1
|
Mogus JP, Marin M, Arowolo O, Salemme V, Suvorov A. Developmental exposures to common environmental pollutants result in long-term Reprogramming of hypothalamic-pituitary axis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124890. [PMID: 39236844 DOI: 10.1016/j.envpol.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Olatunbosun Arowolo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA; Currently at Department of Pharmacology, Molecular, Cellular and Integrative Physiology Group, University of California - Davis, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
2
|
Liu M, Nair A, Coria N, Linderman SW, Anderson DJ. Encoding of female mating dynamics by a hypothalamic line attractor. Nature 2024; 634:901-909. [PMID: 39142338 PMCID: PMC11499253 DOI: 10.1038/s41586-024-07916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Females exhibit complex, dynamic behaviours during mating with variable sexual receptivity depending on hormonal status1-4. However, how their brains encode the dynamics of mating and receptivity remains largely unknown. The ventromedial hypothalamus, ventrolateral subdivision contains oestrogen receptor type 1-positive neurons that control mating receptivity in female mice5,6. Here, unsupervised dynamical system analysis of calcium imaging data from these neurons during mating uncovered a dimension with slow ramping activity, generating a line attractor in neural state space. Neural perturbations in behaving females demonstrated relaxation of population activity back into the attractor. During mating, population activity integrated male cues to ramp up along this attractor, peaking just before ejaculation. Activity in the attractor dimension was positively correlated with the degree of receptivity. Longitudinal imaging revealed that attractor dynamics appear and disappear across the oestrus cycle and are hormone dependent. These observations suggest that a hypothalamic line attractor encodes a persistent, escalating state of female sexual arousal or drive during mating. They also demonstrate that attractors can be reversibly modulated by hormonal status, on a timescale of days.
Collapse
Affiliation(s)
- Mengyu Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nestor Coria
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Chen Y, Zhang L, Zhou Y, Zhang J, Yu H, Li Q, Xu J. Prevalence of sexual dysfunction in health care workers: a systematic review and meta-analysis. Sex Med Rev 2024; 12:569-580. [PMID: 39113188 DOI: 10.1093/sxmrev/qeae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Health care workers represent a substantial demographic whose welfare and work efficiency are crucial to public health and societal well-being. However, the prevalence of sexual dysfunction within this group is often overlooked, despite its significant occurrence. OBJECTIVE To evaluate the worldwide prevalence of sexual dysfunction among health care workers. METHODS A comprehensive systematic review and meta-analysis of observational studies ranging from 2003 to 2023 were performed to compile prevalence estimates of sexual dysfunction among health care workers. A random effects model was implemented to amalgamate the prevalence analysis. Study heterogeneity was discerned by I2 and χ2 statistics. To assess potential publication bias, an Egger's test and a funnel plot were employed. RESULTS This meta-analysis incorporated 39 studies from 16 countries, encompassing 44 017 health care workers. The pooled prevalence of sexual dysfunction among health care workers was 46.79% (95% CI, 38.09%-55.68%), with a slightly higher prevalence of 49.57% (95% CI, 38.18%-61.01%) among clinical health care workers. The most prevalent forms of sexual dysfunction identified were loss of libido (51.26%), erectile dysfunction (36.99%), sexual dissatisfaction (36.90%), pain during intercourse (28.23%), orgasmic disorders (25.13%), low sexual arousal (23.54%), and lubrication disorders (22.62%). Among various health care professions, nurses exhibited the highest prevalence of sexual dysfunction (56.29%), followed by doctors (37.63%) and other health care workers (24.96%). Additionally, female health care workers experienced a higher prevalence of sexual dysfunction (47.61%) as compared with their male counterparts (32.01%). CONCLUSION This study indicates that nearly half of health care professionals report experiencing sexual dysfunction, with loss of libido being the most common manifestation. Addressing this issue requires a multistakeholder approach.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Nursing, Harbin Medical University, Harbin, 150081, China
| | - Linghui Zhang
- Department of Nursing, Harbin Medical University, Harbin, 150081, China
| | - Yuqiu Zhou
- Department of Medicine, Huzhou University, Huzhou, 313000, China
| | - Jiayuan Zhang
- Department of Nursing, Harbin Medical University, Harbin, 150081, China
| | - Hong Yu
- Department of Nursing, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- Department of Nursing, Harbin Medical University, Harbin, 150081, China
| | - Jun Xu
- Department of Management, Ningbo Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Ningbo, 315010, China
| |
Collapse
|
4
|
Belozertseva IV, Merkulovs DD, Kaiser H, Rozhdestvensky TS, Skryabin BV. Advancing 3Rs: The Mouse Estrus Detector (MED) as a Low-Stress, Painless, and Efficient Tool for Estrus Determination in Mice. Int J Mol Sci 2024; 25:9429. [PMID: 39273375 PMCID: PMC11395264 DOI: 10.3390/ijms25179429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Determining the estrous cycle stages in mice is essential for optimizing breeding strategies, synchronizing experimental timelines, and facilitating studies in behavior, drug testing, and genetics. It is critical for reducing the production of genetically unmodified offspring in the generation and investigation of genetically modified animal models. An accurate detection of the estrus cycle is particularly relevant in the context of the 3Rs-Replacement, Reduction, and Refinement. The estrous cycle, encompassing the reproductive phases of mice, is key to refining experimental designs and addressing ethical issues related to the use of animals in research. This study presents results from two independent laboratories on the efficacy of the Mouse Estrus Detector (MED) from ELMI Ltd. (Latvia) for the accurate determination of the estrus phase. The female mice of five strains/stocks (CD1, FVB/N, C57Bl6/J, B6D2F1, and Swiss) were used. The results showed that the MEDProTM is a low-traumatic, simple, rapid, and painless method of estrus detection that supports the principles of the 3Rs. The use of the MEDProTM for estrus detection in mice caused minimal stress, enhanced mating efficiency, facilitated an increase in the number of embryos for in vitro fertilization, and allowed the production of the desired number of foster animals.
Collapse
Affiliation(s)
- Irina V Belozertseva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia
| | | | - Helena Kaiser
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Medical Faculty, University of Münster, von-Esmarch str. 56, D-48149 Münster, Germany
| | - Timofey S Rozhdestvensky
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Medical Faculty, University of Münster, von-Esmarch str. 56, D-48149 Münster, Germany
| | - Boris V Skryabin
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Medical Faculty, University of Münster, von-Esmarch str. 56, D-48149 Münster, Germany
| |
Collapse
|
5
|
Rodriguez-Sánchez AJ, Meza-Herrera CA, De Santiago-Miramontes A, Navarrete-Molina C, Veliz-Deras FG, Ordoñez-Morales JZ, Flores-Salas JM, Marin-Tinoco RI. Circular Economy, Dairy Cow Feed Leftovers, and Withania somnifera Supplementation: Effects on Black Belly Ram's Libido, Sperm Quality, Sexual Behavior, and Hemogram Values. BIOLOGY 2024; 13:656. [PMID: 39336084 PMCID: PMC11428648 DOI: 10.3390/biology13090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Considering a circular economy perspective, this study evaluates the possible effect of targeted short-term supplementation with Withania somnifera L. (WS; Ashwagandha) on ram's seminal quality, socio-sexual behaviors, and blood constituents. Black Belly rams (n = 20) received a basal diet comprising feed-leftovers from dairy cows in the north-arid Mexico (i.e., Comarca Lagunera CL). The experimental units, with proven libido and fertility, were homogeneous in terms of age (3.41 ± 0.21 yr.), live weight (LW; 53.8 ± 3.3 kg), body condition (BC; 2.96 ± 0.01 units), initial sperm concentration (2387 ± 804 × 106), and viability (23.9 ± 15.6%). Rams were randomly assigned during the transition reproductive period (i.e., May to Jun; 25° NL) to three treatment groups: non-supplemented control group (CONT; n = 6), low WS-supplemented (LWS; i.e., 100 mg kg LW-1 d-1 × 40 d; n = 7), and high-WS-supplemented (HWS; i.e., 200 mg kg LW-1 d-1 × 40 d; n = 7). The basal leftover diet was offered twice daily (0700 and 1600 h); the experimental period (EP) lasted 47 d. No differences (p > 0.05) among treatments occurred regarding LW and BCS at the onset of the EP. Whereas the greater scrotal circumference (SCRC, cm) arose in the LWS and CONT rams, an increased ejaculated volume (VOLEJA, mL) occurred in the WS-rams. A total of 5/9 (i.e., 55%) appetitive and 3/3 (i.e., 100%) consummatory sexual behaviors favored (p < 0.05) the WS-rams, particularly the HWS rams, towards the final EP. The same was true (p < 0.05) regarding the hemogram variables white blood cell count (×109 cells L-1), hemoglobin concentration (g dL-1), and medium corpuscular volume (fL). This study, based on a rethink-reuse-reduce enquiry approach, enabled connectedness between two noteworthy animal systems in the CL: dairy cows and meat sheep schemes. Certainly, the use of dairy cow feed-leftovers aligned with the short-term supplementation with WS promoted enhanced testicular function, augmented seminal volume, and an increased sexual behavior in Black Belly rams in northern Mexico. Finally, while our research outcomes should enhance not only the resilience and sustainability of sheep production and the well-being of sheep-producers and their families, it may also embrace clinical translational applications.
