1
|
Gezer A, Üstündağ H, Karadağ Sarı E, Bedir G, Gür C, Mendil AS, Duysak L. β-carotene protects against α-amanitin nephrotoxicity via modulation of oxidative, autophagic, nitric oxide signaling, and polyol pathways in rat kidneys. Food Chem Toxicol 2024; 193:115040. [PMID: 39389447 DOI: 10.1016/j.fct.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Alpha-amanitin (α-AMA), a toxic component of Amanita phalloides, causes severe hepato- and nephrotoxicity. This study investigated the protective effects of βeta-carotene (βC) against α-AMA-induced kidney damage in rats. Thirty-two male Sprague-Dawley rats were divided into four groups: Control, βC (50 mg/kg/day), α-AMA (3 mg/kg), and βC+α-AMA. βC was administered orally for 7 days before α-AMA injection. Renal function, oxidative stress markers, histopathological changes, and enzyme activities were evaluated 48 h post-α-AMA administration. α-AMA significantly increased serum creatinine and urea levels, decreased glutathione and catalase activity, and increased malondialdehyde levels (P < 0.001). βC pretreatment attenuated these changes (P < 0.05). Histopathological examination revealed reduced tubular degeneration in the βC+α-AMA group (P < 0.001). Immunohistochemical analysis showed increased LC3B and Beclin-1 expression in α-AMA-treated rats, indicating enhanced autophagy, partially reversed by βC. Additionally, α-AMA reduced nitric oxide synthase (NOS) activity and increased aldose reductase (AR) activity, both normalized by βC pretreatment (P < 0.01). βC demonstrates protective effects against α-AMA-induced nephrotoxicity through antioxidant action, modulation of autophagy, and regulation of NOS and AR pathways, suggesting its potential as a therapeutic agent in α-AMA poisoning.
Collapse
Affiliation(s)
- Arzu Gezer
- Atatürk University, Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Erzurum, Turkiye; Atatürk University, Vocational School of Health Services, Erzurum, Turkiye.
| | - Hilal Üstündağ
- Erzincan Binali Yıldırım University, Faculty of Medicine, Department of Physiology, Erzincan, Turkiye.
| | - Ebru Karadağ Sarı
- Kafkas University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Kars, Turkiye
| | - Gürsel Bedir
- Atatürk University, School of Medicine, Department of Histology and Embryology, Erzurum, Turkiye
| | - Cihan Gür
- Atatürk University, Vocational School of Health Services, Erzurum, Turkiye
| | - Ali Sefa Mendil
- Erciyes University, Faculty of Veterinary Medicine, Department of Pathology, Kayseri, Turkiye
| | - Lale Duysak
- Atatürk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkiye
| |
Collapse
|
2
|
Yasir M, Park J, Han ET, Han JH, Park WS, Chun W. Investigating the Inhibitory Potential of Flavonoids against Aldose Reductase: Insights from Molecular Docking, Dynamics Simulations, and gmx_MMPBSA Analysis. Curr Issues Mol Biol 2024; 46:11503-11518. [PMID: 39451563 PMCID: PMC11506312 DOI: 10.3390/cimb46100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, with aldose reductase playing a critical role in the pathophysiology of diabetic complications. This study aimed to investigate the efficacy of flavonoid compounds as potential aldose reductase inhibitors using a combination of molecular docking and molecular dynamics (MD) simulations. The three-dimensional structures of representative flavonoid compounds were obtained from PubChem, minimized, and docked against aldose reductase using Discovery Studio's CDocker module. The top 10 compounds Daidzein, Quercetin, Kaempferol, Butin, Genistein, Sterubin, Baicalein, Pulchellidin, Wogonin, and Biochanin_A were selected based on their lowest docking energy values for further analysis. Subsequent MD simulations over 100 ns revealed that Daidzein and Quercetin maintained the highest stability, forming multiple conventional hydrogen bonds and strong hydrophobic interactions, consistent with their favorable interaction energies and stable RMSD values. Comparative analysis of hydrogen bond interactions and RMSD profiles underscored the ligand stability. MMPBSA analysis further confirmed the significant binding affinities of Daidzein and Quercetin, highlighting their potential as aldose reductase inhibitors. This study highlights the potential of flavonoids as aldose reductase inhibitors, offering insights into their binding interactions and stability, which could contribute to developing novel therapeutics for DM complications.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
3
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
4
|
Ahmad S, Ahmad MFA, Khan S, Alouffi S, Khan M, Prakash C, Khan MWA, Ansari IA. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024; 280:135761. [PMID: 39306154 DOI: 10.1016/j.ijbiomac.2024.135761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Diabetes mellitus significantly increases mortality and morbidity rates due to complications like neuropathy and nephropathy. It also leads to retinopathy and cataract formation, which is a leading cause of vision disability. The polyol pathway emerges as a promising therapeutic target among the various pathways associated with diabetic complications. This review focuses on the development of natural and synthetic aldose reductase inhibitors (ARIs), along with recent discoveries in diabetic complication treatment. AR, pivotal in the polyol pathway converting glucose to sorbitol, plays a key role in secondary diabetes complications' pathophysiology. Understanding AR's function and structure lays the groundwork for improving ARIs to mitigate diabetic complications. New developments in ARIs open up exciting possibilities for treating diabetes-related complications. However, it is still challenging to get preclinical successes to clinical effectiveness because of things like differences in how the disease starts, drug specificity, and the complexity of the AR's structure. Addressing these challenges is crucial for developing targeted and efficient ARIs. Continued research into AR's structural features and specific ARIs is essential. Overcoming these challenges could revolutionize diabetic complication treatment, enhance patient outcomes, and reduce the global burden of diabetes-related mortality and morbidity.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | | | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail, 2440, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il-55473, Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia.
| |
Collapse
|
5
|
Gong Y, Wei Q, Luo L, Qiu W, Jiang Y. A lipidomic study on the lens epithelial cells of patients with age related cataracts. PeerJ 2024; 12:e17998. [PMID: 39253600 PMCID: PMC11382648 DOI: 10.7717/peerj.17998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Age related cataracts (ARC) represent the main reason for blindness globally. The lens epithelial cells (LECs) participate not only in the metabolism of many substances in the lens but also in maintaining lens transparency. This study used lipidomics to investigate the metabolic differences in LECs of ARC patients with different severity, aiming at identifying potential metabolic biomarkers of ARC. Patients diagnosed with ARC and underwent cataract surgery at Shanghai Tongren Hospital were selected to participate in this study, which were classified as mild ARC group and severe ARC group. During their cataract surgery, anterior lens capsules(LCs) containing LECs were obtained. The lipidomics of LECs were analyzed using the liquid chromatography‑mass spectrometry (LC-MS). Potential pathways of lipids were searched for using databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst platform. In LEC lipids, 26 lipids have been identified as potential biomarkers between mild ARC and severe ARC, with AUC values of 0.67-0.94. The pathway analysis results revealed that the Glycerophospholipid (GPL) metabolism was significantly influenced, indicating that these metabolic markers contribute significantly to regulating this pathway. The LEC metabolic spectrum demonstrates a proficient ability to differentiate between patients with varying levels of cataracts. Herein, we have successfully identified potential metabolic biomarkers and pathways that have proven to be valuable in enhancing our understanding of ARC pathogenesis. The finding has translational value for developing new cataract treatment methods in the future.
Collapse
Affiliation(s)
- Yingying Gong
- Shanghai Jiaotong University School of Medicine, Tongren Hospital, Shanghai, China
| | - Qingquan Wei
- Shanghai Jiaotong University School of Medicine, Tongren Hospital, Shanghai, China
| | - Liying Luo
- Shanghai Jiaotong University School of Medicine, Tongren Hospital, Shanghai, China
| | - Wei Qiu
- Shanghai Jiaotong University School of Medicine, Tongren Hospital, Shanghai, China
| | - Yanyun Jiang
- Shanghai Jiaotong University School of Medicine, Tongren Hospital, Shanghai, China
| |
Collapse
|
6
|
Li M, Zhao Z, Yi J. Biomaterials Designed to Modulate Reactive Oxygen Species for Enhanced Bone Regeneration in Diabetic Conditions. J Funct Biomater 2024; 15:220. [PMID: 39194658 DOI: 10.3390/jfb15080220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus, characterized by enduring hyperglycemia, precipitates oxidative stress, engendering a spectrum of complications, notably increased bone vulnerability. The genesis of reactive oxygen species (ROS), a byproduct of oxygen metabolism, instigates oxidative detriment and impairs bone metabolism in diabetic conditions. This review delves into the mechanisms of ROS generation and its impact on bone homeostasis within the context of diabetes. Furthermore, the review summarizes the cutting-edge progress in the development of ROS-neutralizing biomaterials tailored for the amelioration of diabetic osteopathy. These biomaterials are engineered to modulate ROS dynamics, thereby mitigating inflammatory responses and facilitating bone repair. Additionally, the challenges and therapeutic prospects of ROS-targeted biomaterials in clinical application of diabetic bone disease treatment is addressed.
