in orbital fibroblasts secretion of hyaluronan (hyaluronic acid [HA]). We also measured stimulation of cAMP production in engineered TSHR-expressing cells in an assay similar to clinical assays. Furthermore, we determined whether there were differences in stimulation of thyrocytes and orbital fibroblasts by TSAbs from patients with GH alone versus from patients with GO understanding that patients with GO have accompanying GH. Results: We found a positive correlation between TSAb stimulation of cAMP production in engineered cells and TG secretion by thyrocytes as well as HA secretion by orbital fibroblasts. However, TSAbs from GH patients stimulated thyrocytes more effectively than TSAbs from GO patients, whereas TSAbs from GO patients were more effective in activating orbital fibroblasts than TSAbs from GH patients. Conclusions: Clinical assays of stimulation by TSAbs measuring activation of the cAMP-PKA pathway do correlate with stimulation of thyrocytes and orbital fibroblasts; however, they do not distinguish between TSAbs from GH and GO patients. In vitro, TSAbs exhibit selectivity in activating TSHRs since TSAbs from GO patients were more effective in stimulating orbital fibroblasts and TSAbs from GH patients were more effective in stimulating thyrocytes.
Collapse
Affiliation(s)
- Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Asma Azam
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Address correspondence to: Marvin C. Gershengorn, MD, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Lisco G, De Tullio A, Stragapede A, Solimando AG, Albanese F, Capobianco M, Giagulli VA, Guastamacchia E, De Pergola G, Vacca A, Racanelli V, Triggiani V. COVID-19 and the Endocrine System: A Comprehensive Review on the Theme. J Clin Med 2021; 10:jcm10132920. [PMID: 34209964 PMCID: PMC8269331 DOI: 10.3390/jcm10132920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background and aim. The review aimed to summarize advances in the topic of endocrine diseases and coronavirus disease 2019 (COVID-19). Methods. Scientific and institutional websites and databases were searched and data were collected and organized, when plausible, to angle the discussion toward the following clinical issues. (1) Are patients with COVID-19 at higher risk of developing acute or late-onset endocrine diseases or dysfunction? (2) May the underlying endocrine diseases or dysfunctions be considered risk factors for poor prognosis once the infection has occurred? (3) Are there defined strategies to manage endocrine diseases despite pandemic-related constraints? Herein, the authors considered only relevant and more frequently observed endocrine diseases and disorders related to the hypothalamic-pituitary region, thyroid and parathyroid glands, calcium-phosphorus homeostasis and osteoporosis, adrenal glands, and gonads. Main. Data highlight the basis of some pathophysiological mechanisms and anatomical alterations of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-induced endocrine dysfunctions. Some conditions, such as adrenal insufficiency and cortisol excess, may be risk factors of worse clinical progression once the infection has occurred. These at-risk populations may require adequate education to avoid the SARS-CoV-2 infection and adequately manage medical therapy during the pandemic, even in emergencies. Endocrine disease management underwent a palpable restraint, especially procedures requiring obligate access to healthcare facilities for diagnostic and therapeutic purposes. Strategies of clinical triage to prioritize medical consultations, laboratory, instrumental evaluations, and digital telehealth solutions should be implemented to better deal with this probably long-term situation.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Assunta Stragapede
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Federica Albanese
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Martina Capobianco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari School of Medicine, 70124 Bari, Italy; (A.S.); (A.G.S.); (F.A.); (M.C.); (A.V.)
