1
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2024; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
2
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Dai HC, Ji RL, Tao YX. SHU9119 and MBP10 are biased ligands at the human melanocortin-4 receptor. Biochem Pharmacol 2024; 228:116325. [PMID: 38815629 DOI: 10.1016/j.bcp.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The melanocortin-4 receptor (MC4R), a G protein-coupled receptor, is critically involved in regulating energy homeostasis as well as modulation of reproduction and sexual function. Two peptide antagonists (SHU9119 and MBP10) were derived from the endogenous agonist α-melanocyte stimulating hormone. But their pharmacology at human MC4R is not fully understood. Herein, we performed detailed pharmacological studies of SHU9119 and MBP10 on wild-type (WT) and six naturally occurring constitutively active MC4Rs. Both ligands had no or negligible agonist activity in Gαs-cAMP signaling on WT MC4R, but stimulated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation on WT and mutant MC4Rs. Mechanistic studies revealed that SHU9119 and MBP10 stimulated ERK1/2 signaling of MC4R by different mechanisms, with SHU9119-stimulated ERK1/2 signaling mediated by phosphatidylinositol 3-kinase (PI3K) and MBP10-initiated ERK1/2 activation through PI3K and β-arrestin. In summary, our studies demonstrated that SHU9119 and MBP10 were biased ligands for MC4R, preferentially activating ERK1/2 signaling through different mechanisms. SHU9119 acted as a biased ligand and MBP10 behaved as a biased allosteric modulator.
Collapse
Affiliation(s)
- Han-Chuan Dai
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
4
|
Radomsky T, Anderson RC, Millar RP, Newton CL. Restoring function to inactivating G protein-coupled receptor variants in the hypothalamic-pituitary-gonadal axis 1. J Neuroendocrinol 2024; 36:e13418. [PMID: 38852954 DOI: 10.1111/jne.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
G protein-coupled receptors (GPCRs) are central to the functioning of the hypothalamic-pituitary-gonadal axis (HPG axis) and include the rhodopsin-like GPCR family members, neurokinin 3 receptor, kappa-opioid receptor, kisspeptin 1 receptor, gonadotropin-releasing hormone receptor, and the gonadotropin receptors, luteinizing hormone/choriogonadotropin receptor and follicle-stimulating hormone receptor. Unsurprisingly, inactivating variants of these receptors have been implicated in a spectrum of reproductive phenotypes, including failure to undergo puberty, and infertility. Clinical induction of puberty in patients harbouring such variants is possible, but restoration of fertility is not always a realisable outcome, particularly for those patients suffering from primary hypogonadism. Thus, novel pharmaceuticals and/or a fundamental change in approach to treating these patients are required. The increasing wealth of data describing the effects of coding-region genetic variants on GPCR function has highlighted that the majority appear to be dysfunctional as a result of misfolding of the encoded receptor protein, which, in turn, results in impaired receptor trafficking through the secretory pathway to the cell surface. As such, these intracellularly retained receptors may be amenable to 'rescue' using a pharmacological chaperone (PC)-based approach. PCs are small, cell permeant molecules hypothesised to interact with misfolded intracellularly retained proteins, stabilising their folding and promoting their trafficking through the secretory pathway. In support of the use of this approach as a viable therapeutic option, it has been observed that many rescued variant GPCRs retain at least a degree of functionality when 'rescued' to the cell surface. In this review, we examine the GPCR PC research landscape, focussing on the rescue of inactivating variant GPCRs with important roles in the HPG axis, and describe what is known regarding the mechanisms by which PCs restore trafficking and function. We also discuss some of the merits and obstacles associated with taking this approach forward into a clinical setting.
Collapse
Affiliation(s)
- Tarryn Radomsky
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
6
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Manolis D, Hasan S, Maraveyas A, O'Brien DP, Kessler BM, Kramer H, Nikitenko LL. Quantitative proteomics reveals CLR interactome in primary human cells. J Biol Chem 2024; 300:107399. [PMID: 38777147 PMCID: PMC11231609 DOI: 10.1016/j.jbc.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) mediates essential functions in several cell types and is implicated in cardiovascular pathologies, skin diseases, migraine, and cancer. To date, the network of proteins interacting with CLR ("CLR interactome") in primary cells, where this GPCR is expressed at endogenous (physiologically relevant) levels, remains unknown. To address this knowledge gap, we established a novel integrative methodological workflow/approach for conducting a comprehensive/proteome-wide analysis of Homo sapiens CLR interactome. We used primary human dermal lymphatic endothelial cells and combined immunoprecipitation utilizing anti-human CLR antibody with label-free quantitative nano LC-MS/MS and quantitative in situ proximity ligation assay. By using this workflow, we identified 37 proteins interacting with endogenously expressed CLR amongst 4902 detected members of the cellular proteome (by quantitative nano LC-MS/MS) and revealed direct interactions of two kinases and two transporters with this GPCR (by in situ proximity ligation assay). All identified interactors have not been previously reported as members of CLR interactome. Our approach and findings uncover the hitherto unrecognized compositional complexity of the interactome of endogenously expressed CLR and contribute to fundamental understanding of the biology of this GPCR. Collectively, our study provides a first-of-its-kind integrative methodological approach and datasets as valuable resources and robust platform/springboard for advancing the discovery and comprehensive characterization of physiologically relevant CLR interactome at a proteome-wide level in a range of cell types and diseases in future studies.