Collapse
Affiliation(s)
- Mingshan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Yang Q, Abed Jawad M, Ali Alzahrani A, F Hassan Z, Elawady A, Hjazi A, Naghibi M. Synergistic effects of Metformin and Forskolin on oxidative stress induced by diabetes and hepatocellular cancer: An animal study. Toxicon 2024; 243:107720. [PMID: 38614244 DOI: 10.1016/j.toxicon.2024.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIM This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.
Collapse
Affiliation(s)
- Qian Yang
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | | | | | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Mehran Naghibi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Fan Y, Li X, Li J, Xiong X, Yin S, Fu W, Wang P, Liu J, Xiong Y. Differential metabolites screening in yak (Bos grunniens) seminal plasma after cryopreservation and the evaluation of the effect of galactose on post-thaw sperm motility. Theriogenology 2024; 215:249-258. [PMID: 38103402 DOI: 10.1016/j.theriogenology.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Sperm survival and activity depend on the provision of energy and nutrients from seminal plasma (SP). This study aimed to investigate the variations of metabolites within SP before and after freezing and subsequently explore the potential regulatory mechanisms affecting yak sperm cryodamage due to changes in metabolites in the SP. Untargeted metabolomics analysis was performed to screen for differential metabolites, followed by KEGG analysis to identify enriched signaling pathways. The combinatorial analysis of metabolomics and sperm proteomics revealed the influence of key SP metabolites on sperm proteins. Subsequently, the relevant differentially expressed proteins were verified by Western blot analysis. Finally, the mechanism underlying the positive effect of galactose on sperm motility was determined by assessing the change in ATP content in sperm before and after freezing and thawing. The data showed that a total of 425 and 269 metabolites were identified in the positive and negative ion modes, respectively. Freezing and thawing resulted in the up-regulation of 70 metabolites and the down-regulation of 29 metabolites in SP. The primary impact of freezing and thawing was observed in carbohydrate metabolism, including pyruvate metabolism, pentose phosphate pathway, galactose metabolism, the TCA cycle, and butanoate metabolism. In the combined analysis and Western blot results, a significant positive correlation was observed between galactose and Aldo-keto reductase family 1 member B1 (AKR1B1) (P < 0.05), which has the ability to convert galactose into galactol. Furthermore, the addition of galactose to thawed semen improved sperm motility by increasing AKR1B1 protein in sperm and was associated with the content of ATP. These data identify differential metabolites between fresh and frozen-thawed SP and suggest that galactose is a valuable additive for cryopreserved sperm, providing a theoretical basis for further exploration of the refrigerant formula for yak sperm cryopreservation.
Collapse
Affiliation(s)
- Yilin Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaowei Li
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Peng Wang
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Jun Liu
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Zhang Y, Gao S, Xia S, Yang H, Bao X, Zhang Q, Xu Y. Linarin ameliorates ischemia-reperfusion injury by the inhibition of endoplasmic reticulum stress targeting AKR1B1. Brain Res Bull 2024; 207:110868. [PMID: 38181967 DOI: 10.1016/j.brainresbull.2024.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Due to various factors, there is still a lack of effective neuroprotective agents for ischemic stroke in clinical practice. Neuroinflammation and neuronal apoptosis mediated by endoplasmic reticulum stress are some of the important pathological mechanisms in ischemic stroke. Linarin has been reported to have anti-inflammation, antioxidant, and anti-apoptotic effects in myocardial ischemia, osteoarthritis, and kidney disease. Whether it exerts neuroprotective functions in ischemic stroke has not been investigated. The results showed that linarin could reduce the infarct volume in cerebral ischemia animal models, improve the neurological function scores and suppress the expression of inflammatory factors mediating the NF-κB. Meanwhile, it could protect the neurons from OGD/R-induced-apoptosis, which was related to the PERK-eIF2α pathway. Our results suggested linarin could inhibit neuronal inflammation and apoptosis induced by endoplasmic reticulum stress. Furthermore, the neuroprotective effect of linarin may be related to the inhibition of AKR1B1. Our study offers new insight into protecting against ischemia-reperfusion injury by linarin treatment in stroke.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| |
Collapse
|
10
|
Gupta JK. The Role of Aldose Reductase in Polyol Pathway: An Emerging Pharmacological Target in Diabetic Complications and Associated Morbidities. Curr Pharm Biotechnol 2024; 25:1073-1081. [PMID: 37649296 DOI: 10.2174/1389201025666230830125147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The expression of aldose reductase leads to a variety of biological and pathological effects. It is a multifunctional enzyme which has a tendency to reduce aldehydes to the corresponding sugar.alcohol. In diabetic conditions, the aldose reductase enzyme converts glucose into sorbitol using nicotinamide adenine dinucleotide phosphate as a cofactor. It is a key enzyme in polyol pathway which is a surrogate course of glucose metabolism. The polyol pathway has a significant impact on the aetiology of complications in individuals with end-stage diabetes. The exorbitant level of sorbitol leads to the accumulation of intracellular reactive oxygen species in diabetic heart, neurons, kidneys, eyes and other vasculatures, leading to many complications and pathogenesis. Recently, the pathophysiological role of aldose reductase has been explored with multifarious perspectives. Research on aldose reductase suggest that besides implying in diabetic complications, the enzyme also turns down the lipid-derived aldehydes as well as their glutathione conjugates. Although aldose reductase has certain lucrative role in detoxification of toxic lipid aldehydes, its overexpression leads to intracellular accumulation of sorbitol which is involved in secondary diabetic complications, such as neuropathy, cataractogenesis, nephropathy, retinopathy and cardiovascular pathogenesis. Osmotic upset and oxidative stress are produced by aldose reductase via the polyol pathway. The inhibition of aldose reductase alters the activation of transcription factors like NF-ƙB. Moreover, in many preclinical studies, aldose reductase inhibitors have been observed to reduce inflammation-related impediments, such as asthma, sepsis and colon cancer, in diabetic subjects. Targeting aldose reductase can bestow a novel cognizance for this primordial enzyme as an ingenious strategy to prevent diabetic complications and associated morbidities. In this review article, the significance of aldose reductase is briefly discussed along with their prospective applications in other afflictions.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, India
| |
Collapse
|
11
|
Liao Y, Mao H, Gao X, Lin H, Li W, Chen Y, Li H. Drug screening identifies aldose reductase as a novel target for treating cisplatin-induced hearing loss. Free Radic Biol Med 2024; 210:430-447. [PMID: 38056576 DOI: 10.1016/j.freeradbiomed.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.
