1
|
Chai Y, Wang H, Tang D, Wu Y, Sun Z, Zeng Y, Zhang B, Niu B, Dong X. Changes of serum cortisol during pregnancy and labor initiation: an onsite cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1379693. [PMID: 38808114 PMCID: PMC11130462 DOI: 10.3389/fendo.2024.1379693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background Increased maternal cortisol secretion has been observed during pregnancy and labor. However, due to the limitations in diagnostic methods, the dynamic change of cortisol during the short period between threatened labor and labor is unknown. In this study, we aim to evaluate the changes in serum cortisol during late pregnancy and full-term labor initiation, verifying if cortisol could serve as a biomarker for the diagnosis of labor initiation from threatened labor. Methods This cross-sectional onsite study involved 564 participants of 6 different gestational stages (C: Control; T1: Trimester 1; T3: Trimester 3; E: expectant; TL: threatened labor; L: labor), all patients in the E, TL, and L groups were at full term. The serum cortisol concentration was quantified with a point-of-care test (POCT), and the gestation, age, parity, and BMI of participants were documented. Morning serum cortisol was collected between 8:00 and 10:00 a.m., except for the TL and L group women who were tested upon arrival or during latent labor. With cortisol levels or all five variables, L was distinguished from TL using machine learning algorithms. Results Significant elevation of cortisol concentration was observed between T1 and T3, or TL and L group (P< 0.001). Women belonging to the E and TL group showed similar gestation week and cortisol levels. Diagnosis of labor initiation using cortisol levels (cutoff = 21.46 μg/dL) yielded sensitivity, specificity, and AUC of 86.50%, 88.60%, and 0.934. With additional variables, a higher specificity (89.29%) was achieved. The diagnostic accuracy of all methods ranged from 85.93% to 87.90%. Conclusion Serum cortisol could serve as a potential biomarker for diagnosis of L form TL. The rapid onsite detection of serum cortisol with POCT could facilitate medical decision-making for admission and special treatments, either as an additional parameter or when other technical platforms are not available.
Collapse
Affiliation(s)
- Yujuan Chai
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Hairong Wang
- Greater Bay Area International Institute for Innovation, Shenzhen University, Shenzhen, Guangdong, China
| | - Daiyu Tang
- Department of Obstetrics and Gynecology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yi Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhonghao Sun
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuping Zeng
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Binmao Zhang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Ben Niu
- Department of Management, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Shynlova O, Nadeem L, Lye S. Progesterone control of myometrial contractility. J Steroid Biochem Mol Biol 2023; 234:106397. [PMID: 37683774 DOI: 10.1016/j.jsbmb.2023.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
During pregnancy, the primary function of the uterus is to be quiescent and not contract, which allows the growing fetus to develop and mature. A uterine muscle layer, myometrium, is composed of smooth muscle cells (SMCs). Before the onset of labor contractions, the uterine SMCs experience a complex biochemical and molecular transformation involving the expression of contraction-associated proteins. Labor is initiated when genes in SMCs are activated in response to a combination of hormonal, inflammatory and mechanical signals. In this review, we provide an overview of molecular mechanisms regulating the process of parturition in humans, focusing on the hormonal control of the myometrium, particularly the steroid hormone progesterone. The primary reason for discussing the regulation of myometrial contractility by progesterone is the importance of the clinical problem of preterm birth. It is thought that the hormonal mechanisms regulating premature uterine contractions represent an untimely triggering of the normal events occurring during term parturition. Yet, our knowledge of the complex and redundant hormonal pathways controlling uterine contractile activity leading to delivery of the neonate remains incomplete. Finally, we introduce recent animal studies using a novel class of drugs, Selective Progesterone Receptor Modulators, targeting progesterone signaling to prevent premature myometrial contractions.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada
| |
Collapse
|
3
|
Gallo DM, Romero R, Bosco M, Gotsch F, Jaiman S, Jung E, Suksai M, Ramón Y Cajal CL, Yoon BH, Chaiworapongsa T. Meconium-stained amniotic fluid. Am J Obstet Gynecol 2023; 228:S1158-S1178. [PMID: 37012128 PMCID: PMC10291742 DOI: 10.1016/j.ajog.2022.11.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 04/04/2023]
Abstract
Green-stained amniotic fluid, often referred to as meconium-stained amniotic fluid, is present in 5% to 20% of patients in labor and is considered an obstetric hazard. The condition has been attributed to the passage of fetal colonic content (meconium), intraamniotic bleeding with the presence of heme catabolic products, or both. The frequency of green-stained amniotic fluid increases as a function of gestational age, reaching approximately 27% in post-term gestation. Green-stained amniotic fluid during labor has been associated with fetal acidemia (umbilical artery pH <7.00), neonatal respiratory distress, and seizures as well as cerebral palsy. Hypoxia is widely considered a mechanism responsible for fetal defecation and meconium-stained amniotic fluid; however, most fetuses with meconium-stained amniotic fluid do not have fetal acidemia. Intraamniotic infection/inflammation has emerged as an important factor in meconium-stained amniotic fluid in term and preterm gestations, as patients with these conditions have a higher rate of clinical chorioamnionitis and neonatal sepsis. The precise mechanisms linking intraamniotic inflammation to green-stained amniotic fluid have not been determined, but the effects of oxidative stress in heme catabolism have been implicated. Two randomized clinical trials suggest that antibiotic administration decreases the rate of clinical chorioamnionitis in patients with meconium-stained amniotic fluid. A serious complication of meconium-stained amniotic fluid is meconium aspiration syndrome. This condition develops in 5% of cases presenting with meconium-stained amniotic fluid and is a severe complication typical of term newborns. Meconium aspiration syndrome is attributed to the mechanical and chemical effects of aspirated meconium coupled with local and systemic fetal inflammation. Routine naso/oropharyngeal suctioning and tracheal intubation in cases of meconium-stained amniotic fluid have not been shown to be beneficial and are no longer recommended in obstetrical practice. A systematic review of randomized controlled trials suggested that amnioinfusion may decrease the rate of meconium aspiration syndrome. Histologic examination of the fetal membranes for meconium has been invoked in medical legal litigation to time the occurrence of fetal injury. However, inferences have been largely based on the results of in vitro experiments, and extrapolation of such findings to the clinical setting warrants caution. Fetal defecation throughout gestation appears to be a physiologic phenomenon based on ultrasound as well as in observations in animals.