- Correspondence: ; Tel.: +39-(0)-80-547-82-54
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (V.T.)
| |
Collapse
|
14
|
Hwang CJ, Eftekhari K. Teprotumumab: The First Approved Biologic for Thyroid Eye Disease. Int Ophthalmol Clin 2021; 61:53-61. [PMID: 33743528 DOI: 10.1097/iio.0000000000000353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
15
|
Janssen JA, Smith TJ. Lessons Learned from Targeting IGF-I Receptor in Thyroid-Associated Ophthalmopathy. Cells 2021; 10:cells10020383. [PMID: 33673340 PMCID: PMC7917650 DOI: 10.3390/cells10020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Complex immunological mechanisms underlie the pathogenesis of thyroid-associated ophthalmopathy (TAO). Historical models of Graves’ disease and TAO have focused almost entirely on autoimmune reactivity directed against the thyrotropin receptor (TSHR). The insulin-like growth factor-I receptor (IGF-IR) has been proposed as a second participating antigen in TAO by virtue of its interactions with IGFs and anti-IGF-IR antibodies generated in Graves’ disease. Furthermore, the IGF-IR forms with TSHR a physical and functional complex which is involved in signaling downstream from both receptors. Inhibition of IGF-IR activity results in attenuation of signaling initiated at either receptor. Based on the aggregate of findings implicating IGF-IR in TAO, the receptor has become an attractive therapeutic target. Recently, teprotumumab, a human monoclonal antibody IGF-IR inhibitor was evaluated in two clinical trials of patients with moderate to severe, active TAO. Those studies revealed that teprotumumab was safe and highly effective in reducing disease activity and severity. Targeting IGF-IR with specific biologic agents may result in a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Joseph A.M.J.L. Janssen
- Erasmus Medical Center, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7040704
| | - Terry J. Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA;
- Division of Metabolism, Department of Internal Medicine, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
16
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
17
|
Men CJ, Kossler AL, Wester ST. Updates on the understanding and management of thyroid eye disease. Ther Adv Ophthalmol 2021; 13:25158414211027760. [PMID: 34263138 PMCID: PMC8252358 DOI: 10.1177/25158414211027760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Thyroid eye disease (TED) is a complex disease associated with myriad clinical presentations, including facial disfigurement, vision loss, and decreased quality of life. Traditionally, steroid therapy and/or radiation therapy were commonly used in the treatment of active TED. While these therapies can help reduce inflammation, they often do not have a sustainable, significant long-term effect on disease outcomes, including proptosis and diplopia. Recent advances in our understanding of the pathophysiology of TED have shifted the focus of treatment toward targeted biologic therapies. Biologics have the advantage of precise immune modulation, which can have better safety profiles and greater efficacy compared to traditional approaches. For instance, the insulin-like growth factor-1 receptor (IGF-1R) has been found to be upregulated in TED patients and to colocalize with the thyroid-stimulating hormone receptor (TSHR), forming a signaling complex. Teprotumumab is an antibody targeted against IGF-1R. By inhibiting the IGF-1R/TSHR signaling pathway, teprotumumab may reduce the production of proinflammatory cytokines, hyaluronan secretion, and orbital fibroblast activation in patients with TED. Due to promising phase II and III clinical trial results, teprotumumab has become the first biologic US Food and Drug Administration (FDA)-approved for the treatment of TED. In addition, there are currently ongoing studies looking at the use of antibodies targeting the neonatal Fc receptor (FcRn) in various autoimmune diseases, including TED. FcRn functions to transport immunoglobulin G (IgG) and prevent their lysosomal degradation. By blocking the recycling of IgG, this approach may dampen the body's immune response, in particular the pathogenic IgG implicated in some autoimmune diseases. Advances in our understanding of the pathophysiology of TED, therefore, are leading to more targeted therapeutic options, and we are entering an exciting new phase in the management of TED. This review will cover recent insights into the understanding of TED pathophysiology and novel treatment options as well as ongoing studies of new potential treatment options for TED.