Collapse
Affiliation(s)
- Yaqi Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Huanyu Mao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Xian Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Hailiang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Wenyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Huawei Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| |
Collapse
|
12
|
Zhao WL, Xu D, Wang JS. Torachrysone-8-O-β-d-glucoside mediates anti-inflammatory effects by blocking aldose reductase-catalyzed metabolism of lipid peroxidation products. Biochem Pharmacol 2023; 218:115931. [PMID: 37981172 DOI: 10.1016/j.bcp.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Aldose reductase (AR) is an important enzyme involved in the reduction of various aldehyde and carbonyl compounds, including the highly reactive and toxic 4-hydroxynonenal (4-HNE), which has been linked to the progression of various pathologies such as atherosclerosis, hyperglycemia, inflammation, and tumors. AR inhibitors have potential therapeutic benefits for these diseases by reducing lipid peroxidation and mitigating the harmful effects of reactive aldehydes. In this study, we found that torachrysone-8-O-β-d-glucoside (TG), a natural product isolated from Polygonum multiflorum Thunb., functions as an effective inhibitor of AR, exhibiting potent effects in clearing reactive aldehydes and reducing inflammation. TG up-regulated the mRNA levels of several antioxidant factors downstream of NRF2, especially glutathione S-transferase (GST), which is significantly increased, thus detoxifying 4-HNE by facilitating the conjugation of 4-HNE to glutathione, forming glutathione-4-hydroxynonenal (GS-HNE). By employing a combination of molecular docking, cellular thermal shift assay, and enzyme activity experiments, we demonstrated that TG exhibited strong binding affinity with AR and inhibited its activity and blocked the conversion of GS-HNE to glutathionyl-1,4-dihydroxynonene (GS-DHN), thereby preventing the formation of protein adducts and inducing severe cellular damage. This study provides novel insights into the anti-inflammatory mechanisms of AR inhibitors and offers potential avenues for developing therapeutic strategies for AR-related pathologies. Our findings suggest that TG, as an AR inhibitor, may hold promise as a therapeutic agent for treating conditions characterized by excessive lipid peroxidation and inflammation. Further investigations are needed to fully explore the clinical potential of TG and evaluate its efficacy in the treatment and management of these complex diseases.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
13
|
Conklin DJ, Haberzettl P, MacKinlay KG, Murphy D, Jin L, Yuan F, Srivastava S, Bhatnagar A. Aldose Reductase (AR) Mediates and Perivascular Adipose Tissue (PVAT) Modulates Endothelial Dysfunction of Short-Term High-Fat Diet Feeding in Mice. Metabolites 2023; 13:1172. [PMID: 38132854 PMCID: PMC10744918 DOI: 10.3390/metabo13121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Increased adiposity of both visceral and perivascular adipose tissue (PVAT) depots is associated with an increased risk of diabetes and cardiovascular disease (CVD). Under healthy conditions, PVAT modulates vascular tone via the release of PVAT-derived relaxing factors, including adiponectin and leptin. However, when PVAT expands with high-fat diet (HFD) feeding, it appears to contribute to the development of endothelial dysfunction (ED). Yet, the mechanisms by which PVAT alters vascular health are unclear. Aldose reductase (AR) catalyzes glucose reduction in the first step of the polyol pathway and has been long implicated in diabetic complications including neuropathy, retinopathy, nephropathy, and vascular diseases. To better understand the roles of both PVAT and AR in HFD-induced ED, we studied structural and functional changes in aortic PVAT induced by short-term HFD (60% kcal fat) feeding in wild type (WT) and aldose reductase-null (AR-null) mice. Although 4 weeks of HFD feeding significantly increased body fat and PVAT mass in both WT and AR-null mice, HFD feeding induced ED in the aortas of WT mice but not of AR-null mice. Moreover, HFD feeding augmented endothelial-dependent relaxation in aortas with intact PVAT only in WT and not in AR-null mice. These data indicate that AR mediates ED associated with short-term HFD feeding and that ED appears to provoke 'compensatory changes' in PVAT induced by HFD. As these data support that the ED of HFD feeding is AR-dependent, vascular-localized AR remains a potential target of temporally selective intervention.
Collapse
Affiliation(s)
- Daniel J. Conklin
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Petra Haberzettl
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | | | - Daniel Murphy
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
| | - Lexiao Jin
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Fangping Yuan
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Sanjay Srivastava
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| |
Collapse
|
14
|
Shahab M, Zheng G, Alshabrmi FM, Bourhia M, Wondmie GF, Mohammad Salamatullah A. Exploring potent aldose reductase inhibitors for anti-diabetic (anti-hyperglycemic) therapy: integrating structure-based drug design, and MMGBSA approaches. Front Mol Biosci 2023; 10:1271569. [PMID: 38053577 PMCID: PMC10694256 DOI: 10.3389/fmolb.2023.1271569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Aldose reductase (AR) is an important target in the development of therapeutics against hyper-glycemia-induced health complications such as retinopathy, etc. In this study, we employed a combination of structure-based drug design, molecular simulation, and free energy calculation approaches to identify potential hit molecules against anti-diabetic (anti-hyperglycemic)-induced health complications. The 3D structure of aldoreductase was screened for multiple compound libraries (1,00,000 compounds) and identified as ZINC35671852, ZINC78774792 from the ZINC database, Diamino-di nitro-methyl dioctyl phthalate, and Penta-o-galloyl-glucose from the South African natural compounds database, and Bisindolylmethane thiosemi-carbazides and Bisindolylme-thane-hydrazone from the Inhouse database for this study. The mode of binding interactions of the selected compounds later predicted their aldose reductase inhibitory potential. These com-pounds interact with the key active site residues through hydrogen bonds, salt bridges, and π-π interactions. The structural dynamics and binding free energy results further revealed that these compounds possess stable dynamics with excellent binding free energy scores. The structures of the lead inhibitors can serve as templates for developing novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is warranted. The current study is the first to design small molecule inhibitors for the aldoreductase protein that can be used in the development of therapeutic agents to treat diabetes.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | | | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Khare K, Mendonca T, Rodrigues G, Kamath M, Hegde A, Nayak S, Kamath A, Kamath S. Aldose reductase and glutathione in senile cataract nucleus of diabetics and non-diabetics. Int Ophthalmol 2023; 43:3673-3680. [PMID: 37395905 PMCID: PMC10504100 DOI: 10.1007/s10792-023-02776-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE The aim is to evaluate the aldose reductase (AR) and glutathione (GSH) activity in the nucleus of senile cataract in type 2 diabetes and non-diabetic group of patients. METHODS A total of 62 patients including 31 diabetics and 31 non- diabetics who were undergoing cataract surgery were included. Nucleus extracted was sent for analysis of AR and GSH activity while blood sample was taken for glycated haemoglobin (HbA1c) levels. STATISTICAL ANALYSIS Data were analysed using IBM SPSS 25. Comparison was carried out by unpaired T-test and correlations were established by Pearson's correlation. The p value less than 0.05 was considered significant for all analyses. STUDY DESIGN This is a prospective cross-sectional comparative study. RESULTS In this study, diabetic group patients showed earlier progression of cataract as compared to the non-diabetic group (p-value 0.0310). Mean HbA1c in the diabetic group was 7.34% compared to the non-diabetic group of 5.7% (p value < 0.001). AR in the diabetic patients was 2.07 mU/mg while the non-diabetic group was 0.22 mU/mg (p-value < 0.001). GSH in the diabetic group was 3.38 μMol/g and the non-diabetic group was 7.47 μMol/g (p value < 0.001). HbA1c showed positive correlation with AR among the diabetic group (p-value 0.028). CONCLUSION Elevated oxidative stress can be strongly attributed to high AR and low GSH activity among the diabetic group as compared to the non-diabetic group and can lead to early cataract formation.
Collapse
Affiliation(s)
- Kanishk Khare
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Teena Mendonca
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gladys Rodrigues
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Manjunath Kamath
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anupama Hegde
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shyamala Nayak
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ajay Kamath
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sumana Kamath
- Department of Ophthalmology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
16
|
Di Benedetto C, Borini Etichetti C, Cocordano N, Cantoia A, Arel Zalazar E, Bicciato S, Menacho-Márquez M, Rosano GL, Girardini J. The p53 tumor suppressor regulates AKR1B1 expression, a metastasis-promoting gene in breast cancer. Front Mol Biosci 2023; 10:1145279. [PMID: 37780210 PMCID: PMC10538543 DOI: 10.3389/fmolb.2023.1145279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Alteration of metabolism in cancer cells is a central aspect of the mechanisms that sustain aggressive traits. Aldo-keto reductase 1 B1 (AKR1B1) catalyzes the reduction of several aldehydes to alcohols consuming NADPH. Nevertheless, the ability of AKR1B1 to reduce different substrates renders difficult to comprehensively ascertain its biological role. Recent evidence has implicated AKR1B1 in cancer; however, the mechanisms underlying its pro-oncogenic function remain largely unknown. In this work, we report that AKR1B1 expression is controlled by the p53 tumor suppressor. We found that breast cancer patients bearing wild-type TP53 have reduced AKR1B1 expression. In cancer cell lines, p53 reduced AKR1B1 mRNA and protein levels and repressed promoter activity in luciferase assays. Furthermore, chromatin immunoprecipitation assays indicated that p53 is recruited to the AKR1B1 promoter. We also observed that AKR1B1 overexpression promoted metastasis in the 4T1 orthotopic model of triple-negative breast cancer. Proteomic analysis of 4T1 cells overexpressing AKR1B1 showed that AKR1B1 exerts a marked effect on proteins related to metabolism, with a particular impact on mitochondrial function. This work provides novel insights on the link between the p53 pathway and metabolism in cancer cells and contributes to characterizing the alterations associated to the pathologic role of AKR1B1.
