1
|
Zhan T, Shen L, Zhang Y, Wan F, Qiu Y, Jin Q, Wu Y, Huang Y, Zhuang S. Decidual Disrupting Effects of Low-Dose Benzophenone-Type UV Filters in Human Endometrial Stromal Cells via ER/PR/FOXO1 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6464-6476. [PMID: 40127073 DOI: 10.1021/acs.est.4c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Exposure to endocrine disrupting chemicals (EDCs), particularly benzophenone (BP)-type UV filters, has been epidemiologically linked to endometrium-related reproductive risks in women. However, their effects on hormone-driven endometrial events and key receptor signaling at the human cellular level remain unexplored. Herein, using human primary endometrial stromal cells (HESCs), we investigated the disrupting effects of five BP congeners and deciphered the underlying mechanism on decidualization, a functional change of the endometrium preparing for pregnancy. BP-8, its two metabolites, BP-3, and BP-1 at 10 nM significantly disrupted progesterone-dependent decidualization in HESCs, marked by 1.5-1.8-fold and 2.2-2.6-fold upregulation of IGFBP-1 and LEFTY, respectively. Decidual transcriptional activators, WNT-FOXO1, were significantly induced by BPs, which are implicated in G2 phase cell arrest (from 3.26% to 8.93%) and apoptosis (from 12.29% to 25.61%). Mechanistically, the inhibition of estrogen receptor α (ERα) effectively alleviated these decidual disrupting effects. BPs increased the transcription of ERα and progesterone receptor (PR) signaling and enhanced nuclear translocation and interaction between ERα and PR during decidualization. The ERα-mediated enhancement of PR signaling activity by BPs was further validated in progesterone response element-luciferase transfected cells. Collectively, our findings elucidate the molecular pathway through which BPs disrupt endometrial decidualization via ERα/PR/FOXO1, providing critical mechanistic insights for the reproductive risk assessment of BPs and structurally related EDCs.
Collapse
Affiliation(s)
- Tingjie Zhan
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lilai Shen
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Fang Wan
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Qiu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qinyang Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yiqu Wu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Huang
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Tran DN, Hwang YJ, Kim KC, Li R, Marquardt RM, Chen C, Young SL, Lessey BA, Kim TH, Cheon YP, Jeong JW. GRB2 regulation of essential signaling pathways in the endometrium is critical for implantation and decidualization. Nat Commun 2025; 16:2192. [PMID: 40038241 PMCID: PMC11880417 DOI: 10.1038/s41467-025-57173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Over 75% of failed pregnancies involve implantation defects. Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein involved in signal transduction and cell communication. Here we show that the expression of GRB2 protein is lower in endometrium of infertile women with endometriosis compared to controls. Our mouse endometriosis model revealed that endometriosis development results to GRB2 loss in the eutopic endometrium. To understand the role of GRB2 in the uterus, we generated mice with conditional ablation of Grb2 in the Pgr positive cells (Grb2d/d). Grb2d/d mice were infertile due to implantation failure. Although ovarian functions were normal, Grb2d/d mice had a non-receptive endometrium due to progesterone resistance and dysregulation of steroid hormone and FOXA2 signaling pathways. Furthermore, our results were supported by findings of GRB2 attenuation in primary human endometrial stromal cells from women with endometriosis. Our results demonstrate that GRB2 is critical for endometrial receptivity and decidualization.
Collapse
Affiliation(s)
- Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yeon Jeong Hwang
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute of Basic Sciences, Sungshin Women's University, Seoul, South Korea
| | - Keun Cheon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rong Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Steven L Young
- Department of Obstetrics, Gynecology and Women's Health, Duke University, Durham, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute of Basic Sciences, Sungshin Women's University, Seoul, South Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
3
|
Xu S, Diao H, Xiong Y, Zhang C, Zhang Y, Zhang Y. The study on the clinical efficacy of endometrial receptivity analysis and influence factors of displaced window of implantation. Sci Rep 2025; 15:7326. [PMID: 40025209 PMCID: PMC11873133 DOI: 10.1038/s41598-025-91745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
The endometrial receptive status is critical for a successful embryo implantation, but it only last for a short period of time, and the window of implantation (WOI) of each woman changes individually, which will lead to poor outcomes of assisted reproduction. This so-called WOI can be detected by molecular diagnostic method, endometrial receptivity analysis (ERA), which was gradually applied to clinical practice. This study aimed to evaluate the clinical efficacy of personalized embryo transfer (pET) guided by ERA in patients with and without RIF. A total of 3605 patients with previous failed embryo transfer (ET) cycle in the reproductive medicine center of Renmin Hospital Hubei University of Medicine from January 2016 to October 2022 were retrospectively analyzed. The 3605 patients were divided into non-RIF group and RIF group, among which 782 patients who received ERA test underwent personalized embryo transfer (pET). The decision whether to accept ERA test or not was based on the patient's voluntary choice. We divided the 782 patients into normal WOI group and displaced WOI group according to the result of ERA test. The pregnancy outcomes were compared between the different groups. The age, number of previous ET cycle and serum E2/P ratio were mainly analyzed to investigate its relationship with displaced WOI. The clinical pregnancy rate and live birth rate in non-RIF with pET group were higher than that of non-RIF with non-personalized embryo transfer (npET) group (64.5% vs 58.3%, P = 0.025; 57.1% vs 48.3%, P = 0.003). The clinical pregnancy rate and the live birth rate in RIF with pET group were significantly higher than that of RIF with npET group (62.7% vs 49.3%, P < 0.001; 52.5% vs 40.4%, P < 0.001) after propensity score matching (PSM). The early abortion rate in the non-RIF with pET group was lower than that in the non-RIF with npET group (8.2% vs 13.0%, P = 0.038). There was a significant difference in age and the number of previous failed ET cycle between the normal WOI group and displaced WOI group (age: 32.26 vs 33.53 years, P < 0.001; the number of previous failed ET cycle: 1.68 vs 2.04, P < 0.001). Logistic regression analysis also showed that the age and number of previous failed ET cycles were positively correlated with displaced WOI. The displaced WOI rate increased gradually with the increase of age and number of previous failed ET cycle; the displaced WOI rate in the median group (4.46 < E2/P ≤ 10.39 pg/ng) was significantly lower than that in the other two groups (54.8% vs 40.6% vs 58.5%, P < 0.001). The clinical pregnancy rate and live birth rate of patients with previous failed ET cycle was improved after pET guided by ERA, especially in RIF patients; the early abortion rate of the non-RIF patient was reduced after pET guided by ERA. An appropriate E2/P ratio was beneficial for maintaining endometrial receptivity state, and the age and number of previous failed ET cycle was correlated with increased displaced WOI.
Collapse
Affiliation(s)
- Shaoyuan Xu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, 442000, Hubei, China
| | - Honglu Diao
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, 442000, Hubei, China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, China
| | - Changjun Zhang
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, 442000, Hubei, China
| | - Ying Zhang
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, 442000, Hubei, China.
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, China.
| |
Collapse
|
4
|
Chan HY, Robertson SA. Seminal fluid effects on uterine receptivity to embryo implantation: transcriptomic strategies to define molecular mechanisms. Reprod Fertil Dev 2025; 37:RD24162. [PMID: 40100824 DOI: 10.1071/rd24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Embryo implantation requires both a developmentally competent embryo and a receptive uterus. Impaired uterine receptivity is a common constraint on implantation success and reproductive outcome. Ovarian steroid hormones oestrogen and progesterone play a central role in establishing uterine receptivity, but other factors also contribute. One additional regulating factor is male partner seminal fluid. However, the full physiological impacts of seminal fluid on uterine receptivity and the specific molecular pathways involved are not yet completely defined. New advances in RNA-sequencing technologies provide a powerful means to examine how uterine tissues and cells respond to seminal fluid contact. Findings utilising sequencing technology provide strong cellular and molecular evidence in humans and mice that seminal fluid contact around the time of ovulation drives immune and vascular changes with potential to affect endometrial receptivity in the peri-implantation phase. This approach has led to the discovery of novel mediators and regulatory factors subsequently shown to facilitate embryo implantation in genetic mouse models, enabling functional validation. Here, we summarise the evidence from recent microarray and RNA-sequencing findings that seminal fluid contact can directly and indirectly impact the transcriptional state of endometrial tissue during the implantation window in mice and also in humans. Progress in elucidating the female reproductive tract response to seminal fluid will improve understanding of male partner effects on endometrial receptivity, and the knowledge gained will have practical applications for achieving healthy pregnancy and offspring outcomes.
Collapse
Affiliation(s)
- Hon Y Chan
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Dogan S, Walseth TF, Guvenc Tuna B, Uçar E, Kannan MS, Deshpande DA. CD38/cADPR-mediated calcium signaling in a human myometrial smooth muscle cell line, PHM1. IUBMB Life 2024; 76:1223-1233. [PMID: 39135342 PMCID: PMC11580371 DOI: 10.1002/iub.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 11/22/2024]
Abstract
Cyclic ADP-ribose (cADPR) has emerged as a calcium-regulating second messenger in smooth muscle cells. CD38 protein possesses ADP-ribosyl cyclase and cADPR hydrolase activities and mediates cADPR synthesis and degradation. We have previously shown that CD38 expression is regulated by estrogen and progesterone in the myometrium. Considering hormonal regulation in gestation, the objective of the present study was to determine the role of CD38/cADPR signaling in the regulation of intracellular calcium upon contractile agonist stimulation using immortalized pregnant human myometrial (PHM1) cells. Western blot, immunofluorescence, and biochemical studies confirmed CD38 expression and the presence of ADP-ribosyl cyclase (2.6 ± 0.1 pmol/mg) and cADPR hydrolase (26.8 ± 6.8 nmoles/mg/h) activities on the PHM1 cell membrane. Oxytocin, PGF2α, and ET-1 elicited [Ca2+]i responses, and 8-Br-cADPR, a cADPR antagonist significantly attenuated agonist-induced [Ca2+]i responses between 20% and 46% in average. The findings suggest that uterine contractile agonists mediate their effects in part through CD38/cADPR signaling to increase [Ca2+]i and presumably uterine contraction. As studies in humans are limited by the availability of myometrium from healthy donors, PHM1 cells form an in vitro model to study human myometrium.