Collapse
Affiliation(s)
- Andrés J. Rodriguez-Sánchez
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Cesar A. Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Mapimí 35230, Mexico
| | - Angeles De Santiago-Miramontes
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Cayetano Navarrete-Molina
- Departmento de Química Area Tecnología Ambiental, Universidad Tecnológica de Rodeo, Rodeo 35760, Mexico; (C.N.-M.)
| | - Francisco G. Veliz-Deras
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Julieta Z. Ordoñez-Morales
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Jessica M. Flores-Salas
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Ruben I. Marin-Tinoco
- Departmento de Química Area Tecnología Ambiental, Universidad Tecnológica de Rodeo, Rodeo 35760, Mexico; (C.N.-M.)
- Hospital Rural no. 162 Instituto Mexicano del Seguro Social, Rodeo 35760, Mexico
| |
Collapse
|
6
|
Quintana DS, Glaser BD, Kang H, Kildal ESM, Audunsdottir K, Sartorius AM, Barth C. The interplay of oxytocin and sex hormones. Neurosci Biobehav Rev 2024; 163:105765. [PMID: 38885888 DOI: 10.1016/j.neubiorev.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
The neuropeptide oxytocin has historically been associated with reproduction and maternal behavior. However, more recent research has uncovered that oxytocin has a much wider range of roles in physiology and behavior. Despite the excitement surrounding potential therapeutical applications of intranasally administered oxytocin, the results of these intervention studies have been inconsistent. Various reasons for these mixed results have been proposed, which tend to focus on methodological issues, such as study design. While methodological issues are certainly important, emerging evidence suggests that the interaction between oxytocin and sex hormones may also account for these varied findings. To better understand the purpose and function of the interaction of oxytocin with sex hormones, with a focus on estrogens, progesterone, and testosterone, we conducted a comprehensive thematic review via four perspectives: evolutionary, developmental, mechanistic, and survival. Altogether, this synergistic approach highlights the critical function of sex hormone activity for accomplishing the diverse roles of oxytocin via the modulation of oxytocin release and oxytocin receptor activity, which is also likely to contribute to the heterogeneity of outcomes after oxytocin administration.
Collapse
Affiliation(s)
- Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway
| | - Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
7
|
Zafar MI, Chen X. Effects of Calorie Restriction on Preserving Male Fertility Particularly in a State of Obesity. Curr Obes Rep 2024; 13:256-274. [PMID: 38489002 DOI: 10.1007/s13679-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW Highlight the importance of exploring nutritional interventions that could be applied as alternative or supplementary therapeutic strategies to enhance men's fertility. RECENT FINDINGS Lifestyle choices have prompted extensive discussions regarding its implications and applications as a complementary therapy. The growing concern over the decline in sperm quality underscores the urgency of investigating these alternative interventions. Calorie restriction (CR) has emerged as a promising strategy to improve male fertility. The efficacy of CR depends on factors like age, ethnicity and genetics. Clinical studies, such as CALERIE, have shown an improvement in serum testosterone level and sexual drive in men with or without obesity. Additionally, CR has been shown to positively impact sperm count and motility; however, its effects on sperm morphology and DNA fragmentation remain less clear, and the literature has shown discrepancies, mainly due to the nature of technically dependent assessment tools. The review advocates a personalized approach to CR, considering individual health profiles to maximize its benefits. It underscores the need for routine, accessible diagnostic techniques in male reproductive health. It suggests that future research should focus on personalized dietary interventions to improve male fertility and overall well-being in individuals with or without obesity and unravel CR's immediate and lasting effects on semen parameters in men without obesity.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| |
Collapse
|
8
|
Ågmo A. Neuroendocrinology of sexual behavior. Int J Impot Res 2024; 36:305-311. [PMID: 36481796 DOI: 10.1038/s41443-022-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
One of the consequences of sexual behavior is reproduction. Thus, this behavior is essential for the survival of the species. However, the individual engaged in sexual behavior is rarely aware of its reproductive consequences. In fact, the human is probably the only species in which sexual acts may be performed with the explicit purpose of reproduction. Most human sexual activities as well as sex in other animals is performed with the aim of obtaining a state of positive affect. This makes sexual behavior important for wellbeing as well as for reproduction. It is not surprising, then, that sexual health has become an increasingly important issue, and that knowledge of the basic mechanisms controlling that behavior are urgently needed. The endocrine control of sexual behavior has been extensively studied, and although it is established that gonadal hormones are necessary, some controversy still exists concerning which hormone does what in which species. The brain areas necessary for sexual behavior have been determined in almost all vertebrates except the human. The medial preoptic area is crucial in males of all non-human vertebrates, whereas the ventromedial nucleus of the hypothalamus is important in females. Modulatory functions have been ascribed to several other brain areas.
Collapse
|
9
|
Forero SA, Liu S, Shetty N, Ophir AG. Re-wiring of the bonded brain: Gene expression among pair bonded female prairie voles changes as they transition to motherhood. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12906. [PMID: 38861664 PMCID: PMC11166254 DOI: 10.1111/gbb.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.
Collapse
MESH Headings
- Animals
- Female
- Arvicolinae/genetics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Pair Bond
- Maternal Behavior/physiology
- Nucleus Accumbens/metabolism
- Pregnancy
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Gyrus Cinguli/metabolism
- Preoptic Area/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
| | - Sydney Liu
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Netra Shetty
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|
10
|
Monari PK, Hammond ER, Zhao X, Maksimoski AN, Petric R, Malone CL, Riters LV, Marler CA. Conditioned preferences: Gated by experience, context, and endocrine systems. Horm Behav 2024; 161:105529. [PMID: 38492501 DOI: 10.1016/j.yhbeh.2024.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.