Collapse
Affiliation(s)
- Clara J. Men
- Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Andrea L. Kossler
- Byers Eye Institute, School of Medicine, Stanford University, 2452 Watson Ct, Palo Alto, CA 94303, USA
- Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sara T. Wester
- Bascom Palmer Eye Institute, Department of Ophthalmology, McKnight Vision Research Center, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Kahaly GJ. Management of Graves Thyroidal and Extrathyroidal Disease: An Update. J Clin Endocrinol Metab 2020; 105:5905591. [PMID: 32929476 PMCID: PMC7543578 DOI: 10.1210/clinem/dgaa646] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Invited update on the management of systemic autoimmune Graves disease (GD) and associated Graves orbitopathy (GO). EVIDENCE ACQUISITION Guidelines, pertinent original articles, systemic reviews, and meta-analyses. EVIDENCE SYNTHESIS Thyrotropin receptor antibodies (TSH-R-Abs), foremost the stimulatory TSH-R-Abs, are a specific biomarker for GD. Their measurement assists in the differential diagnosis of hyperthyroidism and offers accurate and rapid diagnosis of GD. Thyroid ultrasound is a sensitive imaging tool for GD. Worldwide, thionamides are the favored treatment (12-18 months) of newly diagnosed GD, with methimazole (MMI) as the preferred drug. Patients with persistently high TSH-R-Abs and/or persistent hyperthyroidism at 18 months, or with a relapse after completing a course of MMI, can opt for a definitive therapy with radioactive iodine (RAI) or total thyroidectomy (TX). Continued long-term, low-dose MMI administration is a valuable and safe alternative. Patient choice, both at initial presentation of GD and at recurrence, should be emphasized. Propylthiouracil is preferred to MMI during the first trimester of pregnancy. TX is best performed by a high-volume thyroid surgeon. RAI should be avoided in GD patients with active GO, especially in smokers. Recently, a promising therapy with an anti-insulin-like growth factor-1 monoclonal antibody for patients with active/severe GO was approved by the Food and Drug Administration. COVID-19 infection is a risk factor for poorly controlled hyperthyroidism, which contributes to the infection-related mortality risk. If GO is not severe, systemic steroid treatment should be postponed during COVID-19 while local treatment and preventive measures are offered. CONCLUSIONS A clear trend towards serological diagnosis and medical treatment of GD has emerged.
Collapse
Affiliation(s)
- George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- Correspondence and Reprint Requests: George J. Kahaly, MD, PhD, JGU Medical Center, Mainz 55101, Germany. E-mail:
| |
Collapse
|
19
|
Huang X, Liu G, Mei S, Cai J, Rao J, Tang M, Zhu T, Chen W, Peng S, Wang Y, Ye Y, Zhang T, Deng Z, Zhao J. Human leucocyte antigen alleles confer susceptibility and progression to Graves' ophthalmopathy in a Southern Chinese population. Br J Ophthalmol 2020; 105:1462-1468. [PMID: 33221730 PMCID: PMC8479741 DOI: 10.1136/bjophthalmol-2020-317091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022]
Abstract
Purpose To evaluate the contributions of human leucocyte antigen (HLA) class I and II genes in the development of Graves’ ophthalmopathy (GO) in a Southern Chinese population. Methods Eight HLA loci were genotyped and analysed in 272 unrelated patients with Graves’ disease (GD) or the proptosis and myogenic phenotypes of GO, and 411 ethnically matched control subjects. Results The allele frequencies of HLA-DRB1*16:02 and -DQB1*05:02 in the GD, proptosis and myogenic groups, HLA-B*38:02 and -DQA1*01:02 in the myogenic group were significantly higher than those in the control group, respectively (all corrected p values <0.05, OR >2.5). The haplotype frequencies of HLA-DRB1*16:02-DQA1*01:02-DQB1*05:02 and HLA-DRB1*16:02-DQA1*01:02-DQB1*05:02-DPA1*02:02-DPB1*05:01 in the proptosis and myogenic groups, and HLA-A*02:03-B*38:02-C*07:02 and HLA-A*02:03-B*38:02-C*07:02-DRB1*16:02-DQA1*01:02-DQB1*05:02-DPA1*02:02-DPB1*05:01 in the myogenic group were significantly higher than those in the control group respectively (all corrected p values <0.05, OR >2.5). The potential epitopes (‘FLGIFNTGL’ of TSHR, ‘IRHSHALVS’, ‘ILYIRTNAS’ and ‘FVFARTMPA’ of IGF-1R) were fitted