Collapse
Affiliation(s)
- Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Shirin Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Anthony Maraveyas
- Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull University Teaching Hospitals NHS Teaching Trust, Hull, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
8
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
9
|
Thomas P, Pang Y, Kelder J. Membrane progesterone receptors on the cell membrane: A review highlighting potential export motifs in mPRα regulating its trafficking to the cell surface. Steroids 2023; 199:109295. [PMID: 37558174 DOI: 10.1016/j.steroids.2023.109295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Substantial progress has been made in our understanding of the nongenomic actions, ligand binding, intracellular signaling pathways, and functions of membrane progesterone receptors (mPRs) in reproductive and nonreproductive tissues since their discovery 20 years ago. The five mPRs are members of the progestin adipoQ receptor (PAQR) family which also includes adiponectin receptors (AdipoRs). However, unlike AdipoRs, the 3-D structures of mPRs are unknown, and their structural characteristics remain poorly understood. The mechanisms regulating mPR functions and their trafficking to the cell surface have received little attention and have not been systematically reviewed. This paper summarizes some structural aspects of mPRs, including the ligand binding pocket of mPRα recently derived from homology modeling with AdipoRs, and the proposed topology of mPRs from the preponderance of positively charged amino acid residues in their intracellular domains. The mechanisms of trafficking membrane receptors to the cell surface are discussed, including the amino acid motifs involved with their export to the cell surface, the roles of adaptor proteins, and post-translational glycosylation and palmitoylation modifications that promote cell surface expression and retention. Evidence for similar mechanisms regulating the expression and functions of mPRs on the cell surface is discussed, including the identification of potential export motifs on mPRα required for its trafficking to the cell membrane. Collectively, these results have identified several potential mechanisms regulating the expression and functions of mPRs on the cell membrane for further investigation.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Yefei Pang
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jan Kelder
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
Akyuz E, Doğanyiğit Z, Okan A, Yılmaz S, Uçar S, Akın AT. Immunoreactivity of Kir3.1, muscarinic receptors 2 and 3 on the brainstem, vagus nerve and heart tissue under experimental demyelination. Brain Res Bull 2023; 197:13-30. [PMID: 36967090 DOI: 10.1016/j.brainresbull.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
AIMS Demyelination affects the propogation of neuronal action potential by slowing down the progression. This process results in a neuro-impairment like Multiple Sclerosis (MS). Evidence show that MS also contributes to involvement of the autonomic system. In the molecular approach to this involvement, we aimed to observe muscarinic ACh receptor 2-3 (mAChR2-3), and inwardly rectifying potassium channel 3.1 (Kir3.1) immunoreactivities on the brainstem, vagus nerve, and heart under cuprizone model. MAIN METHODS Wistar albino rats were randomly divided into 8 groups; duplicating 4 groups as male and female: control groups (n = 3 +3), Cuprizone groups (n = 12 +12), sham groups (n = 4 +4), and carboxy-methyl-cellulose groups (n = 3 +3). Cuprizone-fed rats underwent demyelination via Luxol fast blue (LFB) staining of the hippocampus (Gyrus dentatus and Cornu Ammonis) and cortex. Immunohistochemistry analysis followed to the pathologic measurement of the brainstem, vagus nerve, and heart for mAChR2, mAChR3 and Kir3.1 proteins KEY FINDINGS: A significant demyelination was observed in the hippocampus and cortex tissues of rats in the female and male cuprizone groups. Myelin basic protein immunoreactivity demonstrated that cuprizone groups, in both males and females, had down-regulation in the hippocampus and cortex areas. The weights of the cuprizone-fed rats significantly decreased over six weeks. Dilated blood vessels and neuronal degeneration were severe in the hippocampus and cortex of the cuprizone groups. In the female cuprizone group, expression of mAChR2 and mAChR2 was significantly increased in the brainstem, atrium/ventricle of heart, and left/right sections of vagus nerve. Kir3.1 channels were also up-regulated in the left vagus nerve and heart sections of the female cuprizone group SIGNIFICANCE: Especially in our data where female-based significant results were obtained reveal that demyelination may lead to significant mAChR2, mAChR3 and Kir3.1 changes in brainstem, vagus nerve, and heart. A high immunoreactive response to demyelination at cholinergic centers may be a new target.
Collapse
|
11
|
Yadav N, Thelma BK. Deletion induced splicing in RIC3 drives nicotinic acetylcholine receptor regulation with implications for endoplasmic reticulum stress in human astrocytes. Glia 2023; 71:1217-1232. [PMID: 36602087 DOI: 10.1002/glia.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) dysregulation in astrocytes is reported in neurodegenerative disorders. Modulation of nAChRs through agonists confers protection to astrocytes from stress but regulation of chaperones involved in proteostasis with pathological implications is unclear. Resistance to inhibitors of cholinesterase 3 (RIC3), a potential chaperone of nAChRs is poorly studied in humans. We characterized RIC3 in astrocytes derived from an isogenic wild-type and Cas9 edited "del" human iPSC line harboring a 25 bp homozygous deletion in exon2. Altered RIC3 transcript ratio due to deletion induced splicing and an unexpected gain of α7nAChR expression were observed in "del" astrocytes. Transcriptome analysis showed higher expression of neurotransmitter/G-protein coupled receptors mediated by cAMP and calcium/calmodulin-dependent kinase signaling with increased cytokines/glutamate secretion. Functional implications examined using tunicamycin induced ER stress in wild-type astrocyte stress model showed cell cycle arrest, RIC3 upregulation, reduction in α7nAChR membrane levels but increased α4nAChR membrane expression. Conversely, tunicamycin-treated "del" astrocytes showed a comparatively higher α4nAChR membrane expression and upsurged cAMP signaling. Furthermore, reduced expression of stress markers CHOP, phospho-PERK and lowered XBP1 splicing in western blot and qPCR, validated by proteome-based pathway analysis indicated lowered disease severity. Findings indicate (i) a complex RNA regulatory mechanism via exonic deletion induced splicing; (ii) RIC-3 as a disordered protein having contrasting effects on co-expressed nAChR subtypes under basal/stress conditions; and (iii) RIC3 as a potential drug target against ER stress in astrocytes for neurodegenerative/nicotine-related brain disorders. Cellular rescue mechanism through deletion induced exon skipping may encourage ASO-based therapies for tauopathies.