Collapse
Affiliation(s)
- Patrick K Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Emma R Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Xin Zhao
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Alyse N Maksimoski
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Radmila Petric
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; Institute for the Environment, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA.
| |
Collapse
|
11
|
Wang X, Zheng J, Xu H. Neural Circuitry Involving Substance P in Male Sexual Behavior. Neurosci Bull 2024; 40:544-546. [PMID: 38376747 PMCID: PMC11004096 DOI: 10.1007/s12264-024-01177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/09/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- Xinrong Wang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
| | - Junqiang Zheng
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Han Xu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
12
|
Cunningham E, Benítez ME. From pathology to pleasure: Reframing mechanistic studies on same-sex sexual behavior in primates. Horm Behav 2024; 160:105476. [PMID: 38278061 DOI: 10.1016/j.yhbeh.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Same-sex sexual behaviors (SSB) in primates have historically been studied as sexual perversions, evolutionary paradoxes, and hormone-driven pathologies. Researchers in recent decades have challenged these perspectives, yet some of the original biases still linger. In this paper, we examine how the study of endocrinological mechanisms in SSB has been influenced by the historical framework of pathology. Societal attitudes and cultural conceptions of human sexuality have led researchers to study SSB in primates as the outcome of "abnormal" processes of "feminization" or "masculinization" of sexual behavior. Here, we argue for a renewed attention to other areas of inquiry regarding the relationship between hormones and SSB, such as the role of pleasure. We briefly review how current knowledge on the neuroendocrinology of pleasure in nonhuman primates may relate to the expression of SSB and highlight oxytocin and dopamine as potentially fruitful areas for future research. We argue that future studies on SSB in primates would benefit from 1) acknowledging how the historical study of SSB as a pathology has shaped mechanistic studies and 2) studying SSB with the same holistic approach as is taken with different-sex sexual behavior (DSB).
Collapse
Affiliation(s)
- Evan Cunningham
- Department of Anthropology, Emory University, Atlanta, GA, United States of America
| | - Marcela E Benítez
- Department of Anthropology, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
13
|
Huang J, Zhang YY, Qiu YY, Yao S, Qiu WT, Peng JL, Li YQ, You QL, Wu CH, Wu EJ, Wang J, Zhou YL, Ning YP, Wang HS, Chen WB, Hu BJ, Liu Y, Sun XD. NRG1-ErbB4 signaling in the medial amygdala controls mating motivation in adult male mice. Cell Rep 2024; 43:113905. [PMID: 38446660 DOI: 10.1016/j.celrep.2024.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.
Collapse
Affiliation(s)
- Jie Huang
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan-Yan Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yu-Yang Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shan Yao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wan-Ting Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jin-Lin Peng
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- Department of Neurology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Cui-Hong Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Er-Jian Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jin Wang
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, China
| | - Yan-Ling Zhou
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Ping Ning
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Sheng Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bing Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Bing-Jie Hu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Xiang-Dong Sun
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Décarie-Spain L, Hayes AMR, Lauer LT, Kanoski SE. The gut-brain axis and cognitive control: A role for the vagus nerve. Semin Cell Dev Biol 2024; 156:201-209. [PMID: 36803834 PMCID: PMC10427741 DOI: 10.1016/j.semcdb.2023.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Survival requires the integration of external information and interoceptive cues to effectively guide advantageous behaviors, particularly foraging and other behaviors that promote energy acquisition and consumption. The vagus nerve acts as a critical relay between the abdominal viscera and the brain to convey metabolic signals. This review synthesizes recent findings from rodent models and humans revealing the impact of vagus nerve signaling from the gut on the control of higher-order neurocognitive domains, including anxiety, depression, reward motivation, and learning and memory. We propose a framework where meal consumption engages gastrointestinal tract-originating vagal afferent signaling that functions to alleviate anxiety and depressive-like states, while also promoting motivational and memory functions. These concurrent processes serve to favor the encoding of meal-relevant information into memory storage, thus facilitating future foraging behaviors. Modulation of these neurocognitive domains by vagal tone is also discussed in the context of pathological conditions, including the use of transcutaneous vagus nerve stimulation for the treatment of anxiety disorders, major depressive disorder, and dementia-associated memory impairments. Collectively, these findings highlight the contributions of gastrointestinal vagus nerve signaling to the regulation of neurocognitive processes that shape various adaptive behavioral responses.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Mbiydzenyuy NE, Joanna Hemmings SM, Shabangu TW, Qulu-Appiah L. Exploring the influence of stress on aggressive behavior and sexual function: Role of neuromodulator pathways and epigenetics. Heliyon 2024; 10:e27501. [PMID: 38486749 PMCID: PMC10937706 DOI: 10.1016/j.heliyon.2024.e27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Stress is a complex and multifaceted phenomenon that can significantly influence both aggressive behavior and sexual function. This review explores the intricate relationship between stress, neuromodulator pathways, and epigenetics, shedding light on the various mechanisms that underlie these connections. While the role of stress in both aggression and sexual behavior is well-documented, the mechanisms through which it exerts its effects are multifarious and not yet fully understood. The review begins by delving into the potential influence of stress on the Hypothalamic-Pituitary-Adrenal (HPA) axis, glucocorticoids, and the neuromodulators involved in the stress response. The intricate interplay between these systems, which encompasses the regulation of stress hormones, is central to understanding how stress may contribute to aggressive behavior and sexual function. Several neuromodulator pathways are implicated in both stress and behavior regulation. We explore the roles of norepinephrine, serotonin, oxytocin, and androgens in mediating the effects of stress on aggression and sexual function. It is important to distinguish between general sexual behavior, sexual motivation, and the distinct category of "sexual aggression" as separate constructs, each necessitating specific examination. Additionally, epigenetic mechanisms emerge as crucial factors that link stress to changes in gene expression patterns and, subsequently, to behavior. We then discuss how epigenetic modifications can occur in response to stress exposure, altering the regulation of genes associated with stress, aggression, and sexual function. While numerous studies support the association between epigenetic changes and stress-induced behavior, more research is necessary to establish definitive links. Throughout this exploration, it becomes increasingly clear that the relationship between stress, neuromodulator pathways, and epigenetics is intricate and multifaceted. The review emphasizes the need for further research, particularly in the context of human studies, to provide clinical significance and to validate the existing findings from animal models. By better understanding how stress influences aggressive behavior and sexual function through neuromodulator pathways and epigenetic modifications, this research aims to contribute to the development of innovative protocols of precision medicine and more effective strategies for managing the consequences of stress on human behavior. This may also pave way for further research into risk factors and underlying mechanisms that may associate stress with sexual aggression which finds application not only in neuroscience, but also law, ethics, and the humanities in general.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Sian Megan Joanna Hemmings
- Division of Molecular Biology & Human Genetics, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Thando W. Shabangu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Lihle Qulu-Appiah
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| |
Collapse
|
16
|
Prokai-Tatrai K, Prokai L. The impact of 17β-estradiol on the estrogen-deficient female brain: from mechanisms to therapy with hot flushes as target symptoms. Front Endocrinol (Lausanne) 2024; 14:1310432. [PMID: 38260155 PMCID: PMC10800853 DOI: 10.3389/fendo.2023.1310432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sex steroids are essential for whole body development and functions. Among these steroids, 17β-estradiol (E2) has been known as the principal "female" hormone. However, E2's actions are not restricted to reproduction, as it plays a myriad of important roles throughout the body including the brain. In fact, this hormone also has profound effects on the female brain throughout the life span. The brain receives this gonadal hormone from the circulation, and local formation of E2 from testosterone via aromatase has been shown. Therefore, the brain appears to be not only a target but also a producer of this steroid. The beneficial broad actions of the hormone in the brain are the end result of well-orchestrated delayed genomic and rapid non-genomic responses. A drastic and steady decline in circulating E2 in a female occurs naturally over an extended period of time starting with the perimenopausal transition, as ovarian functions are gradually declining until the complete cessation of the menstrual cycle. The waning of endogenous E2 in the blood leads to an estrogen-deficient brain. This adversely impacts neural and behavioral functions and may lead to a constellation of maladies such as vasomotor symptoms with varying severity among women and, also, over time within an individual. Vasomotor symptoms triggered apparently by estrogen deficiency are related to abnormal changes in the hypothalamus particularly involving its preoptic and anterior areas. However, conventional hormone therapies to "re-estrogenize" the brain carry risks due to multiple confounding factors including unwanted hormonal exposure of the periphery. In this review, we focus on hot flushes as the archetypic manifestation of estrogen deprivation in the brain. Beyond our current mechanistic understanding of the symptoms, we highlight the arduous process and various obstacles of developing effective and safe therapies for hot flushes using E2. We discuss our preclinical efforts to constrain E2's beneficial actions to the brain by the DHED prodrug our laboratory developed to treat maladies associated with the hypoestrogenic brain.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | |
Collapse
|
17
|
Palanichamy C, Nayak Ammunje D, Pavadai P, Ram Kumar Pandian S, Theivendren P, Kabilan SJ, Babkiewicz E, Maszczyk P, Kunjiappan S. Mimosa pudica Linn. extract improves aphrodisiac performance in diabetes-induced male Wister rats. J Biomol Struct Dyn 2023:1-20. [PMID: 38088340 DOI: 10.1080/07391102.2023.2292302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/25/2023] [Indexed: 01/04/2025]
Abstract
Male sexual dysfunction is considered one of the major consequences of diabetes mellitus. The medicinal plant, Mimosa pudica Linn. is believed to have numerous therapeutic effects, including anti-diabetic, anti-obesity, aphrodisiac, and a sexual behaviour-enhancing properties. In the present study, the significant effect of ethanolic extract of M. pudica L. to scavenge excessive free radicals and alleviate the deleterious effects of alloxan-induced diabetes on the male sexual system of rats was demonstrated. The rats treated with the M. pudica L. extract recovered their body weight, the weight of their reproductive organs, the characteristics of the sperm and the histocellular arrangement of the testes. In addition, significant levels of hormones (testosterone, follicle-stimulating hormone and luteinising hormone) increased in both serum and testicular homogenates of male diabetic rats treated with M. pudica L. extract. Further, antioxidant enzymes, SOD, CAT, GSH, and GPx levels are increased, and oxidative stress markers MDA and ROS are reduced in both serum and testicular homogenates of M. pudica L. extract treated male rats. Furthermore, an in silico molecular docking study was performed to predict high potential compounds of M. pudica L. extract against the PDE5 receptor. Two bioactive compounds, namely 3-Dibenzofuranamine (-11.1 kcal × mol-1), Stigmasta-7,16-dien-3-ol (-10.4 kcal × mol-1) showed the highest binding affinities with PDE5 enzyme, much higher than the reference drug sildenafil (-9.9 kcal × mol-1). According to these findings, bioactive compounds rich in ethanolic extract of M. pudica L. have significant aphrodisiac performance in diabetic rats.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandrasekar Palanichamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | | | | | | | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
18
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci 2023; 26:2131-2146. [PMID: 37946049 PMCID: PMC10689240 DOI: 10.1038/s41593-023-01475-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Lara LADS. Sexual Wellness: A Movement Happening Worldwide. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:e745-e746. [PMID: 38141593 DOI: 10.1055/s-0043-1777700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
|
20
|
Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, Chien J, Yamaguchi T, Urtecho A, Tong X, Chen ZS, Lin D. Neural dynamics in the limbic system during male social behaviors. Neuron 2023; 111:3288-3306.e4. [PMID: 37586365 PMCID: PMC10592239 DOI: 10.1016/j.neuron.2023.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/18/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Sexual and aggressive behaviors are vital for species survival and individual reproductive success. Although many limbic regions have been found relevant to these behaviors, how social cues are represented across regions and how the network activity generates each behavior remains elusive. To answer these questions, we utilize multi-fiber photometry (MFP) to simultaneously record Ca2+ signals of estrogen receptor alpha (Esr1)-expressing cells from 13 limbic regions in male mice during mating and fighting. We find that conspecific sensory information and social action signals are widely distributed in the limbic system and can be decoded from the network activity. Cross-region correlation analysis reveals striking increases in the network functional connectivity during the social action initiation phase, whereas late copulation is accompanied by a "dissociated" network state. Based on the response patterns, we propose a mating-biased network (MBN) and an aggression-biased network (ABN) for mediating male sexual and aggressive behaviors, respectively.
Collapse
Affiliation(s)
- Zhichao Guo
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; School of Life Sciences, Peking University, Beijing 100871, China
| | - Luping Yin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Veronica Diaz
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Chien
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley Urtecho
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Xiaoyu Tong
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhe S Chen
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 11201, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
21
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
22
|
Arteaga-Silva M, Limón-Morales O, Bonilla-Jaime H, Vigueras-Villaseñor RM, Rojas-Castañeda J, Hernández-Rodríguez J, Montes S, Hernández-González M, Ríos C. Effects of postnatal exposure to cadmium on male sexual incentive motivation and copulatory behavior: Estrogen and androgen receptors expression in adult brain rat. Reprod Toxicol 2023; 120:108445. [PMID: 37482142 DOI: 10.1016/j.reprotox.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -β), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.
Collapse
Affiliation(s)
- Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México.
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Julio Rojas-Castañeda
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Joel Hernández-Rodríguez
- Cuerpo Académico de Investigación en Salud de la Licenciatura en Quiropráctica (CA-UNEVE-01), Universidad Estatal del Valle de Ecatepec, Estado de México 55210, México
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Lago de Chapala y Calle 16, Aztlán, Reynosa 88740, México
| | - Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, México
| | - Camilo Ríos
- Dirección de Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, México
| |
Collapse
|
23
|
Bowers JM, Li CY, Parker CG, Westbrook ME, Juntti SA. Pheromone Perception in Fish: Mechanisms and Modulation by Internal Status. Integr Comp Biol 2023; 63:407-427. [PMID: 37263784 PMCID: PMC10445421 DOI: 10.1093/icb/icad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa.
Collapse
Affiliation(s)
- Jessica M Bowers
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Cheng-Yu Li
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Coltan G Parker
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Molly E Westbrook
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| |
Collapse
|
24
|
Yu ZX, Zha X, Xu XH. Estrogen-responsive neural circuits governing male and female mating behavior in mice. Curr Opin Neurobiol 2023; 81:102749. [PMID: 37421660 DOI: 10.1016/j.conb.2023.102749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Decades of knockout analyses have highlighted the crucial involvement of estrogen receptors and downstream genes in controlling mating behaviors. More recently, advancements in neural circuit research have unveiled a distributed subcortical network comprising estrogen-receptor or estrogen-synthesis-enzyme-expressing cells that transforms sensory inputs into sex-specific mating actions. This review provides an overview of the latest discoveries on estrogen-responsive neurons in various brain regions and the associated neural circuits that govern different aspects of male and female mating actions in mice. By contextualizing these findings within previous knockout studies of estrogen receptors, we emphasize the emerging field of "circuit genetics", where identifying mating behavior-related neural circuits may allow for a more precise evaluation of gene functions within these circuits. Such investigations will enable a deeper understanding of how hormone fluctuation, acting through estrogen receptors and downstream genes, influences the connectivity and activity of neural circuits, ultimately impacting the manifestation of innate mating actions.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
25
|
Abstract
Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
26
|
Zeng PY, Tsai YH, Lee CL, Ma YK, Kuo TH. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci 2023; 16:1146109. [PMID: 37470056 PMCID: PMC10352621 DOI: 10.3389/fnmol.2023.1146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Sex bias has been an issue in many biomedical fields, especially in neuroscience. In rodent research, many scientists only focused on male animals due to the belief that female estrous cycle gives rise to unacceptable, high levels of variance in the experiments. However, even though female sexual behaviors are well known to be regulated by estrous cycle, which effects on other non-sexual behaviors were not always consistent in previous reports. Recent reviews analyzing published literature even suggested that there is no evidence for larger variation in female than male in several phenotypes. Methods To further investigate the impact of estrous cycle on the variability of female behaviors, we conducted multiple behavioral assays, including the open field test, forced swimming test, and resident-intruder assay to assess anxiety-, depression-like behaviors, as well as social interaction respectively. We compared females in the estrus and diestrus stages across four different mouse strains: C57BL/6, BALB/c, C3H, and DBA/2. Results Our results found no significant difference in most behavioral parameters between females in these two stages. On the other hand, the differences in behaviors among certain strains are relatively consistent in both stages, suggesting a very minimal effect of estrous cycle for detecting the behavioral difference. Last, we compared the behavioral variation between male and female and found very similar variations in most behaviors between the two sexes. Discussion While our study successfully identified behavioral differences among strains and between the sexes, we did not find solid evidence to support the notion that female behaviors are influenced by the estrous cycle. Additionally, we observed similar levels of behavioral variability between males and females. Female mice, therefore, have no reason to be excluded in future behavioral research.
