1
|
Berisha B, Thaqi G, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Effect of the gonadotropin surge on steroid receptor regulation in preovulatory follicles and newly formed corpora lutea in the cow. Domest Anim Endocrinol 2024; 89:106876. [PMID: 39047595 DOI: 10.1016/j.domaniend.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The objective of the study was to characterize the mRNA expression patterns of specific steroid hormone receptors namely, estrogen receptors (ESRRA-estrogen related receptor alpha and ESRRB-estrogen related receptor beta) and progesterone receptors (PGR) in superovulation-induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. The bovine ovaries (n = 5 cow / group), containing preovulatory follicles or early CL, were collected relative to injection of the gonadotropin-releasing hormone (GnRH) at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V) 25 h (preovulatory follicles) and (VI) 60 h (CL, 2-3 days after induced ovulation). In this experiment, we analyzed the steroid receptor mRNA expression and their localization in the follicle and CL tissue. The high mRNA expression of ESRRA, ESRRB, and PGR analyzed in the follicles before ovulation is significantly reduced in the group of follicles during ovulation (25 h after GnRH), rising again significantly after ovulation in newly formed CL, only for ESRRA and PGR (P < 0.05). Immunohistochemically, the nuclei of antral follicles' granulosa cells showed a positive staining for ESRRA, followed by higher activity in the large luteal cells just after ovulation (early CL). In contrast, the lower PGR immunopresence in preovulatory follicles increased in both small and large luteal cell nuclei after follicle ovulation. Our results of steroid receptor mRNA expression in this experimentally induced gonadotropin surge provide insight into the molecular mechanisms of the effects of steroid hormones on follicular-luteal tissue in the period close to the ovulation and subsequent CL formation in the cow.
Collapse
Affiliation(s)
- Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany; Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo; Academy of Science of Albania, Tirana, Albania
| | - Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany.
| | - Dieter Schams
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| |
Collapse
|
2
|
Alanazi H, Zhang Y, Fatunbi J, Luu T, Kwak-Kim J. The impact of reproductive hormones on T cell immunity; normal and assisted reproductive cycles. J Reprod Immunol 2024; 165:104295. [PMID: 39053203 DOI: 10.1016/j.jri.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
During pregnancy, a unique immune milieu is established systemically and locally at the maternal-fetal interface. While preparing for embryonic implantation, endometrial effectors significantly change their proportions and function, which are synchronized with hormonal changes. During assisted reproductive technology cycles, various cytokines, chemokines, and immune factors dynamically change with the altered receptor expressions on the immune effectors. Thus, the hormonal regulation of immune effectors is critical to maintaining the immune milieu. In this review, hormonal effects on T cell subsets are reviewed. Sex hormones affect T cell ontogeny and development, consequently affecting their functions. Like other T cell subsets, CD4+ T helper (Th) cells are modulated by estrogen, where low estrogen concentration promotes Th1-driven cell-mediated immunity in the uterus and in vitro by enhancing IFN-γ production, while a high estrogen level decreases it. The abundance and differentiation of T regulatory (Treg) cells are controlled by estrogen, inducing Treg expansion. Conversely, progesterone maintains immune homeostasis by balancing Th1/Th2 and Th17/Treg immunity, leading to maternal-fetal tolerance. Therefore, the understanding of the hormonal impact on various T cell subsets during the reproductive cycles is critical to improving reproductive outcomes in women with recurrent pregnancy losses, repeated implantation failures, and undergoing assisted reproductive cycles.
Collapse
Affiliation(s)
- Hallah Alanazi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; IVF and Reproductive Endocrinology Department, Women's Health Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Yuan Zhang
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Department of Reproductive Medicine, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing, Jiangsu 210029, China
| | - Joy Fatunbi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Than Luu
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA.
| |
Collapse
|
3
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
4
|
Dai P, He J, Wei Y, Xu M, Zhao J, Zhou X, Tang H. High Dose of Estrogen Protects the Lungs from Ischemia-Reperfusion Injury by Downregulating the Angiotensin II Signaling Pathway. Inflammation 2024; 47:1248-1261. [PMID: 38386131 DOI: 10.1007/s10753-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
We explored the sex difference in lung ischemia-reperfusion injury (LIRI) and the role and mechanism of estrogen (E2) and angiotensin II (Ang II) in LIRI. We established a model of LIRI in mice. E2, Ang II, E2 inhibitor (fulvestrant), and angiotensin II receptor blocker (losartan) were grouped for treatment. The lung wet/dry weight ratio, natural killer (NK) cells (by flow cytometry), neutrophils (by flow cytometry), expression of key proteins (by Western blot, immunohistochemistry, ELISA, and immunofluorescence), and expression of related protein mRNA (by qPCR) were detected. The ultrastructure of the alveolar epithelial cells was observed by transmission electron microscopy. We found that E2 and Ang II played an important role in the progression of LIRI. The two signaling pathways showed obvious antagonism, and E2 regulates LIRI in the different sexes by downregulating Ang II, leading to a better prognosis. E2 and losartan reduced the inflammatory cell infiltration in lung tissue and key inflammatory factors in serum while fulvestrant and Ang II had the opposite effect. The protective effect of E2 was related with AKT, p38, COX2, and HIF-1α.
Collapse
Affiliation(s)
- Peng Dai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jutong He
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinping Zhao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xuefeng Zhou
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hexiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, Moralí de la Brena G, Guerra-Araiza C. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024; 12:1478. [PMID: 39062051 PMCID: PMC11274729 DOI: 10.3390/biomedicines12071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The primary mechanism of traumatic spinal cord injury (SCI) comprises the initial mechanical trauma due to the transmission of energy to the spinal cord, subsequent deformity, and persistent compression. The secondary mechanism of injury, which involves structures that remained undamaged after the initial trauma, triggers alterations in microvascular perfusion, the liberation of free radicals and neurotransmitters, lipid peroxidation, alteration in ionic concentrations, and the consequent cell death by necrosis and apoptosis. Research in the treatment of SCI has sought to develop early therapeutic interventions that mitigate the effects of these pathophysiological mechanisms. Clinical and experimental evidence has demonstrated the therapeutic benefits of sex-steroid hormone administration after traumatic brain injury and SCI. The administration of estradiol, progesterone, and testosterone has been associated with neuroprotective effects, better neurological recovery, and decreased mortality after SCI. This review evaluated evidence supporting hormone-related neuroprotection over SCI and the possible underlying mechanisms in animal models. As neuroprotection has been associated with signaling pathways, the effects of these hormones are observed on astrocytes and microglia, modulating the inflammatory response, cerebral blood flow, and metabolism, mediating glutamate excitotoxicity, and their antioxidant effects. Based on the current evidence, it is essential to analyze the benefit of sex steroid hormone therapy in the clinical management of patients with SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Carlos Orozco-Barrios
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Gabriela Moralí de la Brena
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
6
|