Collapse
Affiliation(s)
- Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Gynecology and Obstetrics, Universidad Del Valle, Cali, Colombia
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Sunil Jaiman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Carlos López Ramón Y Cajal
- Unit of Prenatal Diagnosis, Service of Obstetrics and Gynecology, Álvaro Cunqueiro Hospital, Vigo, Spain
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
4
|
Kyathanahalli C, Snedden M, Hirsch E. Is human labor at term an inflammatory condition?†. Biol Reprod 2023; 108:23-40. [PMID: 36173900 PMCID: PMC10060716 DOI: 10.1093/biolre/ioac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Parturition at term in normal pregnancy follows a predictable sequence of events. There is some evidence that a state of inflammation prevails in the reproductive tissues during labor at term, but it is uncertain whether this phenomenon is the initiating signal for parturition. The absence of a clear temporal sequence of inflammatory events prior to labor casts doubt on the concept that normal human labor at term is primarily the result of an inflammatory cascade. This review examines evidence linking parturition and inflammation in order to address whether inflammation is a cause of labor, a consequence of labor, or a separate but related phenomenon. Finally, we identify and suggest ways to reconcile inconsistencies regarding definitions of labor onset in published research, which may contribute to the variability in conclusions regarding the genesis and maintenance of parturition. A more thorough understanding of the processes underlying normal parturition at term may lead to novel insights regarding abnormal labor, including spontaneous preterm labor, preterm premature rupture of the fetal membranes, and dysfunctional labor, and the role of inflammation in each.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Shan Y, Shen S, Long J, Tang Z, Wu C, Ni X. Term and Preterm Birth Initiation Is Associated with the Macrophages Shifting to M1 Polarization in Gestational Tissues in Mice. BIOLOGY 2022; 11:biology11121759. [PMID: 36552269 PMCID: PMC9775566 DOI: 10.3390/biology11121759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Inflammation in gestational tissues plays critical role in parturition initiation. We sought to investigate the leukocyte infiltration and cytokine profile in uterine tissues to understand the inflammation during term and preterm labor in the mouse model. Preterm birth was induced by the administration of lipopolysaccharide (LPS) or RU38486. The populations of leukocytes were determined by flow cytometry. Macrophages were the largest population in the myometrium and decidua in late gestation. The macrophage population was significantly changed in the myometrium and decidua from late pregnancy to term labor and significantly changed at LPS- and RU386-induced preterm labor. Neutrophils, T cells, and NKT cells were increased in LPS- and RU38486-induced preterm labor. The above changes were accompanied by the increased expression of cytokines and chemokines. In late gestation, M2 macrophages were the predominant phenotype in gestational tissues. M1 macrophages significantly increased in these tissues at term and preterm labor. IL-6 and NLRP3 expression was significantly increased in macrophages at labor, supporting that macrophages exhibit proinflammatory phenotypes. NLRP3 inflammasome inhibitor MCC950 mainly suppressed macrophage infiltration in the myometrium at term labor and preterm labor. Our data suggest that the M1 polarization of macrophages contributes to inflammation linked to term and preterm labor initiation in gestational tissues.
Collapse
Affiliation(s)
- Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Zhengshan Tang
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Cichun Wu
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
6
|
Signaling Pathways Regulating Human Cervical Ripening in Preterm and Term Delivery. Cells 2022; 11:cells11223690. [PMID: 36429118 PMCID: PMC9688647 DOI: 10.3390/cells11223690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
At the end of gestation, the cervical tissue changes profoundly. As a result of these changes, the uterine cervix becomes soft and vulnerable to dilation. The process occurring in the cervical tissue can be described as cervical ripening. The ripening is a process derivative of enzymatic breakdown and inflammatory response. Therefore, it is apparent that cervical remodeling is a derivative of the reactions mediated by multiple factors such as hormones, prostaglandins, nitric oxide, and inflammatory cytokines. However, despite the research carried out over the years, the cellular pathways responsible for regulating this process are still poorly understood. A comprehensive understanding of the entire process of cervical ripening seems crucial in the context of labor induction. Greater knowledge could provide us with the means to help women who suffer from dysfunctional labor. The overall objective of this review is to present the current understanding of cervical ripening in terms of molecular regulation and cell signaling.
Collapse
|
7
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
8
|
Social Isolation Stress Modulates Pregnancy Outcomes and the Inflammatory Profile of Rat Uterus. Int J Mol Sci 2022; 23:ijms23116169. [PMID: 35682846 PMCID: PMC9181517 DOI: 10.3390/ijms23116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
Prenatal stressors have been linked to adverse pregnancy outcomes; including preterm birth (PTB). Recent work demonstrates that social isolation in mothers represents a silent stressor contributing to PTB risk. Here; we investigate the association of inflammatory and stress markers with PTB risk in Long–Evans rats exposed to social isolation stress (SIS) during preconception and pregnancy across four generations (F0-F3). Gestational length; blood glucose; corticosterone levels; and maternal and offspring weights were assessed in two SIS paradigms: transgenerational (TG) and multigenerational (MG) exposure. Maternal uterine tissues were collected 21 days after the dams gave birth. Exposure to SIS reduced pregnancy lengths in the parental generation and neonatal birth weights in the F1 and F2 generations. Interleukin (IL)-1β (Il1b) mRNA levels increased in F0 animals but decreased in the offspring of both stress lineages. Protein levels of IL-1β decreased in the TG lineage. Corticotrophin-releasing hormone receptor 1 (Crhr1) expression decreased in SIS-exposed F0 animals and increased in the TG-F2 and MG-F1 offspring. Expression of enzyme 11-β hydroxysteroid dehydrogenase-2 (11bHSD2) was enhanced in F1 animals. These findings suggest SIS has adverse consequences on the F0 mothers; but their F1–F3 progeny may adapt to this chronic stress; thus supporting the fetal programming hypothesis.
Collapse
|
9
|
Ravi M, Bernabe B, Michopoulos V. Stress-Related Mental Health Disorders and Inflammation in Pregnancy: The Current Landscape and the Need for Further Investigation. Front Psychiatry 2022; 13:868936. [PMID: 35836664 PMCID: PMC9273991 DOI: 10.3389/fpsyt.2022.868936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Many studies have focused on psychoimmunological mechanisms of risk for stress-related mental health disorders. However, significantly fewer studies have focused on understanding mechanisms of risk for stress-related disorders during pregnancy, a period characterized by dramatic changes in both the innate and adaptive immune systems. The current review summarizes and synthesizes the extant literature on the immune system during pregnancy, as well as the sparse existing evidence highlighting the associations between inflammation and mood, anxiety, and fear-related disorders in pregnancy. In general, pregnant persons demonstrate lower baseline levels of systemic inflammation, but respond strongly when presented with an immune challenge. Stress and trauma exposure may therefore result in strong inflammatory responses in pregnant persons that increases risk for adverse behavioral health outcomes. Overall, the existing literature suggests that stress, trauma exposure, and stress-related psychopathology are associated with higher levels of systemic inflammation in pregnant persons, but highlight the need for further investigation as the existing data are equivocal and vary based on which specific immune markers are impacted. Better understanding of the psychoimmunology of pregnancy is necessary to reduce burden of prenatal mental illness, increase the likelihood of a successful pregnancy, and reduce the intergenerational impacts of prenatal stress-related mental health disorders.