Collapse
Affiliation(s)
- Navneesh Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
12
|
Austin GO, Tomas A. Variation in responses to incretin therapy: Modifiable and non-modifiable factors. Front Mol Biosci 2023; 10:1170181. [PMID: 37091864 PMCID: PMC10119428 DOI: 10.3389/fmolb.2023.1170181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Type 2 diabetes (T2D) and obesity have reached epidemic proportions. Incretin therapy is the second line of treatment for T2D, improving both blood glucose regulation and weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-stimulated insulinotropic polypeptide (GIP) are the incretin hormones that provide the foundations for these drugs. While these therapies have been highly effective for some, the results are variable. Incretin therapies target the class B G protein-coupled receptors GLP-1R and GIPR, expressed mainly in the pancreas and the hypothalamus, while some therapeutical approaches include additional targeting of the related glucagon receptor (GCGR) in the liver. The proper functioning of these receptors is crucial for incretin therapy success and here we review several mechanisms at the cellular and molecular level that influence an individual's response to incretin therapy.
Collapse
Affiliation(s)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX. Pharmacology of orange-spotted grouper (Epinephelus coioides) melanocortin-5 receptor and its modulation by Mrap2. Gen Comp Endocrinol 2023; 332:114180. [PMID: 36455644 DOI: 10.1016/j.ygcen.2022.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The mammalian melanocortin-5 receptors (MC5Rs) are involved in various functions, including exocrine gland secretion, glucose uptake, adipocyte lipolysis, and immunity. However, the physiological role of fish Mc5r is rarely studied. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates pharmacological properties of melanocortin receptors. Herein, to lay the foundation for future physiological studies, we cloned the orange-spotted grouper (Epinephelus coioides) mc5r, with a 1008 bp open reading frame and a predicted protein of 334 amino acids. Grouper mc5r had abundant expression in the brain, skin, and kidney. Four ligands could bind to grouper Mc5r and dose-dependently increase intracellular cAMP levels. Grouper Mrap2 did not affect binding affinity or potency of Mc5r; however, grouper Mrap2 decreased cell surface expression and maximal binding of Mc5r. Mrap2 also significantly decreased the maximal response to a superpotent agonist but not the endogenous agonist. This study provided new data on fish Mc5r pharmacology and its regulation by Mrap2.
Collapse
Affiliation(s)
- Li-Qin Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ying-Zhu Rao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Southern Laboratory of Ocean Science and Engineering (Zhuhai, Guangdong), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Zhuhai 51900, China
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
15
|
Darbalaei S, Chang RL, Zhou QT, Chen Y, Dai AT, Wang MW, Yang DH. Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists. Acta Pharmacol Sin 2023; 44:421-433. [PMID: 35953646 PMCID: PMC9889767 DOI: 10.1038/s41401-022-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.
Collapse
Affiliation(s)
- Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru-Lue Chang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - An-Tao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - De-Hua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| |
Collapse
|
16
|
Liu Y, Zhang M, Liu Z, Li S, Liu H, Huang R, Yi F, Zhou J. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids 2023; 55:263-273. [PMID: 36539546 DOI: 10.1007/s00726-022-03223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Comprehensive knowledge of the intracellular protein interactions of cell-surface receptors will greatly advance our comprehension of the underlying trafficking mechanisms. Hence, development of effective and high-throughput approaches is highly desired. In this work, we presented a strategy aiming to tailor toward the analysis of intracellular protein interactome of cell-surface receptors. We used α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors subunit GluA1 as an example to illustrate the methodological application. To capture intracellular proteins that interact with GluA1, after surface biotinylation of the prepared hippocampal neurons and slices, the non-biotinylated protein components as intracellular protein-enriched fraction were unconventionally applied for the following co-immunoprecipitation. The co-immuno-precipitated proteins were then analyzed through mass spectrometry-based proteomics and bioinformatics platforms. The detailed localizations indicated that intracellular proteins accounted for up to 93.7 and 90.3% of the analyzed proteins in the neurons and slices, respectively, suggesting that our protein preparation was highly effective to characterize intracellular interactome of GluA1. Further, we systematically revealed the protein functional profile of GluA1 intracellular interactome, thereby providing complete overview and better comprehension of diverse intracellular biological processes correlated with the complex GluA1 trafficking. All experimental results demonstrated that our methodology would be applicable and useful for intracellular interaction proteomics of general cell-surface receptors.
Collapse
Affiliation(s)
- Yanchen Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mingming Zhang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Zhao Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hangfei Liu
- Shenzhen Wininnovate Bio-Tech Co., Ltd,, Shenzhen, 518073, China
| | - Rongzhong Huang
- ChuangXu Institute of Life Science, Chongqing, 400016, China.,Chongqing Institute of Life Science, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
17
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
18
|
Singh S, Kaur M, Kaur R, Beri A, Kaur A. Association analysis of LHCGR variants and polycystic ovary syndrome in Punjab: a case-control approach. BMC Endocr Disord 2022; 22:335. [PMID: 36585675 PMCID: PMC9805054 DOI: 10.1186/s12902-022-01251-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder that affects women at their child bearing age. The exact etiology is uncertain, however the involvement of multiple genes and environmental interactions has been proposed for the advancement of PCOS. The aim of present study was to evaluate the association of LHCGR variants (rs2293275 and rs12470652) with PCOS in Punjab. METHODS The present case-control study comprised a total of 743 women (421 PCOS cases and 322 healthy controls). Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism technique (PCR-RFLP). Biochemical analysis was carried out to measure the levels of cholesterol, High-density lipoprotein (HDL), Low-density lipoprotein (LDL), Very low-density lipoprotein (VLDL), triglycerides, testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). All the statistical analysis was done using SPSS (version21, IBM SPSS, NY, USA). RESULTS The mutant genotype (AA) and mutant allele (A) of rs2293275 conferred 1.7 and 1.3 fold risk, respectively and mutant allele (C) of rs12470652 conferred 2.3 fold risks towards PCOS progression. Levels of cholesterol and triglycerides were elevated and HDL levels were lower in PCOS cases as compared to controls. Total testosterone and luteinizing hormone levels were also found to be higher in PCOS cases. CONCLUSION Our study postulated that LHCGR variants are playing a cardinal role in the progression of PCOS and can be used to assess the risk of PCOS in women of reproductive age.