Kotula-Balak M, Lonc G, Zarzycka M, Tomiyasu J, Knapczyk-Stwora K, Płachno BJ, Korzekwa AJ, Kaczmarczyk J, Krakowska I. The uterusmasculinus of the Eurasian beaver (Castor fever L.) - The appraisal of fast hormone regulation by membrane androgen and estrogen receptors involvement. Gen Comp Endocrinol 2024; 345:114389. [PMID: 37797800 DOI: 10.1016/j.ygcen.2023.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The phenomenon of remaining paramesonephric ducts (uterus masculinus) in males of some animal species concerning its role is still an unresolved issue. Now it is well-recognized that sex hormonal regulation of reproductive physiology involves also fast nongenomic control of cellular processes through noncanonical signaling. Herein, in the uterus masculinus of Eurasian beaver membrane androgen receptor (metal ion transporter Zrt- and Irt-like protein 9; ZIP9) and membrane estrogen receptor (G protein-coupled estrogen receptor; GPER) were studied. Scanning electron microscopy together with anatomical analysis revealed that Eurasian male beavers possess one double uterus (uterus duplex). Two odd parts open into the vagina but do not form a common lumen. The length of the horns is the most differential feature of this organ in studied animals. Uterus masculinus is not a tightly closed tubular structure. Histological analysis showed an analogy to the female uterus structure however no glands but gland-like structures were observed. The presence and abundant localization of ZIP9 and GPER proteins in cells of uterus masculinus was confirmed by immunohistochemistry while their expression was measured by western blotting. GPER expression in remnants was lower (P < 0.001) than those in the female uterus. Parallelly, the concentration of progesterone and estradiol but not testosterone was lower (P < 0.05 and P < 0.01, respectively) in comparison to the female uterus. Our study, for the first time, reports the involvement of fast hormonal regulation in the uterus masculinus of Eurasian beavers reflecting the participation of this organ in the creation local hormonal environment. Moreover, the uterus masculinus seems to be a useful research model for understanding and resolving urgent biological problems such as gender identities and having children by women with a lack of uterus or anatomical barriers on this level.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - G Lonc
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - M Zarzycka
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - J Tomiyasu
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - K Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - J Kaczmarczyk
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - I Krakowska
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
7
|
Orlicky DJ, Smith EE, Bok R, Guess MK, Rascoff LG, Arruda JS, Hutchinson-Colas JA, Johnson J, Connell KA. Estrogen and Androgen Receptor Status in Uterosacral Ligaments of Women with Pelvic Organ Prolapse Stratified by the Pelvic Organ Prolapse Histology Quantification System. Reprod Sci 2023; 30:3495-3506. [PMID: 37430099 PMCID: PMC10692001 DOI: 10.1007/s43032-023-01283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Menopause is a significant risk factor for pelvic organ prolapse (POP), suggesting that ovarian sex steroids play a major role in the etiology of the condition. POP results from failure of the uterine-cervix-vagina support structures, including the uterosacral ligament (USL). We previously identified consistent degenerative USL phenotypes that occur in POP and used their characteristics to develop a standardized POP Histologic Quantification System (POP-HQ). In this study, POP and matched control USL tissue was first segregated into the unique POP-HQ phenotypes, and specimens were then compared for estrogen receptor (ER) alpha (ERα), ERbeta (ERβ), the G-protein estrogen receptor (GPER), and androgen receptor (AR) content via immunohistochemical staining. ER and AR expression levels in the control USL tissues were indistinguishable from those observed in the POP-A phenotype, and partially overlapped with those of the POP-I phenotype. However, control-USL steroid receptor expression was statistically distinct from the POP-V phenotype. This difference was driven mainly by the increased expression of GPER and AR in smooth muscle, connective tissue, and endothelial cells, and increased expression of ERα in connective tissue. These findings support a multifactorial etiology for POP involving steroid signaling that contributes to altered smooth muscle, vasculature, and connective tissue content in the USL. Furthermore, these data support the concept that there are consistent and distinct degenerative processes that lead to POP and suggest that personalized approaches are needed that target specific cell and tissues in the pelvic floor to treat or prevent this complex condition.
Collapse
Affiliation(s)
- David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - E Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachel Bok
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren G Rascoff
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime S Arruda
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
8
|
Morelli C, Chiodo C, Nocito MC, Cormace A, Catalano S, Sisci D, Sirianni R, Casaburi I, Andò S, Lanzino M. Androgens Modulate Bcl-2 Agonist of Cell Death (BAD) Expression and Function in Breast Cancer Cells. Int J Mol Sci 2023; 24:13464. [PMID: 37686282 PMCID: PMC10487823 DOI: 10.3390/ijms241713464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Androgen receptor (AR) expression in estrogen receptor-positive (ER+) breast cancer (BC) correlates with lower tumor grade and a better clinical outcome. Additionally, in normal mammary epithelium or ER+ BC preclinical models, androgens counteract basal/ER-dependent proliferation. Here, we report an additional mechanism, underlining the protective role exerted by AR. Specifically, the activation of intracellular AR upregulates the Bcl-2-family protein BAD, and TCGA database analyses show that in ER+ BC, BAD expression is associated with better disease-free survival. Ligand-activated AR influences its own and BAD cellular compartmentalization by enhancing levels in the nucleus, as well as in mitochondrial fractions. In both compartments, BAD exerts unconventional functions. In the nucleus, BAD and AR physically interact and, upon androgen stimulation, are recruited at the AP-1 and ARE sites within the cyclin D1 promoter region, contributing to explaining the anti-proliferative effect of androgens in BC cells. Androgens cause an enrichment in BAD and AR content in the mitochondria, correlated with a decrease in mitochondrial function. Thus, we have defined a novel mechanism by which androgens modulate BAD expression, its mitochondria localization, and nuclear content to force its ability to act as a cell cycle inhibitor, strengthening the protective role of androgen signaling in estrogen-responsive BCs.
Collapse
Affiliation(s)
- Catia Morelli
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Chiara Chiodo
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Alessandro Cormace
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Stefania Catalano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marilena Lanzino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| |
Collapse
|
9
|
Kasarinaite A, Sinton M, Saunders PTK, Hay DC. The Influence of Sex Hormones in Liver Function and Disease. Cells 2023; 12:1604. [PMID: 37371074 PMCID: PMC10296738 DOI: 10.3390/cells12121604] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and age have been identified as important risk factors. In addition to the regulation of liver biochemistry, sex hormones also regulate the immune system, with sexual dimorphism described for both innate and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their interplay are important factors to consider when designing, studying and developing therapeutic strategies to treat human liver disease. The purpose of this review is to provide the reader with a general overview of sex steroid biology and their regulation of mammalian liver physiology.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Matthew Sinton
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 9TA, UK
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
10
|
Li X, Miao C, Wang L, Liu M, Chang H, Tian B, Wang D. Estrogen promotes Epithelial ovarian cancer cells proliferation via down-regulating expression and activating phosphorylation of PTEN. Arch Biochem Biophys 2023:109662. [PMID: 37276925 DOI: 10.1016/j.abb.2023.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most common of cancer death among malignant tumors in women, its occurrence and development are strongly linked to estrogen. Having identified the phosphatase and tensin homologue (PTEN) is a potent tumor suppressor regulating cell proliferation, migration, and survival. Meanwhile, there is a correlation between PTEN protein expression and estrogen receptor expression in EOC. However, no study has amplified on the molecular regulatory mechanism and function between estrogen and PTEN in the development of EOC. In this research, we found that PTEN shows a low expression level in EOC tissues and estrogen decreased PTEN expression via the estrogen receptor 1 (ESR1) in EOC cells. Knockdown of PTEN enhanced the proliferation and migration level of EOC cells driven by estrogen. Moreover, PTEN was also phosphorylated by G protein-coupled receptor 30 (GPR30)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Inhibiting the phosphorylation of PTEN weakened the proliferation and migration of estrogen induced-EOC cells estrogen and decreased the phosphorylation of Protein kinase B (AKT) and Mammalian target of rapamycin (mTOR). These results indicated that estrogen decreased PTEN expression level via the ESR1 genomic pathway and phosphorylated PTEN via the GPR30-PKC non-genomic pathway to activate the PI3K/AKT/mTOR signaling pathway, thereby determining the fate of EOC cells.