Collapse
Affiliation(s)
- Carolina Di Benedetto
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Carla Borini Etichetti
- Instituto de Fisiología Experimental de Rosario (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Nabila Cocordano
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejo Cantoia
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Evelyn Arel Zalazar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauricio Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Germán Leandro Rosano
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Javier Girardini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
17
|
Klee LS, Gárdonyi M, Hüfner T, Heine A, Klebe G. Mutational Studies of Aldose Reductase to Trace a Transient Pocket Opening and to Explain Ligand Affinity Cliffs. ChemMedChem 2023; 18:e202300222. [PMID: 37278327 DOI: 10.1002/cmdc.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Human aldose reductase, a target for the development of inhibitors for preventing diabetic complications, displays a transient specificity pocket which opens upon binding with specific, potent inhibitors. We investigated the opening mechanism of this pocket by mutating leucine residues involved in the gate keeping mechanism to alanine. Two isostructural inhibitors distinguished only by a single nitro to carboxy group replacement, have a 1000-fold difference in their binding affinity to the wild type. This difference is reduced to 10-fold in the mutated variants as the nitro derivative loses in affinity but conserves binding to the open transient pocket. The affinity of the carboxylate analog is minimally altered but the analog binding preference changes from the closed to open state of the transient pocket. Differences in the solvation properties of ligands and the transient pocket as well as changes from induced fit to conformational selections provide an explanation for the altered behavior of the ligands with respect to their binding to the different variants.
Collapse
Affiliation(s)
- Lea-Sophie Klee
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Marina Gárdonyi
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Tobias Hüfner
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
18
|
Yoganathan T, Perez-Liva M, Balvay D, Le Gall M, Lallemand A, Certain A, Autret G, Mokrani Y, Guillonneau F, Bruce J, Nguyen V, Gencer U, Schmitt A, Lager F, Guilbert T, Bruneval P, Vilar J, Maissa N, Mousseaux E, Viel T, Renault G, Kachenoura N, Tavitian B. Acute stress induces long-term metabolic, functional, and structural remodeling of the heart. Nat Commun 2023; 14:3835. [PMID: 37380648 DOI: 10.1038/s41467-023-39590-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Takotsubo cardiomyopathy is a stress-induced cardiovascular disease with symptoms comparable to those of an acute coronary syndrome but without coronary obstruction. Takotsubo was initially considered spontaneously reversible, but epidemiological studies revealed significant long-term morbidity and mortality, the reason for which is unknown. Here, we show in a female rodent model that a single pharmacological challenge creates a stress-induced cardiomyopathy similar to Takotsubo. The acute response involves changes in blood and tissue biomarkers and in cardiac in vivo imaging acquired with ultrasound, magnetic resonance and positron emission tomography. Longitudinal follow up using in vivo imaging, histochemistry, protein and proteomics analyses evidences a continued metabolic reprogramming of the heart towards metabolic malfunction, eventually leading to irreversible damage in cardiac function and structure. The results combat the supposed reversibility of Takotsubo, point to dysregulation of glucose metabolic pathways as a main cause of long-term cardiac disease and support early therapeutic management of Takotsubo.
Collapse
Affiliation(s)
| | | | - Daniel Balvay
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, P53 proteom'IC facility, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Alice Lallemand
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Anais Certain
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Gwennhael Autret
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Yasmine Mokrani
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - François Guillonneau
- Institut de Cancérologie de l'Ouest, CNRS UMR6075 INSERM U1307, 15 rue André Boquel, F-49055, Angers, France
| | - Johanna Bruce
- Université Paris Cité, P53 proteom'IC facility, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, Laboratoire d'Imagerie Biomédicale, Inserm, CNRS, F-75006, Paris, France
| | - Umit Gencer
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France
| | - Alain Schmitt
- Université Paris Cité, Cochin Imaging, Electron microscopy, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Franck Lager
- Université Paris Cité, Plateforme d'Imageries du Vivant, Institut Cochin, Inserm-CNRS, F-75014, Paris, France
| | - Thomas Guilbert
- Université Paris Cité, Cochin Imaging Photonic, IMAG'IC, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
| | | | - Jose Vilar
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Nawal Maissa
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Elie Mousseaux
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France
| | - Thomas Viel
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Gilles Renault
- Université Paris Cité, Plateforme d'Imageries du Vivant, Institut Cochin, Inserm-CNRS, F-75014, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, Laboratoire d'Imagerie Biomédicale, Inserm, CNRS, F-75006, Paris, France
| | - Bertrand Tavitian
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France.
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France.
| |
Collapse
|
19
|
Zhao Z, Hao Z, Zhang Z, Zhan X. Bioinformatics Analysis Reveals the Vital Role of AKR1B1 in Immune Infiltration and Clinical Outcomes of Gastric Cancer. DNA Cell Biol 2023. [PMID: 37285280 DOI: 10.1089/dna.2022.0644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Infiltrated immune cells are an important constitute of tumor microenvironment, which exert complex effects on gastric cancer (GC) pathogenesis and progression. By using weighted gene co-expression network analysis, integrating the data from The Cancer Genome Atlas-stomach adenocarcinoma and GSE62254, we identify Aldo-Keto Reductase Family 1 Member B (AKR1B1) as a hub gene for immune regulation in GC. Notably, AKR1B1 is associated with higher immune infiltration and worse histologic grade of GC. In addition, AKR1B1 is an independent factor for predicting the survival rate of GC patients. In vitro experiments further demonstrated that AKR1B1-overexpressed THP-1-derived macrophages promoted the proliferation and migration of GC cells. Taken together, AKR1B1 plays an important role in GC progression by regulating immune microenvironment, which could be a biomarker for predicting GC prognosis as well as a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Zhiyue Zhao
- Department of Oncology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhibin Hao
- Department of Oncology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Orthopedic Rehabilitation, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| |
Collapse
|
20
|
Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev Res 2023; 84:275-295. [PMID: 36598092 DOI: 10.1002/ddr.22031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Büşra Dinçer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
21
|
Hazra S, Ray AS, Das S, Das Gupta A, Rahaman CH. Phytochemical Profiling, Biological Activities, and In Silico Molecular Docking Studies of Causonis trifolia (L.) Mabb. & J.Wen Shoot. PLANTS (BASEL, SWITZERLAND) 2023; 12:1495. [PMID: 37050122 PMCID: PMC10097374 DOI: 10.3390/plants12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Causonis trifolia (L.) Mabb. & J.Wen, commonly known as "fox grape", is an ethnomedicinally important twining herb of the Vitaceae family, and it is used by ethnic communities for its wide range of therapeutic properties. Our research aims to investigate the chemical composition; antioxidant, anti-inflammatory, and antidiabetic activities; and mechanisms of interaction between the identified selective chemical compounds and the target proteins associated with antioxidant, anti-inflammatory, and antidiabetic effects of the optimised phenolic extract of Causonis trifolia (L.) Mabb. & J.Wen, shoot (PECTS) to endorse the plant as a potential drug candidate for a future bioprospecting programme. Here, we employed the response surface methodology (RSM) with a Box-Behnken design to enrich the methanolic extract of C. trifolia shoot with phenolic ingredients by optimising three key parameters: solvent concentration (% v/v, methanol:water), extraction temperature (°C), and extraction duration (hours). From the quantitative phytochemical estimation, it was evident that the PECTS contained good amounts of phenolics, flavonoids, tannins, and alkaloids. During the HPLC analysis, we identified a total of eight phenolic and flavonoid compounds (gallic acid, catechin hydrate, chlorogenic acid, caffeic acid, p-coumaric acid, sinapic acid, coumarin, and kaempferol) and quantified their respective contents from the PECTS. The GC-MS analysis of the PECTS highlighted the presence of 19 phytochemicals. In addition, the bioactivity study of the PECTS showed remarkable potentiality as antioxidant, anti-inflammatory, and antidiabetic agents. In silico molecular docking and computational molecular modelling were employed to investigate the anti-inflammatory, antioxidant, and antidiabetic properties of the putative bioactive compounds derived from the PECTS using the GC-MS technique to understand the drug-receptor interactions, including their binding pattern. Out of the 19 phytocompounds identified by the GC-MS analysis, one compound, ergosta-5,22-dien-3-ol, acetate, (3β,22E), exhibited the best binding conformations with the target proteins involved in anti-inflammatory (e.g., Tnf-α and Cox-2), antioxidant (SOD), and antidiabetic (e.g., α-amylase and aldo reductase) activities. The nontoxic nature of this optimised extract was also evident during the in vitro cell toxicity assay against the Vero cell line and the in vivo acute toxicity study on BALB/c mice. We believe the results of the present study will pave the way for the invention of novel drugs efficacious for several ailments using the C. trifolia plant.