Collapse
Affiliation(s)
- Meghna Ravi
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Brandy Bernabe
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Emory National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
10
|
El-Dairi R, Rysä J, Storvik M, Pasanen M, Huuskonen P. Aflatoxin B1 targeted gene expression profiles in human placental primary trophoblast cells. Curr Res Toxicol 2022; 3:100082. [PMID: 35814288 PMCID: PMC9263407 DOI: 10.1016/j.crtox.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gene expression profiles were studied in human primary trophoblast cells. 170 genes were significantly dysregulated in aflatoxin B1-exposed trophoblasts. AhR-mediated estrogen receptor signalling was dysregulated in response to AFB1. Transcripts involved in endocrine signalling and energy homeostasis were disrupted. Cellular growth and development, cell cycle and DNA repair processes were affected.
Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus flavus and A. parasiticus. A high exposure (40 nM and 1 µM AFB1 for 72 h) was used to study mechanistic effects of AFB1 on gene expression patterns in human primary trophoblast cells, isolated from full term placentae after delivery. Gene expression profiling was conducted, and Ingenuity pathway analysis (IPA) software was used to identify AFB1-regulated gene networks and regulatory pathways. In response to 40 nM AFB1, only 7 genes were differentially expressed whereas 1 µM AFB1 significantly dysregulated 170 genes (124 down- and 46 upregulated, ±1.5-fold, p < 0.05) in AFB1-exposed trophoblasts when compared to controls. The top downregulated genes were involved in endocrine signalling and biosynthesis of hormones, and lipid and carbohydrate metabolism. The top upregulated genes were involved in protein synthesis and regulation of cell cycle. The main canonical pathways identified by IPA were associated with endocrine signalling including growth hormone signalling, and corticotropin releasing hormone signalling. Furthermore, genes involved in aryl hydrocarbon receptor (AhR)-mediated estrogen receptor signalling were dysregulated in response to AFB1. Our findings indicate that a high concentration 72 h AFB1 exposure caused relatively moderate number of changes on transcript level to human placental primary trophoblast cells. However, these preliminary results need to be confirmed with human-relevant concentrations of AFB1.
Collapse
|
11
|
Leimert KB, Xu W, Princ MM, Chemtob S, Olson DM. Inflammatory Amplification: A Central Tenet of Uterine Transition for Labor. Front Cell Infect Microbiol 2021; 11:660983. [PMID: 34490133 PMCID: PMC8417473 DOI: 10.3389/fcimb.2021.660983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
In preparation for delivery, the uterus transitions from actively maintaining quiescence during pregnancy to an active parturient state. This transition occurs as a result of the accumulation of pro-inflammatory signals which are amplified by positive feedback interactions involving paracrine and autocrine signaling at the level of each intrauterine cell and tissue. The amplification events occur in parallel until they reach a certain threshold, ‘tipping the scale’ and contributing to processes of uterine activation and functional progesterone withdrawal. The described signaling interactions all occur upstream from the presentation of clinical labor symptoms. In this review, we will: 1) describe the different physiological processes involved in uterine transition for each intrauterine tissue; 2) compare and contrast the current models of labor initiation; 3) introduce innovative models for measuring paracrine inflammatory interactions; and 4) discuss the therapeutic value in identifying and targeting key players in this crucial event for preterm birth.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Magdalena M Princ
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Steine IM, LeWinn KZ, Lisha N, Tylavsky F, Smith R, Bowman M, Sathyanarayana S, Karr CJ, Smith AK, Kobor M, Bush NR. Maternal exposure to childhood traumatic events, but not multi-domain psychosocial stressors, predict placental corticotrophin releasing hormone across pregnancy. Soc Sci Med 2020; 266:113461. [PMID: 33126094 PMCID: PMC9380779 DOI: 10.1016/j.socscimed.2020.113461] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/19/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Maternal psychosocial stress increases the risk of adverse birth and postnatal outcomes for the mother and child, but the role of maternal exposure to childhood traumatic events (CTE) and multi-domain psychosocial stressors for the level and rise of placental Corticotrophin-Releasing Hormone (pCRH) across pregnancy has been understudied. In a sociodemographically and racially diverse sample of 1303 women (64% Black, 36% White/others) with low-medical risk pregnancies at enrollment from Shelby County, Tennessee, USA, blood samples were drawn twice, corresponding roughly to second and third trimester, and extracted prior to conducting radioimmune assays for pCRH. Mothers reported CTE (physical abuse, sexual abuse, or family violence, in childhood), adulthood traumatic events, and interpersonal violence during pregnancy. Neighborhood crime/deprivation was derived using geospatially-linked objective databases. General linear and mixed models tested associations between stress exposure variables and pCRH levels and rate of rise, adjusting for obstetric/clinical/health related factors. Maternal CTE did not predict pCRH levels at time 1, but positively predicted levels at time 2, and the rate of rise in pCRH across pregnancy. Race did not moderate this association. No additional maternal stress exposures across adulthood or during pregnancy predicted pCRH outcomes. Findings indicate that childhood violence or abuse exposure can become biologically embedded in a manner predicting later prenatal physiology relevant for maternal and offspring health, and that such embedding may be specific to childhood, but not adulthood, stress. Findings also highlight the placental-fetal unit as a mechanistic pathway through which intergenerational transmission of the adverse effects of childhood adversities may occur.