exactly in the peptide-binding groove between HLA-DRA1-DRB1*16:02 heterodimer, and the epitopes (‘ILEITDNPY’ of THSR, ‘NYALVIFEM’ and ‘NYSFYVLDN’ of IGF-1R) were also fitted exactly in the peptide-binding groove between HLA-DQA1*01:02-DQB1*05:02 heterodimer. Conclusions The HLA-DRB1*16:02 and -DQB1*01:02 alleles might be risk factors for GD including the proptosis and myogenic phenotypes of GO. The alleles HLA-B*38:02, -DQA1*01:02, the HLA haplotypes consisting of HLA-B*38:02, -DRB1*16:02, -DQA1*01:02 and -DQB1*05:02 might be susceptibility risk factors for GO. Simultaneously, some epitopes of TSHR and IGF-1R tightly binding to groove of HLA-DRA1-DRB1*16:02 or HLA-DQA1*01:02-DQB1*05:02 heterodimers might provide some hints on presenting the pathological antigen in GO.
Collapse
Affiliation(s)
- Xiaosheng Huang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Guiqin Liu
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Jiamin Cai
- School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Rao
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Minzhong Tang
- Cancer Center, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Tianhui Zhu
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenchiew Chen
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Shiming Peng
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan Wang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Ye Ye
- School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Tong Zhang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China .,Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Zhao
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China .,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Krieger CC, Neumann S, Gershengorn MC. Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis? Int J Mol Sci 2020; 21:E6561. [PMID: 32911689 PMCID: PMC7555308 DOI: 10.3390/ijms21186561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, we summarize the evidence against direct stimulation of insulin-like growth factor 1 receptors (IGF1Rs) by autoantibodies in Graves' orbitopathy (GO) pathogenesis. We describe a model of thyroid-stimulating hormone (TSH) receptor (TSHR)/IGF1R crosstalk and present evidence that observations indicating IGF1R's role in GO could be explained by this mechanism. We evaluate the evidence for and against IGF1R as a direct target of stimulating IGF1R antibodies (IGF1RAbs) and conclude that GO pathogenesis does not involve directly stimulating IGF1RAbs. We further conclude that the preponderance of evidence supports TSHR as the direct and only target of stimulating autoantibodies in GO and maintain that the TSHR should remain a major target for further development of a medical therapy for GO in concert with drugs that target TSHR/IGF1R crosstalk.
Collapse
Affiliation(s)
| | | | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, Bethesda, MD 20892, USA; (C.C.K.); (S.N.)
| |
Collapse
|
21
|
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J Clin Med 2020; 9:E1679. [PMID: 32492950 PMCID: PMC7355968 DOI: 10.3390/jcm9061679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Collapse
Affiliation(s)
- Marco Colella
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario De Felice
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
22
|
|
23
|
TSH/IGF1 receptor crosstalk: Mechanism and clinical implications. Pharmacol Ther 2020; 209:107502. [PMID: 32061922 DOI: 10.1016/j.pharmthera.2020.107502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Increasing evidence of interdependence between G protein-coupled receptors and receptor tyrosine kinase signaling pathways has prompted reevaluation of crosstalk between these receptors in disease and therapy. Investigations into thyroid-stimulating hormone (TSH) and insulin-like growth factor 1 (IGF1) receptor crosstalk, and its application to the clinic have in particular shown recent progress. In this review, we summarize current insights into the mechanism of TSH/IGF1 receptor crosstalk. We discuss evidence that crosstalk is one of the underlying causes of TSHR-based disease and the feasibility of using combinations of TSH receptor and IGF1 receptor antagonists to increase the therapeutic index for the treatment of Graves' hyperthyroidism and Graves' ophthalmopathy.