Collapse
Affiliation(s)
- Xiuwen Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Lin Wang
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, PR China
| | - Mengyan Liu
- Taoyuan People's Hospital, Changde, Hunan, 425700, PR China
| | - Huanchao Chang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Bo Tian
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Di Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, 261053, PR China; Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
11
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
12
|
Expression of Androgen and Estrogen Receptors in the Human Lacrimal Gland. Int J Mol Sci 2023; 24:ijms24065609. [PMID: 36982683 PMCID: PMC10053362 DOI: 10.3390/ijms24065609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Lacrimal gland dysfunction causes dry eye disease (DED) due to decreased tear production. Aqueous-deficient DED is more prevalent in women, suggesting that sexual dimorphism of the human lacrimal gland could be a potential cause. Sex steroid hormones are a key factor in the development of sexual dimorphism. This study aimed to quantify estrogen receptor (ER) and androgen receptor (AR) expression in the human lacrimal gland and compare it between sexes. RNA was isolated from 35 human lacrimal gland tissue samples collected from 19 cornea donors. AR, ERα, and ERβ mRNA was identified in all samples, and their expression was quantified using qPCR. Immunohistochemical staining was performed on selected samples to evaluate protein expression of the receptors. ERα mRNA expression was significantly higher than the expression of AR and ERβ. No difference in sex steroid hormone (SSH) receptor mRNA expression was observed between sexes, and no correlation was observed with age. If ERα protein expression is found to be concordant with mRNA expression, it should be investigated further as a potential target for hormone therapy of DED. Further research is needed to elucidate the role of sex steroid hormone receptors in sex-related differences of lacrimal gland structure and disease.
Collapse
|
13
|
Kazakou P, Nicolaides NC, Chrousos GP. Basic Concepts and Hormonal Regulators of the Stress System. Horm Res Paediatr 2023; 96:8-16. [PMID: 35272295 DOI: 10.1159/000523975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human organisms have to cope with a large number of external or internal stressful stimuli that threaten - or are perceived as threatening - their internal dynamic balance or homeostasis. To face these disturbing forces, or stressors, organisms have developed a complex neuroendocrine system, the stress system, which consists of the hypothalamic-pituitary-adrenal axis and the locus caeruleus/norepinephrine-autonomic nervous system. SUMMARY Upon exposure to stressors beyond a certain threshold, the activation of the stress system leads to a series of physiological and behavioral adaptations that help achieve homeostasis and increase the chances of survival. When, however, the stress response to stressors is inadequate, excessive, or prolonged, the resultant maladaptation may lead to the development of several stress-related pathologic conditions. Adverse environmental events, especially during critical periods of life, such as prenatal life, childhood, and puberty/adolescence, in combination with the underlying genetic background, may leave deep, long-term epigenetic imprints in the human expressed genome. KEY MESSAGES In this review, we describe the components of the stress system and its functional interactions with other homeostatic systems of the organism; we present the hormonal regulators of the stress response, and we discuss the development of stress-related pathologies.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023; 11:biomedicines11030690. [PMID: 36979669 PMCID: PMC10045924 DOI: 10.3390/biomedicines11030690] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue distribution from a gynoid to an android and an increased prevalence of obesity in women. These unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a significant role for estrogen in the regulation of adipocytes' function. Indeed, preclinical studies proved the involvement of these hormones in adipose tissue development, metabolism, and inflammatory activity. However, the relationship between estrogen and obesity is bidirectional. On the one hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors and key enzymes involved in their synthesis. This narrative review aims to summarize the role of estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
15
|
Johnson CS, Mermelstein PG. The interaction of membrane estradiol receptors and metabotropic glutamate receptors in adaptive and maladaptive estradiol-mediated motivated behaviors in females. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:33-91. [PMID: 36868633 DOI: 10.1016/bs.irn.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Estrogen receptors were initially identified as intracellular, ligand-regulated transcription factors that result in genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor α and estrogen receptor β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) can rapidly alter cellular excitability and gene expression, particularly through the phosphorylation of CREB. A principal mechanism of neuronal mER action has been shown to occur through glutamate-independent transactivation of metabotropic glutamate receptors (mGlu), which elicits multiple signaling outcomes. The interaction of mERs with mGlu has been shown to be important in many diverse functions in females, including driving motivated behaviors. Experimental evidence suggests that a large part of estradiol-induced neuroplasticity and motivated behaviors, both adaptive and maladaptive, occurs through estradiol-dependent mER activation of mGlu. Herein we will review signaling through estrogen receptors, both "classical" nuclear receptors and membrane-bound receptors, as well as estradiol signaling through mGlu. We will focus on how the interactions of these receptors and their downstream signaling cascades are involved in driving motivated behaviors in females, discussing a representative adaptive motivated behavior (reproduction) and maladaptive motivated behavior (addiction).
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
16
|
An In Vivo Screening Model for Investigation of Pathophysiology of Human Implantation Failure. Biomolecules 2022; 13:biom13010079. [PMID: 36671464 PMCID: PMC9856033 DOI: 10.3390/biom13010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
To improve current infertility treatments, it is important to understand the pathophysiology of implantation failure. However, many molecules are involved in the normal biological process of implantation and the roles of each molecule and the molecular mechanism are not fully understood. This review highlights the hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E) vector, which uses inactivated viral particles as a local and transient gene transfer system to the murine uterus during the implantation period in order to investigate the molecular mechanism of implantation. In vivo screening in mice using the HVJ-E vector system suggests that signal transducer and activator of transcription-3 (Stat-3) could be a diagnostic and therapeutic target for women with a history of implantation failure. The HVJ-E vector system hardly induces complete defects in genes; however, it not only suppresses but also transiently overexpresses some genes in the murine uterus. These features may be useful in investigating the pathophysiology of implantation failure in women.
Collapse
|
17
|
Pinto CA, Fonseca BM, Sá SI. Effects of chronic tamoxifen treatment in female rat sexual behaviour. Heliyon 2022; 8:e12362. [PMID: 36593822 PMCID: PMC9803792 DOI: 10.1016/j.heliyon.2022.e12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The medial preoptic (MPN) and the ventromedial hypothalamic nuclei (VMN) modulate the estrogen receptor (ER)-dependent female sexual behavior, a response that is inhibited by tamoxifen (TAM), a modulator of the steroid receptor activation. With the objective to assess TAM action in the brain areas involved in the modulation sexual cues, an animal model on long-term TAM therapy to intact female rats, was used to mimic the 5-year prophylactic TAM therapy offered to women at higher risk of breast cancer. After three months treatment, female sexual behavior with a stud male rat was evaluated. Upon sacrifice, the brains were removed and the MPN and the ventrolateral division of the VMN were screened for the effects of TAM in the expression of ERα, ERβ and progesterone receptor. Results show that TAM inhibited the receptive component of the female sexual behavior. Even though TAM decreased estrogen and progesterone levels to values similar to the ones of estrous and diestrus rats, the biochemical data failed to demonstrate such possible causation for the behavioral response. In fact, TAM administration induced a constant low level of ovarian hormones that changed the pattern of ER and PR expression as well as receptor co-expression in the brain areas regulating the behavioral response, dissimilar to the ones seen in the cycle phases with the same low hormone levels. Nevertheless, present data suggests that by affecting ER- and/or PR-dependent mechanisms, TAM may modulate the hypothalamus, a region known to participate in several social behaviors.