Collapse
Affiliation(s)
- Pei-Yun Zeng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsuan Tsai
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Kai Ma
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Abstract
Reproduction is the biological process by which new individuals are produced by their parents. It is the fundamental feature of all known life and is required for the existence of all species. All mammals reproduce sexually, a process that involves the union of two reproductive cells, one from a male and one from a female. Sexual behaviors are a series of actions leading to reproduction. They are composed of appetitive, action, and refractory phases, each supported by dedicated developmentally-wired neural circuits to ensure high reproduction success. In rodents, successful reproduction can only occur during female ovulation. Thus, female sexual behavior is tightly coupled with ovarian activity, namely the estrous cycle. This is achieved through the close interaction between the female sexual behavior circuit and the hypothalamic-pituitary-gonadal (HPG) axis. In this review, we will summarize our current understanding, learned mainly in rodents, regarding the neural circuits underlying each phase of the female sexual behaviors and their interaction with the HPG axis, highlighting the gaps in our knowledge that require future investigation.
Collapse
Affiliation(s)
- Luping Yin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Jing X, Lyu L, Gong Y, Wen H, Li Y, Wang X, Li J, Yao Y, Zuo C, Xie S, Yan S, Qi X. Olfactory receptor OR52N2 for PGE 2 in mediation of guppy courtship behaviors. Int J Biol Macromol 2023; 241:124518. [PMID: 37088189 DOI: 10.1016/j.ijbiomac.2023.124518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Prostaglandins (PGs) are a type of physiologically active unsaturated fatty acids. As an important sex pheromone, PGs play a vital role in regulating the reproductive behaviors of species by mediating nerve and endocrine responses. In this study, guppy (Poecilia reticulate) was used as the model specie to detect the function of PGE2 in inducing the onset of courtship behaviors. Our results showed that adding PGE2 into the water environment could activate the courtship behavior of male guppy, indicating that the peripheral olfactory system mediated the PGE2 function. Thereafter, the open reading frame (ORF) of olfactory receptor or52n2 was cloned, which was 936 bp in length, coding 311 amino acids. As a typical G protein-coupled receptor, OR52N2 had a conservative seven α-helix transmembrane domains. To confirm the regulatory relationship between OR52N2 and PGE2, dual-luciferase reporter assay was employed to verify the activation of downstream CREB signaling pathways. Results showed that PGE2 significantly enhanced CRE promoter activity in or52n2 ORF transient transfected HEK-293 T cells. Finally, localization of or52n2 mRNA were observed in ciliated receptor cells of the olfactory epithelium using in situ hybridization. Our results provide a novel insight into sex pheromone signaling transduction in reproductive behavior.
Collapse
Affiliation(s)
- Xiao Jing
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
29
|
Levy DR, Hunter N, Lin S, Robinson EM, Gillis W, Conlin EB, Anyoha R, Shansky RM, Datta SR. Mouse spontaneous behavior reflects individual variation rather than estrous state. Curr Biol 2023; 33:1358-1364.e4. [PMID: 36889318 PMCID: PMC10090034 DOI: 10.1016/j.cub.2023.02.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Behavior is shaped by both the internal state of an animal and its individual behavioral biases. Rhythmic variation in gonadal hormones during the estrous cycle is a defining feature of the female internal state, one that regulates many aspects of sociosexual behavior. However, it remains unclear whether estrous state influences spontaneous behavior and, if so, how these effects might relate to individual behavioral variation. Here, we address this question by longitudinally characterizing the open-field behavior of female mice across different phases of the estrous cycle, using unsupervised machine learning to decompose spontaneous behavior into its constituent elements.1,2,3,4 We find that each female mouse exhibits a characteristic pattern of exploration that uniquely identifies it as an individual across many experimental sessions; by contrast, estrous state only negligibly impacts behavior, despite its known effects on neural circuits that regulate action selection and movement. Like female mice, male mice exhibit individual-specific patterns of behavior in the open field; however, the exploratory behavior of males is significantly more variable than that expressed by females both within and across individuals. These findings suggest underlying functional stability to the circuits that support exploration in female mice, reveal a surprising degree of specificity in individual behavior, and provide empirical support for the inclusion of both sexes in experiments querying spontaneous behaviors.
Collapse
Affiliation(s)
- Dana Rubi Levy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nigel Hunter
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Winthrop Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rockwell Anyoha
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
30
|
da Silva Moreira S, de Matos Manoel B, Inácio JPG, de Souza CG, Reis ACC, Jorge BC, de Aquino AM, Scarano WR, Cardoso CAL, Arena AC. Lactational exposure to venlafaxine provokes late repercussions on reproductive parameters in male rat offspring. J Appl Toxicol 2023; 43:387-401. [PMID: 36063371 DOI: 10.1002/jat.4389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Exposure to selective serotonin reuptake inhibitors can affect hormone-dependent processes, such as the brain sexual differentiation. Because the use of these antidepressants cause concern during lactation, we evaluated the possible effects of venlafaxine on lactational exposure and its late repercussions on reproductive parameters in male rats. Lactating rats were exposed to venlafaxine (3.85, 7.7, or 15.4 mg/kg/body weight; gavage), from lactational day 1 to 20. Venlafaxine and O-desmethylvenlafaxine residues were found in all milk samples of dams treated, demonstrating the lactational transfer of this antidepressant to the offspring. Although the maternal behavior was normal, the dams presented an increase in urea and uric acid levels in the groups treated with 7.7 and 15.4, respectively, as well as a spleen weight increased in the 3.85 and 15.4 groups. The male offspring showed a decrease in play behavior parameters in the intermediate dose group. Sperm analysis indicated a reduction in sperm motility in all treated groups. The androgen receptor expression in the hypothalamus was decreased in the highest dose group, although the sexual behavior had not been affected. In conclusion, venlafaxine was transferred through breast milk and promoted changes in play behavior, sperm quality, and hypothalamic androgen receptor (AR) content, which may indicate an incomplete masculinization of the brain of male offspring.
Collapse
Affiliation(s)
- Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | - Beatriz de Matos Manoel
- School of Health Sciences, Federal University of Grande Dourados, UFGD, Dourados, Mato Grosso do Sul State, Brazil
| | - João Pedro Gaspar Inácio
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | - Carolina Gabrielli de Souza
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo State, Brazil.,Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| |
Collapse
|
31
|
Abaffy T, Lu HY, Matsunami H. Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 2023; 391:19-42. [PMID: 36401093 PMCID: PMC9676892 DOI: 10.1007/s00441-022-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hsiu-Yi Lu
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
32
|
Kohtz AS, Frye CA. It is all About the Chase: Neurosteroidogenesis in Male Rats is Driven by Control of Mating Pace. Curr Neuropharmacol 2023; 21:1606-1616. [PMID: 36278466 PMCID: PMC10472806 DOI: 10.2174/1570159x21666221019114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Masculine sexual behaviors are dependent on androstane-derived steroids; however, the modulatory effects of mating, and of mating control, on androstane neurosteroidogenesis remain largely unknown. OBJECTIVE Herein, we investigated the effects of mating control, prior sexual experience, and age on brain region specific neurosteroidogenic responses in male rats. METHODS Effects of acute sexual experience were tested in naïve male rats that either remained sexually- naïve, were exposed to a standard mating chamber, or were either given control of the mating pace in a standard mating chamber (male control) or mated wherein the female stimulus rat controlled the mating pace in a paced-mating chamber (female control). Aged (10-12 months) sexually responsive male rats were similarly euthanized from the homecage or engaged in male controlled or female controlled mating. All rats were euthanized immediately following exposure conditions for radioimmunoassay of steroids in midbrain, hypothalamus, hippocampus and cortex. RESULTS Consummatory sexual behavior in male vs. female-controlled mating paradigms was altered by age and prior sexual experience. Male-controlled mating increased androstane neurosteroid metabolism, such that complementary increases in the testosterone (T) metabolite 5α-androstane-3α-17β- diol (3α-diol) in the midbrain and hypothalamus of male rats corresponded to decreases in the prohormone, T. 3α-diol were increased in the hippocampus in response to the context alone, and to a lesser degree in response to mating. Mating diminished neurosteroidogenesis in the cortex. Neurosteroidogenesis was overall reduced in aged male rats compared to naïve controls, however, these effects were more prominent in sexually non-responsive aged male rats. CONCLUSION Extending previous findings, these results indicate differential production of androstane neurosteroids in a mating exposure, age and brain region dependent manner.