Collapse
|
24
|
Virakul S, Somparn P, Pisitkun T, van der Spek PJ, Dalm VASH, Paridaens D, van Hagen PM, Hirankarn N, Palaga T, Dik WA. Integrative Analysis of Proteomics and DNA Methylation in Orbital Fibroblasts From Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:619989. [PMID: 33658982 PMCID: PMC7919747 DOI: 10.3389/fendo.2020.619989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Graves' ophthalmopathy (GO) is a frequent extrathyroidal complication of Graves' hyperthyroidism. Orbital fibroblasts contribute to both orbital tissue inflammation and remodeling in GO, and as such are crucial cellular elements in active GO and inactive GO. However, so far it is largely unknown whether GO disease progression is associated with functional reprogramming of the orbital fibroblast effector function. Therefore, the aim of this study was to compare both the proteome and global DNA methylation patterns between orbital fibroblasts isolated from active GO, inactive GO and healthy controls. METHODS Orbital fibroblasts from inactive GO (n=5), active GO (n=4) and controls (n=5) were cultured and total protein and DNA was isolated. Labelled and fractionated proteins were analyzed with a liquid chromatography tandem-mass spectrometer (LC-MS/MS). Data are available via ProteomeXchange with identifier PXD022257. Furthermore, bisulphite-treated DNA was analyzed for methylation pattern with the Illumina Infinium Human Methylation 450K beadchip. In addition, RNA was isolated from the orbital fibroblasts for real-time quantitative (RQ)-PCR. Network and pathway analyses were performed. RESULTS Orbital fibroblasts from active GO displayed overexpression of proteins that are typically involved in inflammation, cellular proliferation, hyaluronan synthesis and adipogenesis, while various proteins associated with extracellular matrix (ECM) biology and fibrotic disease, were typically overexpressed in orbital fibroblasts from inactive GO. Moreover, orbital fibroblasts from active GO displayed hypermethylation of genes that linked to inflammation and hypomethylated genes that linked to adipogenesis and autoimmunity. Further analysis revealed networks that contained molecules to which both hypermethylated and hypomethylated genes were linked, including NF-κB, ERK1/2, Alp, RNA polymerase II, Akt and IFNα. In addition, NF-κB, Akt and IFNα were also identified in networks that were derived from the differentially expressed proteins. Generally, poor correlation between protein expression, DNA methylation and mRNA expression was observed. CONCLUSIONS Both the proteomics and DNA methylation data support that orbital fibroblasts from active GO are involved in inflammation, adipogenesis, and glycosaminoglycan production, while orbital fibroblasts from inactive disease are more skewed towards an active role in extracellular matrix remodeling. This switch in orbital fibroblast effector function may have therapeutic implications and further studies into the underlying mechanism are thus warranted.