Collapse
Affiliation(s)
- Iris M Steine
- Visiting Scholar, UC Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA, 94704, USA; Department of Psychosocial Science, University of Bergen, Christiesgate 12, 5015 Bergen, Norway.
| | - Kaja Z LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Nadra Lisha
- Department of General Internal Medicine, University of California San Francisco, USA
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - Roger Smith
- Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Maria Bowman
- Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Sheela Sathyanarayana
- University of Washington Department of Pediatrics, Seattle, USA; Seattle Children's Research Institute, Seattle, USA; University of Washington Department of Environmental and Occupational Health Sciences, Seattle, USA
| | - Catherine J Karr
- University of Washington Department of Environmental and Occupational Health Sciences, Seattle, USA; University of Washington Departments of Pediatrics, Seattle, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Michael Kobor
- Department of Medical Genetics, University of British Columbia, Canada
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, University of California San Francisco, USA
| |
Collapse
|
13
|
Abstract
Term labour is a state of physiological inflammation orchestrated by multiple uterine tissues (both fetal and maternal). This physiological inflammation preceding and accompanying labour onset is characterized by an increase in cytokine and chemokine secretion by the fetal membranes, as well as uterine tissues (i.e., decidua and myometrium). Pro-inflammatory cytokines and chemokines activate circulating maternal peripheral leukocytes as well as the uterine vascular endothelium to permit leukocyte infiltration into the uterus. This inflammatory milieu, in the absence of infection, is required for the initiation of labour as the uterine-infiltrated leukocytes secrete matrix metalloproteinases to induce fetal membrane rupture and cervical ripening as well as various labour mediators, which promote contractions of the myometrium. Myometrial activation at term and the onset of labour contractions are directly related to the changes in the ovarian/placental hormone progesterone and its downstream mediators (i.e., the progesterone receptors, PRA/B), which are also critical for maintenance of pregnancy. Our recent data provides direct evidence in support of local and functional P4 withdrawal in the uterine muscle (myometrium) via the activator protein-1 (AP-1) mediated pathway. This review outlines known mechanisms regulating activation of human labour, including progesterone and cytokine signaling. Understanding of the molecular mechanism of myometrial activation and labour onset could facilitate the development of new therapeutics for high-risk pregnant women to prevent premature uterine activation and preterm birth.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Departments of Physiology and University of Toronto, Ontario, Canada; Obstetrics & Gynecology, University of Toronto, Ontario, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Departments of Physiology and University of Toronto, Ontario, Canada; Obstetrics & Gynecology, University of Toronto, Ontario, Canada
| |
Collapse
|
14
|
Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression. Genes (Basel) 2020; 11:genes11080869. [PMID: 32752005 PMCID: PMC7463995 DOI: 10.3390/genes11080869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023] Open
Abstract
Anxiety, chronical stress, and depression during pregnancy are considered to affect the offspring, presumably through placental dysregulation. We have studied the term placentae of pregnancies clinically monitored with the Beck’s Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 classed patients into an Index group (>10, n = 23) and a Control group (<10, n = 23). Cortisol concentrations in hair (HCC) were periodically monitored throughout pregnancy and delivery. Expression differences of main glucocorticoid pathway genes, i.e., corticotropin-releasing hormone (CRH), 11β-hydroxysteroid dehydrogenase (HSD11B2), glucocorticoid receptor (NR3C1), as well as other key stress biomarkers (Arginine Vasopressin, AVP and O-GlcNAc transferase, OGT) were explored in medial placentae using real-time qPCR and Western blotting. Moreover, gene expression changes were considered for their association with HCC, offspring, gender, and birthweight. A significant dysregulation of gene expression for CRH, AVP, and HSD11B2 genes was seen in the Index group, compared to controls, while OGT and NR3C1 expression remained similar between groups. Placental gene expression of the stress-modulating enzyme 11β-hydroxysteroid dehydrogenase (HSD11B2) was related to both hair cortisol levels (Rho = 0.54; p < 0.01) and the sex of the newborn in pregnancies perceived as stressful (Index, p < 0.05). Gene expression of CRH correlated with both AVP (Rho = 0.79; p < 0.001) and HSD11B2 (Rho = 0.45; p < 0.03), and also between AVP with both HSD11B2 (Rho = 0.6; p < 0.005) and NR3C1 (Rho = 0.56; p < 0.03) in the Control group but not in the Index group; suggesting a possible loss of interaction in the mechanisms of action of these genes under stress circumstances during pregnancy.
Collapse
|
15
|
Leimert KB, Messer A, Gray T, Fang X, Chemtob S, Olson DM. Maternal and fetal intrauterine tissue crosstalk promotes proinflammatory amplification and uterine transition†. Biol Reprod 2020; 100:783-797. [PMID: 30379983 DOI: 10.1093/biolre/ioy232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
Birth is a complex biological event requiring genetic, cellular, and physiological changes to the uterus, resulting in a uterus activated for completing the physiological processes of labor. We define the change from the state of pregnancy to the state of parturition as uterine transitioning, which requires the actions of inflammatory mediators and localized paracrine interactions between intrauterine tissues. Few studies have examined the in vitro interactions between fetal and maternal gestational tissues within this proinflammatory environment. Thus, we designed a co-culture model to address this gap, incorporating primary term human myometrium smooth muscle cells (HMSMCs) with human fetal membrane (hFM) explants to study interactions between the tissues. We hypothesized that crosstalk between tissues at term promotes proinflammatory expression and uterine transitioning for parturition. Outputs of 40 cytokines and chemokines encompassing a variety of proinflammatory roles were measured; all but one increased significantly with co-culture. Eighteen of the 39 cytokines increased to a higher abundance than the sum of the effect of each tissue cultured separately. In addition, COX2 and IL6 but not FP and OXTR mRNA abundance significantly increased in both HMSMCs and hFM in response to co-culture. These data suggest that synergistic proinflammatory upregulation within intrauterine tissues is involved with uterine transitioning.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Messer
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theora Gray
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Simpson SJS, Smith LIF, Jones PM, Bowe JE. UCN2: a new candidate influencing pancreatic β-cell adaptations in pregnancy. J Endocrinol 2020; 245:247-257. [PMID: 32106091 PMCID: PMC7159164 DOI: 10.1530/joe-19-0568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.