Collapse
Affiliation(s)
- Cláudia A. Pinto
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Al Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Bruno M. Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº. 228, 4050-313 Porto, Portugal
| | - Susana I. Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Al Professor Hernani Monteiro, 4200-319 Porto, Portugal,CINTESIS@RISE Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto. Al Professor Hernani Monteiro, 4200-319 Porto, Portugal,Corresponding author.
| |
Collapse
|
18
|
Non-genomic uterorelaxant actions of corticosteroid hormones in rats: An in vitro and in vivo study. Eur J Pharmacol 2022; 935:175346. [DOI: 10.1016/j.ejphar.2022.175346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
|
19
|
Roy S, Abudu A, Salinas I, Sinha N, Cline-Fedewa H, Yaw AM, Qi W, Lydic TA, Takahashi DL, Hennebold JD, Hoffmann HM, Wang J, Sen A. Androgen-mediated Perturbation of the Hepatic Circadian System Through Epigenetic Modulation Promotes NAFLD in PCOS Mice. Endocrinology 2022; 163:bqac127. [PMID: 35933634 PMCID: PMC9419696 DOI: 10.1210/endocr/bqac127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/19/2022]
Abstract
In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Aierken Abudu
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Irving Salinas
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Alexandra M Yaw
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd A Lydic
- Collaborative Mass Spectrometry Core, Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Hanne M Hoffmann
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Qu C, Wang C, Li H, Li Y, Han C, Tao X, Guan X, Zhang Y, Chen M, Liu J, Zou W. Estrogen receptor variant ER-α36 facilitates estrogen signaling via EGFR in glioblastoma. Cell Biol Int 2022; 46:1759-1774. [PMID: 35930599 DOI: 10.1002/cbin.11877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is a deadly and common primary brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity. Sex differences may play a role in patient outcome. Previous studies showed that ER-α36, a variant of the estrogen receptor (ER), mediated non-genomic estrogen signaling and is highly expressed in many ER-negative malignant tumors. ER-α36 also associates with epidermal growth factor receptor (EGFR). The primary purpose of this study is to investigate the cross talk between ER-α36 and EGFR in estrogen-mediated GBM cell proliferation. Here, we showed that ER-α36 was highly expressed and confirmed that ER-α36 co-labels with EGFR in human GBM samples using immunohistochemical techniques. We also investigated the mechanisms of estrogen-induced proliferation in ER-α-negative cell lines. We found that GBM cells showed varying responsive to mitogenic estrogen signaling which correlated with ER-α36 expression, and knockdown of ER-α36 diminished the response. Exposure to estrogen also caused upregulation of cyclin protein expression in vitro. We also found that low concentration of estrogen promoted SRC-Y-416 and inhibited SRC-Y-527 phosphorylation, corresponding with activated SRC signaling. Inhibiting SRC or EGFR abolished estrogen-induced mitogenic signaling, including cyclin expression and MAPK phosphorylation. Cumulatively, our results demonstrate that ER-α36 promotes non-genomic estrogen signaling via the EGFR/SRC/MAPK pathway in GBM. This may be important for the treatment of ER-α-negative GBMs that retain high level of ER-α36, since estrogen may be a viable therapeutic target for these patients.
Collapse
Affiliation(s)
- Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Cui Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Neurology Ward Three, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Tao
- Neurology Ward Three, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Xin Guan
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Meng Chen
- Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
21
|
Boudreau MW, Hergenrother PJ. Evolution of 3-(4-hydroxyphenyl)indoline-2-one as a scaffold for potent and selective anticancer activity. RSC Med Chem 2022; 13:711-725. [PMID: 35814932 PMCID: PMC9215341 DOI: 10.1039/d2md00110a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Development of targeted anticancer modalities has prompted a new era in cancer treatment that is notably different from the age of radical surgery and highly toxic chemotherapy. Behind each effective compound is a rich and complex history from first identification of chemical matter, detailed optimization, and mechanistic investigations, ultimately leading to exciting molecules for drug development. Herein we review the history and on-going journey of one such anticancer scaffold, the 3-(4-hydroxyphenyl)indoline-2-ones. With humble beginnings in 19th century Bavaria, we review this scaffold's synthetic history and anticancer optimization, including its recent demonstration of tumor eradication of drug-resistant, estrogen receptor-positive breast cancer. Compounds containing the 3-(4-hydroxyphenyl)indoline-2-one pharmacophore are emerging as intriguing candidates for the treatment of cancer.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Dept. of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Paul J Hergenrother
- Dept. of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
22
|
Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer. Biochimie 2022; 201:177-183. [PMID: 35738490 DOI: 10.1016/j.biochi.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Thiosulfinates in situ formed by "pharmacological pair" C115H methionine γ-lyase/S-(allyl/alkyl)-l-cysteine sulfoxides possess cytotoxic activity against various malignant cell lines. To investigate in vivo antitumor activity of thiosulfinates generated directly at the surface of tumor cells, a chemical conjugate between Clostridium novyi C115H methionine γ-lyase (C115H MGL) and isoflavone daidzein was prepared. The binding of conjugate (C115H-Dz) to various breast cancer cell lines was demonstrated, as well as its cytotoxicity in the presence of S-(allyl/alkyl)-l-cysteine sulfoxides. The most promising among thiosulfinates was dipropyl thiosulfinate (IC50 < 0.53 μM). The pharmacokinetic parameters of C115H MGL and C115H-Dz were obtained. Plasma half-lives of the enzyme and conjugated enzyme were 4.4 and 7.2 h, respectively. In vivo antitumor effect of pharmacological pairs on SKBR-3 xenografts was demonstrated. Treatment of tumor-bearing mice with a pair of C115H-Dz/propiin inhibited tumor growth by 85%.
Collapse
|
23
|
Marie JC, Bonnelye E. Effects of Estrogens on Osteoimmunology: A Role in Bone Metastasis. Front Immunol 2022; 13:899104. [PMID: 35677054 PMCID: PMC9168268 DOI: 10.3389/fimmu.2022.899104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss associated with estrogen deficiency indicates a fundamental role of these hormones in skeletal growth and bone remodeling. In the last decades, growing recent evidence demonstrated that estrogens can also affect the immune compartment of the bone. In this review, we summarize the impacts of estrogens on bone immune cells and their consequences on bone homeostasis, metastasis settlement into the bone and tumor progression. We also addressed the role of an orphan nuclear receptor ERRalpha (“Estrogen-receptor Related Receptor alpha”) on macrophages and T lymphocytes, and as an immunomodulator in bone metastases. Hence, this review links estrogens to bone immune cells in osteo-oncology.
Collapse
Affiliation(s)
- Julien C Marie
- Cancer Research Center of Lyon (CRCL), Tumor Escape Resistance Immunity Department, INSERM-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
24
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
25
|
Xu D, Jiang X, Wang Y, Song S. Liver Receptor homolog-1 Regulates Apoptosis of Bovine Ovarian Granulosa Cells by Progestogen Receptor Signaling Pathway. Animals (Basel) 2022; 12:ani12091213. [PMID: 35565639 PMCID: PMC9104996 DOI: 10.3390/ani12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
The purpose of the present investigation was to assess the function of LRH-1 on GCs and the mechanisms involved. Here, LRH- was highly expressed in the bovine GCs of atretic follicles. Treatment with 50 μM of LRH-1 agonist (DLPC) significantly induced the expression of LRH-1 (p < 0.05). In particular, LRH-1 activation blocked the progestogen receptor signaling pathway via downregulating progesterone production and progestogen receptor levels (p < 0.05), but had no effect on 17 beta-estradiol synthesis. Meanwhile, LRH-1 activation promoted the apoptosis of GCs and increased the activity of caspase 3 (p < 0.05). Importantly, upregulating the progestogen receptor signaling pathway with progestogen could attenuate the LRH-1-induced proapoptotic effect. Moreover, treatment with progestogen decreased the activity of the proapoptotic gene caspase 3 and increased the expression of antiapoptotic gene Bcl2 in LRH-1 activated GCs (p < 0.05). Taken together, these results demonstrate that LRH-1 might be dependent on the progestogen receptor signaling pathway to modulate bovine follicular atresia.