Collapse
Affiliation(s)
- Sita Virakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dion Paridaens
- Rotterdam Eye Hospital, Rotterdam, Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
| | - P. Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Eye Hospital, Rotterdam, Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Willem A. Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Willem A. Dik,
| |
Collapse
|
25
|
Längericht J, Krämer I, Kahaly GJ. Glucocorticoids in Graves' orbitopathy: mechanisms of action and clinical application. Ther Adv Endocrinol Metab 2020; 11:2042018820958335. [PMID: 33403097 PMCID: PMC7745544 DOI: 10.1177/2042018820958335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Graves' orbitopathy (GO) is the most frequent extrathyroidal manifestation of the autoimmune Graves' disease. GO significantly impacts quality of life and has a psycho-social morbidity. Inflammation and swelling of the orbital tissue often leads to proptosis, diplopia, and decrease of visual acuity. Due to the inflammatory background of the disease, glucocorticoids (GC) have been used as a first-line treatment for decades. METHODS PubMed and MeSH database were searched for original articles, clinical trials, reviews, and meta-analyses published between 1 January 2000 and 31 March 2020 and pertaining to both the mechanism of action and immunological effects of GC as well as to the treatment of GO by GC. The publications were evaluated according to their setting and study design. RESULTS GC act through genomic (trans-activation and trans-repression) and rapid non-genomic mechanisms. GC in general, and the intravenous (IV) administration of GC in particular, markedly decrease the activity and number of the most potent antigen-presenting dendritic cells. According to the internationally acknowledged European Thyroid Association Guidelines for the management of GO, weekly IVGC application over 12 weeks is recommended as first-line treatment for patients with active and severe GO. The daily and cumulative dose should be tailored according to clinical severity, for example, 4.5 g of IV methylprednisolone for the inflammatory component versus 7.5 g in the presence of diplopia and severe proptosis. Fast and significant improvements in orbital symptoms and signs are noted in 65-70% of patients. Long-term experience over decades, and worldwide availability at low cost, underline the clinical and therapeutic relevance of GC. Adverse events are rarely severe, dose-dependent, and usually reversible, hence easy to handle by medical investigators. Oral GC application on a daily basis is characterized by high bioavailability but reduced efficacy and increased toxicity. CONCLUSION IVGC still represents the standard of care in active/severe GO. Innovative biologicals, like monoclonal antibodies targeting the thyrotropin/Insulin-like growth factor-1 receptors or pro-inflammatory cytokines (e.g., Interleukin-6) should be compared with standard GC treatment with respect to short- and long-term efficacy, safety, costs, and global availability.
Collapse
Affiliation(s)
- Jan Längericht
- Department of Medicine I., Johannes Gutenberg University (JGU) Medical Center, Mainz, Rheinland-Pfalz, Germany
| | - Irene Krämer
- Department of Pharmacy, Johannes Gutenberg University (JGU) Medical Center, Mainz, Rheinland-Pfalz, Germany
| | | |
Collapse
|
26
|
Paik JS, Kim SE, Kim JH, Lee JY, Yang SW, Lee SB. Insulin-like growth factor-1 enhances the expression of functional TSH receptor in orbital fibroblasts from thyroid-associated ophthalmopathy. Immunobiology 2019; 225:151902. [PMID: 31899052 DOI: 10.1016/j.imbio.2019.151902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 01/09/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO), an autoimmune disease, occurs in approximately 50 % of patients with Graves' hyperthyroidism. Thyroid-stimulating hormone receptor (TSHR) that is expressed in orbital fibroblasts is the autoimmune target in the development of TAO. In addition to thyroid-stimulating immunoglobulin (TSI), insulin-like growth factor (IGF)-1 is also involved in the development of TAO. IGF-1 has been reported to potentiate the effects of thyroid-stimulating hormone (TSH) and TSI on TSHR signaling. In the current study, we investigated the effects of IGF-1 on the cell surface expression of the functional TSHR and its possible mechanism of action in human orbital fibroblasts. Our results show that orbital fibroblasts from the TAO patients expressed higher levels of IGF-1 receptor (IGF-R), compared to control subjects. Treatment with IGF-1 enhanced the expression of surface TSHR in orbital fibroblasts from TAO patients, but not from control subjects. In addition, treatment with IGF-1 increased the level of TSHR at both the protein and mRNA levels. Furthermore, pre-treatment with IGF-1 potentiated TSH-induced cAMP production, compared to cells that were treated with only TSH. Our results also show that pre-treatment with cycloheximide, an inhibitor of mRNA translation, partially, but not completely, inhibited the expression of TSHR on the cell surfaces of orbital fibroblasts from TAO patients. These collective results show that IGF-1enhances the cell surface expression of functional TSHR, not only by increasing TSHR expression, but also by inducing TSHR translocation to the plasma membrane in orbital fibroblasts from TAO.