Collapse
Affiliation(s)
- Soner Dogan
- Department of Medical Biology, School of MedicineYeditepe UniversityIstanbulTurkey
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Timothy F. Walseth
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of MedicineYeditepe UniversityIstanbulTurkey
| | - Eda Uçar
- Department of Medical Biology, School of MedicineYeditepe UniversityIstanbulTurkey
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Deepak A. Deshpande
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Center for Translational Medicine, Jane and Leonard Korman Lung CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Yusuf ANM, Amri MF, Ugusman A, Hamid AA, Mokhtar MH. Supraphysiological Dose of Testosterone Impairs the Expression and Distribution of Sex Steroid Receptors during Endometrial Receptivity Development in Female Sprague-Dawley Rats. Int J Mol Sci 2024; 25:10202. [PMID: 39337689 PMCID: PMC11432676 DOI: 10.3390/ijms251810202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to investigate the effect of a supraphysiological dose of testosterone on the levels of sex steroid hormones and the expression and distribution of sex steroid receptors in the uterus during the endometrial receptivity development period. In this study, adult female Sprague-Dawley rats (n = 24) were subcutaneously administered 1 mg/kg/day of testosterone alone or in combination with the inhibitors (finasteride or anastrozole or both) from day 1 to day 3 post-coitus, while a group of six untreated rats served as a control group. The rats were sacrificed on the evening of post-coital day 4 of to measure sex steroid hormone levels by ELISA. Meanwhile, gene expression and protein distribution of sex steroid receptors were analysed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), respectively. In this study, treatment with a supraphysiological dose of testosterone led to a significant reduction in oestrogen and progesterone levels compared to the control. The mRNA expression of the androgen receptor increased significantly in all treatment groups, while the mRNA expression of both the progesterone receptor and the oestrogen receptor-α decreased significantly in all treatment groups. The IHC findings of all sex steroid receptors were coherent with all mRNAs involved. This study shows that a supraphysiological dose of testosterone was able to interrupt the short period of the implantation window. This finding could serve as a basis for understanding the role of testosterone in endometrial receptivity in order to develop further therapeutic approaches targeting androgen-mediated disorders of endometrial receptivity.
Collapse
Affiliation(s)
- Allia Najmie Muhammad Yusuf
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mohd Fariz Amri
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Minisy FM, Shawki HH, Fujita T, Moustafa AM, Sener R, Nishio Y, Shimada IS, Saitoh S, Sugiura-Ogasawara M, Oishi H. Transcription Factor 23 is an Essential Determinant of Murine Term Parturition. Mol Cell Biol 2024; 44:316-333. [PMID: 39014976 PMCID: PMC11296541 DOI: 10.1080/10985549.2024.2376146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.
Collapse
Affiliation(s)
- Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Animal Genetic Resources, National Gene Bank of Egypt, ARC, Giza, Egypt
| | - Tsubasa Fujita
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ahmed M. Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rumeysa Sener
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youske Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Issei S. Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
Gomes VCL, Gilbert BM, Bernal C, Crissman KR, Sones JL. Estrogen and Progesterone Receptors Are Dysregulated at the BPH/5 Mouse Preeclamptic-Like Maternal-Fetal Interface. BIOLOGY 2024; 13:192. [PMID: 38534461 DOI: 10.3390/biology13030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The etiopathogenesis of preeclampsia, a leading hypertensive disorder of pregnancy, has been proposed to involve an abnormal circulating sex hormone profile and misexpression of placental estrogen and progesterone receptors (ER and PR, respectively). However, existing research is vastly confined to third trimester preeclamptic placentas. Consequently, the placental-uterine molecular crosstalk and the dynamic ER and PR expression pattern in the peri-conception period remain overlooked. Herein, our goal was to use the BPH/5 mouse to elucidate pre-pregnancy and early gestation Er and Pr dynamics in a preeclamptic-like uterus. BPH/5 females display low circulating estrogen concentration during proestrus, followed by early gestation hypoestrogenemia, hyperprogesteronemia, and a spontaneous preeclamptic-like phenotype. Preceding pregnancy, the gene encoding Er alpha (Erα, Esr1) is upregulated in the diestrual BPH/5 uterus. At the peak of decidualization, Esr1, Er beta (Erβ, Esr2), and Pr isoform B (Pr-B) were upregulated in the BPH/5 maternal-fetal interface. At the protein level, BPH/5 females display higher percentage of decidual cells with nuclear Erα expression, as well as Pr downregulation in the decidua, luminal and glandular epithelium. In conclusion, we provide evidence of disrupted sex hormone signaling in the peri-conception period of preeclamptic-like pregnancies, potentially shedding some light onto the intricate role of sex hormone signaling at unexplored timepoints of human preeclampsia.
Collapse
Affiliation(s)
- Viviane C L Gomes
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Bryce M Gilbert
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Carolina Bernal
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Kassandra R Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Jenny L Sones
- Equine Reproduction Laboratory, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
9
|
Li Q, Song M, Cao K, Zhang Q. A Potential Role of CD82/KAI1 during Uterine Decidualization in Mice. Curr Issues Mol Biol 2024; 46:1799-1809. [PMID: 38534734 DOI: 10.3390/cimb46030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
The tumor metastasis suppressor gene CD82/KAI1 has been demonstrated to impact human trophoblast invasion and migration. Communication between trophoblasts and decidual stromal cells plays a crucial role in controlling the normal invasiveness of trophoblasts. However, whether CD82/KAI1 is involved in decidualization and what role it plays remain unclear. CD82/KAI1 demonstrates specific spatiotemporal expression patterns in stromal cells undergoing decidualization during pregnancy. This is observed in both naturally pregnant females post-implantation and pseudopregnant mice undergoing induced decidualization, as detected through in situ hybridization and immunofluorescence. CD82/KAI1 expression showed a significant time-dependent increase in cultured stromal cells after 24 and 48 h of progesterone (P4) and estrogen (E2) treatment. This was accompanied by a notable upregulation of decidualization markers, including cyclin D3 and PR. After transducing stromal cells with the adenovirus-overexpressing CD82/KAI1 for 48 h, the expression of cyclin D3 protein increased. Meanwhile, there was an attenuated expression of CD82/KAI1 due to an adenovirus siRNA knockdown, whereas cyclin D3 and PR expressions were not affected. Our findings suggest a potential role of CD82/KAI1 in regulating the process of decidualization, providing insights into stromal cell differentiation.
Collapse
Affiliation(s)
- Qijun Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Mengyao Song
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cao
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| |
Collapse
|
10
|
Kim K, Kim S, Ahn T, Kim H, Shin SJ, Choi CH, Park S, Kim YB, No JH, Suh DH. A differential diagnosis between uterine leiomyoma and leiomyosarcoma using transcriptome analysis. BMC Cancer 2023; 23:1215. [PMID: 38066476 PMCID: PMC10709939 DOI: 10.1186/s12885-023-11394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The objective of this study was to estimate the accuracy of transcriptome-based classifier in differential diagnosis of uterine leiomyoma and leiomyosarcoma. We manually selected 114 normal uterine tissue and 31 leiomyosarcoma samples from publicly available transcriptome data in UCSC Xena as training/validation sets. We developed pre-processing procedure and gene selection method to sensitively find genes of larger variance in leiomyosarcoma than normal uterine tissues. Through our method, 17 genes were selected to build transcriptome-based classifier. The prediction accuracies of deep feedforward neural network (DNN), support vector machine (SVM), random forest (RF), and gradient boosting (GB) models were examined. We interpret the biological functionality of selected genes via network-based analysis using GeneMANIA. To validate the performance of trained model, we additionally collected 35 clinical samples of leiomyosarcoma and leiomyoma as a test set (18 + 17 as 1st and 2nd test sets). RESULTS We discovered genes expressed in a highly variable way in leiomyosarcoma while these genes are expressed in a conserved way in normal uterine samples. These genes were mainly associated with DNA replication. As gene selection and model training were made in leiomyosarcoma and uterine normal tissue, proving discriminant of ability between leiomyosarcoma and leiomyoma is necessary. Thus, further validation of trained model was conducted in newly collected clinical samples of leiomyosarcoma and leiomyoma. The DNN classifier performed sensitivity 0.88, 0.77 (8/9, 7/9) while the specificity 1.0 (8/8, 8/8) in two test data set supporting that the selected genes in conjunction with DNN classifier are well discriminating the difference between leiomyosarcoma and leiomyoma in clinical sample. CONCLUSION The transcriptome-based classifier accurately distinguished uterine leiomyosarcoma from leiomyoma. Our method can be helpful in clinical practice through the biopsy of sample in advance of surgery. Identification of leiomyosarcoma let the doctor avoid of laparoscopic surgery, thus it minimizes un-wanted tumor spread.
Collapse
Affiliation(s)
- Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sarah Kim
- Department of Life Science, Handong Global University, Pohang, Republic of Korea
| | - TaeJin Ahn
- Department of Life Science, Handong Global University, Pohang, Republic of Korea.
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - So-Jin Shin
- Department of Gynecology and Obstetrics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sungmin Park
- Department of Life Science, Handong Global University, Pohang, Republic of Korea
| | - Yong-Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
11
|
Chan HY, Tran HM, Breen J, Schjenken JE, Robertson SA. The endometrial transcriptome transition preceding receptivity to embryo implantation in mice. BMC Genomics 2023; 24:590. [PMID: 37794337 PMCID: PMC10552439 DOI: 10.1186/s12864-023-09698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Receptivity of the uterus is essential for embryo implantation and progression of mammalian pregnancy. Acquisition of receptivity involves major molecular and cellular changes in the endometrial lining of the uterus from a non-receptive state at ovulation, to a receptive state several days later. The precise molecular mechanisms underlying this transition and their upstream regulators remain to be fully characterized. Here, we aimed to generate a comprehensive profile of the endometrial transcriptome in the peri-ovulatory and peri-implantation states, to define the genes and gene pathways that are different between these states, and to identify new candidate upstream regulators of this transition, in the mouse. RESULTS High throughput RNA-sequencing was utilized to identify genes and pathways expressed in the endometrium of female C57Bl/6 mice at estrus and on day 3.5 post-coitum (pc) after mating with BALB/c males (n = 3-4 biological replicates). Compared to the endometrium at estrus, 388 genes were considered differentially expressed in the endometrium on day 3.5 post-coitum. The transcriptional changes indicated substantial modulation of uterine immune and vascular systems during the pre-implantation phase, with the functional terms Angiogenesis, Chemotaxis, and Lymphangiogenesis predominating. Ingenuity Pathway Analysis software predicted the activation of several upstream regulators previously shown to be involved in the transition to receptivity including various cytokines, ovarian steroid hormones, prostaglandin E2, and vascular endothelial growth factor A. Our analysis also revealed four candidate upstream regulators that have not previously been implicated in the acquisition of uterine receptivity, with growth differentiation factor 2, lysine acetyltransferase 6 A, and N-6 adenine-specific DNA methyltransferase 1 predicted to be activated, and peptidylprolyl isomerase F predicted to be inhibited. CONCLUSIONS This study confirms that the transcriptome of a receptive uterus is vastly different to the non-receptive uterus and identifies several genes, regulatory pathways, and upstream drivers not previously associated with implantation. The findings will inform further research to investigate the molecular mechanisms of uterine receptivity.