Collapse
Affiliation(s)
- Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (S.S.)
- Correspondence:
| | - Xiaohan Jiang
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Xianyang 712100, China;
| | - Yukun Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (S.S.)
| | - Shuaifei Song
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (S.S.)
| |
Collapse
|
26
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability to and Maintenance of Stress-Mediated Neuropathology and Depression. Front Cell Neurosci 2022; 16:869779. [PMID: 35530179 PMCID: PMC9074831 DOI: 10.3389/fncel.2022.869779] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022] Open
Abstract
Significant stress exposure and psychiatric depression are associated with morphological, biochemical, and physiological disturbances of astrocytes in specific brain regions relevant to the pathophysiology of those disorders, suggesting that astrocytes are involved in the mechanisms underlying the vulnerability to or maintenance of stress-related neuropathology and depression. To understand those mechanisms a variety of studies have probed the effect of various modalities of stress exposure on the metabolism, gene expression and plasticity of astrocytes. These studies have uncovered the participation of various cellular pathways, such as those for intracellular calcium regulation, neuroimmune responses, extracellular ionic regulation, gap junctions-based cellular communication, and regulation of neurotransmitter and gliotransmitter release and uptake. More recently epigenetic modifications resulting from exposure to chronic forms of stress or to early life adversity have been suggested to affect not only neuronal mechanisms but also gene expression and physiology of astrocytes and other glial cells. However, much remains to be learned to understand the specific role of those and other modifications in the astroglial contribution to the vulnerability to and maintenance of stress-related disorders and depression, and for leveraging that knowledge to achieve more effective psychiatric therapies.
Collapse
|
27
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
28
|
Estrogenic Action in Stress-Induced Neuroendocrine Regulation of Energy Homeostasis. Cells 2022; 11:cells11050879. [PMID: 35269500 PMCID: PMC8909319 DOI: 10.3390/cells11050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Estrogens are among important contributing factors to many sex differences in neuroendocrine regulation of energy homeostasis induced by stress. Research in this field is warranted since chronic stress-related psychiatric and metabolic disturbances continue to be top health concerns, and sex differences are witnessed in these aspects. For example, chronic stress disrupts energy homeostasis, leading to negative consequences in the regulation of emotion and metabolism. Females are known to be more vulnerable to the psychological consequences of stress, such as depression and anxiety, whereas males are more vulnerable to the metabolic consequences of stress. Sex differences that exist in the susceptibility to various stress-induced disorders have led researchers to hypothesize that gonadal hormones are regulatory factors that should be considered in stress studies. Further, estrogens are heavily recognized for their protective effects on metabolic dysregulation, such as anti-obesogenic and glucose-sensing effects. Perturbations to energy homeostasis using laboratory rodents, such as physiological stress or over-/under- feeding dietary regimen prevalent in today’s society, offer hints to the underlying mechanisms of estrogenic actions. Metabolic effects of estrogens primarily work through estrogen receptor α (ERα), which is differentially expressed between the sexes in hypothalamic nuclei regulating energy metabolism and in extrahypothalamic limbic regions that are not typically associated with energy homeostasis. In this review, we discuss estrogenic actions implicated in stress-induced sex-distinct metabolic disorders.
Collapse
|
29
|
Karst H, den Boon FS, Vervoort N, Adrian M, Kapitein LC, Joëls M. Non-genomic steroid signaling through the mineralocorticoid receptor: Involvement of a membrane-associated receptor? Mol Cell Endocrinol 2022; 541:111501. [PMID: 34740745 DOI: 10.1016/j.mce.2021.111501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Corticosteroid receptors in the mammalian brain mediate genomic as well as non-genomic actions. Although receptors mediating genomic actions were already cloned 35 years ago, it remains unclear whether the same molecules are responsible for the non-genomic actions or that the latter involve a separate class of receptors. Here we focus on one type of corticosteroid receptors, i.e. the mineralocorticoid receptor (MR). We summarize some of the known properties and the current insight in the localization of the MR in peripheral cells and neurons, especially in relation to non-genomic signaling. Previous studies from our own and other labs provided evidence that MRs mediating non-genomic actions are identical to the ones involved in genomic signaling, but may be translocated to the plasma cell membrane instead of the nucleus. With fixed cell imaging and live cell imaging techniques we tried to visualize these presumed membrane-associated MRs, using antibodies or overexpression of MR-GFP in COS7 and hippocampal cultured neurons. Despite the physiological evidence for MR location in or close to the cell membrane, we could not convincingly visualize membrane localization of endogenous MRs or GFP-MR molecules. However, we did find punctae of labeled antibodies intracellularly, which might indicate transactivating spots of MR near the membrane. We also found some evidence for trafficking of MR via beta-arrestins. In beta-arrestin knockout mice, we didn't observe metaplasticity in the basolateral amygdala anymore, indicating that internalization of MRs could play a role during corticosterone activation. Furthermore, we speculate that membrane-associated MRs could act indirectly via activating other membrane located structures like e.g. GPER and/or receptor tyrosine kinases.
Collapse
Affiliation(s)
- Henk Karst
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Femke S den Boon
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Niek Vervoort
- University Utrecht, Faculty of Science, Division of Cell Biology, Utrecht, the Netherlands
| | - Max Adrian
- University Utrecht, Faculty of Science, Division of Cell Biology, Utrecht, the Netherlands
| | - Lukas C Kapitein
- University Utrecht, Faculty of Science, Division of Cell Biology, Utrecht, the Netherlands
| | - Marian Joëls
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands; University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
30
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
31
|
Kuwahara N, Nicholson K, Isaacs L, MacLusky NJ. Androgen Effects on Neural Plasticity. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:216-230. [PMID: 35024693 PMCID: PMC8744448 DOI: 10.1089/andro.2021.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Androgens are synthesized in the brain, gonads, and adrenal glands, in both sexes, exerting physiologically important effects on the structure and function of the central nervous system. These effects may contribute to the incidence and progression of neurological disorders such as autism spectrum disorder, schizophrenia, and Alzheimer's disease, which occur at different rates in males and females. This review briefly summarizes the current state of knowledge with respect to the neuroplastic effects of androgens, with particular emphasis on the hippocampus, which has been the focus of much of the research in this field.
Collapse
Affiliation(s)
- Nariko Kuwahara
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Nicholson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lauren Isaacs
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Neil J. MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
32
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
33
|
Lipoldová M, Demant P. Gene-Specific Sex Effects on Susceptibility to Infectious Diseases. Front Immunol 2021; 12:712688. [PMID: 34721380 PMCID: PMC8553003 DOI: 10.3389/fimmu.2021.712688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host’s sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host’s hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.