Collapse
Affiliation(s)
- Sian J S Simpson
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
- Correspondence should be addressed to S J S Simpson:
| | - Lorna I F Smith
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - James E Bowe
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| |
Collapse
|
17
|
Verstraeten BSE, McCreary JK, Weyers S, Metz GAS, Olson DM. Prenatal two-hit stress affects maternal and offspring pregnancy outcomes and uterine gene expression in rats: match or mismatch? Biol Reprod 2020; 100:195-207. [PMID: 30084951 DOI: 10.1093/biolre/ioy166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 07/29/2018] [Indexed: 01/01/2023] Open
Abstract
Maternal stress and inflammation excesses can lead to adverse pregnancy outcomes and offspring development. We evaluated whether distinct prenatal stressors affect pregnancy, maternal and offspring outcomes, and uterine gene expression differently when combined than either alone. Long-Evans dams were exposed to psychological or/and (two-hit) immune stress (interleukin-1 beta [IL-1β]), on gestational days 12-18 and 17-delivery, respectively. Gestational length, maternal weight gain, glycaemia and corticosterone levels, offspring weight, and gender effects were recorded. Maternal and offspring uteri were collected at weaning and on postnatal day 160 correspondingly. Uterine expression of genes involved in local progesterone metabolism, neuroendocrine and immune systems were analyzed using quantitative real-time polymerase chain reaction. Maternal two-hit stress increased gestational length variation and the occurrence of adverse pregnancy outcomes while reducing gestational weight gain. Pup weight was negatively affected by prenatal stressors in a gender-specific way. In dams, IL-1β upregulated gene expression of neuroendocrine (Crh, Crhr1) and cytokine genes (Il1b, Il1rn, Il6, and Il10). Conversely, transcriptional patterns in offspring uteri were more variable with gene-specific up- or downregulation by each stressor separately, while exposure to both extensively reduced the expression of neuroendocrine (Hsd11b1), cytokine (Il1a, Il1rn, Il6), and IL-1 receptor genes. In conclusion, maternal stress affects physiological and molecular processes in dams and their offspring; two hits have different effects than single stressors. Outcomes appear generation-, gender-, and stressor-specific. Dampening of offspring uterine gene expression after exposure to multiple stressors could fit within the match/mismatch hypothesis of perinatal programming, with offspring preparing for a stressful life.
Collapse
Affiliation(s)
- Barbara S E Verstraeten
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Department of Uro-Gynaecology, Ghent University, Ghent, Belgium
| | - J Keiko McCreary
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Steven Weyers
- Department of Uro-Gynaecology, Ghent University, Ghent, Belgium
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Myometrial activation: Novel concepts underlying labor. Placenta 2020; 92:28-36. [PMID: 32056784 DOI: 10.1016/j.placenta.2020.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
Term labour is a state of physiological inflammation orchestrated by multiple uterine tissues (both fetal and maternal). This physiological inflammation preceding and accompanying labour onset is characterized by an increase in cytokine and chemokine secretion by the fetal membranes, as well as uterine tissues (i.e., decidua and myometrium). Pro-inflammatory cytokines and chemokines activate circulating maternal peripheral leukocytes as well as the uterine vascular endothelium to permit leukocyte infiltration into the uterus. This inflammatory milieu, in the absence of infection, is required for the initiation of labour as the uterine-infiltrated leukocytes secrete matrix metalloproteinases to induce fetal membrane rupture and cervical ripening as well as various labour mediators, which promote contractions of the myometrium. Myometrial activation at term and the onset of labour contractions are directly related to the changes in the ovarian/placental hormone progesterone and its downstream mediators (i.e., the progesterone receptors, PRA/B), which are also critical for maintenance of pregnancy. Our recent data provides direct evidence in support of local and functional P4 withdrawal in the uterine muscle (myometrium) via the activator protein-1 (AP-1) mediated pathway. This review outlines known mechanisms regulating activation of human labour, including progesterone and cytokine signaling. Understanding of the molecular mechanism of myometrial activation and labour onset could facilitate the development of new therapeutics for high-risk pregnant women to prevent premature uterine activation and preterm birth.
Collapse
|
19
|
Butler TA, Paul JW, Smith R. Non-conventional signalling in human myometrium by conventional pathways: looking back for a synergistic future. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Gillespie SL, Cole SW, Christian LM. Early adversity and the regulation of gene expression: Implications for prenatal health. Curr Opin Behav Sci 2019; 28:111-118. [PMID: 31815157 PMCID: PMC6897329 DOI: 10.1016/j.cobeha.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early life, including prenatal development and childhood, is a period of sensitivity, with potential for developmental programming under conditions of adversity. The intergenerational effects of early adversity have received attention, most often studied in relation to fetal development according to maternal exposures. Less often considered but critically important is the effect of early adversity on future prenatal risk (e.g., risk for preeclampsia, preterm birth), which threatens the health of mother and infant. The body's ability to turn collections of genes "on" or "off" across a range of tissues via receptor-driven transcription factors and epigenetic mechanisms (i.e., chemical modifications to the genome) in response to the perceived environment may help to explain such associations. This review aims to summarize discoveries surrounding the effects of early adversity on gene expression, emphasizing prenatal populations. First, we review findings from gene expression studies examining the effects of early adversity on various tissues known to contribute to prenatal health in adulthood. Next, we review several gene regulatory mechanisms thought to underlie differences in gene expression. Finally, we discuss potential implications for prenatal risk among early adversity-exposed mothers according to our current understanding of the biology that contributes to the development of prenatal syndromes.
Collapse
Affiliation(s)
| | - Steve W Cole
- Department of Psychiatry & Biobehavioral Sciences and Medicine, UCLA School of Medicine, Los Angeles, CA
| | - Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
21
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Alvites-Misajel K, García-Gutiérrez M, Miranda-Rodríguez C, Ramos-Escudero F. Organically vs conventionally-grown dark and white chia seeds ( Salvia hispanica L.): fatty acid composition, antioxidant activity and techno-functional properties. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.0462181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of organic and conventional crop systems on chemical composition, antioxidant activity and functional properties were evaluated in white and dark chia (Salvia hispanica L.) seeds. The organic system reduced the total protein content, and increased the total carbohydrates but did not change polyunsaturated fatty acids, total phenolic or flavonoids. Organic white chia seeds showed the best techno-functional properties. The antioxidant capacity of chia extracts varied in relation to the chemical complexity and differential rate kinetics of different assays. Extractable total phenolic acids and antioxidant capacity were better in organic white chia seeds. In this first approach, we have demonstrated that the organic white chia seed has a better total antioxidant capacity measured by direct quencher approaches than its conventionally-grown counterpart. To summarize, we conclude that the organic white chia seed could be a dietary source of antioxidants with a potential to promote health benefits in systemic functions and/or microbiota and the use of its techno-functional properties for the food industry.