Collapse
Affiliation(s)
- Hon Yeung Chan
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Ha M Tran
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - James Breen
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - John E Schjenken
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, NSW, 2305, Australia
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sarah A Robertson
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Yang M, Ong J, Meng F, Zhang F, Shen H, Kitt K, Liu T, Tao W, Du P. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 2023; 186:4271-4288.e24. [PMID: 37699390 DOI: 10.1016/j.cell.2023.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.
Collapse
Affiliation(s)
- Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fanju Meng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma Co KG, Biberach an der Riss 88400, Germany
| | - Tengfei Liu
- Department of Research Beyond Borders, Boehringer Ingelheim (China) Investment Co., Ltd., Beijing 100027, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Acar N, Soylu H, Avci S, Ustunel I. Expressions of Notch signalling pathway members during early pregnancy in mice. J Mol Histol 2023; 54:297-312. [PMID: 37344690 DOI: 10.1007/s10735-023-10132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Although pregnancy is initiated and maintained through highly complex mechanisms, it is essential to understand the events that occur before and during early pregnancy to understand a healthy implantation process. The Notch signal, thought to be involved in this process, is frequently the subject of research with its different aspects. To better understand the role of Notch signaling in the peri-implantation period of the mouse uterus, we investigated the state of expression and localization of Notch 3, Notch 4, Rbp-J, Hes1, Hes7, Hey2, HeyL, and Fbw7 in the uterus and implantation sites in early pregnancy. Balb/C mice were divided into groups D1, D4, D5, D6, and D8. For D5 and D6 groups, implantation sites were identified by intravenous injection of Chicago blue. IHC, WB, and QRT-PCR methods were used. Notch 3 was very strong positive on the 4th day of pregnancy. Notch 4 was highly expressed on days 4, 5, 6, and 8 of pregnancy when P4 levels were high. Hes 1 level was at the lowest on the 4th day of pregnancy. Hes 7 protein expression gradually increased from D1 to D8 in the uteri and implantation sites. Hey 2 expression was at the highest level on the 1st and 4th days. Hey L expression was on the apical of the glands. Fbxw7 that expression was high on the 1st and 4th days of pregnancy. Notch signaling may play an essential role in regulating endometrial receptivity. In addition, our Hes7 results are new to the literature.
Collapse
Affiliation(s)
- Nuray Acar
- School of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey.
| | - Hakan Soylu
- School of Medicine, Department of Histology and Embryology, Duzce University, Duzce, Turkey
| | - Sema Avci
- School of Medicine, Department of Histology and Embryology, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ismail Ustunel
- School of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Yusuf ANM, Amri MF, Ugusman A, Hamid AA, Wahab NA, Mokhtar MH. Hyperandrogenism and Its Possible Effects on Endometrial Receptivity: A Review. Int J Mol Sci 2023; 24:12026. [PMID: 37569402 PMCID: PMC10419014 DOI: 10.3390/ijms241512026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial receptivity is a state of the endometrium defined by its readiness for embryo implantation. When the receptivity of the endometrium is impaired due to hyperandrogenism or androgen excess, this condition can lead to pregnancy loss or infertility. Hyperandrogenism encompasses a wide range of clinical manifestations, including polycystic ovary syndrome (PCOS), idiopathic hirsutism, hirsutism and hyperandrogaenemia, non-classical congenital adrenal hyperplasia, hyperandrogenism, insulin resistance, acanthosis nigricans (HAIR-AN), ovarian or adrenal androgen-secreting neoplasms, Cushing's syndrome, and hyperprolactinaemia. Recurrent miscarriages have been shown to be closely related to elevated testosterone levels, which alter the endometrial milieu so that it is less favourable for embryo implantation. There are mechanisms for endometrial receptivity that are affected by excess androgen. The HOXA gene, aVβ3 integrin, CDK signalling pathway, MECA-79, and MAGEA-11 were the genes and proteins affect endometrial receptivity in the presence of a hyperandrogenic state. In this review, we would like to explore the other manifestations of androgen excess focusing on causes other than PCOS and learn possible mechanisms of endometrial receptivity behind androgen excess leading to pregnancy loss or infertility.
Collapse
Affiliation(s)
- Allia Najmie Muhammad Yusuf
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mohd Fariz Amri
- Department of Pathology, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Wan S, Sun Y, Zong J, Meng W, Yan J, Chen K, Wang S, Guo D, Xiao Z, Zhou Q, Yin Z, Yang M. METTL3-dependent m 6A methylation facilitates uterine receptivity and female fertility via balancing estrogen and progesterone signaling. Cell Death Dis 2023; 14:349. [PMID: 37270544 DOI: 10.1038/s41419-023-05866-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Infertility is a worldwide reproductive health problem and there are still many unknown etiologies of infertility. In recent years, increasing evidence emerged and confirmed that epigenetic regulation played a leading role in reproduction. However, the function of m6A modification in infertility remains unknown. Here we report that METTL3-dependent m6A methylation plays an essential role in female fertility via balancing the estrogen and progesterone signaling. Analysis of GEO datasets reveal a significant downregulation of METTL3 expression in the uterus of infertile women with endometriosis or recurrent implantation failure. Conditional deletion of Mettl3 in female reproductive tract by using a Pgr-Cre driver results in infertility due to compromised uterine endometrium receptivity and decidualization. m6A-seq analysis of the uterus identifies the 3'UTR of several estrogen-responsive genes with METTL3-dependent m6A modification, like Elf3 and Celsr2, whose mRNAs become more stable upon Mettl3 depletion. However, the decreased expression levels of PR and its target genes, including Myc, in the endometrium of Mettl3 cKO mice indicate a deficiency in progesterone responsiveness. In vitro, Myc overexpression could partially compensate for uterine decidualization failure caused by Mettl3 deficiency. Collectively, this study reveals the role of METTL3-dependent m6A modification in female fertility and provides insight into the pathology of infertility and pregnancy management.
Collapse
Affiliation(s)
- Shuo Wan
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinbao Zong
- Clinical Laboratory and Central Laboratory, the Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266033, China
| | - Wanqing Meng
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiacong Yan
- Reproductive Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Kexin Chen
- Reproductive Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Sanfeng Wang
- Guangdong Women and Children Hospital, Guangzhou, 510010, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, 510123, Guangzhou, China
| | - Zhiqiang Xiao
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qinghua Zhou
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Meixiang Yang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
16
|
An In Vivo Screening Model for Investigation of Pathophysiology of Human Implantation Failure. Biomolecules 2022; 13:biom13010079. [PMID: 36671464 PMCID: PMC9856033 DOI: 10.3390/biom13010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
To improve current infertility treatments, it is important to understand the pathophysiology of implantation failure. However, many molecules are involved in the normal biological process of implantation and the roles of each molecule and the molecular mechanism are not fully understood. This review highlights the hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E) vector, which uses inactivated viral particles as a local and transient gene transfer system to the murine uterus during the implantation period in order to investigate the molecular mechanism of implantation. In vivo screening in mice using the HVJ-E vector system suggests that signal transducer and activator of transcription-3 (Stat-3) could be a diagnostic and therapeutic target for women with a history of implantation failure. The HVJ-E vector system hardly induces complete defects in genes; however, it not only suppresses but also transiently overexpresses some genes in the murine uterus. These features may be useful in investigating the pathophysiology of implantation failure in women.