Collapse
Affiliation(s)
- Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
34
|
Wiersielis K, Yasrebi A, Ramirez P, Verpeut J, Regan D, Roepke TA. The influence of estrogen receptor α signaling independent of the estrogen response element on avoidance behavior, social interactions, and palatable ingestive behavior in female mice. Horm Behav 2021; 136:105084. [PMID: 34749278 PMCID: PMC9420320 DOI: 10.1016/j.yhbeh.2021.105084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Women are vulnerable to developing mental disorders that are associated with circulating estrogens. Estrogens, especially 17β-estradiol (E2), have a wide array of effects on the brain, affecting many behavioral endpoints associated with mental illness. By using a total estrogen receptor (ER) α knockout (KO), an ERα knock in/knock out (KIKO) that lacks a functional DNA-binding domain, and wild type (WT) controls treated with either oil or E2, we evaluated ERα signaling, dependent and independent of the estrogen response element (ERE), on avoidance behavior, social interactions and memory, and palatable ingestive behavior using the open field test, the elevated plus maze, the light dark box, the 3-chamber test, and palatable feeding. We found that ERα does not mediate control of anxiety-like behaviors but rather yielded differences in locomotor activity. In evaluating social preference and social recognition memory, we observed that E2 may modulate these measures in KIKO females but not KO females, suggesting that ERE-independent signaling is likely involved in sociability. Lastly, observations of palatable (high-fat) food intake suggested an increase in palatable eating behavior in oil-treated KIKO females. Oil-treated KO females had a longer latency to food intake, indicative of an anhedonic phenotype compared to oil-treated WT and KIKO females. We have observed that social-related behaviors are potentially influenced by ERE-independent ERα signaling and hedonic food intake requires signaling of ERα.
Collapse
Affiliation(s)
- Kimberly Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Patricia Ramirez
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jessica Verpeut
- Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Daniel Regan
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ. USA; Rutgers Center for Lipid Research, the Center for Nutrition, Microbiome, and Health, and the New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
35
|
Joshua Cohen D, ElBaradie K, Boyan BD, Schwartz Z. Sex-specific effects of 17β-estradiol and dihydrotestosterone (DHT) on growth plate chondrocytes are dependent on both ERα and ERβ and require palmitoylation to translocate the receptors to the plasma membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159028. [PMID: 34416391 DOI: 10.1016/j.bbalip.2021.159028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Rat costochondral cartilage growth plate chondrocytes exhibit cell sex-specific responses to 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT). Mechanistically, E2 and DHT stimulate proliferation and extracellular matrix synthesis in chondrocytes from female and male rats, respectively, by signaling through protein kinase C (PKC) and phospholipase C (PLC). Estrogen receptors (ERα; ERβ) and androgen receptors (ARs) are present in both male and female cells, but it is not known whether they interact to elicit sex-specific signaling. We used specific agonists and antagonists of these receptors to examine the relative contributions of ERs and ARs in membrane-mediated E2 signaling in female chondrocytes and DHT signaling in male chondrocytes. PKC activity in female chondrocytes was stimulated by agonists of ERα and ERβ and required intact caveolae; PKC activity was inhibited by the E2 enantiomer and by an inhibitor of ERβ. Western blots of cell lysates co-immunoprecipitated for ERα suggested the formation of a complex containing both ERα and ERß with E2 treatment. DHT and DHT agonists activated PKC in male cells, while AR inhibition blocked the stimulatory effect of DHT on PKC. Inhibition of ERα and ERβ also blocked PKC activation by DHT. Western blots of whole-cell lysates, plasma membranes, and caveolae indicated the translocation of AR to the plasma membrane and specifically to caveolae with DHT treatment. These results suggest that E2 and DHT promote chondrocyte differentiation via the ability of ARs and ERs to form a complex. The results also indicate that intact caveolae and palmitoylation of the membrane receptor(s) or membrane receptor complex containing ERα and ERβ is required for E2 and DHT membrane-associated PKC activity in costochondral cartilage cells.
Collapse
Affiliation(s)
- D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Khairat ElBaradie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30033, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30033, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
36
|
Role of β-Adrenergic Receptors and Estrogen in Cardiac Repair after Myocardial Infarction: An Overview. Int J Mol Sci 2021; 22:ijms22168957. [PMID: 34445662 PMCID: PMC8396463 DOI: 10.3390/ijms22168957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Acute myocardial infarction (MI) is associated with an intense inflammatory response that is critical for cardiac repair but is also involved in the pathogenesis of adverse cardiac remodeling, i.e., the set of size, geometry, and structure changes that represent the structural substrate for the development of post-MI heart failure. Deciphering the pathophysiological mechanisms underlying cardiac repair after MI is, therefore, critical to favorably regulate cardiac wound repair and to prevent development of heart failure. Catecholamines and estrogen play an active role in regulating the inflammatory response in the infarcted area. For example, stress-induced catecholamines alter recruitment and trafficking of leukocytes to the heart. Additionally, estrogen affects rate of cardiac rupture during the acute phase of MI, as well as infarct size and survival in animal models of MI. In this review, we will summarize the role of β-adrenergic receptors and estrogen in cardiac repair after infarction in preclinical studies.
Collapse
|
37
|
Horrell ND, Acosta MC, Saltzman W. Plasticity of the paternal brain: Effects of fatherhood on neural structure and function. Dev Psychobiol 2021; 63:1499-1520. [PMID: 33480062 PMCID: PMC8295408 DOI: 10.1002/dev.22097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Care of infants is a hallmark of mammals. Whereas parental care by mothers is obligatory for offspring survival in virtually all mammals, fathers provide care for their offspring in only an estimated 5%-10% of genera. In these species, the transition into fatherhood is often accompanied by pronounced changes in males' behavioral responses to young, including a reduction in aggression toward infants and an increase in nurturant behavior. The onset of fatherhood can also be associated with sensory, affective, and cognitive changes. The neuroplasticity that mediates these changes is not well understood; however, fatherhood can alter the production and survival of new neurons; function and structure of existing neurons; morphology of brain structures; and neuroendocrine signaling systems. Although these changes are thought to promote infant care by fathers, very little evidence exists to support this hypothesis; in most cases, neither the mechanisms underlying neuroplasticity in fathers nor its functional significance is known. In this paper, we review the available data on the neuroplasticity that occurs during the transition into fatherhood. We highlight gaps in our knowledge and future directions that will provide key insights into how and why fatherhood alters the structure and functioning of the male brain.
Collapse
Affiliation(s)
| | - Melina C. Acosta
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| |
Collapse
|
38
|
Jahan N, Jones C, Rahman RL. Androgen receptor expression in breast cancer: Implications on prognosis and treatment, a brief review. Mol Cell Endocrinol 2021; 531:111324. [PMID: 34000352 DOI: 10.1016/j.mce.2021.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023]
Abstract
Approximately 70%-85% of breast cancers express androgen receptors (ARs). The role of AR in breast cancer pathogenesis is currently in exploration. Both androgens and anti-androgens have demonstrated variable inhibitory and stimulatory effects in AR-positive breast cancer depending on estrogen receptor and HER2 co-expression. Androgen signaling pathways interact with other critical cellular pathways, such as the PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, Wnt/β-catenin, and estrogen signaling pathways. Therapeutic exploitation of AR has been the crux of management of prostate cancer for decades. In recent years there has been increasing interest in AR as a novel therapeutic target in breast cancer. There have been many early phase clinical trials evaluating the safety and efficacy of various AR-targeted agents in breast cancer. Some of these studies have shown promising clinical benefits. Studies of biomarkers to identify the patients likely to benefit from AR-targeted therapies are currently in progress. Besides, AR expression may be an important prognostic and predictive marker for breast cancer, which needs to be defined better in future studies.