Collapse
Affiliation(s)
- Samik Hazra
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Anindya Sundar Ray
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Swetarka Das
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Division of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Arunava Das Gupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Chowdhury Habibur Rahaman
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| |
Collapse
|
22
|
Gupta SK, Tripathi PK. CADD Studies in the Discovery of Potential ARI (Aldose Reductase Inhibitors) Agents for the Treatment of Diabetic Complications. Curr Diabetes Rev 2023; 19:e180822207672. [PMID: 35993470 DOI: 10.2174/1573399819666220818163758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
The lack of currently available drugs for treating diabetes complications has stimulated our interest in finding new Aldose Reductase inhibitors (ARIs) with more beneficial biological properties. One metabolic method uses aldose reductase inhibitors in the first step of the polyol pathway to control excess glucose flux in diabetic tissues. Computer-aided drug discovery (CADD) is key in finding and optimizing potential lead substances. AR inhibitors (ARI) have been widely discussed in the literature. For example, Epalrestat is currently the only ARI used to treat patients with diabetic neuropathy in Japan, India, and China. Inhibiting R in patients with severe to moderate diabetic autonomic neuropathy benefits heart rate variability. AT-001, an AR inhibitor, is now being tested in COVID-19 to see how safe and effective it reduces inflammation and cardiac damage. In summary, these results from animal and human studies strongly indicate that AR can cause cardiovascular complications in diabetes. The current multi-center, large-scale randomized human study of the newly developed powerful ARI may prove its role in diabetic cardiovascular disease to establish therapeutic potential. During the recent coronavirus disease (COVID-19) outbreak in 2019, diabetes and cardiovascular disease were risk factors for severely negative clinical outcomes in patients with COVID19. New data shows that diabetes and obesity are among the strongest predictors of COVID-19 hospitalization. Patients and risk factors for severe morbidity and mortality of COVID- 19.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Rameshwaram Institute of Technology and Management Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
23
|
Hypoglycemic Effect of the N-Butanol Fraction of Torreya grandis Leaves on Type 2 Diabetes Mellitus in Rats through the Amelioration of Oxidative Stress and Enhancement of β-Cell Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5648896. [PMID: 36619301 PMCID: PMC9812625 DOI: 10.1155/2022/5648896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Materials and Methods Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin, high-dose BFTL (800 mg/kg), middle-dose BFTL (400 mg/kg), and low-dose BFTL (200 mg/kg). After 4 weeks of BFTL treatment, the correlations of serum indicators with protein expression in tissue were determined, and pathological changes in the liver, kidneys, and pancreas were analyzed. Results Compared with the results in the T2DM group, serum fasting blood glucose, triglyceride, total cholesterol, malondialdehyde, alanine aminotransferase, and aspartate aminotransferase levels were significantly decreased (p < 0.05), whereas superoxide dismutase and glutathione peroxidase levels were significantly increased (p < 0.05) in the high-, middle-, and low-dose BFTL groups. The treatment also improved oral glucose tolerance. In addition, the pathological changes of the liver, kidney, and pancreas were improved by BFTL treatment. Cytochrome and caspase-3 expression in pancreatic was significantly decreased (p < 0.05) by BFTL treatment, whereas the Bcl-2/Bax ratio was significantly increased (p < 0.05). Discussion and Conclusion. BFTL exerted significant hypoglycemic effect on T2DM model rats, and its mechanism involved the suppression of blood glucose levels and oxidative stress by improving the metabolism of blood lipids and antioxidant capacity, boosting β-cell function, and inhibiting β-cell apoptosis.
Collapse
|
24
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
25
|
Comakli V, Adem S, Oztekin A, Demirdag R. Screening inhibitory effects of selected flavonoids on human recombinant aldose reductase enzyme: in vitro and in silico study. Arch Physiol Biochem 2022; 128:1368-1374. [PMID: 32463711 DOI: 10.1080/13813455.2020.1771377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aldose reductase (AR) is the first enzyme of the polyol pathway that has physiological importance under hyperglycaemic conditions. The article has been focussed on AR enzyme inhibition by selected compounds. For this purpose, the in vitro inhibitory effects of various compounds on commercially available recombinant human AR (rAR) enzyme activity were investigated. The IC50 values of compounds on rAR inhibition effect were found for 6-hydroxy flavone, syringic acid, diosmetin, 6-fluoroflavone, 7-hydroxy-4'-nitroisoflavone, myricetin as 2.05, 2.97, 15.75, 16.1, 49.5, and 63 µM, respectively. 6-Hydroxy flavone and syringic acid competitively inhibited rAR with respect to the NADPH with Ki values 0.509 ± 0.036 and 0.842 ± 0.012 µM. In addition, docking studies were performed to evaluate the potential enzyme binding positions of the compounds. Our in vitro and in silico results indicated that the 6-hydroxy flavone may be a good lead compound in the development of AR inhibitors to prevent diabetic complications.
Collapse
Affiliation(s)
- Veysel Comakli
- Nutrition and Dietetics Department, High School of Health, Agri Ibrahim Cecen University, Agri, Turkey
| | - Sevki Adem
- Department of Chemistry, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Aykut Oztekin
- Medical Services and Techniques Department, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ramazan Demirdag
- Nutrition and Dietetics Department, High School of Health, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
26
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
27
|
Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal 2022; 37:578-596. [PMID: 34416846 DOI: 10.1089/ars.2021.0152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology and Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
28
|
Jia Y, Li D, Yu J, Jiang W, Liao X, Zhao Q. Potential diabetic cardiomyopathy therapies targeting pyroptosis: A mini review. Front Cardiovasc Med 2022; 9:985020. [PMID: 36061533 PMCID: PMC9433721 DOI: 10.3389/fcvm.2022.985020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is primarily considered a pro-inflammatory class of caspase-1- and gasdermin D (GSDMD)-dependent programmed cell death. Inflammasome activation promotes the maturation and release of interleukin (IL)-1β and IL-18, cleavage of GSDMD, and development of pyroptosis. Recent studies have reported that NLRP3 inflammasome activation-mediated pyroptosis aggravates the formation and development of diabetes cardiomyopathy (DCM). These studies provide theoretical mechanisms for exploring a novel approach to treat DCM-associated cardiac dysfunction. Accordingly, this review aims to summarize studies that investigated possible DCM therapies targeting pyroptosis and elucidate the molecular mechanisms underlying NLRP3 inflammasome-mediated pyroptosis, and its potential association with the pathogenesis of DCM. This review may serve as a basis for the development of potential pharmacological agents as novel and effective treatments for managing and treating DCM.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Zhao,
| |
Collapse
|
29
|
Abdelkader H, Mustafa WW, Alqahtani AM, Alsharani S, Al Fatease A, Alany RG. Glycation-induced age-related illnesses, antiglycation and drug delivery strategies. J Pharm Pharmacol 2022; 74:1546-1567. [PMID: 35972442 DOI: 10.1093/jpp/rgac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Ageing is a major cause of multiple age-related diseases. Several mechanisms have been reported to contribute to these abnormalities including glycation, oxidative stress, the polyol pathway and osmotic stress. Glycation, unlike glycosylation, is an irregular biochemical reaction to the formation of active advanced glycation end-products (AGEs), which are considered to be one of the causes of these chronic diseases. This study provides a recent and comprehensive review on the possible causes, mechanisms, types, analytical techniques, diseases and treatments of the toxic glycation end products. KEY FINDINGS Several mechanisms have been found to play a role in generating hyperglycaemia-induced oxidative stress including an increase in the levels of reactive oxygen species (ROS), increase in the levels of AGEs, binding of AGEs and their receptors (RAGE) and the polyol pathway and thus have been investigated as promising novel targets. SUMMARY This review focuses on the key mechanisms attributed to cumulative increases of glycation and pathological RAGE expression as a significant cause of multiple age-related diseases, and reporting on different aspects of antiglycation therapy as a novel approach to managing/treating age-related diseases. Additionally, historical, current and possible future antiglycation approaches will be presented focussing on novel drug delivery methods.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Wesam W Mustafa
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK.,Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alsharani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK.,School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Gumede N, Ngubane P, Khathi A. Assessing the risk factors for myocardial infarction in diet-induced prediabetes: myocardial tissue changes. BMC Cardiovasc Disord 2022; 22:350. [PMID: 35918636 PMCID: PMC9347129 DOI: 10.1186/s12872-022-02758-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hyperglycaemia is known to result in oxidative stress tissue injury and dysfunction. Interestingly, studies have reported hepatic and renal oxidative stress injury during prediabetes; however, any injury to the myocardium during prediabetes has not been investigated. Hence this study aims to assess changes in the myocardial tissue in an HFHC diet-induced model of prediabetes. Methods Male Sprague Dawley rats were randomly grouped into non-prediabetes and prediabetes (n = 6 in each group) and consumed a standard rat chow or fed a high-fat-high-carbohydrate diet respectively for a 20-week prediabetes induction period. Post induction, prediabetes was confirmed using the ADA criteria. Aldose reductase, NADH oxidase 1, superoxide dismutase, glutathione peroxide, cardiac troponins were analysed in cardiac tissue homogenate using specific ELISA kits. Lipid peroxidation was estimated by determining the concentration of malondialdehyde in the heart tissue homogenate according to the previously described protocol. Myocardial tissue sections were stained with H&E stain and analysed using Leica microsystem. All data were expressed as means ± SEM. Statistical comparisons were performed with Graph Pad instat Software using the Student's two-sided t-test. Pearson correlation coefficient was calculated to assess the association. Value of p < 0.05 was considered statistically significant. Results The prediabetes group showed a markedly high oxidative stress as indicated by significantly increased NADH oxidase 1 and malondialdehyde while superoxide dismutase and glutathione peroxide were decreased compared to non-prediabetes group. There was no statistical difference between cardiac troponin I and T in the non-prediabetes and prediabetes groups. Cardiac troponins had a weak positive association with glycated haemoglobin. Conclusion The findings of this study demonstrate that prediabetes is associated with myocardial injury through oxidative stress. Future studies are to investigate cardiac contractile function and include more cardiac biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02758-8.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, X54001, South Africa. .,Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Room E2 401, Westville, South Africa.