Collapse
|
17
|
Lee SH, Lim CL, Shen W, Tan SMX, Woo ARE, Yap YHY, Sian CAS, Goh WWB, Yu WP, Li L, Lin VCL. Activation function 1 of progesterone receptor is required for progesterone antagonism of oestrogen action in the uterus. BMC Biol 2022; 20:222. [PMID: 36199058 PMCID: PMC9535881 DOI: 10.1186/s12915-022-01410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progesterone receptor (PGR) is a master regulator of uterine function through antagonistic and synergistic interplays with oestrogen receptors. PGR action is primarily mediated by activation functions AF1 and AF2, but their physiological significance is unknown. RESULTS We report the first study of AF1 function in mice. The AF1 mutant mice are infertile with impaired implantation and decidualization. This is associated with a delay in the cessation of epithelial proliferation and in the initiation of stromal proliferation at preimplantation. Despite tissue selective effect on PGR target genes, AF1 mutations caused global loss of the antioestrogenic activity of progesterone in both pregnant and ovariectomized models. Importantly, the study provides evidence that PGR can exert an antioestrogenic effect by genomic inhibition of Esr1 and Greb1 expression. ChIP-Seq data mining reveals intermingled PGR and ESR1 binding on Esr1 and Greb1 gene enhancers. Chromatin conformation analysis shows reduced interactions in these genes' loci in the mutant, coinciding with their upregulations. CONCLUSION AF1 mediates genomic inhibition of ESR1 action globally whilst it also has tissue-selective effect on PGR target genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Chew Leng Lim
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei Shen
- grid.35155.370000 0004 1790 4137College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Samuel Ming Xuan Tan
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Amanda Rui En Woo
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Yeannie H. Y. Yap
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore ,grid.459705.a0000 0004 0366 8575Present Address: Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Caitlyn Ang Su Sian
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wilson Wen Bin Goh
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei-Ping Yu
- grid.185448.40000 0004 0637 0221Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Li Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Valerie C. L. Lin
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
18
|
Fu K, Chen X, Guo W, Zhou Z, Zhang Y, Ji T, Yang P, Tian X, Wang W, Zou Y. Effects of N Acetylcysteine on the Expression of Genes Associated with Reproductive Performance in the Goat Uterus during Early Gestation. Animals (Basel) 2022; 12:2431. [PMID: 36139290 PMCID: PMC9495183 DOI: 10.3390/ani12182431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
N acetylcysteine (NAC) affects antioxidation and reactive oxygen species scavenging in the body and thereby promotes embryonic development and implantation and inhibits inflammation. The mechanism through which NAC regulates reproductive performance in the uteri of goats during early gestation remains unclear. In this study, the treatment group was fed 0.07% NAC for the first 35 days of gestation, whereas the control group received no NAC supplementation. The regulatory genes and key pathways associated with goat reproductive performance under NAC supplementation were identified by RNA-seq. RT-qPCR was used to verify the sequencing results and subsequently construct tissue expression profiles of the relevant genes. RNA-seq identified 19,796 genes coexpressed in the control and treatment groups and 1318 differentially expressed genes (DEGs), including 787 and 531 DEGs enriched in the treatment and control groups, respectively. A GO analysis revealed that the identified genes mapped to pathways such as cell activation, cytokine production, cell mitotic processes, and angiogenesis, and a KEGG enrichment analysis showed that the DEGs were enriched in pathways associated with reproductive regulation, immune regulation, resistance to oxidative stress, and cell adhesion. The RT-qPCR analysis showed that BDNF and CSF-1 were most highly expressed in the uterus, that WIF1 and ESR2 showed low expression in the uterus, and that CTSS, PTX3, and TGFβ-3 were most highly expressed in the oviduct, which indicated that these genes may be directly or indirectly involved in the modulation of reproduction in early-gestation goats. These findings provide fundamental data for the NAC-mediated modulation of the reproductive performance of goats during early gestation.
Collapse
Affiliation(s)
- Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhinan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Peifang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
19
|
Zhao F, Grimm SA, Jia S, Yao HHC. Contribution of the Wolffian duct mesenchyme to the formation of the female reproductive tract. PNAS NEXUS 2022; 1:pgac182. [PMID: 36204418 PMCID: PMC9523451 DOI: 10.1093/pnasnexus/pgac182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
The female reproductive tract develops from its embryonic precursor, the Müllerian duct. In close proximity to the Müllerian duct lies the precursor for the male reproductive tract, the Wolffian duct, which is eliminated in the female embryo during sexual differentiation. We discovered that a component of the Wolffian duct, its mesenchyme, is not eliminated after sexual differentiation. Instead, the Wolffian duct mesenchyme underwent changes in transcriptome and chromatin accessibility from male tract to female tract identity, and became a unique mesenchymal population in the female reproductive tract with localization and transcriptome distinct from the mesenchyme derived from the Müllerian duct. Partial ablation of the Wolffian duct mesenchyme stunted the growth of the fetal female reproductive tract in ex vivo organ culture. These findings reveal a new fetal origin of mesenchymal tissues for female reproductive tract formation and reshape our understanding of sexual differentiation of reproductive tracts.
Collapse
Affiliation(s)
- Fei Zhao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Shua Jia
- Present address: Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
20
|
Abou-Fadel J, Jiang X, Padarti A, Goswami DG, Smith M, Grajeda B, Bhalli M, Le A, Walker WE, Zhang J. mPR-Specific Actions Influence Maintenance of the Blood–Brain Barrier (BBB). Int J Mol Sci 2022; 23:ijms23179684. [PMID: 36077089 PMCID: PMC9456378 DOI: 10.3390/ijms23179684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristically incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early hemorrhagic events.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Dinesh G. Goswami
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Wendy E. Walker
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-915-215-4197
| |
Collapse
|
21
|
Matsuo M, Yuan J, Kim YS, Dewar A, Fujita H, Dey SK, Sun X. Targeted depletion of uterine glandular Foxa2 induces embryonic diapause in mice. eLife 2022; 11:78277. [PMID: 35861728 PMCID: PMC9355561 DOI: 10.7554/elife.78277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Embryonic diapause is a reproductive strategy in which embryo development and growth is temporarily arrested within the uterus to ensure the survival of neonates and mothers during unfavorable conditions. Pregnancy is reinitiated when conditions become favorable for neonatal survival. The mechanism of how the uterus enters diapause in various species remains unclear. Mice with uterine depletion of Foxa2, a transcription factor, are infertile. In this study, we show that dormant blastocysts are recovered from these mice on day 8 of pregnancy with persistent expression of uterine Msx1, a gene critical to maintaining the uterine quiescent state, suggesting that these mice enter embryonic diapause. Leukemia inhibitory factor (LIF) can resume implantation in these mice. Although estrogen is critical for implantation in progesterone-primed uterus, our current model reveals that FOXA2-independent estrogenic effects are detrimental to sustaining uterine quiescence. Interestingly, progesterone and anti-estrogen can prolong uterine quiescence in the absence of FOXA2. Although we find that Msx1 expression persists in the uterus deficient in Foxa2, the complex relationship of FOXA2 with Msx genes and estrogen receptors remains to be explored.
Collapse
Affiliation(s)
- Mitsunori Matsuo
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jia Yuan
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yeon Sun Kim
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Amanda Dewar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
22
|
Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022; 14:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women of reproductive age. Its etiology remains unclear. It is suggested that environmental factors, and particularly the intrauterine environment, play key roles in PCOS development. Besides the role of androgens in PCOS pathogenesis, exposure to endocrine disruptors, as is Bisphenol A, could also contribute to its development. Although PCOS is considered one of the leading causes of ovarian infertility, many PCOS patients can get pregnant. Some of them by natural conception and others by assisted reproductive technique treatments. As hyperandrogenism (one of PCOS main features) affects ovarian and uterine functions, PCOS women, despite reaching pregnancy, could present high-risk pregnancies, including implantation failure, an increased risk of gestational diabetes, preeclampsia, and preterm birth. Moreover, hyperandrogenism may also be maintained in these women during pregnancy. Therefore, as an altered uterine milieu, including hormonal imbalance, could affect the developing organisms, monitoring these patients throughout pregnancy and their offspring development is highly relevant. The present review focuses on the impact of androgenism and PCOS on fertility issues and pregnancy-related outcomes and offspring development. The evidence suggests that the increased risk of pregnancy complications and adverse offspring outcomes of PCOS women would be due to the factors involved in the syndrome pathogenesis and the related co-morbidities. A better understanding of the involved mechanisms is still needed and could contribute to a better management of these women and their offspring. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Giselle A Abruzzese
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aimé F Silva
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela E Velazquez
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-José Ferrer
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Huang P, Deng W, Bao H, Lin Z, Liu M, Wu J, Zhou X, Qiao M, Yang Y, Cai H, Rao F, Chen J, Chen D, Lu J, Wang H, Qin A, Kong S. SOX4 facilitates PGR protein stability and FOXO1 expression conducive for human endometrial decidualization. eLife 2022; 11:72073. [PMID: 35244538 PMCID: PMC8923662 DOI: 10.7554/elife.72073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
The establishment of pregnancy in human necessitates appropriate decidualization of stromal cells, which involves steroids regulated periodic transformation of endometrial stromal cells during the menstrual cycle. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of decidualization in humans is yet to be fully elucidated. In this investigation, we document that SOX4 is a key regulator of human endometrial stromal cells decidualization by directly regulating FOXO1 expression as revealed by whole genomic binding of SOX4 assay and RNA sequencing. Besides, our immunoprecipitation and mass spectrometry results unravel that SOX4 modulates progesterone receptor (PGR) stability through repressing E3 ubiquitin ligase HERC4-mediated degradation. More importantly, we provide evidence that dysregulated SOX4–HERC4–PGR axis is a potential cause of defective decidualization and recurrent implantation failure in in-vitro fertilization (IVF) patients. In summary, this study evidences that SOX4 is a new and critical regulator for human endometrial decidualization, and provides insightful information for the pathology of decidualization-related infertility and will pave the way for pregnancy improvement.