Collapse
Affiliation(s)
- Sukhjashanpreet Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Mandeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Ratneev Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Archana Beri
- Beri Maternity Hospital, Southend Beri Fertility and IVF, Amritsar, Punjab, 143001, India
| | - Anupam Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India, 143005.
| |
Collapse
|
19
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
20
|
Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
|
21
|
Matsukawa H, Ikezaki M, Nishioka K, Iwahashi N, Fujimoto M, Nishitsuji K, Ihara Y, Ino K. Calnexin Is Involved in Forskolin-induced Syncytialization in Cytotrophoblast Model BeWo Cells. Biomolecules 2022; 12:biom12081050. [PMID: 36008943 PMCID: PMC9405722 DOI: 10.3390/biom12081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Calnexin (CNX), a membrane-bound molecular chaperone, is involved in protein folding and quality control of nascent glycoproteins in the endoplasmic reticulum. We previously suggested critical roles of calreticulin, a functional paralogue of CNX, in placentation, including invasion of extravillous trophoblasts and syncytialization of cytotrophoblasts. However, the roles of CNX in placentation are unclear. In human choriocarcinoma BeWo cells, which serve as an experimental model of syncytialization, CNX knockdown suppressed forskolin-induced cell fusion and β-human chorionic gonadotropin (β-hCG) induction. Cell-surface luteinizing hormone/chorionic gonadotropin receptor, a β-hCG receptor, was significantly down-regulated in CNX-knockdown cells, which suggested the presence of a dysfunctional autocrine loop of β-hCG up-regulation. In this study, we also found abundant CNX expression in normal human placentas. Collectively, our results revealed the critical role of CNX in the syncytialization-related signaling in a villous trophoblast model and suggest a link between CNX expression and placenta development.
Collapse
Affiliation(s)
- Hitomi Matsukawa
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University, Kyoto 606-8507, Japan;
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| |
Collapse
|
22
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
23
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
24
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
25
|
Vats A, Xi Y, Feng B, Clinger OD, St Leger AJ, Liu X, Ghosh A, Dermond CD, Lathrop KL, Tochtrop GP, Picaud S, Chen Y. Non-retinoid chaperones improve rhodopsin homeostasis in a mouse model of retinitis pigmentosa. JCI Insight 2022; 7:153717. [PMID: 35472194 PMCID: PMC9220944 DOI: 10.1172/jci.insight.153717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopsin-associated (RHO-associated) retinitis pigmentosa (RP) is a progressive retinal disease that currently has no cure. RHO protein misfolding leads to disturbed proteostasis and the death of rod photoreceptors, resulting in decreased vision. We previously identified nonretinoid chaperones of RHO, including YC-001 and F5257-0462, by small-molecule high-throughput screening. Here, we profile the chaperone activities of these molecules toward the cell-surface level of 27 RP-causing human RHO mutants in NIH3T3 cells. Furthermore, using retinal explant culture, we show that YC-001 improves retinal proteostasis by supporting RHO homeostasis in RhoP23H/+ mouse retinae, which results in thicker outer nuclear layers (ONL), indicating delayed photoreceptor degeneration. Interestingly, YC-001 ameliorated retinal immune responses and reduced the number of microglia/macrophages in the RhoP23H/+ retinal explants. Similarly, F5257-0462 also protects photoreceptors in RhoP23H/+ retinal explants. In vivo, intravitreal injection of YC-001 or F5257-0462 microparticles in PBS shows that F5257-0462 has a higher efficacy in preserving photoreceptor function and delaying photoreceptor death in RhoP23H/+ mice. Collectively, we provide proof of principle that nonretinoid chaperones are promising drug candidates in treating RHO-associated RP.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Yibo Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Archisha Ghosh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Chase D Dermond
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, United States of America
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris, France
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
26
|
Anderson RC, Hanyroup S, Song YB, Mohamed-Moosa Z, van den Bout I, Schwulst AC, Kaiser UB, Millar RP, Newton CL. Functional Rescue of Inactivating Mutations of the Human Neurokinin 3 Receptor Using Pharmacological Chaperones. Int J Mol Sci 2022; 23:ijms23094587. [PMID: 35562976 PMCID: PMC9100388 DOI: 10.3390/ijms23094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic–pituitary–gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention.
Collapse
Affiliation(s)
- Ross C. Anderson
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Correspondence:
| | - Sharika Hanyroup
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.B.S.); (U.B.K.)
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea
| | - Zulfiah Mohamed-Moosa
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Department of Anatomy and Physiology, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Pretoria 0110, South Africa
| | - Iman van den Bout
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Alexis C. Schwulst
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.B.S.); (U.B.K.)
| | - Robert P. Millar
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, St Andrews KY16 9TF, UK
| | - Claire L. Newton
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
27
|
Wang X, Xue S, Lei X, Song W, Li L, Li X, Fu Y, Zhang C, Zhang H, Luo Y, Wang M, Lin G, Zhang C, Guo J. Pharmacological Evaluation of Melanocortin 2 Receptor Accessory Protein 2 on Axolotl Neural Melanocortin Signaling. Front Endocrinol (Lausanne) 2022; 13:820896. [PMID: 35250878 PMCID: PMC8891371 DOI: 10.3389/fendo.2022.820896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
The Melanocortin-3 receptor (MC3R) and Melanocortin-4 receptor (MC4R), two members of the key hypothalamic neuropeptide signaling, function as complex mediators to control the central appetitive and energy homeostasis. The melanocortin 2 receptor accessory protein 2 (MRAP2) is well-known for its modulation on the trafficking and signaling of MC3R and MC4R in mammals. In this study, we cloned and elucidated the pharmacological profiles of MRAP2 on the regulation of central melanocortin signaling in a relatively primitive poikilotherm amphibian species, the Mexican axolotl (Ambystoma mexicanum). Our results showed the higher conservation of axolotl mc3r and mc4r across species than mrap2, especially the transmembrane regions in these proteins. Phylogenetic analysis indicated that the axolotl MC3R/MC4R clustered closer to their counterparts in the clawed frog, whereas MRAP2 fell in between the reptile and amphibian clade. We also identified a clear co-expression of mc3r, mc4r, and mrap2 along with pomc and agrp in the axolotl brain tissue. In the presence of MRAP2, the pharmacological stimulation of MC3R by α-MSH or ACTH significantly decreased. MRAP2 significantly decreased the cell surface expression of MC4R in a dose dependent manner. The co-localization and formation of the functional complex of axolotl MC3R/MC4R and MRAP2 on the plasma membrane were further confirmed in vitro. Dramatic changes of the expression levels of mc3r, mrap2, pomc, and agrp in the fasting axolotl hypothalamus indicated their critical roles in the metabolic regulation of feeding behavior and energy homeostasis in the poikilotherm aquatic amphibian.