| | - Phikelelani Ngubane
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, X54001, South Africa
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, X54001, South Africa
| |
Collapse
|
31
|
Imran A, Shehzad MT, Shah SJA, Laws M, al-Adhami T, Rahman KM, Khan IA, Shafiq Z, Iqbal J. Development, Molecular Docking, and In Silico ADME Evaluation of Selective ALR2 Inhibitors for the Treatment of Diabetic Complications via Suppression of the Polyol Pathway. ACS OMEGA 2022; 7:26425-26436. [PMID: 35936488 PMCID: PMC9352332 DOI: 10.1021/acsomega.2c02326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 05/29/2023]
Abstract
Diabetic complications are associated with overexpression of aldose reductase, an enzyme that catalyzes the first step of the polyol pathway. Osmotic stress in the hyperglycemic state is linked with the intracellular accumulation of sorbitol along with the depletion of NADPH and eventually leads to oxidative stress via formation of reactive oxygen species and advanced glycation end products (AGEs). These kinds of mechanisms cause the development of various diabetic complications including neuropathy, nephropathy, retinopathy, and atherosclerotic plaque formation. Various aldose reductase inhibitors have been developed to date for the treatment of diabetic complications, but all have failed in different stages of clinical trials due to toxicity and poor pharmacokinetic profiles. This toxicity is rooted in a nonselective inhibition of both ALR2 and ALR1, homologous enzymes involved in the metabolism of toxic aldehydes such as methylglyoxal and 3-oxyglucosazone. In the present study, we developed a series of thiosemicarbazone derivatives as selective inhibitors of ALR2 with both antioxidant and antiglycation potential. Among the synthesized compounds, 3c exhibited strong and selective inhibition of ALR2 (IC50 1.42 μM) along with good antioxidant and antiglycative properties. The binding mode of 3c was assessed through molecular docking and cluster analysis via MD simulations, while in silico ADME evaluation studies predicted the compounds' druglike properties. Therefore, we report 3c as a drug candidate with promising antioxidant and antiglycative properties that may be useful for the treatment of diabetic complications through selective inhibition of ALR2.
Collapse
Affiliation(s)
- Aqeel Imran
- Center
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22060, Pakistan
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | | | - Syed Jawad Ali Shah
- Center
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22060, Pakistan
| | - Mark Laws
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Taha al-Adhami
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Khondaker Miraz Rahman
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Imtiaz Ali Khan
- Department
of Entomology, University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
- Pharmaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jamshed Iqbal
- Center
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22060, Pakistan
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
32
|
Kharyal A, Ranjan S, Jaswal S, Parveen D, Gupta GD, Thareja S, Verma SK. Research Progress on 2,4-Thiazolidinedione and 2-Thioxo-4-thiazolidinone Analogues as Aldose Reductase Inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res 2022; 182:106326. [PMID: 35752357 DOI: 10.1016/j.phrs.2022.106326] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
34
|
Zahraei A, Guo G, Varnava KG, Demarais NJ, Donaldson PJ, Grey AC. Mapping Glucose Uptake, Transport and Metabolism in the Bovine Lens Cortex. Front Physiol 2022; 13:901407. [PMID: 35711316 PMCID: PMC9194507 DOI: 10.3389/fphys.2022.901407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To spatially correlate the pattern of glucose uptake to glucose transporter distributions in cultured lenses and map glucose metabolism in different lens regions. Methods: Ex vivo bovine lenses were incubated in artificial aqueous humour containing normoglycaemic stable isotopically-labelled (SIL) glucose (5 mM) for 5 min-20 h. Following incubations, lenses were frozen for subsequent matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) analysis using high resolution mass spectrometry. Manually dissected, SIL-incubated lenses were subjected to gas chromatography-mass spectrometry (GC-MS) to verify the identity of metabolites detected by MALDI-IMS. Normal, unincubated lenses were manually dissected into epithelium flat mounts and fibre cell fractions and then subjected to either gel-based proteomic analysis (Gel-LC/MS) to detect facilitative glucose transporters (GLUTs) by liquid chromatography tandem mass spectrometry (LC-MS/MS). Indirect immunofluorescence and confocal microscopy of axial lens sections from unincubated fixed lenses labelled with primary antibodies specific for GLUT 1 or GLUT 3 were utilised for protein localisation. Results: SIL glucose uptake at 5 min was concentrated in the equatorial region of the lens. At later timepoints, glucose gradually distributed throughout the epithelium and the cortical lens fibres, and eventually the deeper lens nucleus. SIL glucose metabolites found in glycolysis, the sorbitol pathway, the pentose phosphate pathway, and UDP-glucose formation were mapped to specific lens regions, with distinct regional signal changes up to 20 h of incubation. Spatial proteomic analysis of the lens epithelium detected GLUT1 and GLUT3. GLUT3 was in higher abundance than GLUT1 throughout the epithelium, while GLUT1 was more abundant in lens fibre cells. Immunohistochemical mapping localised GLUT1 to epithelial and cortical fibre cell membranes. Conclusion: The major uptake site of glucose in the bovine lens has been mapped to the lens equator. SIL glucose is rapidly metabolised in epithelial and fibre cells to many metabolites, which are most abundant in the metabolically more active cortical fibre cells in comparison to central fibres, with low levels of metabolic activity observed in the nucleus.
Collapse
Affiliation(s)
- Ali Zahraei
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand
| | - George Guo
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand.,Mass Spectrometry Hub, Auckland, New Zealand
| | - Kyriakos G Varnava
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand.,Mass Spectrometry Hub, Auckland, New Zealand
| | - Nicholas J Demarais
- Mass Spectrometry Hub, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology in the School of Medical Sciences, Auckland, New Zealand.,Mass Spectrometry Hub, Auckland, New Zealand
| |
Collapse
|
35
|
Therapeutic potential of vitamin B 1 derivative benfotiamine from diabetes to COVID-19. Future Med Chem 2022; 14:809-826. [PMID: 35535731 DOI: 10.4155/fmc-2022-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Benfotiamine (S-benzoylthiamine-O-monophosphate), a unique, lipid-soluble derivative of thiamine, is the most potent allithiamine found in roasted garlic, as well as in other herbs of the genus Allium. In addition to potent antioxidative properties, benfotiamine has also been shown to be a strong anti-inflammatory agent with therapeutic significance to several pathological complications. Specifically, over the past decade or so, benfotiamine has been shown to prevent not only various secondary diabetic complications but also several inflammatory complications such as uveitis and endotoxemia. Recent studies also demonstrate that this compound could be used to prevent the symptoms associated with various infectious diseases such as HIV and COVID-19. In this review article, the authors discuss the significance of benfotiamine in the prevention of various pathological complications.