Collapse
Affiliation(s)
- Pinxiu Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbo Deng
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Haili Bao
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Zhong Lin
- Department of Reproductive Medicine, Liuzhou Maternity and Child Health Hospital, Liuzhou, China
| | - Mengying Liu
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Jinxiang Wu
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Manting Qiao
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Yihua Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han Cai
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Faiza Rao
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua Lu
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Haibin Wang
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Aiping Qin
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuangbo Kong
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Yoo JY, Kim TH, Shin JH, Marquardt RM, Müller U, Fazleabas AT, Young SL, Lessey BA, Yoon HG, Jeong JW. Loss of MIG-6 results in endometrial progesterone resistance via ERBB2. Nat Commun 2022; 13:1101. [PMID: 35232969 PMCID: PMC8888616 DOI: 10.1038/s41467-022-28608-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects. Female subfertility is highly associated with endometriosis. Here the authors show that progesterone-induced MIG-6 is reduced in endometrium of infertile women and non-human primates with endometriosis, and in a mouse model find that Erbb2 is the key mediator of Mig-6 loss induced endometriosis-related infertility.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Guro Hospital, Korea University Medical Center, Seoul, South Korea
| | - Ryan M Marquardt
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
25
|
Kim TH, Young SL, Sasaki T, Deaton JL, Schammel DP, Palomino WA, Jeong JW, Lessey BA. Role of SIRT1 and Progesterone Resistance in Normal and Abnormal Endometrium. J Clin Endocrinol Metab 2022; 107:788-800. [PMID: 34665857 PMCID: PMC8851922 DOI: 10.1210/clinem/dgab753] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Progesterone resistance, a known pathologic condition associated with a reduced cellular response to progesterone and heightened estrogen responses, appears to have a normal physiologic role in mammalian reproduction. The molecular mechanism responsible for progesterone resistance in normal and abnormal endometrium remains unclear. OBJECTIVE To examine the roles of sirtuin-1 (SIRT1) in normal endometrium as well as endometrium associated with infertility and endometriosis, as an epigenetic modulator associated with progesterone resistance. METHODS SIRT1 expression was examined by Western blot, quantitative real-time polymerase chain reaction, and immunohistochemistry in mouse uterus and human endometrium. Mice with uterine specific Sirt1 overexpression were developed to examine SIRT1's role in endometrial function and endometriosis development. EX-527, a SIRT1 inhibitor, and SRT1720, a SIRT1 agonist, were also used to evaluate SIRT1 effect on endometriosis. RESULTS In normal healthy women, endometrial SIRT1 is expressed only during menses. SIRT1 was dramatically overexpressed in the endometrium from women with endometriosis in both the epithelium and stroma. In mice, SIRT1 is expressed at the time of implantation between day 4.5 and 5.5 of pregnancy. Overexpression of SIRT1 in the mouse uterus leads to subfertility due to implantation failure, decidualization defects and progesterone resistance. SIRT1 overexpression in endometriotic lesions promotes worsening endometriosis development. EX-527 significantly reduced the number of endometriotic lesions in the mouse endometriosis model. CONCLUSIONS SIRT1 expression and progesterone resistance appears to play roles in normal endometrial functions. Aberrant SIRT1 expression contributes to progesterone resistance and may participate in the pathophysiology of endometriosis. SIRT1 is a novel and targetable protein for the diagnosis as well as treatment of endometriosis and the associated infertility seen in this disease.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Jeffrey L Deaton
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | | | - Wilder Alberto Palomino
- Institute for Maternal and Child Research, Reproductive Medicine and Infertility Unit, University of Chile & Department of Obstetrics and Gynecology, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Correspondence: Jae-Wook Jeong, PhD, Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
- Bruce A. Lessey, MD, PhD, 1 Medical Center Blvd, 4th Floor Watlington Hall, Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| |
Collapse
|
26
|
Tracing the cis-regulatory changes underlying the endometrial control of placental invasion. Proc Natl Acad Sci U S A 2022; 119:2111256119. [PMID: 35110402 PMCID: PMC8832988 DOI: 10.1073/pnas.2111256119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Among eutherian (placental) mammals, placental embedding into the maternal endometrium exhibits great differences, from being deeply invasive (e.g., humans) to noninvasive (e.g., cattle). The degree of invasion of placental trophoblasts is positively correlated with the rate of cancer malignancy. Previously, we have shown that fibroblasts from different species offer different levels of resistance to the invading trophoblasts as well as to cancer cell invasion. Here we present a comparative genomic investigation revealing cis-regulatory elements underlying these interspecies differences in invasibility. We identify transcription factors that regulate proinvasibility and antiinvasibility genes in stromal cells. Using an in vitro invasibility assay combined with CRISPR-Cas9 gene knockout, we found that the transcription factors GATA2 and TFDP1 strongly influence the invasibility of endometrial and skin fibroblasts. This work identifies genomic mechanisms explaining species differences in stromal invasibility, paving the way to therapies targeting stromal characteristics to regulate placental invasion, wound healing, and cancer dissemination.
Collapse
|
27
|
Aikawa S, Hirota Y, Fukui Y, Ishizawa C, IIda R, Kaku T, Hirata T, Akaeda S, Hiraoka T, Matsuo M, Osuga Y. A gene network of uterine luminal epithelium organizes mouse blastocyst implantation. Reprod Med Biol 2022; 21:e12435. [PMID: 35386370 PMCID: PMC8967306 DOI: 10.1002/rmb2.12435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose The receptive endometrium is critical for blastocyst implantation. In mice, after blastocysts enter the uterine cavities on day 4 of pregnancy (day 1 = vaginal plug), blastocyst attachment is completed within 24 h, accompanied by dynamic interactions between the uterine luminal epithelium and the blastocysts. Any failures in this process compromise subsequent pregnancy outcomes. Here, we performed comprehensive analyses of gene expression at the luminal epithelium in the peri-implantation period. Methods RNA-seq combined with laser microdissection (LMD) was used to reveal unique gene expression kinetics in the epithelium. Results We found that the prereceptive epithelium on day 3 specifically expresses cell cycle-related genes. In addition, days 3 and 4 epithelia express glutathione pathway-related genes, which are protective against oxidative stresses. In contrast, day 5 epithelium expresses genes involved in glycolysis and the regulation of cell proliferation. The genes highly expressed on days 3 and 4 compared to day 5 are related to progesterone receptor signaling, and the genes highly expressed on day 5 compared to days 3 and 4 are associated with the ones regulated by H3K27me3. Conclusions These results suggest that specific gene expression patterns govern uterine functions during early pregnancy, contributing to implantation success.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasushi Hirota
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yamato Fukui
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Chihiro Ishizawa
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Rei IIda
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuaki Kaku
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoyuki Hirata
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Shun Akaeda
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Takehiro Hiraoka
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Mitsunori Matsuo
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yutaka Osuga
- Department of Obstetrics and GynecologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
28
|
Izmailova LS, Gaidamaka AO, Serbina OO, Vorotelyak EA. Effect of Hormonal Background on the Expression of Sex Hormone Receptors and the Migration Potential of Mouse Endometrial Epithelial and Stromal Cells In Vitro. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
30
|
Bisphenol A Analogues Suppress Spheroid Attachment on Human Endometrial Epithelial Cells through Modulation of Steroid Hormone Receptors Signaling Pathway. Cells 2021; 10:cells10112882. [PMID: 34831106 PMCID: PMC8616109 DOI: 10.3390/cells10112882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor, widely used in various consumer products and ubiquitously found in air, water, food, dust, and sewage leachates. Recently, several countries have restricted the use of BPA and replaced them with bisphenol S (BPS) and bisphenol F (BPF), which have a similar chemical structure to BPA. Compared to BPA, both BPS and BPF have weaker estrogenic effects, but their effects on human reproductive function including endometrial receptivity and embryo implantation still remain largely unknown. We used an in vitro spheroid (blastocyst surrogate) co-culture assay to investigate the effects of BPA, BPS, and BPF on spheroid attachment on human endometrial epithelial cells, and further delineated their role on steroid hormone receptor expression. We also used transcriptomics to investigate the effects of BPA, BPS, and BPF on the transcriptome of human endometrial cells. We found that bisphenol treatment in human endometrial Ishikawa cells altered estrogen receptor alpha (ERα) signaling and upregulated progesterone receptors (PR). Bisphenols suppressed spheroid attachment onto Ishikawa cells, which was reversed by the downregulation of PR through PR siRNA. Overall, we found that bisphenol compounds can affect human endometrial epithelial cell receptivity through the modulation of steroid hormone receptor function leading to impaired embryo implantation.
Collapse
|
31
|
Namiki T, Kamoshita M, Kageyama A, Terakawa J, Ito J, Kashiwazaki N. Utility of progesterone receptor-ires-Cre to generate conditional knockout mice for uterine study. Anim Sci J 2021; 92:e13615. [PMID: 34402137 PMCID: PMC9286405 DOI: 10.1111/asj.13615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
In mice, the conditional knockout strategy using the Cre-loxP system is useful for various types of research. The Cre mouse line with progesterone receptor promoter (PgrCre ) has been widely used to produce specific uterine gene-deficient mice, but in the Cre line, endogenous Pgr gene is replaced by Cre recombinase gene, which makes the breeding of homozygous mice (PgrCre/Cre ) difficult because they are infertile. Yang et al. (2013, https://10.1016/j.cell.2013.04.017) reported the generation of another PgriresCre mouse line that still has endogenous Pgr gene, and they inserted Cre recombinase downstream of the Pgr gene via an internal ribosome entry site (IRES). It is possible that this new PgriresCre line would be useful for uterine research as the mice can be bred as homozygotes (PgriresCre/iresCre ). Herein, we confirmed the PgriresCre mice effectively directed recombination in the female reproductive tract and was capable of genetic alteration in the endometrium that enables the studies of its uterine function. Our findings demonstrate that the new PgriresCre mouse line is also useful for the generation of uterine-specific knockout mice. The findings using PgriresCre mouse will contribute to the understanding of reproductive systems and diseases in humans and domestic animals.
Collapse
Affiliation(s)
- Takafumi Namiki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Maki Kamoshita
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Atsuko Kageyama
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| |
Collapse
|
32
|
Wu JX, Lin S, Kong SB. Psychological Stress and Functional Endometrial Disorders: Update of Mechanism Insights. Front Endocrinol (Lausanne) 2021; 12:690255. [PMID: 34413829 PMCID: PMC8369421 DOI: 10.3389/fendo.2021.690255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
The human endometrium plays a vital role in providing the site for embryo implantation and maintaining the normal development and survival of the embryo. Recent studies have shown that stress is a common factor for the development of unexplained reproductive disorders. The nonreceptive endometrium and disturbed early maternal-fetal interaction might lead to infertility including the repeated embryo implantation failure and recurrent spontaneous abortion, or late pregnancy complications, thereby affecting the quality of life as well as the psychological status of the affected individuals. Additionally, psychological stress might also adversely affect female reproductive health. In recent years, several basic and clinical studies have tried to investigate the harm caused by psychological stress to reproductive health, however, the mechanism is still unclear. Here, we review the relationship between psychological stress and endometrial dysfunction, and its consequent effects on female infertility to provide new insights for clinical therapeutic interventions in the future.