Collapse
Affiliation(s)
- Xiaozhu Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Song Xue
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaowei Lei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqi Song
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanbin Fu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hailin Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Luo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gufa Lin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Guo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Malik M, Fang Y, Wakle-Prabagaran M, Roh M, Prifti K, Frolova AI, Imoukhuede PI, England SK. Pharmacological chaperones for the oxytocin receptor increase oxytocin responsiveness in myometrial cells. J Biol Chem 2022; 298:101646. [PMID: 35093385 PMCID: PMC8881472 DOI: 10.1016/j.jbc.2022.101646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Oxytocin is a potent uterotonic agent administered to nearly all patients during childbirth in the United States. Inadequate oxytocin response can necessitate Cesarean delivery or lead to uterine atony and postpartum hemorrhage. Thus, it may be clinically useful to identify patients at risk for poor oxytocin response and develop strategies to sensitize the uterus to oxytocin. Previously, we showed that the V281M variant in the oxytocin receptor (OXTR) gene impairs OXTR trafficking to the cell surface, leading to a decreased oxytocin response in cells. Here, we sought to identify pharmacological chaperones that increased oxytocin response in cells expressing WT or V281M OXTR. We screened nine small-molecule agonists and antagonists of the oxytocin/vasopressin receptor family and identified two, SR49059 and L371,257, that restored both OXTR trafficking and oxytocin response in HEK293T cells transfected with V281M OXTR. In hTERT-immortalized human myometrial cells, which endogenously express WT OXTR, treatment with SR49059 and L371,257 increased the amount of OXTR on the cell surface by two- to fourfold. Furthermore, SR49059 and L371,257 increased the endogenous oxytocin response in hTERT-immortalized human myometrial cells by 35% and induced robust oxytocin responses in primary myometrial cells obtained from patients at the time of Cesarean section. If future studies demonstrate that these pharmacological chaperones or related compounds function similarly in vivo, we propose that they could potentially be used to enhance clinical response to oxytocin.
Collapse
Affiliation(s)
- Manasi Malik
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yingye Fang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michelle Roh
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin Prifti
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Antonina I Frolova
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Princess I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
29
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
30
|
Han J, Liang X, Guo Y, Wu X, Li Z, Hong T. Agouti-related protein as the glucose signaling sensor in the central melanocortin circuits in regulating fish food intake. Front Endocrinol (Lausanne) 2022; 13:1010472. [PMID: 36387900 PMCID: PMC9663815 DOI: 10.3389/fendo.2022.1010472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Agouti-related protein (AgRP) is a neuropeptide synthesized by AgRP/NPY neurons and transcribed as 132 amino acids in humans and 142 amino acids (AgRP1) in Japanese seabass (Lateolabrax maculatus) fish. AgRP neurons are activated by hormonal signals of energy deficits and inhibited by signals of energy surpluses and have been demonstrated to have the ability to sense the dynamics of blood glucose concentrations as the "glucose sensor" in mammals. It is widely recognized that AgRP is an endogenous antagonist of the melanocortin-3 and -4 receptors (MC3R and MC4R) in the hypothalamus, exhibiting potent orexigenic activity and control of energy homeostasis. Most fish, especially carnivorous fish, cannot make efficient use of carbohydrates. When carbohydrates like corn or wheat bran are added as energy sources, they often cause feeding inhibition and metabolic diseases. When fishmeal is replaced by plant protein, this does not completely eliminate carbs, limiting the utilization of carbohydrates and plant proteins in aquaculture. Our previous study showed that AgRP, and not neuropeptide Y (NPY) is the principal protein molecule that correlates well with feeding behavior in Japanese seabass from anorexia to adaptation. The Ghrelin/Leptin-mTOR-S6K1-NPY/AgRP/POMC feed intake regulatory pathway responds to the plant-oriented protein which contains glucose. However, its regulatory function and mechanism are still not clear. This review offers an integrative overview of how glucose signals converge on a molecular level in AgRP neurons of the arcuate nucleus of the hypothalamus. This is in order to control fish food intake and energy homeostasis.
Collapse
Affiliation(s)
- Juan Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaofang Liang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiaofang Liang, ; Yanzhi Guo,
| | - Yanzhi Guo
- Department of Research Management, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiaofang Liang, ; Yanzhi Guo,
| | - Xiaoliang Wu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziqi Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tiannuo Hong
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
31
|
Hanyroup S, Anderson RC, Nataraja S, Yu HN, Millar RP, Newton CL. Rescue of Cell Surface Expression and Signaling of Mutant Follicle-Stimulating Hormone Receptors. Endocrinology 2021; 162:6311857. [PMID: 34192304 DOI: 10.1210/endocr/bqab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Mutations in G protein-coupled receptors (GPCRs) underlie numerous diseases. Many cause receptor misfolding and failure to reach the cell surface. Pharmacological chaperones are cell-permeant small molecules that engage nascent mutant GPCRs in the endoplasmic reticulum, stabilizing folding and "rescuing" cell surface expression. We previously demonstrated rescue of cell surface expression of luteinizing hormone receptor mutants by an allosteric agonist. Here we demonstrate that a similar approach can be employed to rescue mutant follicle-stimulating hormone receptors (FSHRs) with poor cell surface expression using a small-molecule FSHR agonist, CAN1404. Seventeen FSHR mutations described in patients with reproductive dysfunction were expressed in HEK 293T cells, and cell surface expression was determined by enzyme-linked immunosorbent assay of epitope-tagged FSHRs before/after treatment with CAN1404. Cell surface expression was severely reduced to ≤18% of wild-type (WT) for 11, modestly reduced to 66% to 84% of WT for 4, and not reduced for 2. Of the 11 with severely reduced cell surface expression, restoration to ≥57% of WT levels was achieved for 6 by treatment with 1 µM CAN1404 for 24 h, and a corresponding increase in FSH-induced signaling was observed for 4 of these, indicating restored functionality. Therefore, CAN1404 acts as a pharmacological chaperone and can rescue cell surface expression and function of certain mutant FSHRs with severely reduced cell surface expression. These findings aid in advancing the understanding of the effects of genetic mutations on GPCR function and provide a proof of therapeutic principle for FSHR pharmacological chaperones.