Collapse
Affiliation(s)
- Ji Sun Paik
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Kim
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk-Woo Yang
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Beom Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Krieger CC, Boutin A, Jang D, Morgan SJ, Banga JP, Kahaly GJ, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. Arrestin-β-1 Physically Scaffolds TSH and IGF1 Receptors to Enable Crosstalk. Endocrinology 2019; 160:1468-1479. [PMID: 31127272 PMCID: PMC6542485 DOI: 10.1210/en.2019-00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023]
Abstract
Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-β-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted in biphasic dose-response stimulation of HA secretion. The high-potency phase was IGF1R dependent, and the low-potency phase was partly IGF1R independent. KSAb1 produced a monophasic dose-response stimulation of HA secretion, whose potency was lowered >20-fold after IGF1R knockdown. ARRB1 knockdown abolished M22's high-potency phase and lowered KSAb1's potency and efficacy. ARRB1 knockdown inhibited GO-Ig stimulation of HA secretion and of ERK phosphorylation. Last, ARRB1 was shown to be necessary for TSHR/IGF1R proximity. In contrast, ARRB2 knockdowns did not show these effects. Thus, TSHR must neighbor IGF1R for crosstalk in GO fibroblasts to occur, and this depends on ARRB1 acting as a scaffold. Similar scaffolding of TSHR and IGF1R by ARRB1 was found in human osteoblast-like cells and human thyrocytes. These findings support a model of TSHR/IGF1R crosstalk that may be a general mechanism for G-protein-coupled receptor/receptor tyrosine kinase crosstalk dependent on ARRB1.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - J Paul Banga
- Faculty of Life Sciences & Medicine, King’s College London, The Rayne Institute, London, United Kingdom
| | - George J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Effect of Weight Loss after Bariatric Surgery on Thyroid-Stimulating Hormone Levels in Euthyroid Patients with Morbid Obesity. Nutrients 2019; 11:nu11051121. [PMID: 31137484 PMCID: PMC6566754 DOI: 10.3390/nu11051121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with several endocrine abnormalities, including thyroid dysfunction. The objective of this study was to investigate the effect of weight loss after bariatric surgery on thyroid-stimulating hormone (TSH) levels in euthyroid patients with morbid obesity. We performed an observational study, evaluating patients with morbid obesity submitted to bariatric surgery. We included 129 patients (92 women) and 31 controls (21 women). Clinical, anthropometric, biochemical, and hormonal parameters were evaluated. The primary endpoint was circulating TSH (µU/mL). Fasting TSH levels were higher in the obese group (3.3 ± 0.2) than in the control group (2.1 ± 0.2). The mean excessive body mass index (BMI) loss (EBMIL) 12 months after bariatric surgery was 72.7 ± 2.1%. TSH levels significantly decreased in the obese patients after surgery; 3.3 ± 0.2 vs. 2.1 ± 0.2 before and 12 months after surgery, respectively. Free thyroxine (T4) (ng/dL) levels significantly decreased in the obese patients after surgery; 1.47 ± 0.02 vs. 1.12 ± 0.02 before and 12 months after surgery, respectively. TSH decreased significantly over time, and the decrement was associated with the EBMIL. In euthyroid patients with morbid obesity, weight loss induced by bariatric surgery promotes a significant decline of the increased TSH levels. This decrement of TSH is progressive over time after surgery and significantly associated with excess BMI loss.
Collapse
|
29
|
Krieger CC, Morgan SJ, Neumann S, Gershengorn MC. Thyroid Stimulating Hormone (TSH)/Insulin-like Growth Factor 1 (IGF1) Receptor Cross-talk in Human Cells. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2018; 2:29-33. [PMID: 30547142 PMCID: PMC6287758 DOI: 10.1016/j.coemr.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thyroid stimulating hormone and insulin-like growth factor 1 receptors (TSHRs and IGF1Rs, respectively) interact leading to additive or synergistic stimulation of cellular responses. Recent findings provide evidence that the interaction between TSHRs and IGF1Rs is similar to that described for other G protein-coupled receptors and receptor tyrosine kinases. These types of interactions occur at or proximal to the receptors and are designated "receptor cross-talk." Herein, we describe our studies in human thyrocytes, human retro-orbital fibroblasts from Graves' orbitopathy patients and a model cell line that support the concept of TSHR/IGF1R cross-talk. We also discuss how receptor cross-talk is involved in stimulation by a monoclonal TSHR-stimulating antibody and how targeting both receptors may lead to novel treatments of Graves' orbitopathy.