Collapse
|
36
|
Julius A, Rajan Renuka R, Hopper W, Babu Pothireddy R. Anti-Inflammatory Compounds Inhibit Aldose Reductase: A Potential Target for Cancer. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184:114-134. [PMID: 35398495 DOI: 10.1016/j.freeradbiomed.2022.03.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and β-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of β-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Abhishek Sehrawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Jayapriya Mishra
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
38
|
Mateo-Otero Y, Ribas-Maynou J, Delgado-Bermúdez A, Llavanera M, Recuero S, Barranco I, Yeste M. Aldose Reductase B1 in Pig Sperm Is Related to Their Function and Fertilizing Ability. Front Endocrinol (Lausanne) 2022; 13:773249. [PMID: 35173684 PMCID: PMC8842650 DOI: 10.3389/fendo.2022.773249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Aldose reductase B1 (AKR1B1) has been reported to participate in the modulation of male and female reproductive physiology in several mammalian species. In spite of this, whether or not AKR1B1 could be related to sperm quality, functionality and fertilizing ability is yet to be elucidated. The present study, therefore, aimed to investigate: i) the presence of AKR1B1 in epididymal and ejaculated sperm; ii) the relationship between the AKR1B1 present in sperm and the physiology of the male gamete; iii) the liaison between the relative content of AKR1B1 in sperm and their ability to withstand preservation for 72 h; and iv) the potential link between sperm AKR1B1 and in vitro fertility outcomes. Immunoblotting revealed that AKR1B1 is present in both epididymal and ejaculated sperm with a similar relative content. Moreover, the relative levels of AKR1B1 in sperm (36 kDa band) were found to be negatively related to several kinematic parameters and intracellular calcium levels, and positively to the percentage of sperm with distal cytoplasmic droplets after storage. Finally, AKR1B1 amounts in sperm (36 kDa band) were negatively associated to fertilization rate at two days post-fertilization and embryo development at six days post-fertilization. The results of the present work suggest that AKR1B1 in sperm is probably acquired during maturation rather than at ejaculation and could play a role in that process. Moreover, AKR1B1 seems to be related to the sperm resilience to preservation and to their fertilizing capacity, as lower levels of the 36 kDa band (putative inactive form of this protein) result in better reproductive outcomes.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- *Correspondence: Marc Yeste, ; Jordi Ribas-Maynou,
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Sandra Recuero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- *Correspondence: Marc Yeste, ; Jordi Ribas-Maynou,
| |
Collapse
|
39
|
Zhang J, Wu W, Huang K, Dong G, Chen X, Xu C, Ni Y, Fu J. Untargeted metabolomics reveals gender- and age- independent metabolic changes of type 1 diabetes in Chinese children. Front Endocrinol (Lausanne) 2022; 13:1037289. [PMID: 36619558 PMCID: PMC9813493 DOI: 10.3389/fendo.2022.1037289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a chronic condition associated with multiple complications that substantially affect both the quality of life and the life-span of children. Untargeted Metabolomics has provided new insights into disease pathogenesis and risk assessment. METHODS In this study, we characterized the serum metabolic profiles of 76 children with T1D and 65 gender- and age- matched healthy controls using gas chromatography coupled with timeof-flight mass spectrometry. In parallel, we comprehensively evaluated the clinical phenome of T1D patients, including routine blood and urine tests, and concentrations of cytokines, hormones, proteins, and trace elements. RESULTS A total of 70 differential metabolites covering 11 metabolic pathways associated with T1D were identified, which were mainly carbohydrates, indoles, unsaturated fatty acids, amino acids, and organic acids. Subgroup analysis revealed that the metabolic changes were consistent among pediatric patients at different ages or gender but were closely associated with the duration of the disease. DISCUSSION Carbohydrate metabolism, unsaturated fatty acid biosynthesis, and gut microbial metabolism were identified as distinct metabolic features of pediatric T1D. These metabolic changes were also associated with T1D, which may provide important insights into the pathogenesis of the complications associated with diabetes.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Paediatrics, Shaoxing Women and Children Hospital, Shaoxing, China
| | - Wei Wu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ke Huang
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuefeng Chen
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yan Ni, ; Junfen Fu,
| | - Junfen Fu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yan Ni, ; Junfen Fu,
| |
Collapse
|
40
|
Ye D, Fairchild TJ, Vo L, Drummond PD. Painful diabetic peripheral neuropathy: Role of oxidative stress and central sensitisation. Diabet Med 2022; 39:e14729. [PMID: 34674302 DOI: 10.1111/dme.14729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
AIMS Diabetic peripheral neuropathy (DPN) occurs in about half of people with diabetes, of whom a quarter may develop chronic pain. Pain may remain for years yet be difficult to treat because the underlying mechanisms remain unclear. There is consensus that processing excessive glucose leads to oxidative stress, interfering with normal metabolism. In this narrative review, we argue that oxidative stress may also contribute to pain. METHODS We reviewed literature in PubMed published between January 2005 and August 2021. RESULTS AND CONCLUSIONS In diabetes, hyperglycaemia and associated production of reactive species can directly increase pain signalling and activate sensory neurons; or the effects can be indirect, mediated by mitochondrial damage and enhanced inflammation. Furthermore, pain processing in the central nervous system is compromised in painful DPN. This is implicated in central sensitisation and dysfunctional pain modulation. However, central pain modulatory function is understudied in diabetes. Future research is required to clarify whether central sensitisation and/or disturbances in central pain modulation contribute to painful DPN. Positive results would facilitate early detection and future treatment.
Collapse
Affiliation(s)
- Di Ye
- Discipline of Psychology and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Timothy J Fairchild
- Discipline of Exercise Science and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Lechi Vo
- Discipline of Psychology and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Peter D Drummond
- Discipline of Psychology and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
41
|
Mazidi M, Kirwan R, Davies IG. Genetically determined blood lead is associated with reduced renal function amongst individuals with type 2 diabetes mellitus: insight from Mendelian Randomisation. J Mol Med (Berl) 2022; 100:125-134. [PMID: 34661687 PMCID: PMC8724171 DOI: 10.1007/s00109-021-02152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Some observational studies indicate a link between blood lead and kidney function although results remain controversial. In this study, Mendelian randomisation (MR) analysis was applied to obtain unconfounded estimates of the casual association of genetically determined blood lead with estimated glomerular filtration rate (eGFR) and the risk of chronic kidney disease (CKD). Data from the largest genome-wide association studies (GWAS) on blood lead, eGFR and CKD, from predominantly ethnically European populations, were analysed in total, as well as separately in individuals with or without type 2 diabetes mellitus. Inverse variance weighted (IVW) method, weighted median (WM)-based method, MR-Egger, MR-Pleiotropy RESidual Sum and Outlier (PRESSO) as well as the leave-one-out method were applied. In a general population, lifetime blood lead levels had no significant effect on risk of CKD (IVW: p = 0.652) and eGFR (IVW: p = 0.668). After grouping by type 2 diabetes status (no diabetes vs. diabetes), genetically higher levels of blood lead had a significant negative impact among subjects with type 2 diabetes (IVW = Beta: -0.03416, p = 0.0132) but not in subjects without (IVW: p = 0.823), with low likelihood of heterogeneity for any estimates (IVW p > 0.158). MR-PRESSO did not highlight any outliers. Pleiotropy test, with very negligible intercept and insignificant p-value, indicated a low likelihood of pleiotropy for all estimations. The leave-one-out method demonstrated that links were not driven by a single SNP. Our results show, for the first time, that among subjects with type 2 diabetes, higher blood lead levels are potentially related to less favourable renal function. Further studies are needed to confirm our results. KEY MESSAGES: What is already known about this subject? Chronic kidney disease is associated with unfavourable lifestyle behaviours and conditions such as type 2 diabetes. Observational studies have reported an association between blood lead and reduced estimated glomerular filtration rate, but the relationship between lead exposure and renal function remains controversial. What is the key question? Using Mendelian randomisation with data from 5433 individuals from the UK and Australian populations, does genetically determined blood lead have a potentially causal effect on estimated glomerular filtration rate and the risk of chronic kidney disease? What are the new findings? Blood lead levels have a potentially causal effect on reduced renal function in individuals with type 2 diabetes. In subjects without diabetes, no such causal relationship was identified. How might this impact on clinical practice in the foreseeable future? This highlights the risk of elevated blood lead, for example, due to environmental exposure, amongst those with type 2 diabetes, which may predispose them to impaired renal function.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
42
|
Bayrak C, Yildizhan G, Kilinc N, Durdagi S, Menzek A. Synthesis and Aldose Reductase Inhibition Effects of Novel N-Benzyl-4-Methoxyaniline Derivatives. Chem Biodivers 2021; 19:e202100530. [PMID: 34889038 DOI: 10.1002/cbdv.202100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022]
Abstract
In the current study, starting from 4-methoxyaniline, four Schiff bases were synthesized from benzaldehydes with Br and OMe. Corresponding N-benzylanilines and their derivatives were obtained from reductions (by NaBH4 ) and substitutions (by acyl and tosyl chlorides) of these bases, respectively. The inhibitory effects of the sixteen compounds, twelve of which were novel compounds are examined. Then, we conducted molecular docking and binary QSAR studies to determine inhibitory-enzyme interactions of compounds that show an inhibitory effect. Our results reveal that methoxyanilline-derived compounds show good biological activities. The most active compound (22) has IC50 values of 2.83 μM. These novel AR enzyme inhibitors may open new avenues for better AR inhibitors in the future.