Collapse
Affiliation(s)
- Amy S. Kohtz
- Department of Psychiatry & Human Behavior, Division of Neurobiology & Behavior Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Cheryl A. Frye
- Comprehensive Neuropsychological Services, PLLC, 490 Western Avenue, Albany, NY 12203, USA
| |
Collapse
|
33
|
Prostaglandin E2 receptor Ptger4b regulates female-specific peptidergic neurons and female sexual receptivity in medaka. Commun Biol 2022; 5:1215. [PMID: 36357668 PMCID: PMC9649691 DOI: 10.1038/s42003-022-04195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity. Prostaglandin E2 signaling mediates the estrogenic regulation of peptidergic neuronal activity and female receptivity via the ptger4b gene pathway in Japanese rice fish.
Collapse
|
34
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
35
|
Yin L, Hashikawa K, Hashikawa Y, Osakada T, Lischinsky JE, Diaz V, Lin D. VMHvll Cckar cells dynamically control female sexual behaviors over the reproductive cycle. Neuron 2022; 110:3000-3017.e8. [PMID: 35896109 PMCID: PMC9509472 DOI: 10.1016/j.neuron.2022.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
Sexual behavior is fundamental for the survival of mammalian species and thus supported by dedicated neural substrates. The ventrolateral part of ventromedial hypothalamus (VMHvl) is an essential locus for controlling female sexual behaviors, but recent studies revealed the molecular complexity and functional heterogeneity of VMHvl cells. Here, we identify the cholecystokinin A receptor (Cckar)-expressing cells in the lateral VMHvl (VMHvllCckar) as the key controllers of female sexual behaviors. The inactivation of VMHvllCckar cells in female mice diminishes their interest in males and sexual receptivity, whereas activating these cells has the opposite effects. Female sexual behaviors vary drastically over the reproductive cycle. In vivo recordings reveal reproductive-state-dependent changes in VMHvllCckar cell spontaneous activity and responsivity, with the highest activity occurring during estrus. These in vivo response changes coincide with robust alternation in VMHvllCckar cell excitability and synaptic inputs. Altogether, VMHvllCckar cells represent a key neural population dynamically controlling female sexual behaviors over the reproductive cycle.
Collapse
Affiliation(s)
- Luping Yin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Koichi Hashikawa
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Yoshiko Hashikawa
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Veronica Diaz
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
36
|
French JE, McNulty JK, Makhanova A, Maner JK, Eckel LA, Nikonova L, Meltzer AL. An Empirical Investigation of the Roles of Biological, Relational, Cognitive, and Emotional Factors in Explaining Sex Differences in Dyadic Sexual Desire. Biol Psychol 2022; 174:108421. [PMID: 36031012 DOI: 10.1016/j.biopsycho.2022.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
One challenge many marital couples face is that they experience discrepant levels of sexual desire for one another. Such discrepancies are particularly likely to arise in mixed-sex relationships because, at least in long-term relationships, men tend to have higher levels of sexual desire for their partner than do women. But what underlies this sex difference? We used a dyadic study of 100 mixed-sex community-based newlywed spouses to investigate the role of biological, relational, cognitive, and emotional factors in explaining sex differences in dyadic sexual desire for a long-term partner. Consistent with predictions, wives on average reported lower daily sexual desire for their spouse than did husbands. Moreover, individual differences in men's and women's levels of circulating testosterone explained this sex difference whereas relational (marital satisfaction, commitment), cognitive (sex-role identification, stress, self-esteem), and emotional (mood, depressive symptoms) factors did not. These findings advance our knowledge of factors that influence dyadic sexual desire and may have practical implications for treating relationship distress in mixed-sex marriages.
Collapse
Affiliation(s)
- Juliana E French
- Oklahoma Center for Evolutionary Analysis, Oklahoma State University, 116 Psychology Building, Stillwater, OK 74078, USA.
| | - James K McNulty
- Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA
| | | | - Jon K Maner
- Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA
| | - Lisa A Eckel
- Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA
| | - Larissa Nikonova
- Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA
| | - Andrea L Meltzer
- Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA
| |
Collapse
|
37
|
Dai B, Sun F, Tong X, Ding Y, Kuang A, Osakada T, Li Y, Lin D. Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep 2022; 40:111246. [PMID: 36001967 PMCID: PMC9511885 DOI: 10.1016/j.celrep.2022.111246] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 12/05/2022] Open
Abstract
Social behaviors are among the most important motivated behaviors. How dopamine (DA), a "reward" signal, releases during social behaviors has been a topic of interest for decades. Here, we use a genetically encoded DA sensor, GRABDA2m, to record DA activity in the nucleus accumbens (NAc) core during various social behaviors in male and female mice. We find that DA releases during approach, investigation and consummation phases of social behaviors signal animals' motivation, familiarity of the social target, and valence of the experience, respectively. Positive and negative social experiences evoke opposite DA patterns. Furthermore, DA releases during mating and fighting are sexually dimorphic with a higher level in males than in females. At the functional level, increasing DA in NAc enhances social interest toward a familiar conspecific and alleviates defeat-induced social avoidance. Altogether, our results reveal complex information encoded by NAc DA activity during social behaviors and their multistage functional roles.
Collapse
Affiliation(s)
- Bing Dai
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiaoyu Tong
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yizhuo Ding
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Amy Kuang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
38
|
López-Ojeda W, Hurley RA. Kisspeptin in the Limbic System: New Insights Into Its Neuromodulatory Roles. J Neuropsychiatry Clin Neurosci 2022; 34:190-195. [PMID: 35921618 DOI: 10.1176/appi.neuropsych.20220087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Departments of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Departments of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
39
|
Jamieson BB, Piet R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Front Neuroendocrinol 2022; 66:101006. [PMID: 35640722 DOI: 10.1016/j.yfrne.2022.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.
Collapse
Affiliation(s)
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
40
|
Hale MD, Robinson CD, Cox CL, Cox RM. Ontogenetic Change in Male Expression of Testosterone-Responsive Genes Contributes to the Emergence of Sex-Biased Gene Expression in Anolis sagrei. Front Physiol 2022; 13:886973. [PMID: 35721538 PMCID: PMC9203151 DOI: 10.3389/fphys.2022.886973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sex differences in gene expression tend to increase with age across a variety of species, often coincident with the development of sexual dimorphism and maturational changes in hormone levels. However, because most transcriptome-wide characterizations of sexual divergence are framed as comparisons of sex-biased gene expression across ages, it can be difficult to determine the extent to which age-biased gene expression within each sex contributes to the emergence of sex-biased gene expression. Using RNAseq in the liver of the sexually dimorphic brown anole lizard (Anolis sagrei), we found that a pronounced increase in sex-biased gene expression with age was associated with a much greater degree of age-biased gene expression in males than in females. This pattern suggests that developmental changes in males, such as maturational increases in circulating testosterone, contribute disproportionately to the ontogenetic emergence of sex-biased gene expression. To test this hypothesis, we used four different experimental contrasts to independently characterize sets of genes whose expression differed as a function of castration and/or treatment with exogenous testosterone. We found that genes that were significantly male-biased in expression or upregulated as males matured tended to be upregulated by testosterone, whereas genes that were female-biased or downregulated as males matured tended to be downregulated by testosterone. Moreover, the first two principal components describing multivariate gene expression indicated that exogenous testosterone reversed many of the feminizing effects of castration on the liver transcriptome of maturing males. Collectively, our results suggest that developmental changes that occur in males contribute disproportionately to the emergence of sex-biased gene expression in the Anolis liver, and that many of these changes are orchestrated by androgens such as testosterone.