Collapse
Affiliation(s)
- Jin-xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Shuang-bo Kong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Ye Q, Zeng X, Wang S, Zeng X, Yang G, Ye C, Cai S, Chen M, Li S, Qiao S. Butyrate drives the acetylation of histone H3K9 to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells. FASEB J 2021; 35:e21316. [PMID: 33433947 DOI: 10.1096/fj.202000444r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Maintaining ovarian steroidogenesis is of critical importance, considering that steroid hormones are required for successful establishment and maintenance of pregnancy and proper development of embryos and fetuses. Investigating the mechanism that butyrate modulates the ovarian steroidogenesis is beneficial for understanding the impact of lipid nutrition on steroidogenesis. Herein, we identified that butyrate improved estradiol and progesterone synthesis in rat primary ovarian granulosa cells and human granulosa KGN cells and discovered the related mechanism. Our data indicated that butyrate was sensed by GPR41 and GPR43 in ovarian granulosa cells. Butyrate primarily upregulated the acetylation of histone H3K9 (H3K9ac). Chromatin immune-precipitation and sequencing (ChIP-seq) data of H3K9ac revealed the influenced pathways involving in the mitochondrial function (including cellular metabolism and steroidogenesis) and cellular antioxidant capacity. Additionally, increasing H3K9ac by butyrate further stimulated the PPARγ/CD36/StAR pathways to increase ovarian steroidogenesis and activated PGC1α to enhance mitochondrial dynamics and alleviate oxidative damage. The improvement in antioxidant capacity and mitochondrial dynamics by butyrate enhanced ovarian steroidogenesis. Collectively, butyrate triggers histone H3K9ac to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shuai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| |
Collapse
|
34
|
Zhang J, Abou-Fadel JS. Calm the raging hormone - A new therapeutic strategy involving progesterone-signaling for hemorrhagic CCMs. VESSEL PLUS 2021; 5:48. [PMID: 35098046 DOI: 10.20517/2574-1209.2021.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cerebral cavernous malformations (CCMs), one of the most common vascular malformations, are characterized by abnormally dilated intracranial microvascular capillaries resulting in increased susceptibility to hemorrhagic stroke. As an autosomal dominant disorder with incomplete penetrance, the majority of CCMs gene mutation carriers are largely asymptomatic but when symptoms occur, the disease has typically reached the stage of focal hemorrhage with irreversible brain damage, while the molecular "trigger" initiating the occurrence of CCM pathology remain elusive. Currently, the invasive neurosurgery removal of CCM lesions is the only option for the treatment, despite the recurrence of the worse symptoms frequently occurring after surgery. Therefore, there is a grave need for identification of molecular targets for therapeutic treatment and biomarkers as risk predictors for hemorrhagic stroke prevention. Based on reported various perturbed angiogenic signaling cascades mediated by the CCM signaling complex (CSC), there have been many proposed candidate drugs, targeting potentially angiogenic-relevant signaling pathways dysregulated by loss of function of one of the CCM proteins, which might not be enough to correct the pathological phenotype, hemorrhagic CCMs. In this review, we describe a new paradigm for the mechanism of hemorrhagic CCM lesions, and propose a new concept for the assurance of the CSC-stability to prevent the devastating outcome of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Johnathan S Abou-Fadel
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
35
|
Sharma CR, Balasinor NH, Inamdar Doddamani LS. High, not low-dose of stanozolol (Anabolic - androgenic steroid) impedes embryo implantation by attenuating endometrial receptivity in the mouse, Mus musculus. Steroids 2021; 165:108752. [PMID: 33098822 DOI: 10.1016/j.steroids.2020.108752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 11/27/2022]
Abstract
The present investigation is aimed at evaluating the efficacy of one of the anabolic -androgenic steroids, stanozolol (ST), on establishment and maintenance of pregnancy in mice. A total of 40 female mice were assigned to three experimental groups. Stanozolol was dosed subcutaneously (low-dose, 0.5 mg/kg bwt; high-dose, 5.0 mg/kg bwt or 1% alcohol-baseline control) for 30 consecutive days. On the 31st day, treatment was withdrawn. The estrous cycle was disrupted in both treatment groups and its resumption was dose dependent. Following estrous resumption, mice were allowed to mate. Results reveal that the low-dose ST-treated mice maintained gestation until term with reduced litter size, while high-dose-treated mice divulged vaginal plug at frequent intervals, indicating conception failure. Because pregnancy failure was noticed in high-dose-treated mice, they were autopsied on GD1.5 and 4.5. Interestingly, neither dose of stanozolol affected early embryonic development or blastocyst hatching. A decrease in the number of corpora lutea in both treated groups suggests it affects either ovulation or recruitment of follicles that occurs in each cycle for maturation. In high-dose-treated mice, decreased serum levels of estradiol, progesterone and increased testosterone along with downregulated endometrial expression of ERα and PR suggest the deficiency of steroid hormones and their respective receptors. Decreased ovarian expression of ERα, hyperexpression of PRLR, AR and abated progesterone secretion led to luteal dysfunction, consequently attenuating endometrial receptivity. Therefore, in high-dose-treated mice, decreased maternal estradiol and progesterone levels and their receptors during implantation hindered signaling to LIF and Hoxa-10, resulting in pragmatic implantation failure.
Collapse
Affiliation(s)
- Chaitra R Sharma
- Molecular Endocrinology, Reproduction and Development Laboratory, Department of Zoology, Karnatak University, Dharwad 580 003, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - Laxmi S Inamdar Doddamani
- Molecular Endocrinology, Reproduction and Development Laboratory, Department of Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
36
|
Gebril M, Hirota Y, Aikawa S, Fukui Y, Kaku T, Matsuo M, Hirata T, Akaeda S, Hiraoka T, Shimizu-Hirota R, Takeda N, Taha T, Balah OA, Elnoury MAH, Fujii T, Osuga Y. Uterine Epithelial Progesterone Receptor Governs Uterine Receptivity Through Epithelial Cell Differentiation. Endocrinology 2020; 161:5939206. [PMID: 33099617 DOI: 10.1210/endocr/bqaa195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 01/25/2023]
Abstract
Progesterone receptor (PGR) is indispensable for pregnancy in mammals. Uterine PGR responds to the heightened levels of ovarian progesterone (P4) after ovulation and regulates uterine gene transcription for successful embryo implantation. Although epithelial and stromal P4-PGR signaling may interact with each other to form appropriate endometrial milieu for uterine receptivity and the subsequent embryo attachment, it remains unclear what the specific roles of epithelial P4-PGR signaling in the adult uterus are. Here we generated mice with epithelial deletion of Pgr in the adult uterus (Pgrfl/flLtfCre/+ mice) by crossing Pgr-floxed and Ltf-Cre mice. Pgrfl/flLtfCre/+ mice are infertile due to the impairment of embryo attachment. Pgrfl/flLtfCre/+ uteri did not exhibit epithelial growth arrest, suggesting compromised uterine receptivity. Both epithelial and stromal expressions of P4-responsive genes decreased in Pgrfl/flLtfCre/+ mice during the peri-implantation period, indicating that epithelial Pgr deletion affects not only epithelial but stromal P4 responsiveness. In addition, uterine LIF, an inducer of embryo attachment, was decreased in Pgrfl/flLtfCre/+ mice. The RNA-seq analysis using luminal epithelial specimens dissected out by laser capture microdissection revealed that the signaling pathways related to extracellular matrix, cell adhesion, and cell proliferation are altered in Pgr fl/flLtf Cre/+ mice. These findings suggest that epithelial PGR controls both epithelial and stromal P4 responsiveness and epithelial cell differentiation, which provides normal uterine receptivity and subsequent embryo attachment.
Collapse
Affiliation(s)
- Mona Gebril
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Reproductive Health Department, National Research Center of Egypt, Cairo, Egypt
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotuke, Tochigi, Japan
| | - Tamer Taha
- Reproductive Health Department, National Research Center of Egypt, Cairo, Egypt
| | - Osama Al Balah
- Department of Medical Application of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Mohamed Amr H Elnoury
- Department of Medical Application of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Park HK, Park SH, Lee M, Kim GR, Park M, Yang SC, Kim YS, Lim HJ, Kim HR, Song H. Secretory phospholipase A2-X (Pla2g10) is a novel progesterone receptor target gene exclusively induced in uterine luminal epithelium for uterine receptivity in mice. Cell Biosci 2020; 10:132. [PMID: 33292460 PMCID: PMC7678068 DOI: 10.1186/s13578-020-00495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aberration of estrogen (E2) and/or progesterone (P4) signaling pathways affects expression of their target genes, which may lead to failure of embryo implantation and following pregnancy. Although many target genes of progesterone receptors (PRs) have been identified in uterine stroma, only a few PR targets have been reported in the epithelium. Secretory phospholipase A2-(PLA2)-X, a member of the PLA2 family that releases arachidonic acids for the synthesis of prostaglandins that are important for embryo implantation, is dysregulated in the endometrium of patients suffering from repeated implantation failure. However, it is not clear whether sPLA2-X is directly regulated by ovarian steroid hormones for embryo implantation in the uterus. RESULT P4 induced the Pla2g10 encoding of secretory PLA2-X in the apical region of uterine LE of ovariectomized mice via PR in both time- and dose-dependent manners, whereas E2 significantly inhibited it. This finding is consistent with the higher expression of Pla2g10 at the diestrus stage, when P4 is elevated during the estrous cycle, and at P4-treated delayed implantation. The level of Pla2g10 on day 4 of pregnancy (day 4) was dramatically decreased on day 5, when PRs are absent in the LE. Luciferase assays of mutagenesis in uterine epithelial cells demonstrated that four putative PR response elements in a Pla2g10 promoter region are transcriptionally active for Pla2g10. Intrauterine delivery of small interfering RNA for Pla2g10 on day 3 significantly reduced the number of implantation sites, reinforcing the critical function(s) of Pla2g10 for uterine receptivity in mice. CONCLUSIONS Pla2g10 is a novel PR target gene whose expression is exclusively localized in the apical region of the uterine LE for uterine receptivity for embryo implantation in mice.
Collapse
Affiliation(s)
- Hee Kyoung Park
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Collage of Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Miji Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Gyeong Ryeong Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Hyunjung J Lim
- Department of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea.