Collapse
Affiliation(s)
- Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah J. Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Löf C, Patyra K, Kero A, Kero J. Genetically modified mouse models to investigate thyroid development, function and growth. Best Pract Res Clin Endocrinol Metab 2018; 32:241-256. [PMID: 29779579 DOI: 10.1016/j.beem.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thyroid gland produces thyroid hormones (TH), which are essential regulators for growth, development and metabolism. The thyroid is mainly controlled by the thyroid-stimulating hormone (TSH) that binds to its receptor (TSHR) on thyrocytes and mediates its action via different G protein-mediated signaling pathways. TSH primarily activates the Gs-pathway, and at higher concentrations also the Gq/11-pathway, leading to an increase of intracellular cAMP and Ca2+, respectively. To date, the physiological importance of other G protein-mediated signaling pathways in thyrocytes is unclear. Congenital hypothyroidism (CH) is defined as the lack of TH at birth. In familial cases, high-throughput sequencing methods have facilitated the identification of novel mutations. Nevertheless, the precise etiology of CH yet remains unraveled in a proportion of cases. Genetically modified mouse models can reveal new pathophysiological mechanisms of thyroid diseases. Here, we will present an overview of genetic mouse models for thyroid diseases, which have provided crucial insights into thyroid gland development, function, and growth with a special focus on TSHR and microRNA signaling.
Collapse
Affiliation(s)
- C Löf
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - K Patyra
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - A Kero
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| | - J Kero
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland; Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.
| |
Collapse
|
31
|
Marcus-Samuels B, Krieger CC, Boutin A, Kahaly GJ, Neumann S, Gershengorn MC. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors. Thyroid 2018; 28:650-655. [PMID: 29631510 PMCID: PMC5952334 DOI: 10.1089/thy.2018.0089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. METHODS Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. RESULTS In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. CONCLUSIONS Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.
Collapse
Affiliation(s)
- Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Smith TJ. New advances in understanding thyroid-associated ophthalmopathy and the potential role for insulin-like growth factor-I receptor. F1000Res 2018; 7:134. [PMID: 29744034 PMCID: PMC5795270 DOI: 10.12688/f1000research.12787.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), a localized periocular manifestation of the autoimmune syndrome known as Graves’ disease, remains incompletely understood. Discussions of its pathogenesis are generally focused on the thyrotropin receptor, the proposed role for which is supported by substantial evidence. Considerations of any involvement of the insulin-like growth factor-I receptor (IGF-IR) in the disease are frequently contentious. In this brief, topically focused review, I have attempted to provide a balanced perspective based entirely on experimental results that either favor or refute involvement of IGF-IR in TAO. Discussion in this matter seems particularly timely since the currently available treatments of this disfiguring and potentially sight-threatening disease remain inadequate. Importantly, no medical therapy has thus far received approval from the US Food and Drug Administration. Results from a very recently published clinical trial assessing the safety and efficacy of teprotumumab, an inhibitory human anti–IGF-IR monoclonal antibody, in active, moderate to severe TAO are extremely encouraging. That double-masked, placebo-controlled study involved 88 patients and revealed unprecedented clinical responses in the improvement of proptosis and clinical activity as well as a favorable safety profile. Should those results prove reproducible in an ongoing phase III trial, therapeutic inhibition of IGF-IR could become the basis for paradigm-shifting treatment of this vexing disease.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|