Collapse
Affiliation(s)
- Matthew D. Hale
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | | | - Christian L. Cox
- College of Arts, Sciences, and Education, Florida International University, Miami, FL, United States
| | - Robert M. Cox
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
41
|
Casto KV, Leininger EC, Tan T. Teaching About Sex and Gender in Neuroscience: More Than Meets the "XY". JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2022; 20:A191-A206. [PMID: 38323054 PMCID: PMC10653250 DOI: 10.59390/azvz2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2024]
Abstract
Offering courses on the neuroscience of sex and gender can help support an inclusive curriculum in neuroscience. At the same time, developing and teaching such courses can be daunting to even the most enthusiastic educators, given the subject's complexities, nuances, and the difficult conversations that it invites. The authors of this article have all developed and taught such courses from different perspectives. Our aim is to provide educators with an overview of important conceptual topics as well as a comprehensive, but non-exhaustive, guide to resources for teaching about sex/gender in neuroscience based on our collective experience teaching courses on the topic. After defining vital terminology and briefly reviewing the biology of sex and sex determination, we describe some common topics within the field and contrast our current nuanced understandings from outdated misconceptions in the field. We review how (mis)representation of the neuroscience of sex/gender serves as a case study for how scientific results are communicated and disseminated. We consider how contextualization of sex/gender neuroscience research within a broader historical and societal framework can give students a wider perspective on the enterprise of science. Finally, we conclude with a brief discussion on how to choose learning goals for your course and implementation notes.
Collapse
Affiliation(s)
- Kathleen V Casto
- Division of Social Sciences, New College of Florida, Sarasota, FL 34243
| | | | - Taralyn Tan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- PhD Program in Neuroscience, Harvard University, Cambridge, MA 02138
| |
Collapse
|
42
|
Horii K, Sawamura T, Onishi A, Yuki N, Naitou K, Shiina T, Shimizu Y. Contribution of sex hormones to the sexually dimorphic response of colorectal motility to noxious stimuli in rats. Am J Physiol Gastrointest Liver Physiol 2022; 323:G1-G8. [PMID: 35438007 DOI: 10.1152/ajpgi.00033.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our recent studies have shown that noxious stimuli in the colorectum enhance colorectal motility via the brain and spinal defecation centers in male rats. In female rats, however, noxious stimuli have no effect on colorectal motility. The purpose of this study was to determine whether sex hormones are major contributing factors for sex-dependent differences in neural components of the spinal defecation center. Colorectal motility was measured using an in vivo method under ketamine and α-chloralose anesthesia in rats. Capsaicin was administered into the colorectal lumen as noxious stimuli. Orchiectomy in male rats had no effect on the capsaicin-induced response of colorectal motility. However, in ovariectomized female rats, capsaicin administration enhanced colorectal motility, though intact female animals did not show enhanced motility. When estradiol was administered by using a sustained-release preparation in ovariectomized female rats, capsaicin administration did not enhance colorectal motility unless a GABAA receptor antagonist was intrathecally administered to the lumbosacral spinal cord. These findings suggest that estradiol allowed the GABAergic neurons to operate in response to intracolonic administration of capsaicin. The operation of GABAergic inhibition by the action of estradiol could be manifested in male rats only when the effects of male sex hormones were removed by orchiectomy. Taken together, our results indicate that sex hormones contribute to the sexually dimorphic response in colorectal motility enhancement in response to noxious stimuli through modulating GABAergic pathways.NEW & NOTEWORTHY This study demonstrated that estradiol permits inhibitory regulation in the spinal defecation center not only in female rats but also in orchiectomized male rats. GABAergic pathways are likely involved in the effect of estradiol. This is the first report showing that sex hormones affect colorectal motility through the alteration of neural components of the regulatory pathways. Our findings provide a novel insight into pathophysiological mechanisms of defecation disorders related to changes in sex hormones.
Collapse
Affiliation(s)
- Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tomoya Sawamura
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ayaka Onishi
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Natsufu Yuki
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
43
|
Jiang J, Su S, Lai T, Feng W, Li F, Tian C, Gao Y, Munganga BP, Tang Y, Xu P. Recognition of Gonadal Development in Eriocheir sinensis Based on the Impulse of Love at First Sight. Front Physiol 2022; 13:793699. [PMID: 35574457 PMCID: PMC9091178 DOI: 10.3389/fphys.2022.793699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Given the difficulty in identifying individuals with different degrees of ovarian development, we developed a new device utilizing the hypothesis of mutual attraction behavior between male and female crabs with mature gonads by releasing the sexual pheromone so they could be examined. From a total of 40 female crabs, 10 were isolated within half an hour. Histological analysis showed that the ovaries of crabs in the isolated group were in stage IV, while those of the control groups were in stage III. In addition, progesterone (PROG) in experimental groups was significantly reduced compared with the control group (p < 0.05), but no significant difference was detected in estradiol (E2). In response to the different developmental stages, hemolymph biochemical indices and the determination of gonadal fatty acids profiles were explored. The results indicated only C18:4 showed a significant difference between these two groups. A transcriptome was generated to determine the genes involved in the mutual attraction process; differentially expressed genes (DEGs) were significantly related to gonadal development. Therefore, the device can be used to isolate Chinese mitten crabs with stage IV ovarian development.
Collapse
Affiliation(s)
- Jingjing Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ting Lai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Wenrong Feng
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Feifan Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Can Tian
- National Demonstration Center for Expermental Fisherise Science Education, Shanghai Ocean University, Shanghai, China
| | - Yang Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
44
|
Chen SL, Liu BT, Lee WP, Liao SB, Deng YB, Wu CL, Ho SM, Shen BX, Khoo GH, Shiu WC, Chang CH, Shih HW, Wen JK, Lan TH, Lin CC, Tsai YC, Tzeng HF, Fu TF. WAKE-mediated modulation of cVA perception via a hierarchical neuro-endocrine axis in Drosophila male-male courtship behaviour. Nat Commun 2022; 13:2518. [PMID: 35523813 PMCID: PMC9076693 DOI: 10.1038/s41467-022-30165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
The nervous and endocrine systems coordinate with each other to closely influence physiological and behavioural responses in animals. Here we show that WAKE (encoded by wide awake, also known as wake) modulates membrane levels of GABAA receptor Resistance to Dieldrin (Rdl), in insulin-producing cells of adult male Drosophila melanogaster. This results in changes to secretion of insulin-like peptides which is associated with changes in juvenile hormone biosynthesis in the corpus allatum, which in turn leads to a decrease in 20-hydroxyecdysone levels. A reduction in ecdysone signalling changes neural architecture and lowers the perception of the male-specific sex pheromone 11-cis-vaccenyl acetate by odorant receptor 67d olfactory neurons. These finding explain why WAKE-deficient in Drosophila elicits significant male-male courtship behaviour. The authors show that the Drosophila master regulator WAKE modulates the secretion of insulin-like peptides, triggering a decrease in 20-hydroxyecdysone levels. This lowers the perception of a male-specific sex pheromone and explains why WAKE-deficient Drosophila flies show male-male courtship behaviour.