Collapse
|
23
|
Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN, Taylor BD, Menon R. Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol 2018; 219:478.e1-478.e21. [PMID: 30138617 PMCID: PMC6239974 DOI: 10.1016/j.ajog.2018.08.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fetal endocrine signals are generally considered to contribute to the timing of birth and the initiation of labor. Fetal tissues under oxidative stress release inflammatory mediators that lead to sterile inflammation within the maternal-fetal interface. Importantly, these inflammatory mediators are packaged into exosomes, bioactive cell-derived extra cellular vesicles that function as vectors and transport them from the fetal side to the uterine tissues where they deposit their cargo into target cells enhancing uterine inflammatory load. This exosome-mediated signaling is a novel mechanism for fetal-maternal communication. OBJECTIVE This report tested the hypothesis that oxidative stress can induce fetal amnion cells to produce exosomes, which function as a paracrine intermediary between the fetus and mother and biochemically signal readiness for parturition. STUDY DESIGN Primary amnion epithelial cells were grown in normal cell culture (control) or exposed to oxidative stress conditions (induced by cigarette smoke extract). Exosomes were isolated from cell supernatant by sequential ultracentrifugation. Exosomes were quantified and characterized based on size, shape, and biochemical markers. Myometrial, decidual, and placental cells (BeWo) were treated with 2 × 105, 2 × 107, and 2 × 109 control or oxidative stress-derived amnion epithelial cell exosomes for 24 hours. Entry of amnion epithelial cell exosomes into cells was confirmed by confocal microscopy of fluorescent-labeled exosomes. The effect of amnion epithelial cell exosomes on target cell inflammatory status was determined by measuring production of interleukin-6, interleukin-8, interleukin-1β, tumor necrosis factor-α, and prostaglandin E2 by enzyme-linked immunosorbent assay and inflammatory gene transcription factor (nuclear factor-κβ) activation status by immunoblotting for phosphorylated RelA/p65. Localization of NANOG in term human myometrium and decidua obtained from women before labor and during labor was performed using immunohistochemistry. Data were analyzed by Wilcoxon-Mann-Whitney test to compare effects of exosomes from control and oxidative stress-treated amnion epithelial cells on inflammatory status of target cells. RESULTS Amnion epithelial cells released ∼125 nm, cup-shaped exosomes with ∼899 and 1211 exosomes released per cell from control and oxidative stress-induced cells, respectively. Amnion epithelial cell exosomes were detected in each target cell type after treatment using confocal microscopy. Treatment with amnion epithelial cell exosomes increased secretion of interleukin-6, interleukin-8, and PGE2 and activation of NF-κβ (each P < .05) in myometrial and decidual cells. Exosome treatments had no effect on interleukin-6 and PGE2 production in BeWo cells. NANOG staining was higher in term labor myometrium and decidua compared to tissues not in labor. CONCLUSION In vitro, amnion epithelial cell exosomes lead to an increased inflammatory response in maternal uterine cells whereas placental cells showed refractoriness. Fetal cell exosomes may function to signal parturition by increasing maternal gestational cell inflammation.
Collapse
Affiliation(s)
- Emily E Hadley
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - George Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Carlos Salomon
- Exosome Biology Laboratory, Center for Clinical Diagnostics, Center for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX.
| |
Collapse
|
24
|
Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Immunol 2018; 125:89-99. [DOI: 10.1016/j.jri.2017.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023]
|
25
|
Abstract
Prematurity is a devastating disease with high neonatal morbidity and mortality based on gestational age at birth. Genetic and hormonal signals impact directly on the maternal predisposition to preterm birth or sudden onset of myometrial contractility. Candidate gene or genome-wide approaches are beginning to identify potential variants for women at risk for premature delivery or increased responsiveness to hormonal signals including progesterone. However, a majority of these studies have not yielded definitive results to allow for at this stage for development of personalized therapy.
Collapse
Affiliation(s)
- Kara M Rood
- Division Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43215.
| | - Catalin S Buhimschi
- Division Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43215
| |
Collapse
|
26
|
Hadley EE, Richardson LS, Torloni MR, Menon R. Gestational tissue inflammatory biomarkers at term labor: A systematic review of literature. Am J Reprod Immunol 2017; 79. [PMID: 29076197 DOI: 10.1111/aji.12776] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Parturition at term is characterized by inflammatory overload in both feto-maternal tissues. Despite the large number of individual studies on changes in inflammatory biomarkers linked to labor, a comprehensive profile of them in each of the uterine compartments is not available to better understand their mechanistic contributions to labor. This systematic review investigated the pro- and anti-inflammatory biomarkers reported in intra-uterine tissues (amnion, chorion, decidua, placenta, and myometrium) at term labor. We conducted a systematic review of studies on pro- and anti-inflammatory biomarkers (mRNA and/or protein) reported in feto-maternal tissues during normal human term labor, published in English (1980-2016), in 3 electronic data bases. From a total of 3712 citations, 172 were included for final review. Each tissue expresses a unique set of biomarkers at the time of term labor, but there is significant overlap between tissues. All tissues had IL-6, IL-8, IL-1β, COX-2, PGE-2, TNF-α, and hCAP18 in common at term labor. Common and unique inflammatory biomarkers are expressed in various feto-maternal compartments at term labor. Increase in pro-inflammatory markers in all gestational tissue signifies their harmonious functional role in promoting labor. Anti-inflammatory markers at term labor are hardly reported.
Collapse
Affiliation(s)
- Emily E Hadley
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren S Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Maria R Torloni
- Department of Obstetrics & Gynecology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
27
|
Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int J Mol Sci 2017; 18:ijms18102224. [PMID: 29064426 PMCID: PMC5666903 DOI: 10.3390/ijms18102224] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Abstract
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.
Collapse
|
28
|
Abstract
Preterm birth (PTB) occurs among 1:11U.S. white women and 1:7.5 African American women and is a significant driver of racial disparities in infant mortality. Maternal stress is the most common clinical phenotype underlying spontaneous PTB. Specific patterns of stress and biological mediators driving PTB remain unclear. We examined the effect of childhood stress on birth timing among African American women and evaluated maternal cortisol elevation as a biological mediator. A prospective observational design was employed, with a single study visit at 28-32 weeks gestation and medical record review. The Stress and Adversity Inventory was administered, which provides a comprehensive estimate of childhood stress, stress in adulthood, and five core characteristic subscales (interpersonal loss, physical danger, humiliation, entrapment, role disruption). Venipuncture was performed between 11:00am and 4:00pm and plasma cortisol quantified by ELISA. Analyses controlled for stress in adulthood. Among a final sample of 89, cumulative childhood stress predicted birth timing (p=0.01). The association was driven by stress related to interpersonal loss and physical danger, with support for maternal cortisol as a biological mediator (ab=0.02, 95% CI [0.001, 0.045]; ab=0.02, 95% CI [0.001, 0.043], respectively). Results were similar, overall, in sub-group analyses among spontaneously laboring women (n=53); however, role disruption arose as an additional predictor, as mediated by cortisol elevations (ab=0.03, 95% CI [0.005, 0.074]). Of note, cortisol was no longer supported as a mediator linking physical danger to birth timing after adjusting for sleep quality and hours awake prior to venipuncture (ab=0.02, 95% CI [-0.0001, 0.046]). We provide preliminary evidence that, independent of stress in adulthood, childhood stress of specific core characteristics may shape birth timing, with cortisol elevation as a biological mediator. Further investigation is warranted and may bolster the development of biologically-informed screening tools for the prediction and targeted prevention of stress-related PTB.