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
38
|
Wetendorf M, Li R, Wu SP, Liu J, Creighton CJ, Wang T, Janardhan KS, Willson CJ, Lanz RB, Murphy BD, Lydon JP, DeMayo FJ. Constitutive expression of progesterone receptor isoforms promotes the development of hormone-dependent ovarian neoplasms. Sci Signal 2020; 13:eaaz9646. [PMID: 33023986 PMCID: PMC10251233 DOI: 10.1126/scisignal.aaz9646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Differences in the relative abundances of the progesterone receptor (PGR) isoforms PGRA and PGRB are often observed in women with reproductive tract cancers. To assess the importance of the PGR isoform ratio in the maintenance of the reproductive tract, we generated mice that overexpress PGRA or PGRB in all PGR-positive tissues. Whereas few PGRA-overexpressing mice developed reproductive tract tumors, all PGRB-overexpressing mice developed ovarian neoplasms that were derived from ovarian luteal cells. Transcriptomic analyses of the ovarian tumors from PGRB-overexpressing mice revealed enhanced AKT signaling and a gene expression signature similar to those of human ovarian and endometrial cancers. Treating PGRB-overexpressing mice with the PGR antagonist RU486 stalled tumor growth and decreased the expression of cell cycle-associated genes, indicating that tumor growth and cell proliferation were hormone dependent in addition to being isoform dependent. Analysis of the PGRB cistrome identified binding events at genes encoding proteins that are critical regulators of mitotic phase entry. This work suggests a mechanism whereby an increase in the abundance of PGRB relative to that of PGRA drives neoplasia in vivo by stimulating cell cycling.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jian Liu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Rainer B Lanz
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité, University of Montreal, St-Hyacinthe, QC, Canada
| | - John P Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
39
|
Liang J, Cao D, Zhang X, Liu L, Tan Q, Shi S, Chen K, Liang J, Wang Z. miR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation. Theriogenology 2020; 157:360-371. [PMID: 32861000 DOI: 10.1016/j.theriogenology.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
The establishment of uterine receptivity is a prerequisite for embryo implantation and begins with the transformation of the luminal epithelium. MicroRNAs (miRNAs) have been widely reported to be involved in the regulation of embryo implantation, but their roles in establishing uterine receptivity remain unclear. In this study, through small RNA sequencing analysis, we showed that a low level of miR-192-5p is essential for initiating implantation in mice, and transient upregulation of miR-192-5p led to implantation failure. In situ hybridization results revealed that miR-192-5p was primarily expressed in the endometrial epithelium, and dysregulation of miR-192-5p interfered with the performance of the luminal epithelium, resulting in inadequate receptivity. By manipulating miR-192-5p expression in mouse uterus and an endometrial epithelial cell line, we showed that miR-192-5p maintains cell polarity through stabilizing adherens junction protein E-cadherin, thereby preventing epithelial-mesenchymal transition. Furthermore, miR-192-5p preserved the pattern of microvilli as well as Muc1 expression on the apical membrane of epithelial cells, thereby avoiding embryo adhesion. Moreover, miR-192-5p was found to be regulated by ovarian steroids. Collectively, this study demonstrated that the physiological role of miR-192-5p in mouse uterus is to maintain the nonreceptive state of epithelial cells and prevent their transformation to the receptive state. Thus, a sustained high level of miR-192-5p is detrimental to embryo implantation. These findings help elucidate the mechanisms involved in miRNA-based regulation of uterine physiology in early pregnancy, and may even contribute to the diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Dingren Cao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaowei Zhang
- Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, 310020, PR China
| | - Lijun Liu
- Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, 310020, PR China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Kaiyu Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Junyong Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
40
|
Nelson W, Adu-Gyamfi EA, Czika A, Wang YX, Ding YB. Bisphenol A-induced mechanistic impairment of decidualization. Mol Reprod Dev 2020; 87:837-842. [PMID: 32691498 DOI: 10.1002/mrd.23400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Decidualization is a crucial precedent to embryo implantation, as its impairment is a major contributor to female infertility and pregnancy complications. Unraveling the molecular mechanisms involved in the impairment of decidualization has been a subject of interest in the field of reproductive medicine. Evidence from several experimental settings show that exposure to bisphenol A (BPA), an endocrine-disrupting chemical, affects the expression of several molecules that are involved in decidualization. Both low and high doses of BPA impair decidualization through the dysregulation of estrogen (ER) and progesterone (PR) receptors. Exposure to low doses of BPA leads to decreased levels and activities of several antioxidant enzymes, increased activity of endothelial nitric oxide synthase (eNOS), and increased production of nitric oxide (NO) via the upregulation of ER and PR. Consequently, oxidative stress is induced and decidualization becomes impaired. On the other hand, exposure to high doses of BPA downregulates ER and PR and impairs decidualization through two distinct pathways. One is through the upregulation of early growth response-1 (EGR1) via increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2; and the other is through a reduced serum glucocorticoid-induced kinase-1 (SGK1)-mediated downregulation of epithelial sodium channel-α and the induction of oxidative stress. Thus, regardless of the dose, BPA can impair decidualization to trigger infertility and pregnancy complications. This warrants the need to adopt lifestyles that will decrease the tendency of getting exposed to BPA.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Enoch Appiah Adu-Gyamfi
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Armin Czika
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Marquardt RM, Lee K, Kim TH, Lee B, DeMayo FJ, Jeong JW. Interleukin-13 receptor subunit alpha-2 is a target of progesterone receptor and steroid receptor coactivator-1 in the mouse uterus†. Biol Reprod 2020; 103:760-768. [PMID: 32558878 DOI: 10.1093/biolre/ioaa110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Kevin Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Brandon Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Program of Neuroscience, Bowdoin College, Brunswick, ME, USA
| | - Francesco J DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
42
|
Cheon YP. Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics. Dev Reprod 2020; 24:1-17. [PMID: 32411914 PMCID: PMC7201063 DOI: 10.12717/dr.2020.24.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
Phthalates have a long industrial history. It is suspected that phthalates and their metabolites have detrimental effects on reproduction and development. They are well-known for their anti-androgenic effects. Several studies have indicated that phthalates and their metabolites are reprotoxic in males and endocrine disruptors. Reproduction and embryogenesis occur in the uterus of female eutherian mammals. A horizontal analytical method is preferred to elucidate the toxic effects of phthalates on human reproduction. Nevertheless, there are vast numbers of known phthalates and not all of their modes of action have been clarified. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer and has been the subject of numerous toxicological studies. However, few of these have reported on the toxic effects of DEHP, its metabolites, other phthalates, or mixtures on female reproduction. Acute and high doses of DEHP adversely affect uterine histology. Recently, it was disclosed that chronic exposures to low doses of DEHP have endocrine disruption efficacy. DEHP induces various cellular responses including modulation of the expression and regulation of steroid hormone receptors and transcription and paracrine factors. Uteri do not respond uniformly to DEHP exposure. The phenotypic manifestations and effects on fertility in response to DEHP and its metabolites may vary with species, developmental stage, and generation. Hence, DEHP exposure may histological alter the uterus and induce endometriosis, endometriosis, hyperplasia, myoma, and developmental and reproductive toxicity.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of
Biotechnology, Sungshin University, Seoul 02844,
Korea
| |
Collapse
|
43
|
Kurane T, Kawase F, Morooka A, Konno T. Spatio-temporal distribution of eosinophils in the mouse uterus during peri-implantation period. Okajimas Folia Anat Jpn 2020; 96:49-56. [PMID: 31902831 DOI: 10.2535/ofaj.96.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Embryo implantation is an immunologically paradoxical event. In humans and rodents, blastocysts adhere to uterine epithelium and then invade into endometrial stroma, while maternal body is protected from extraneous materials by its immune system. Eosinophils, a kind of leucocytes involving parasitic infections and allergic response, increase in number in uterus when serum estrogen level is elevated during estrus cycles. However, response of uterine eosinophils to ovarian estrogen during peri-implantation period is not clear. Therefore, we investigated the distribution of eosinophils in murine peri-implantation uterus. On day 0.5 of pregnancy, eosinophils were found primarily in endometrial stroma near the luminal epithelium, whereas they were primarily distributed in basal endometrium and myometrium on day 3.5 of pregnancy. The number of uterine eosinophils on day 4.5 of pregnancy was significantly increased by inhibition of maternal estrogen action. Collectively, our results indicate that the ovarian estrogen negatively regulates uterine eosinophil distribution during peri-implantation period and provide insight into a role of maternal immune system in embryo implantation.
Collapse
Affiliation(s)
- Tomomi Kurane
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus
| | - Fumie Kawase
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Akira Morooka
- Department of Subtropical Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus
| | - Toshihiro Konno
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus.,The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
44
|
Melatonin Promotes Uterine and Placental Health: Potential Molecular Mechanisms. Int J Mol Sci 2019; 21:ijms21010300. [PMID: 31906255 PMCID: PMC6982088 DOI: 10.3390/ijms21010300] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
The development of the endometrium is a cyclic event tightly regulated by hormones and growth factors to coordinate the menstrual cycle while promoting a suitable microenvironment for embryo implantation during the “receptivity window”. Many women experience uterine failures that hamper the success of conception, such as endometrium thickness, endometriosis, luteal phase defects, endometrial polyps, adenomyosis, viral infection, and even endometrial cancer; most of these disturbances involve changes in endocrine components or cell damage. The emerging evidence has proven that circadian rhythm deregulation followed by low circulating melatonin is associated with low implantation rates and difficulties to maintain pregnancy. Given that melatonin is a circadian-regulating hormone also involved in the maintenance of uterine homeostasis through regulation of numerous pathways associated with uterine receptivity and gestation, the success of female reproduction may be dependent on the levels and activity of uterine and placental melatonin. Based on the fact that irregular production of maternal and placental melatonin is related to recurrent spontaneous abortion and maternal/fetal disturbances, melatonin replacement may offer an excellent opportunity to restore normal physiological function of the affected tissues. By alleviating oxidative damage in the placenta, melatonin favors nutrient transfer and improves vascular dynamics at the uterine–placental interface. This review focuses on the main in vivo and in vitro functions of melatonin on uterine physiological processes, such as decidualization and implantation, and also on the feto-maternal tissues, and reviews how exogenous melatonin functions from a mechanistic standpoint to preserve the organ health. New insights on the potential signaling pathways whereby melatonin resists preeclampsia and endometriosis are further emphasized in this review.