Collapse
Affiliation(s)
- Sharika Hanyroup
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Robert P Millar
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
33
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
34
|
Zhao J, Stephens T, Zhao Y. Molecular Regulation of Lysophosphatidic Acid Receptor 1 Maturation and Desensitization. Cell Biochem Biophys 2021; 79:477-483. [PMID: 34032994 PMCID: PMC8887818 DOI: 10.1007/s12013-021-00999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Lysophosphatidic acid receptor 1 (LPA1) belongs to the G protein-coupled receptor family. The ligand for LPA1 is LPA, the simplest lysophospholipid. LPA is considered a growth factor and induces cell proliferation, anti-apoptosis, and cell migration. The pro-inflammatory and pro-fibrotic roles of LPA have also been well-demonstrated. Most of the biological functions of LPA are mostly executed through LPA1. The mature form of LPA1 is glycosylated and localized on the plasma membrane. LPA1 is bound to heterotrimetric G proteins and transduces intracellular signaling in response to ligation to LPA. Desensitization of LPA1 negatively regulates LPA1-mediated signaling and the resulting biological functions. Phosphorylation and ubiquitination are well-demonstrated posttranslational modifications of GPCR. In this review, we will discuss our knowledge of LPA1 glycosylation, maturation, and trafficking from the endoplasmic reticulum (ER)/Golgi to the plasma membrane. Moreover, in light of recent findings, we will also discuss molecular regulation of LPA1 internalization and stability.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA
| | - Thomas Stephens
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Dielectric Spectroscopy Based Detection of Specific and Nonspecific Cellular Mechanisms. SENSORS 2021; 21:s21093177. [PMID: 34063599 PMCID: PMC8124793 DOI: 10.3390/s21093177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
Using radiofrequency dielectric spectroscopy, we have investigated the impact of the interaction between a G protein-coupled receptor (GPCR), the sterile2 α-factor receptor protein (Ste2), and its cognate agonist ligand, the α-factor pheromone, on the dielectric properties of the plasma membrane in living yeast cells (Saccharomyces cerevisiae). The dielectric properties of a cell suspension containing a saturating concentration of α-factor were measured over the frequency range 40Hz–110 MHz and compared to the behavior of a similarly prepared suspension of cells in the absence of α-factor. A spherical three-shell model was used to determine the electrical phase parameters for the yeast cells in both types of suspensions. The relative permittivity of the plasma membrane showed a significant increase after exposure to α-factor (by 0.06 ± 0.05). The equivalent experiment performed on yeast cells lacking the ability to express Ste2 showed no change in plasma membrane permittivity. Interestingly, a large change also occurred to the electrical properties of the cellular interior after the addition of α-factor to the cell suspending medium, whether or not the cells were expressing Ste2. We present a number of different complementary experiments performed on the yeast to support these dielectric data and interpret the results in terms of specific cellular reactions to the presence of α-factor.
Collapse
|
36
|
Chen Y, Sun T, Niu Y, Wang D, Liu K, Wang T, Wang S, Xu H, Liu J. A partial loss-of-function variant in GNRNR gene in a Chinese cohort with idiopathic hypogonadotropic hypogonadism. Transl Androl Urol 2021; 10:1676-1687. [PMID: 33968656 PMCID: PMC8100836 DOI: 10.21037/tau-20-1390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Idiopathic hypogonadotropic hypogonadism (IHH) is a rare genetic disease attributed to the disorder of hypothalamic-pituitary-gonadal axis. Mutations in the GNRHR gene are one of the most common genetic causes of IHH. Herein, we aimed to investigate GNRHR variants in a Chinese cohort with IHH, and to characterize them at the molecular level. METHODS A total of 153 IHH patients were recruited, and variants were detected using a tailored next-generation sequencing panel. GNRHR rare sequencing variant (RSV) was verified using Sanger sequencing. Phenotypic features and therapeutic outcomes of patients were followed up. In order to examine the pathogenicity of the GNRHR RSV, we performed conservative analysis, crystal structure prediction, expression analysis as well as the assessment of ERK1/2 activation and IP3/Ca2+ response. RESULTS The same heterozygous RSV (p.R240Q) in GNRHR was identified in four sporadic IHH patients. These patients exhibited different severity of testicular development and hormone profile. hCG treatment was effective in improving gonadal development, serum testosterone, and semen quality. The GNRHR RSV has no effect on the expression of mRNA and protein, whereas damaged ERK1/2 activation and inositol triphosphate/calcium signaling. CONCLUSIONS The study expands GNRHR mutation spectrum in IHH patients, and reveals that the GNRHR RSV is a partial loss-of-function mutation. Although this heterozygous RSV may not have a significant influence on the pathogenesis of IHH, but its homozygous/ compound status should be paid attention in this research field.