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240-, Turkey.,Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, Agri, 04400, -Turkey
| | - Gulsah Yildizhan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240-, Turkey
| | - Namik Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, 76000, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, 34747-, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240-, Turkey
| |
Collapse
|
43
|
Caza TN, Al-Rabadi LF, Beck LH. How Times Have Changed! A Cornucopia of Antigens for Membranous Nephropathy. Front Immunol 2021; 12:800242. [PMID: 34899763 PMCID: PMC8662735 DOI: 10.3389/fimmu.2021.800242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of the major target antigen phospholipase A2 receptor (PLA2R) in the majority of primary (idiopathic) cases of membranous nephropathy (MN) has been followed by the rapid identification of numerous minor antigens that appear to define phenotypically distinct forms of disease. This article serves to review all the known antigens that have been shown to localize to subepithelial deposits in MN, as well as the distinctive characteristics associated with each subtype of MN. We will also shed light on the novel proteomic approaches that have allowed identification of the most recent antigens. The paradigm of an antigen normally expressed on the podocyte cell surface leading to in-situ immune complex formation, complement activation, and subsequent podocyte injury will be discussed and challenged in light of the current repertoire of multiple MN antigens. Since disease phenotypes associated with each individual target antigens can often blur the distinction between primary and secondary disease, we encourage the use of antigen-based classification of membranous nephropathy.
Collapse
Affiliation(s)
| | - Laith F. Al-Rabadi
- Department of Internal Medicine (Nephrology & Hypertension), University of Utah, Salt Lake City, UT, United States
| | - Laurence H. Beck
- Department of Medicine (Nephrology), Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
44
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
45
|
Kumar Pasala V, Gudipudi G, Sankeshi V, Basude M, Gundla R, Singh Jadav S, Srinivas B, Yadaiah Goud E, Nareshkumar D. Design, synthesis and biological evaluation of selective hybrid coumarin-thiazolidinedione aldose reductase-II inhibitors as potential antidiabetics. Bioorg Chem 2021; 114:104970. [PMID: 34120026 DOI: 10.1016/j.bioorg.2021.104970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/21/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Thiazolidinediones (TZD), benzopyrans are the proven scaffolds for inhibiting Aldose reductase (ALR2) activity and their structural confluence with the retention of necessary fragments helped in designing a series of hybrid compounds 2-(5-cycloalkylidene-2,4-dioxothiazolidin-3-yl)-N-(2-oxo-2H-chromen-3-yl)acetamide (10a-n) for better ALR2 inhibition. The compounds were synthesized by treating substituted 3-(N-bromoacetyl amino)coumarins (9a-d) with potassium salt of 5-cyclo alkylidene-1,3-thiazolidine-2,4-diones (4a-d). The inhibition activity against ALR2 with IC50 values range from 0.012 ± 0.001 to 0.056 ± 0.007 μM. N-[(6-Bromo-3-coumarinyl)-2-(5-cyclopentylidene-2,4-dioxothiazolidin-3-yl)] acetamide (10c) with cyclopentylidene group on one end and the 6-bromo group on the other end showed better inhibitory property (IC50 = 0.012 μM) and selectivity index (324.166) against the ALR2, a forty fold superiority over sorbinil, a better molecule over epalrestat and rest of the analogues exhibited a far superior response over sorbinil and slightly better as compared with epalrestat. It was further confirmed by the insilico studies that compound 10c showed best inhibition activity among the synthesized compounds with a high selectivity index against the ALR2. In invivo experiments, supplementation of compound 10c to STZ induced rats delayed the progression of cataract in a dose-dependent manner warranting its further development as a potential agent to treat thediabetic secondary complications especially cataract.
Collapse
Affiliation(s)
- Vijay Kumar Pasala
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India.
| | - Gopinath Gudipudi
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | - Venu Sankeshi
- Department of Biophysics, Centre for Cellular and Molecular Biology, Hyderabad (T.S) 500 007, India
| | - Manohar Basude
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | - Rambabu Gundla
- Department of Chemistry, School of Technology, GITAM University, Hyderabad (T.S) 502 102, India
| | - Surendar Singh Jadav
- Centre for Molecular Cancer Research, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak 502313, India
| | - Burra Srinivas
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | - E Yadaiah Goud
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | | |
Collapse
|
46
|
Ajayeoba TA, Woods JO, Ayeni AO, Ajayi TJ, Akeem RA, Hosten EC, Akinyele OF. Synthesis, crystallographic, computational and molecular docking studies of new acetophenone-benzoylhydrazones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Li SS, Tang DE, Dai Y. Advances in antigens associated with Idiopathic Membranous Nephropathy. J Formos Med Assoc 2021; 120:1941-1948. [PMID: 34244038 DOI: 10.1016/j.jfma.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022] Open
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Idiopathic MN (IMN), one of the forms of MN, usually has an unknown etiology. IMN is described as an autoimmune disease, and its pathogenesis is quite complex. The discovery of the M-type phospholipase A2 receptor (PLA2R) plays an important role in promoting our understanding of IMN, although the exact mechanisms of its occurrence and development are still not completely clear. Other target antigens have been discovered one after another, as considerable progress has been made in the molecular pathomechanisms of IMN. Here, we review the findings about the target antigens associated with IMN in recent years. It is hoped that this article can provide researchers with some scientific issues or innovative ideas for future studies of IMN, which will provide clinicians with more knowledge about further improving their abilities to provide better medical care for IMN patients.
Collapse
Affiliation(s)
- Shan-Shan Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Dong-E Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
48
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
49
|
Nakagawa T, Sanchez-Lozada LG, Andres-Hernando A, Kojima H, Kasahara M, Rodriguez-Iturbe B, Bjornstad P, Lanaspa MA, Johnson RJ. Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease. Front Immunol 2021; 12:694457. [PMID: 34220855 PMCID: PMC8243983 DOI: 10.3389/fimmu.2021.694457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic low-grade inflammation underlies the pathogenesis of non-communicable diseases, including chronic kidney diseases (CKD). Inflammation is a biologically active process accompanied with biochemical changes involving energy, amino acid, lipid and nucleotides. Recently, glycolysis has been observed to be increased in several inflammatory disorders, including several types of kidney disease. However, the factors initiating glycolysis remains unclear. Added sugars containing fructose are present in nearly 70 percent of processed foods and have been implicated in the etiology of many non-communicable diseases. In the kidney, fructose is transported into the proximal tubules via several transporters to mediate pathophysiological processes. Fructose can be generated in the kidney during glucose reabsorption (such as in diabetes) as well as from intra-renal hypoxia that occurs in CKD. Fructose metabolism also provides biosynthetic precursors for inflammation by switching the intracellular metabolic profile from mitochondrial oxidative phosphorylation to glycolysis despite the availability of oxygen, which is similar to the Warburg effect in cancer. Importantly, uric acid, a byproduct of fructose metabolism, likely plays a key role in favoring glycolysis by stimulating inflammation and suppressing aconitase in the tricarboxylic acid cycle. A consequent accumulation of glycolytic intermediates connects to the production of biosynthetic precursors, proteins, lipids, and nucleic acids, to meet the increased energy demand for the local inflammation. Here, we discuss the possibility of fructose and uric acid may mediate a metabolic switch toward glycolysis in CKD. We also suggest that sodium-glucose cotransporter 2 (SGLT2) inhibitors may slow the progression of CKD by reducing intrarenal glucose, and subsequently fructose levels.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto, Japan.,Department of Biochemistry, Shiga University of Medical Science, Otsu, Japan
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| | - Hideto Kojima
- Department of Biochemistry, Shiga University of Medical Science, Otsu, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran and Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States.,Department of Pediatrics-Endocrinology, University of Colorado Denver, Aurora, CO, United States
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
50
|
Lei Y, Zhang X, Zhang X, Xu L, Liu W, Chen H, Zhu C, Ma B. Design of Benzothiazolone‐Based Carboxylic Acid Aldose Reductase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanqi Lei
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Xiaonan Zhang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Long Xu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Huan Chen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| | - Bing Ma
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Zhongguancun South Street 5 Beijing 100081 P.R. China
| |
Collapse
|