Collapse
Affiliation(s)
- Nusrat Jahan
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4(th) St, Lubbock, Tx, 79430, USA.
| | - Catherine Jones
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4(th) St, Lubbock, Tx, 79430, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, Texas Tech University Health Sciences Center, 3601 4(th)St, Lubbock, Tx, 79430, USA
| |
Collapse
|
39
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
40
|
Roy S, Huang B, Sinha N, Wang J, Sen A. Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics. PLoS Genet 2021; 17:e1009483. [PMID: 33784295 PMCID: PMC8034747 DOI: 10.1371/journal.pgen.1009483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Conventionally viewed as male hormone, androgens play a critical role in female fertility. Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional targets of ARs have been identified in the ovary. Using mouse models, this study provides three critical insights about androgen-induced gene regulation in the ovary and its impact on female fertility. First, RNA-sequencing reveals a number of genes and biological processes that were previously not known to be directly regulated by androgens in the ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have a much broader impact on ovarian function than the direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by inducing the expression of a histone demethylase called Jumonji domain containing protein-3 (JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor 1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa) cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovarian genes through modulation of H3K27me3.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| |
Collapse
|
41
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
42
|
Popescu M, Feldman TB, Chitnis T. Interplay Between Endocrine Disruptors and Immunity: Implications for Diseases of Autoreactive Etiology. Front Pharmacol 2021; 12:626107. [PMID: 33833678 PMCID: PMC8021784 DOI: 10.3389/fphar.2021.626107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The sex-bias of disease susceptibility has remained a puzzling aspect of several autoimmune conditions, including post-infection viral autoimmunity. In the last half of the twentieth century, the incidence rate of female-biased autoimmunity has steadily increased independent of medical advances. This has suggested a role for environmental factors, such as endocrine disrupting chemicals, which have been described to interfere with endocrine signaling. Endocrine involvement in the proper function of innate and adaptive immunity has also been defined, however, these two areas have rarely been reviewed in correlation. In addition, studies addressing the effects of endocrine disruptors have reported findings resulting from a broad range of exposure doses, schedules and models. This experimental heterogeneity adds confusion and may mislead the translation of findings to human health. Our work will normalize results across experiments and provide a necessary summary relevant to human exposure. Through a novel approach, we describe how different categories of ubiquitously used environmental endocrine disruptors interfere with immune relevant endocrine signaling and contribute to autoimmunity. We hope this review will guide identification of mechanisms and concentration-dependent EDC effects important not only for the sex-bias of autoimmunity, but also for other conditions of immune dysfunction, including post-infection autoreactivity such as may arise following severe acute respiratory syndrome coronavirus 2, Epstein-Barr virus, Herpes Simplex virus.
Collapse
Affiliation(s)
- Maria Popescu
- Harvard Medical School, Boston, MA, United States.,Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Talia B Feldman
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States.,Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
43
|
Jiménez-Salazar JE, Damian-Ferrara R, Arteaga M, Batina N, Damián-Matsumura P. Non-Genomic Actions of Estrogens on the DNA Repair Pathways Are Associated With Chemotherapy Resistance in Breast Cancer. Front Oncol 2021; 11:631007. [PMID: 33869016 PMCID: PMC8044931 DOI: 10.3389/fonc.2021.631007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogens have been implicated in the etiology of breast cancer for a long time. It has been stated that long-term exposure to estrogens is associated with a higher incidence of breast cancer, since estradiol (E2) stimulates breast cell growth; however, its effect on DNA damage/repair is only starting to be investigated. Recent studies have documented that estrogens are able to modify the DNA damage response (DDR) and DNA repair mechanisms. On the other hand, it has been proposed that DDR machinery can be altered by estrogen signaling pathways, that can be related to cancer progression and chemoresistance. We have demonstrated that E2 promotes c-Src activation and breast cancer cell motility, through a non-genomic pathway. This review discusses scientific evidence supporting this non-genomic mechanism where estrogen modifies the DNA repair pathways, and its relationship to potential causes of chemoresistance.
Collapse
Affiliation(s)
- Javier E Jiménez-Salazar
- Department of Biology of Reproduction, Division of Biological Sciences and Health (DCBS), Autonomous Metropolitan University (UAM), Mexico City, Mexico.,School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Rebeca Damian-Ferrara
- Monterrey Institute of Technology and Higher Education (ITESM), School of Engineering and Sciences, Monterrey, Mexico
| | - Marcela Arteaga
- Department of Biology of Reproduction, Division of Biological Sciences and Health (DCBS), Autonomous Metropolitan University (UAM), Mexico City, Mexico
| | - Nikola Batina
- Nanotechnology and Molecular Engineering Laboratory, Department of Chemistry, Division of Basic Science and Engineering (DCBI), Autonomous Metropolitan University (UAM), Mexico City, Mexico
| | - Pablo Damián-Matsumura
- Department of Biology of Reproduction, Division of Biological Sciences and Health (DCBS), Autonomous Metropolitan University (UAM), Mexico City, Mexico
| |
Collapse
|
44
|
Saha S, Dey S, Nath S. Steroid Hormone Receptors: Links With Cell Cycle Machinery and Breast Cancer Progression. Front Oncol 2021; 11:620214. [PMID: 33777765 PMCID: PMC7994514 DOI: 10.3389/fonc.2021.620214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Progression of cells through cell cycle consists of a series of events orchestrated in a regulated fashion. Such processes are influenced by cell cycle regulated expression of various proteins where multiple families of transcription factors take integral parts. Among these, the steroid hormone receptors (SHRs) represent a connection between the external hormone milieu and genes that control cellular proliferation. Therefore, understanding the molecular connection between the transcriptional role of steroid hormone receptors and cell cycle deserves importance in dissecting cellular proliferation in normal as well as malignant conditions. Deregulation of cell cycle promotes malignancies of various origins, including breast cancer. Indeed, SHR members play crucial role in breast cancer progression as well as management. This review focuses on SHR-driven cell cycle regulation and moving forward, attempts to discuss the role of SHR-driven crosstalk between cell cycle anomalies and breast cancer.
Collapse
Affiliation(s)
- Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
45
|
Hevener AL, Ribas V, Moore TM, Zhou Z. ERα in the Control of Mitochondrial Function and Metabolic Health. Trends Mol Med 2021; 27:31-46. [PMID: 33020031 DOI: 10.1016/j.molmed.2020.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Decrements in metabolic health elevate disease risk, including type 2 diabetes, heart disease, and certain cancers. Thus, treatment strategies to combat metabolic dysfunction are needed. Reduced ESR1 (estrogen receptor, ERα) expression is observed in muscle from women, men, and animals presenting clinical features of the metabolic syndrome. Human studies of natural expression of ESR1 in metabolic tissues show that muscle expression of ESR1 is positively correlated with markers of metabolic health, including insulin sensitivity. Herein, we highlight the important impact of ERα on mitochondrial form and function and present how these actions of the receptor govern metabolic homeostasis. Studies identifying ERα-regulated pathways for disease prevention will lay the foundation for the design of novel therapeutics to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA; Iris Cantor-UCLA Women's Health Research Center, University of California, Los Angeles, CA 90095, USA.