Collapse
|
29
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
30
|
You X, Chen Z, Zhao H, Xu C, Liu W, Sun Q, He P, Gu H, Ni X. Endogenous hydrogen sulfide contributes to uterine quiescence during pregnancy. Reproduction 2017; 153:535-543. [PMID: 28188160 DOI: 10.1530/rep-16-0549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/22/2017] [Accepted: 02/10/2017] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that uterine activation for labor is associated with inflammation within uterine tissues. Hydrogen sulfide (H2S) plays a critical role in inflammatory responses in various tissues. Our previous study has shown that human myometrium produces H2S via its generating enzymes cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS) during pregnancy. We therefore explored whether H2S plays a role in the maintenance of uterine quiescence during pregnancy. Human myometrial biopsies were obtained from pregnant women at term. Uterine smooth muscle cells (UMSCs) isolated from myometrial tissues were treated with various reagents including H2S. The protein expression of CSE, CBS and contraction-associated proteins (CAPs) including connexin 43, oxytocin receptor and prostaglandin F2α receptor determined by Western blot. The levels of cytokines were measured by ELISA. The results showed that CSE and CBS expression inversely correlated to the levels of CAPs and activated NF-κB in pregnant myometrial tissues. H2S inhibited the expression of CAPs, NF-κB activation and the production of interleukin (IL)-1β, IL-6 and tumor necrosis factor α (TNFα) in cultured USMCs. IL-1β treatment reversed H2S inhibition of CAPs. Knockdown of CSE and CBS prevented H2S suppression of inflammation. H2S modulation of inflammation is through KATP channels and phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) signaling pathways. H2S activation of PI3K and ERK signaling is dependent on KATP channels. Our data suggest that H2S suppresses the expression of CAPs via inhibition of inflammation in myometrium. Endogenous H2S is one of the key factors in maintenance of uterine quiescence during pregnancy.
Collapse
Affiliation(s)
| | | | - Huina Zhao
- Department of Obstetrics and GynecologyChanghai Hospital, Second Military Medical University, Shanghai, China.,Department of Obstetrics and GynecologySeventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | - Qianqian Sun
- Department of Obstetrics and GynecologyChanghai Hospital, Second Military Medical University, Shanghai, China
| | | | - Hang Gu
- Department of Obstetrics and GynecologyChanghai Hospital, Second Military Medical University, Shanghai, China
| | | |
Collapse
|
31
|
Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. J Endocrinol 2016; 231:R101-R119. [PMID: 27647860 DOI: 10.1530/joe-16-0157] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Human labour is an inflammatory event, physiologically driven by an interaction between hormonal and mechanical factors and pathologically associated with infection, bleeding and excessive uterine stretch. The initiation and communicators of inflammation is still not completely understood; however, a key role for cytokines has been implicated. We summarise the current understanding of the nature and role of cytokines, chemokines and hormones and their involvement in signalling within the myometrium particularly during labour.
Collapse
Affiliation(s)
- S P Sivarajasingam
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of MedicineImperial College London, London, UK
| | - M R Johnson
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
32
|
Vannuccini S, Bocchi C, Severi FM, Challis JR, Petraglia F. Endocrinology of human parturition. ANNALES D'ENDOCRINOLOGIE 2016; 77:105-13. [DOI: 10.1016/j.ando.2016.04.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
33
|
Morales-Roselló J, Khalil A, Salvi S, Townsend R, Premakumar Y, Perales-Marín A. Abnormal Middle Cerebral Artery Doppler Associates with Spontaneous Preterm Birth in Normally Grown Fetuses. Fetal Diagn Ther 2015; 40:41-7. [PMID: 26575261 DOI: 10.1159/000441519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Our aim was to evaluate whether Doppler changes in the fetal middle cerebral (MCA) and umbilical arteries (UA) suggesting fetal hypoxemia precede the onset of spontaneous preterm birth (PTB). METHODS We studied 2,340 appropriate-for-gestational-age singleton pregnancies that had MCA and UA pulsatility indices (PI) recorded at 28-32 weeks. Values including the cerebroplacental ratio (CPR) were converted into multiples of the median and evaluated according to both gestational age at the onset of labor and the interval between ultrasound and labor. ROC analysis was used to calculate the ability in the prediction of spontaneous PTB before 32, 34 and 37 weeks' gestation. RESULTS While no correlations were observed for the UA PI and CPR, lower MCA PI values were associated with an earlier onset of labor (p < 0.001) and a shorter ultrasound-labor interval (p = 0.028). The ROC analysis at different gestational ages and intervals to labor indicated that MCA PI values were poorly predictive of spontaneous PTB (all areas under the curve <0.7). CONCLUSIONS Low MCA PI values at 28-32 weeks are associated with subsequent spontaneous PTB, indicating that fetal hypoxemia unrelated with placental disease might be implicated in the onset of labor. This association, however, is unlikely to be useful in the prediction of PTB.
Collapse
Affiliation(s)
- José Morales-Roselló
- Servicio de Obstetricia, Hospital Universitario y Politx00E9;cnico La Fe, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Vannuccini S, Clifton VL, Fraser IS, Taylor HS, Critchley H, Giudice LC, Petraglia F. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum Reprod Update 2015; 22:104-15. [PMID: 26395640 PMCID: PMC7289323 DOI: 10.1093/humupd/dmv044] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Reproductive disorders and infertility are associated with the risk of obstetric complications and have a negative impact on pregnancy outcome. Affected patients often require assisted reproductive technologies (ART) to conceive, and advanced maternal age is a further confounding factor. The challenge is to dissect causation, correlation and confounders in determining how infertility and reproductive disorders individually or together predispose women to poor pregnancy outcomes. METHODS The published literature, to June 2015, was searched using PubMed, summarizing all evidences concerning the perinatal outcome of women with infertility and reproductive disorders and the potential mechanisms that may influence poor pregnancy outcome. RESULTS Reproductive disorders (endometriosis, adenomyosis, polycystic ovary syndrome and uterine fibroids) and unexplained infertility share inflammatory pathways, hormonal aberrations, decidual senescence and vascular abnormalities that may impair pregnancy success through common mechanisms. Either in combination or alone, these disorders results in an increased risk of preterm birth, fetal growth restriction, placental pathologies and hypertensive disorders. Systemic hormonal aberrations, and inflammatory and metabolic factors acting on endometrium, myometrium, cervix and placenta are all associated with an aberrant milieu during implantation and pregnancy, thus contributing to the genesis of obstetric complications. Some of these features have been also described in placentas from ART. CONCLUSIONS Reproductive disorders are common in women of childbearing age and rarely occur in isolation. Inflammatory, endocrine and metabolic mechanisms associated with these disorders are responsible for an increased incidence of obstetric complications. These patients should be recognized as 'high risk' for poor pregnancy outcomes and monitored with specialized follow-up. There is a real need for development of evidence-based recommendations about clinical management and specific obstetric care pathways for the introduction of prompt preventative care measures.