Collapse
Affiliation(s)
- Shiu-Ling Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bo-Ting Liu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sin-Bo Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yao-Bang Deng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuk-Man Ho
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bing-Xian Shen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Guan-Hock Khoo
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Wei-Chiang Shiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chih-Hsuan Chang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Wen Shih
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Chien Lin
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.
| | - Huey-Fen Tzeng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
45
|
Rodrigues-Pereira P, Andrade MN, Santos-Silva AP, Teixeira MP, Soares P, Graceli JB, de Carvalho DP, Dias GRM, Ferreira ACF, Miranda-Alves L. Subacute and low-dose tributyltin exposure disturbs the mammalian hypothalamus-pituitary-thyroid axis in a sex-dependent manner. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109279. [PMID: 35077874 DOI: 10.1016/j.cbpc.2022.109279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
Abstract
Tributyltin (TBT) is an endocrine disruptor chemical (EDC) capable of altering the proper function of the hypothalamus-pituitary thyroid (HPT) axis. This study aimed to evaluate the subacute effects of TBT on the HPT axis of male and female rats. A dose of 100 ng/kg/day TBT was used in both sexes over a 15-day period, and the morphophysiology and gene expression of the HPT axis were assessed. TBT exposure increased the body weight in both sexes, while food efficiency increased - only in male rats. It was also possible to note alterations in the thyroid, with the presence of a stratified epithelium, cystic degeneration, and increased interstitial collagen deposition. A reduction in T3 and T4 levels was only observed in TBT male rats. A reduction in TSH levels was observed in TBT female rats. Evaluating mRNA expression, we observed a decrease in hepatic D1 and TRH mRNA levels in TBT female rats. An increase in D2 mRNA expression in the hypothalamus was observed in TBT male rats. Additionally, no significant changes in TRH or hepatic D1 mRNA expression in TBT male rats or in hypothalamic D1 and D2 mRNA expression in TBT female rats were observed. Thus, we can conclude that TBT has different toxicological effects on male and female rats by altering thyroid gland morphophysiology, leading to abnormal HPT axis function, and even at subacute and low doses, it may be involved in complex endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Paula Rodrigues-Pereira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Paula Santos-Silva
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Pires Teixeira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Jones Bernardes Graceli
- Laboratório de Toxicologia e Endocrinologia, Departamento de Morfologia, Universidade Federal do Espírito Santo, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Glaecir Roseni Mundstock Dias
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
46
|
John SR, Dagash W, Mohapatra AN, Netser S, Wagner S. Distinct dynamics of theta and gamma rhythmicity during social interaction suggest differential mode of action in the medial amygdala of SD rats and C57BL/6J mice. Neuroscience 2022; 493:69-80. [DOI: 10.1016/j.neuroscience.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
47
|
Effect of Chronic Moderate Caloric Restriction on the Reproductive Function in Aged Male Wistar Rats. Nutrients 2022; 14:nu14061256. [PMID: 35334913 PMCID: PMC8952234 DOI: 10.3390/nu14061256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Caloric restriction (CR) has been shown to be an effective nutritional intervention for increasing longevity in some animal species. The objective of this study was to evaluate CR’s effects on metabolic and reproductive parameters in 12-month-old male Wistar rats. The rats were distributed in three groups: control, CR at 15%, and CR at 35% for 6 (up to 18 months of age) and 12 months (up to 24 months of age). At the end of CR treatment, we evaluated reproductive (male sexual behavior (MSB), sperm quality) and biochemical parameters (plasma glucose, glucose-regulating hormone, and sex steroid levels), and quantified annexin V in the seminiferous epithelium. Results showed that MSB and sperm quality were improved after 6 months of CR associated with increases in plasma testosterone and decrease annexin V in the seminiferous epithelium of the testicles compared to their control group. The metabolic profile of the CR rats also improved compared to controls. However, these effects of CR on reproductive parameters were not maintained after 12 months of CR. Findings suggest that beginning CR at the age of maturity reestablishes the behavioral sexual response and reproductive function in older animals after 6 months of CR and improves endocrine functioning during aging.
Collapse
|
48
|
Zhang T, Yuan P, Cui Y, Yuan W, Jiang D. Convergent and Divergent Structural Connectivity of Brain White Matter Network Between Patients With Erectile Dysfunction and Premature Ejaculation: A Graph Theory Analysis Study. Front Neurol 2022; 13:804207. [PMID: 35273555 PMCID: PMC8902049 DOI: 10.3389/fneur.2022.804207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sexual dysfunction, namely, erectile dysfunction (ED) and premature ejaculation (PE), has been found to be associated with abnormal structural connectivity in the brain. Previous studies have mainly focused on a single disorder, however, convergent and divergent structural connectivity patterns of the brain network between ED and PE remain poorly understood. Methods T1-weighted structural data and diffusion tensor imaging data of 28 patients with psychological ED, 28 patients with lifelong PE (LPE), and 28 healthy controls (HCs) were obtained to map the white matter (WM) brain networks. Then, the graph-theoretical method was applied to investigate the differences of network properties (small-world measures) of the WM network between patients with ED and LPE. Furthermore, nodal segregative and integrative parameters (nodal clustering coefficient and characteristic path length) were also explored between these patients. Results Small-world architecture of the brain networks were identified for both psychological ED and LPE groups. However, patients with ED exhibited increased average characteristic path length of the brain network when compared with patients with LPE and HCs. No significant difference was found in the average characteristic path length between patients with LPE and HCs. Moreover, increased nodal characteristic path length was found in the right middle frontal gyrus (orbital part) of patients with ED and LPE when compared with HCs. In addition, patients with ED had increased nodal characteristic path length in the right middle frontal gyrus (orbital part) when compared with patients with LPE. Conclusion Together, our results demonstrated that decreased integration of the right middle frontal gyrus (orbital part) might be a convergent neuropathological basis for both psychological ED and LPE. In addition, patients with ED also exhibited decreased integration in the whole WM brain network, which was not found in patients with LPE. Therefore, altered integration of the whole brain network might be the divergent structural connectivity patterns for psychological ED and LPE.
Collapse
Affiliation(s)
- Tielong Zhang
- Department of Urology, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Yancheng, China
| | - Peng Yuan
- Department of Intervention, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Yancheng, China
| | - Yonghua Cui
- Department of Neurosurgery, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Yancheng, China
| | - Weibiao Yuan
- Department of Radiology, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Yancheng, China
| | - Daye Jiang
- Department of Urology, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Yancheng, China
| |
Collapse
|
49
|
McKenna J, Bellofiore N, Temple-Smith P. Good things come to those who mate: analysis of the mating behaviour in the menstruating rodent, Acomys cahirinus. BMC ZOOL 2022; 7:13. [PMID: 37170145 PMCID: PMC10127372 DOI: 10.1186/s40850-022-00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Egyptian spiny mouse (Acomys cahirinus) is the only known rodent to exhibit true, human-like menstruation and postpartum ovulation, and is an important new model for reproductive studies. Spiny mice do not produce a visible copulatory plug, and calculation of gestational age is therefore restricted by the need to use mated postpartum dams. The current inefficient method of monitoring until parturition to provide a subsequent estimate of gestational age increases study duration and costs. This study addressed this issue by comparing the mating behaviour of spiny mice across the menstrual cycle and proposes a more accurate method for staging and pairing animals that provides reliable estimates of gestational age. In experiment 1, mating behaviour was recorded overnight to collect data on mounting, intromission, and ejaculation (n = 5 pairs per stage) in spiny mice paired at menses and at early and late follicular and luteal phases of the menstrual cycle. In experiment 2, female spiny mice were paired at the follicular or luteal phases of the menstrual cycle to determine any effect on the pairing-birth interval (n = 10 pairs).
Results
We report a broad mating window of ~ 3 days during the follicular phase and early luteal phase of spiny mice. Males displayed a discrete ‘foot twitch’ behaviour during intromission and a brief copulatory lock during ejaculation. Litters were delivered after 40–43 days if pairing occurred during the mating window, compared with 46–48 days for spiny mice paired in the late luteal phase. When pairing occurred during the late luteal phase or menses no mating activity was observed during the recording period.
Conclusion
This study clearly demonstrates an effect of the menstrual cycle on mating behaviour and pregnancy in the spiny mouse and provides a reliable and more effective protocol for estimating gestational age without the need for postpartum dams.
Collapse
|
50
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|