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Warfvinge K, Krause DN, Maddahi A, Edvinsson JCA, Edvinsson L, Haanes KA. Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects. J Headache Pain 2020; 21:131. [PMID: 33167864 PMCID: PMC7653779 DOI: 10.1186/s10194-020-01197-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Migraine occurs 2-3 times more often in females than in males and is in many females associated with the onset of menstruation. The steroid hormone, 17β-estradiol (estrogen, E2), exerts its effects by binding and activating several estrogen receptors (ERs). Calcitonin gene-related peptide (CGRP) has a strong position in migraine pathophysiology, and interaction with CGRP has resulted in several successful drugs for acute and prophylactic treatment of migraine, effective in all age groups and in both sexes. METHODS Immunohistochemistry was used for detection and localization of proteins, release of CGRP and PACAP investigated by ELISA and myography/perfusion arteriography was performed on rat and human arterial segments. RESULTS ERα was found throughout the whole brain, and in several migraine related structures. ERβ was mainly found in the hippocampus and the cerebellum. In trigeminal ganglion (TG), ERα was found in the nuclei of neurons; these neurons expressed CGRP or the CGRP receptor in the cytoplasm. G-protein ER (GPER) was observed in the cell membrane and cytoplasm in most TG neurons. We compared TG from males and females, and females expressed more ER receptors. For neuropeptide release, the only observable difference was a baseline CGRP release being higher in the pro-estrous state as compared to estrous state. In the middle cerebral artery (MCA), we observed similar dilatory ER-responses between males and females, except for vasodilatory ERβ which we observed only in female arteries. CONCLUSION These data reveal significant differences in ER receptor expression between male and female rats. This contrasts to CGRP and PACAP release where we did not observe discernable difference between the sexes. Together, this points to a hypothesis where estrogen could have a modulatory role on the trigeminal neuron function in general rather than on the acute CGRP release mechanisms and vasomotor responses.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Aida Maddahi
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
- Department of Internal Medicine, Lund University Hospital, S-22185, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
47
|
Non-genomic actions of sex hormones on pregnant uterine contractility in rats: An in vitro study at term. Life Sci 2020; 263:118584. [PMID: 33058919 DOI: 10.1016/j.lfs.2020.118584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
AIMS The non-genomic (prompt) actions of sex steroids on pregnant uterine contractility are not fully explored yet, the aim of our study was to clarify such effects of 17-β estradiol (E2), progesterone (P4) and testosterone (T) on late (22-day) pregnant uterine contractions together with the signaling pathways in rats in vitro. METHODS The uterine effects of sex steroids on KCl-stimulated contractions were examined in the presence of genomic pathway blocker actinomycin D and cycloheximide, sex hormone receptor antagonists (flutamide, fulvestrant, mifepristone) and also after removing the endometrium. The modifications in uterine G-protein activation and cAMP levels were also detected. RESULTS T and E2 both relaxed the uterine contractions in the concentration range of 10-8-10-3 M with an increase in the activated G-protein and cAMP levels of the uterus, while P4 was ineffective. Cycloheximide, actinomycin D, antagonist for T and E2 were not able to modify the responses along with the endothelium removal. Mifepristone blocked the relaxing effects of T and E2 and reduced the activation of G-protein and the formation of cAMP. SIGNIFICANCE T and E2 can inhibit KCl-stimulated contractions in the late pregnant uterus in high concentrations and in a non-genomic manner. Their actions are mediated by a G-protein coupled receptor that can be blocked by mifepristone. A single and high dose of T or E2 might be considered in premature contractions, however, further preclinical and clinical studies are required for the approval of such a therapeutic intervention.
Collapse
|
48
|
Chimento A, De Luca A, Nocito MC, Avena P, La Padula D, Zavaglia L, Pezzi V. Role of GPER-Mediated Signaling in Testicular Functions and Tumorigenesis. Cells 2020; 9:cells9092115. [PMID: 32957524 PMCID: PMC7563107 DOI: 10.3390/cells9092115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.
Collapse
Affiliation(s)
- Adele Chimento
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| | | | | | | | | | | | - Vincenzo Pezzi
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| |
Collapse
|
49
|
Pal U, Ghosh S, Limaye AM. DNA methylation in the upstream CpG island of the GPER locus and its relationship with GPER expression in colon cancer cell lines. Mol Biol Rep 2020; 47:7547-7555. [PMID: 32936384 DOI: 10.1007/s11033-020-05817-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
The G-protein coupled estrogen receptor (GPER), a proposed tumor suppressor, relays short-term non-genomic responses in target cells and tissues. It frequently undergoes down-modulation in primary tumors of the breast, ovary, and endometrium. Liu and co-workers recently reported loss of GPER expression in colorectal cancer and attributed it to DNA methylation-dependent silencing. We hypothesized that GPER expression is inversely correlated with methylation in the upstream CpG island (upCpGi) in the GPER locus. Methylation in the upCpGi was analysed by bisulfite sequencing and correlated with GPER expression in a panel of colon cancer cell lines. Eight downstream CpGs of the upCpGi was differentially methylated across the cell lines. Methylation in this differentially methylated region (DMR) correlated inversely with GPER expression. Two cell lines, namely SW620 and COLO-320DM, were compared in terms of their viability in response to varying concentrations of G1, a GPER specific agonist. SW-620 cells, which had the least methylated DMR and the highest level of GPER expression, showed significant loss of viability with 1 µM G1. COLO-320DM, which had the most methylated DMR and the lowest level of GPER expression, did not show a significant response to 1 µM G1. At 5 µM G1, SW620 cells showed a greater reduction in viability than COLO-320DM cells. DNA methylation in the DMR is inversely correlated with GPER expression. DNA methylation-dependent silencing of GPER may be, at least in part, the underlying reason behind the loss of estrogen's oncoprotective effect via GPER in the colon.
Collapse
Affiliation(s)
- Uttariya Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujasha Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
50
|
Hattori Y, Ishii H, Tahara S, Morita A, Ozawa H. Accurate assessment of estrogen receptor profiles in non-functioning pituitary adenomas using RT-digital PCR and immunohistochemistry. Life Sci 2020; 260:118416. [PMID: 32926922 DOI: 10.1016/j.lfs.2020.118416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-functioning pituitary adenomas (NFPAs) are common pituitary tumors, and surgery is generally the only treatment option. Few attempts have been made to explore target molecules for the development of NFPA pharmacological treatments. METHOD We quantitatively assessed the expression profiles of estrogen receptor (ER) transcripts and proteins in NFPA samples, using reverse transcription-digital polymerase chain reaction (RT-dPCR) and immunohistochemistry, and further investigated the correlations between the expression levels of ER and those of downstream responsive genes. All patients had undergone surgery at the same high-volume hospital. A total of 20 patients with NFPAs were included. All patients were new-onset, and none were diagnosed with intratumoral hemorrhages or cysts. RESULTS NFPA samples exhibited a bimodal ESR1 expression pattern and were categorized into significantly different high- and low-ESR1 expression level groups (P < 0.05). In contrast, expression levels of ESR1 variants and ESR2 could barely be detected. Similar results were obtained through the immunohistochemical staining of NFPAs, using well-validated antibodies against ERs. The expression levels of ESR1 positively correlated with those of GREB1, an estrogen-responsive gene [correlation coefficient (r) = 0.623, P = 0.003]. CONCLUSIONS ESR1 expression levels in NFPAs exhibited a bimodal pattern and were positively correlated with GREB1 expression levels. The accurate assessment of ER expression levels may further advance future NFPA-related research.
Collapse
Affiliation(s)
- Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shigeyuki Tahara
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akio Morita
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|