Collapse
|
45
|
Wu Z, Cai Y, Xia Q, Liu T, Yang H, Wang F, Wang N, Yu Z, Yin C, Wang Q, Zhu D. Hashimoto's thyroiditis impairs embryo implantation by compromising endometrial morphology and receptivity markers in euthyroid mice. Reprod Biol Endocrinol 2019; 17:94. [PMID: 31729993 PMCID: PMC6857235 DOI: 10.1186/s12958-019-0526-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although thyroid dysfunction caused by Hashimoto's thyroiditis (HT) is believed to be related to implantation failure due to the underdevelopment of the receptive uterus, it is unknown whether HT itself, even in the euthyroid state, impairs embryo implantation associated with endometrial receptivity defects. To address whether HT itself can affect endometrial receptivity accompanied by implantation alterations, a euthyroid HT model was established in mice. METHODS Female NOD mice were immunized twice with thyroglobulin and adjuvant to induce the experimental HT model. Four weeks after the second treatment, the mice were normally mated, and pregnant ones were sacrificed in implantation window for thyroid-related parameter and steroid hormones measurements by electrochemiluminescence immunoassay and enzyme-linked immunosorbent assay and implantation site number calculation by uptake of Chicago Blue dye. In addition, certain morphological features of endometrial receptivity were observed by hematoxylin-eosin staining and scanning electron microscopy, and the expression of other receptivity markers were analyzed by immunohistochemistry, RT-qPCR or Western Blot. RESULTS HT mice displayed intrathyroidal monocyte infiltration and elevated serum thyroid autoantibody levels without thyroid dysfunction, defined as euthyroid HT in humans. Euthyroid HT resulted in implantation failure, fewer pinopodes, retarded pinopode maturation, and inhibited expression of receptivity markers: estrogen receptor α (ERα), integrin β3, leukemia inhibitory factor (LIF), and cell adhesion molecule-1 (ICAM-1). Interestingly, despite this compromised endometrial receptivity response, no statistical differences in serum estradiol or progesterone level between groups were found. CONCLUSIONS These findings are the first to indicate that HT induces a nonreceptive endometrial milieu in the euthyroid state, which may underlie the detrimental effects of HT itself on embryo implantation.
Collapse
Affiliation(s)
- Zhangbi Wu
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yaojun Cai
- Department of Endocrinology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qin Xia
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tiantian Liu
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hao Yang
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Nan Wang
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Chunying Yin
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Defa Zhu
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
46
|
Zhang C, Yang C, Li N, Liu X, He J, Chen X, Ding Y, Tong C, Peng C, Yin H, Wang Y, Gao R. Elevated insulin levels compromise endometrial decidualization in mice with decrease in uterine apoptosis in early-stage pregnancy. Arch Toxicol 2019; 93:3601-3615. [PMID: 31642978 DOI: 10.1007/s00204-019-02601-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023]
Abstract
Women with hyperinsulinism and insulin resistance have reduced fertility, but the underlying mechanism is still poorly understood. Aberrant endometrial decidualization in early pregnancy was linked to pregnancy complications. In this study, we aimed to test whether elevated insulin levels compromise decidualization in early-stage pregnancy. C57BL/6J mice in high insulin-exposed group were given a subcutaneous injection of recombinant insulin at a concentration of 0.05 IU daily. During decidualization in early pregnancy, serum levels of insulin, E2, P4, LH, FSH and blood glucose were significantly altered in mice treated with high insulin levels. The number of embryo implantation sites and endometrial decidual markers BMP2, ER, PR was significantly decreased by high insulin levels in vivo. Artificial decidual induction in primary mouse endometrial stromal cells and immortal human endometrial stromal cells line were all compromised after treated with 100 nmol/L insulin levels. All these results on flow cytometry, transmission electron microscopy and western blotting of Bax, Bcl2, cleaved Caspase3, cleaved PARP proteins level showed that decidual cells apoptosis was significantly decreased. Mitochondrial transmembrane potential also significantly increased by the influence of high insulin levels. PI3K and p-Akt were much higher after insulin exposure and the compromised decidualization by high insulin treatment was rescued by PI3K/Akt inhibitor LY294002 both in vitro and in vivo. In conclusion, we demonstrated that elevated insulin levels could compromise mice decidualization in early-stage pregnancy and PI3K/p-Akt-regulated apoptosis was essential for this role. It provides a clue for future investigation on compromised reproduction in women with hyperinsulinemia.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Na Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Chao Tong
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Peng
- Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China. .,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
47
|
Hu M, Zhang Y, Egecioglu E, Li X, Shao LR, Billig H. Uterine glycolytic enzyme expression is affected by knockout of different estrogen receptor subtypes. Biomed Rep 2019; 11:135-144. [PMID: 31565219 PMCID: PMC6759582 DOI: 10.3892/br.2019.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The estrogen signaling pathway via nuclear estrogen receptors (ER) α and β is considered to be the master regulator of the cellular glucose metabolism in the uterus. While in vivo animal studies have demonstrated that 17β-estradiol (E2) treatment increases the expression levels and activities of several glycolytic enzymes in the uterus, the specific ER subtype-dependent regulation of key glycolytic enzymes in the uterus has not been experimentally verified. In this study, the localization of ERα and ERβ in human and mouse endometria were evaluated using immunohistology. Given that ERα and ERβ are not functionally equivalent, ERα, ERβ and ERαβ knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to determine the expression pattern of glycolytic enzymes in the uterus. It was found that the level of ERα was higher than that of ERβ in the human and mouse endometrial epithelial and stromal cells, and both receptors were downregulated by E2 treatment in the mouse uterus. The expression of the hexokinase 1 and GAPDH was increased in ERα-/- and ERβ-/- mice compared with wild-type controls. Increased phosphofructokinase expression was observed in ERα-/- and ERαβ-/- mice, whereas increased pyruvate kinase isozyme M2 and pyruvate dehydrogenase expression was observed in ERβ-/- and ERαβ-/- mice. The findings indicated for the first time that while estrogen regulates ERα and ERβ expression in the uterus, ERα and ERβ selectively regulate uterine glycolytic enzyme expression during glycolysis. Additionally, the link between endometrial ER subtypes and glycolysis in women with polycystic ovary syndrome (PCOS) is discussed. The findings suggested that the E2-dependent ER-mediated regulation of glycolysis may be involved in the disturbance of the glucose metabolism in patients with PCOS with endometrial dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Emil Egecioglu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
48
|
Meng N, Yang Q, He Y, Gu WW, Gu Y, Zhen XX, Wang J, Zhang X, Sun ZG, Wang J. Decreased NDRG1 expression is associated with pregnancy loss in mice and attenuates the in vitro decidualization of endometrial stromal cells. Mol Reprod Dev 2019; 86:1210-1223. [PMID: 31339191 DOI: 10.1002/mrd.23238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/27/2019] [Indexed: 01/20/2023]
Abstract
Embryo implantation is an essential step for a successful pregnancy, and any defect in this process can lead to a range of pregnancy pathologies. The objective of this study was to explore the role of N-myc downregulated gene 1 (NDRG1) in embryo implantation. It was found that uterine NDRG1 expression has a dynamic pattern during the estrous cycle in nonpregnant mice and that uterine NDRG1 expression was elevated during the implantation process in pregnant mice. The distinct accumulation of NDRG1 protein signals was observed in the primary decidual zone adjacent to the implanting embryo during early pregnancy. Furthermore, uterine NDRG1 expression could be induced by activated implantation or artificial decidualization in mice. Decreased uterine NDRG1 expression was associated with pregnancy loss in mice and was associated with recurrent miscarriages in humans. The in vitro decidualization of both mouse and human endometrial stromal cells (ESCs) was accompanied by increased NDRG1 expression and downregulated NDRG1 expression in ESCs effectively inhibited decidualization. Collectively, these data suggest that NDRG1 plays an important role in decidualization during the implantation process, and the abnormal expression of NDRG1 may be involved in pregnancy loss.
Collapse
Affiliation(s)
- Nan Meng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Qian Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Yaping He
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Wen-Wen Gu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Gu
- Family Planning Department, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xing-Xing Zhen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianmei Wang
- Family Planning Department, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuan Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhao-Gui Sun
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Jian Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Evaluation of uterine receptivity after gonadotropin releasing hormone agonist administration as an oocyte maturation trigger: a rodent model. Sci Rep 2019; 9:12519. [PMID: 31467307 PMCID: PMC6715633 DOI: 10.1038/s41598-019-48918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/12/2019] [Indexed: 01/16/2023] Open
Abstract
In natural cycle or minimal stimulation cycle IVF, buserelin acetate (buserelin), a gonadotropin-releasing hormone agonist, is often used as a maturation trigger; however, its effect on pregnancy outcomes remains unclear. Therefore, in the present study, we compared uterine receptivity in buserelin-administered mice with that in human chorionic gonadotropin (hCG)-administered mice during the peri-implantation period. Implantation, decidualisation, and term-pregnancy were impaired following hCG, but not buserelin administration. hCG stimulated the synthesis and secretion of progesterone and oestradiol, whereas ovarian steroidogenesis in the buserelin-treated group was comparable with that in the control group. Furthermore, similar to the observation in controls, the buserelin-treated group exhibited activation of progesterone receptor signalling and inhibition of oestrogen receptor signalling in the endometrial epithelium on the day of implantation. However, epithelial progesterone signalling was not detected, and a high expression of genes downstream to oestrogen was observed on day 4 following hCG administration. These results suggest that buserelin administration does not impact uterine receptivity as it did not affect ovarian steroidogenesis and endometrial steroid signalling. Therefore, buserelin is preferred as an oocyte maturation trigger to optimise uterine receptivity during treatments involving timed intercourse, intrauterine insemination, or fresh embryo transfer following in vitro fertilisation.
Collapse
|
50
|
Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril 2019; 111:611-617. [PMID: 30929718 DOI: 10.1016/j.fertnstert.2019.02.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
Abstract
Endometrial receptivity is a complex process that provides the embryo with the opportunity to attach, invade, and develop, culminating in a new individual and continuation of the species. The window of implantation extends 3-6 days within the secretory phase in most normal women. In certain inflammatory or anatomic conditions, this window is narrowed or shifted to preclude normal implantation, leading to infertility or pregnancy loss. Of the factors that prevent normal implantation and pregnancy, embryo and endometrial quality share responsibility. In this review, we highlight the advances in the study of implantation from the perspective of the endometrium, normally a barrier to implantation. New advances will allow the early identification of defects in endometrial receptivity and provide new avenues for treatment that promote successful establishment of pregnancy.
Collapse
Affiliation(s)
- Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, North Carolina.
| | - Steven L Young
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|