Collapse
Affiliation(s)
- Yinwei Chen
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghua Niu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoqi Wang
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xu
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;,Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zariñán T, Mayorga J, Jardón-Valadez E, Gutiérrez-Sagal R, Maravillas-Montero JL, Mejía-Domínguez NR, Martínez-Luis I, Yacini-Torres OG, Cravioto MDC, Reiter E, Ulloa-Aguirre A. A Novel Mutation in the FSH Receptor (I423T) Affecting Receptor Activation and Leading to Primary Ovarian Failure. J Clin Endocrinol Metab 2021; 106:e534-e550. [PMID: 33119067 DOI: 10.1210/clinem/dgaa782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Follicle-stimulating hormone (FSH) plays an essential role in gonadal function. Loss-of-function mutations in the follicle-stimulating hormone receptor (FSHR) are an infrequent cause of primary ovarian failure. OBJECTIVE To analyze the molecular physiopathogenesis of a novel mutation in the FSHR identified in a woman with primary ovarian failure, employing in vitro and in silico approaches, and to compare the features of this dysfunctional receptor with those shown by the trafficking-defective D408Y FSHR mutant. METHODS Sanger sequencing of the FSHR cDNA was applied to identify the novel mutation. FSH-stimulated cyclic adenosine monophosphate (cAMP) production, ERK1/2 phosphorylation, and desensitization were tested in HEK293 cells. Receptor expression was analyzed by immunoblotting, receptor-binding assays, and flow cytometry. Molecular dynamics simulations were performed to determine the in silico behavior of the mutant FSHRs. RESULTS A novel missense mutation (I423T) in the second transmembrane domain of the FSHR was identified in a woman with normal pubertal development but primary amenorrhea. The I423T mutation slightly impaired plasma membrane expression of the mature form of the receptor and severely impacted on cAMP/protein kinase A signaling but much less on β-arrestin-dependent ERK1/2 phosphorylation. Meanwhile, the D408Y mutation severely affected membrane expression, with most of the FSH receptor located intracellularly, and both signal readouts tested. Molecular dynamics simulations revealed important functional disruptions in both mutant FSHRs, mainly the loss of interhelical connectivity in the D408Y FSHR. CONCLUSIONS Concurrently, these data indicate that conformational differences during the inactive and active states account for the distinct expression levels, differential signaling, and phenotypic expression of the I423T and D408Y mutant FSHRs.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Mayorga
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana, Unidad Lerma, Lerma, Edo. de Mexico, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Omar G Yacini-Torres
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ma-Del-Carmen Cravioto
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, Tours, France
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
38
|
Zhang HJ, Cui ZH, Liu M, Min TQ, Xiao X, Wang ZQ, Tao YX. Pharmacological characterization of three chicken melanocortin-3 receptor mutants. Domest Anim Endocrinol 2021; 74:106507. [PMID: 32841887 DOI: 10.1016/j.domaniend.2020.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a G protein-coupled receptor and potentially important in production traits. Three naturally occurring mutations (M54L, G104S, and L151R) in chicken MC3R (cMC3R) were reported previously to be associated with production traits. Here, we inserted the full-length cMC3R coding sequence into pcDNA3.1(+) and generated the 3 mutations by site-directed mutagenesis. The total and cell surface expression of the receptors was measured by flow cytometry. We analyzed the pharmacological characteristics, including binding and cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling, using 6 ligands ([Nle4, D-Phe7]-α-melanocyte stimulating hormone (MSH), α-, β-, γ-, and D-Trp8-γ-MSHs, and agouti-related peptide). All mutants had similar total and cell surface expression as the wild-type (WT) cMC3R. M54L had similar pharmacological properties as the WT cMC3R. G104S did not exhibit any specific binding but had minimal response to α-, β-, γ-, and D-Trp8-γ-MSH, although it generated 24% WT response when stimulated by NDP-MSH. Although L151R had normal binding, the responses to agonists were reduced to approximately 25% of that of the WT. In MAPK signaling, all 3 mutants showed significantly increased agonist-stimulated phosphorylation of extracellular signal-regulated protein kinases 1/2, indicating the existence of biased signaling at G104S and L151R. In summary, our studies demonstrated that although all 3 mutations are significantly associated with production traits, only G104S and L151R had severe defects in receptor pharmacology. How M54L might cause production trait differences remains to be investigated.
Collapse
Affiliation(s)
- H-J Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Z-H Cui
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - M Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - T-Q Min
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - X Xiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Z-Q Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Y-X Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
39
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
40
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
41
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
42
|
Shackley M, Ma Y, Tate EW, Brown AJH, Frost G, Hanyaloglu AC. Short Chain Fatty Acids Enhance Expression and Activity of the Umami Taste Receptor in Enteroendocrine Cells via a Gα i/o Pathway. Front Nutr 2020; 7:568991. [PMID: 33195366 PMCID: PMC7658341 DOI: 10.3389/fnut.2020.568991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
The short chain fatty acids (SCFAs) acetate, butyrate and propionate, are produced by fermentation of non-digestible carbohydrates by the gut microbiota and regulate appetite, adiposity, metabolism, glycemic control, and immunity. SCFAs act at two distinct G protein coupled receptors (GPCRs), FFAR2 and FFAR3 and are expressed in intestinal enteroendocrine cells (EECs), where they mediate anorectic gut hormone release. EECs also express other GPCRs that act as nutrient sensors, thus SCFAs may elicit some of their health-promoting effects by altering GPCR expression in EECs and enhance gut sensitivity to dietary molecules. Here, we identify that exposure of the murine EEC STC-1 cell line or intestinal organoids to physiological concentrations of SCFAs enhances mRNA levels of the umami taste receptors TASR1 and TASR3, without altering levels of the SCFA GPCRs, FFAR2 and FFAR3. Treatment of EECs with propionate or butyrate, but not acetate, increased levels of umami receptor transcripts, while propionate also reduced CCK expression. This was reversed by inhibiting Gαi/o signaling with pertussis toxin, suggesting that SCFAs act through FFAR2/3 to alter gene expression. Surprisingly, neither a FFAR3 nor a FFAR2 selective ligand could increase TASR1/TASR3 mRNA levels. We assessed the functional impact of increased TASR1/TASR3 expression using unique pharmacological properties of the umami taste receptor; namely, the potentiation of signaling by inosine monophosphate. Activation of umami taste receptor induced inositol-1-phosphate and calcium signaling, and butyrate pretreatment significantly enhanced such signaling. Our study reveals that SCFAs may contribute to EEC adaptation and alter EEC sensitivity to bioactive nutrients.