Collapse
Affiliation(s)
- Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Vicki L Clifton
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Ian S Fraser
- Department of Obstetrics and Gynaecology, Center for Women's Health, University of New South Wales, Sydney, Australia
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Hilary Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, 550 16th Street, Floor 7, Box 0132, San Francisco, CA 94143, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Abstract
Multiple processes are capable of activating the onset of parturition; however, the specific contributions of the mother and the fetus to this process are not fully understood. In this issue of the JCI, Gao and colleagues present evidence that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) regulate surfactant protein-A (SP-A) and platelet-activating factor (PAF) expression, which increases in the developing fetal lung. WT dams crossed with males deficient for both SRC-1 and SRC-2 had suppressed myometrial inflammation, increased serum progesterone, and delayed parturition, which could be reconciled by injection of either SP-A or PAF into the amnion. Together, the results of this study demonstrate that the fetal lungs produce signals to initiate labor in the mouse. This work underscores the importance of the fetus as a contributor to the onset of murine, and potentially human, parturition.
Collapse
|
36
|
Rajagopal SP, Hutchinson JL, Dorward DA, Rossi AG, Norman JE. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone. Mol Hum Reprod 2015; 21:672-86. [PMID: 26002969 PMCID: PMC4518137 DOI: 10.1093/molehr/gav027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/19/2015] [Indexed: 11/14/2022] Open
Abstract
Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone.
Collapse
Affiliation(s)
- S P Rajagopal
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J L Hutchinson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J E Norman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
37
|
Xu C, Liu W, You X, Leimert K, Popowycz K, Fang X, Wood SL, Slater DM, Sun Q, Gu H, Olson DM, Ni X. PGF2α modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol Hum Reprod 2015; 21:603-14. [PMID: 25882540 DOI: 10.1093/molehr/gav018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin F2α (PGF2α) plays a critical role in the initiation and process of parturition. Since human labor has been described as an inflammatory event, we investigated the role of PGF2α in the inflammatory process using cultured human uterine smooth muscle cells (HUSMCs) isolated from term pregnant women as a model. Using a multiplex assay, HUSMCs treated with PGF2α changed their output of a number of cytokines and chemokines, with a distinct response pattern that differed between HUSMCs isolated from the upper and lower segment region of the uterus. Confirmatory enzyme-linked immunosorbent assays (ELISAs) showed that PGF2α stimulated increased output of interleukin (IL) 1β, IL6, IL8 (CXCL8) and monocyte chemotactic protein-1 (MCP1, also known as chemokine (c-c motif) ligand 2, CCL2) by HUSMCs isolated from both upper and lower uterine segments. In contrast, PGF2α inhibited tumor necrosis factor α (TNFα) release by HUMSCs from the lower uterine segment while the output of TNFα was undetectable in the upper segment. Small interfering (si) RNA mediated knockdown of the PGF2α receptor prevented the changes in cytokine and chemokine output by the HUSMCs. Since the PGF2α receptor (PTGFR) couples via the Gq protein and subsequently activates the phospholipase C (PLC) and protein kinase C (PKC) signaling pathways, we examined the role of these pathways in PGF2α modulation of the cytokines. Inhibition of PLC and PKC reversed the effects of PGF2α. PGF2α activated multiple signaling pathways including extracellular signal-regulated kinases (ERK) 1/2, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), P38, calcineurin/nuclear factor of activated T-cells (NFAT) and NF-κB signaling. Inhibition of ERK reversed PGF2α-induced IL1β, IL6 and CCL2 output, while inhibition of PI3K blocked the effect of PGF2α on IL6, CXCL8 and CCL2 output and inhibition of NF-κB reversed PGF2α-induced IL1β and CCL2 output. NFAT was involved in PGF2α modulation of CCL2 and TNFα output. In conclusion, our results support a role of PGF2α in creating an inflammatory environment during the late stage of human pregnancy.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Weina Liu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xingji You
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Kelycia Leimert
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Krystyn Popowycz
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Xin Fang
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Stephen L Wood
- Department of Obstetrics and Gynecology, University of Calgary, Calgary T2N1N4, Canada
| | - Donna M Slater
- Department of Obstetrics and Gynecology, University of Calgary, Calgary T2N1N4, Canada Departments of Physiology and Pharmacology, University of Calgary, Calgary T2N1N4, Canada
| | - Qianqian Sun
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hang Gu
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - David M Olson
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
38
|
Xu C, You X, Liu W, Sun Q, Ding X, Huang Y, Ni X. Prostaglandin F2α regulates the expression of uterine activation proteins via multiple signalling pathways. Reproduction 2015; 149:139-46. [DOI: 10.1530/rep-14-0479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prostaglandin F2α (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells (HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium. It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-stimulated expression of CX43. The inhibitors of ERK, P38 and NFκB also blocked the effect of PGF2A on CX43 expression, whereas PI3K and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2 and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFκB signalling were not involved. In addition, PGF2A activated NFAT, PI3K, NFκB, ERK and P38 signalling pathways. Our data suggest that PGF2A stimulates CX43, PTGS2 and OTR through divergent signalling pathways.
Collapse
|
39
|
Geng X, Xu T, Niu Z, Zhou X, Zhao L, Xie Z, Xue D, Zhang F, Xu C. Differential proteome analysis of the cell differentiation regulated by BCC, CRH, CXCR4, GnRH, GPCR, IL1 signaling pathways in Chinese fire-bellied newt limb regeneration. Differentiation 2014; 88:85-96. [DOI: 10.1016/j.diff.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/07/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
|