Collapse
Affiliation(s)
- Matilda Shackley
- Section of Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.,Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Yue Ma
- Section of Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | | - Gary Frost
- Section of Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Yang LK, Tao YX. Alanine Scanning Mutagenesis of the DRYxxI Motif and Intracellular Loop 2 of Human Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21207611. [PMID: 33076233 PMCID: PMC7589821 DOI: 10.3390/ijms21207611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is a member of the G-protein-coupled receptor (GPCR) superfamily, which has been extensively studied in obesity pathogenesis due to its critical role in regulating energy homeostasis. Both the Gs-cAMP and ERK1/2 cascades are known as important intracellular signaling pathways initiated by the MC4R. The DRYxxI motif at the end of transmembrane domain 3 and the intracellular loop 2 (ICL2) are thought to be crucial for receptor function in several GPCRs. To study the functions of this domain in MC4R, we performed alanine-scanning mutagenesis on seventeen residues. We showed that one residue was critical for receptor cell surface expression. Eight residues were important for ligand binding. Mutations of three residues impaired Gs-cAMP signaling without changing the binding properties. Investigation on constitutive activities of all the mutants in the cAMP pathway revealed that six residues were involved in constraining the receptor in inactive states and five residues were important for receptor activation in the absence of an agonist. In addition, mutations of four residues impaired the ligand-stimulated ERK1/2 signaling pathway without affecting the binding properties. We also showed that some mutants were biased to the Gs-cAMP or ERK1/2 signaling pathway. In summary, we demonstrated that the DRYxxI motif and ICL2 were important for MC4R function.
Collapse
|
44
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
45
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
46
|
Chemogenetics a robust approach to pharmacology and gene therapy. Biochem Pharmacol 2020; 175:113889. [DOI: 10.1016/j.bcp.2020.113889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
|
47
|
Targovnik HM, Scheps KG, Rivolta CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol 2020; 501:110638. [PMID: 31751626 DOI: 10.1016/j.mce.2019.110638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland. Nevertheless, the etiology of the dysembryogenesis remains unknown for most cases. In contrast, the majority of patients with dyshormonogenesis has been linked to mutations in the SLC5A5, SLC26A4, SLC26A7, TPO, DUOX1, DUOX2, DUOXA1, DUOXA2, IYD or TG genes, which usually originate goiter. About 800 genetic mutations have been reported to cause CH in patients so far, including missense, nonsense, in-frame deletion and splice-site variations. Many of these mutations are implicated in specific domains, cysteine residues or glycosylation sites, affecting the maturation of nascent proteins that go through the secretory pathway. Consequently, misfolded proteins are permanently entrapped in the endoplasmic reticulum (ER) and are translocated to the cytosol for proteasomal degradation by the ER-associated degradation (ERAD) machinery. Despite of all these remarkable advances in the field of the CH pathogenesis, several points on the development of this disease remain to be elucidated. The continuous study of thyroid gene mutations with the application of new technologies will be useful for the understanding of the intrinsic mechanisms related to CH. In this review we summarize the present status of knowledge on the disorders in the protein folding caused by thyroid genes mutations.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
48
|
Liguori L, Monticelli M, Allocca M, Hay Mele B, Lukas J, Cubellis MV, Andreotti G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int J Mol Sci 2020; 21:ijms21020489. [PMID: 31940970 PMCID: PMC7014102 DOI: 10.3390/ijms21020489] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
The term “pharmacological chaperone” was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.
Collapse
Affiliation(s)
- Ludovica Liguori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Maria Monticelli
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
| | - Mariateresa Allocca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Maria Vittoria Cubellis
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-679118; Fax: +39-081-679233
| | | |
Collapse
|
49
|
Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX. Regulation of melanocortin-1 receptor pharmacology by melanocortin receptor accessory protein 2 in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2020; 285:113291. [PMID: 31568758 DOI: 10.1016/j.ygcen.2019.113291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Melanocortin-1 receptor (MC1R) has important roles in regulating pigmentation and inflammation. Melanocortin receptor accessory protein 2 (MRAP2) modulates trafficking, ligand binding, and signaling of mammalian melanocortin receptors. However, the effect of MRAP2 on fish MC1R has not been extensively studied. Herein, we cloned the orange-spotted grouper (Epinephelus coioides) mc1r, which had a 972 bp open reading frame encoding a putative protein of 323 amino acids. Grouper mc1r was mainly expressed in the brain, skin, testis, spleen, head kidney, and kidney. EcoMC1R showed high constitutive activities in both Gs-cAMP and ERK1/2 pathways, which could be differentially modulated by grouper MRAP2 (EcoMRAP2). Three agonists, including α-melanocyte-stimulating hormone (MSH), β-MSH, and ACTH, could bind to EcoMC1R and dose-dependently increase intracellular cAMP production. EcoMRAP2 had no effect on the IC50 in binding assay or EC50 in cAMP assay; however, it dose-dependently decreased the cell surface expression and maximal response to the three agonists. EcoMRAP2 increased basal ERK1/2 activation but did not alter α-MSH-stimulated ERK1/2 activation. This study extends the knowledge base of fish MC1R pharmacology and its regulation by MRAP2.
Collapse
Affiliation(s)
- Li-Qin Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying-Zhu Rao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Southern Laboratory of Ocean Science and Engineering (Zhuhai, Guangdong), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Zhuhai 51900, China
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
50
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol 2020; 499:110607. [PMID: 31586652 DOI: 10.1016/j.mce.2019.110607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
The cAMP-PKA pathway plays an essential role in the pituitary gland, governing cell differentiation and survival, and maintenance of endocrine function. Somatotroph growth hormone transcription and release as well as cell proliferation are regulated by the cAMP-PKA pathway; cAMP-PKA pathway abnormalities are frequently detected in sporadic as well as in hereditary somatotroph tumors and more rarely in other pituitary tumors. Inactivating variants of the aryl hydrocarbon receptor-interacting protein (AIP)-coding gene are the genetic cause of a subset of familial isolated pituitary adenomas (FIPA). Multiple functional links between the co-chaperone AIP and the cAMP-PKA pathway have been described. This review explores the role of chaperones including AIP in normal pituitary function as well as in somatotroph tumors, and their interaction with the cAMP-PKA pathway.
Collapse
Affiliation(s)
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|