1
|
Liu H, Nie X, Wang F, Chen D, Zeng Z, Shu P, Huang J. An integrated transcriptomic analysis of brain aging and strategies for healthy aging. Front Aging Neurosci 2024; 16:1450337. [PMID: 39713269 PMCID: PMC11659761 DOI: 10.3389/fnagi.2024.1450337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background It is been noted that the expression levels of numerous genes undergo changes as individuals age, and aging stands as a primary factor contributing to age-related diseases. Nevertheless, it remains uncertain whether there are common aging genes across organs or tissues, and whether these aging genes play a pivotal role in the development of age-related diseases. Methods In this study, we screened for aging genes using RNAseq data of 32 human tissues from GTEx. RNAseq datasets from GEO were used to study whether aging genes drives age-related diseases, or whether anti-aging solutions could reverse aging gene expression. Results Aging transcriptome alterations showed that brain aging differ significantly from the rest of the body, furthermore, brain tissues were divided into four group according to their aging transcriptome alterations. Numerous genes were downregulated during brain aging, with functions enriched in synaptic function, ubiquitination, mitochondrial translation and autophagy. Transcriptome analysis of age-related diseases and retarding aging solutions showed that downregulated aging genes in the hippocampus further downregulation in Alzheimer's disease but were effectively reversed by high physical activity. Furthermore, the neuron loss observed during aging was reversed by high physical activity. Conclusion The downregulation of many genes is a major contributor to brain aging and neurodegeneration. High levels of physical activity have been shown to effectively reactivate these genes, making it a promising strategy to slow brain aging.
Collapse
Affiliation(s)
- Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Nie
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Fengwei Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dandan Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuo Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Toba H, Takai S. Exploring the roles of SPARC as a proinflammatory factor and its potential as a novel therapeutic target against cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1174-H1186. [PMID: 39269452 DOI: 10.1152/ajpheart.00565.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide, and the number of patients with CVD continues to increase despite extensive research and developments in this field. Chronic inflammation is a pivotal pathological component of CVD, and unveiling new proinflammatory factors will help devise novel preventive and therapeutic strategies. The extracellular matrix (ECM) not only provides structural support between cells but also contributes to cellular functions. Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein that is particularly induced during development and tissue remodeling. A proinflammatory role for SPARC has been demonstrated in various animal models, such as in the lipopolysaccharide-induced footpad model and dextran sodium sulfate-induced colitis model. Recent clinical studies reported a positive correlation between elevated plasma SPARC levels and hypertension, obesity, and the inflammatory marker high-sensitive C-reactive protein. In addition, SPARC gene deletion attenuates the cardiac injury induced by aging, myocardial infarction, and pressure load, suggesting that SPARC has deleterious effects on CVD. This review summarizes the regulatory and proinflammatory mechanisms of SPARC on CVD, chronic kidney disease (CKD), and cerebrovascular disease and discusses the rationale behind measuring SPARC as a biomarker of CVD and the effects of inhibition of SPARC in the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Pharmacology, Educational Foundation of Osaka Medical and Pharmacological University, Takatsuki, Japan
| | - Shinji Takai
- Department of Pharmacology, Educational Foundation of Osaka Medical and Pharmacological University, Takatsuki, Japan
| |
Collapse
|
3
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
4
|
Frances L, Croyal M, Ruidavets JB, Maraninchi M, Combes G, Raffin J, de Souto Barreto P, Ferrières J, Blaak EE, Perret B, Moro C, Valéro R, Martinez LO, Viguerie N. Identification of circulating apolipoprotein M as a new determinant of insulin sensitivity and relationship with adiponectin. Int J Obes (Lond) 2024; 48:973-980. [PMID: 38491190 PMCID: PMC11216985 DOI: 10.1038/s41366-024-01510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The adiponectin is one of the rare adipokines down-regulated with obesity and protects against obesity-related disorders. Similarly, the apolipoprotein M (apoM) is expressed in adipocytes and its expression in adipose tissue is associated with metabolic health. We compared circulating apoM with adiponectin regarding their relationship with metabolic parameters and insulin sensitivity and examined their gene expression patterns in adipocytes and in the adipose tissue. METHODS Circulating apoM and adiponectin were examined in 169 men with overweight in a cross-sectional study, and 13 patients with obesity during a surgery-induced slimming program. Correlations with clinical parameters including the insulin resistance index (HOMA-IR) were analyzed. Multiple regression analyses were performed on HOMA-IR. The APOM and ADIPOQ gene expression were measured in the adipose tissue from 267 individuals with obesity and a human adipocyte cell line. RESULTS Participants with type 2 diabetes had lower circulating adiponectin and apoM, while apoM was higher in individuals with dyslipidemia. Similar to adiponectin, apoM showed negative associations with HOMA-IR and hs-CRP (r < -0.2), and positive correlations with HDL markers (HDL-C and apoA-I, r > 0.3). Unlike adiponectin, apoM was positively associated with LDL markers (LDL-C and apoB100, r < 0.20) and negatively correlated with insulin and age (r < -0.2). The apoM was the sole negative determinant of HOMA-IR in multiple regression models, while adiponectin not contributing significantly. After surgery, the change in HOMA-IR was negatively associated with the change in circulating apoM (r = -0.71), but not with the change in adiponectin. The APOM and ADIPOQ gene expression positively correlated in adipose tissue (r > 0.44) as well as in adipocytes (r > 0.81). In adipocytes, APOM was downregulated by inflammatory factors and upregulated by adiponectin. CONCLUSIONS The apoM rises as a new partner of adiponectin regarding insulin sensitivity. At the adipose tissue level, the adiponectin may be supported by apoM to promote a healthy adipose tissue. TRIAL REGISTRATION NCT01277068, registered 13 January 2011; NCT02332434, registered 5 January 2015; and NCT00390637, registered 20 October 2006.
Collapse
Affiliation(s)
- Laurie Frances
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000, Nantes, France
| | | | - Marie Maraninchi
- Aix Marseille Université, APHM, INSERM, INRAe, C2VN, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, 13385, Marseille, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Jérémy Raffin
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 31000, Toulouse, France
| | - Philippe de Souto Barreto
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, 31000, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 31000, Toulouse, France
| | - Jean Ferrières
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, 31000, Toulouse, France
- Department of Cardiology, Toulouse Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| | - Bertrand Perret
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
| | - René Valéro
- Aix Marseille Université, APHM, INSERM, INRAe, C2VN, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, 13385, Marseille, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France.
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.
| | - Nathalie Viguerie
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France.
| |
Collapse
|
5
|
Bielka W, Przezak A, Pawlik A. Follistatin and follistatin-like 3 in metabolic disorders. Prostaglandins Other Lipid Mediat 2023; 169:106785. [PMID: 37739334 DOI: 10.1016/j.prostaglandins.2023.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Follistatin (FST) is a glycoprotein which main role is antagonizing activity of transforming growth factor β superfamily members. Folistatin-related proteins such as follistatin-like 3 (FSTL3) also reveal these properties. The exact function of them has still not been established, but it can be bound to the pathogenesis of metabolic disorders. So far, there were performed a few studies about their role in type 2 diabetes, obesity or gestational diabetes and even less in type 1 diabetes. The outcomes are contradictory and do not allow to draw exact conclusions. In this article we summarize the available information about connections between follistatin, as well as follistatin-like 3, and metabolic disorders. We also emphasize the strong need of performing further research to explain their exact role, especially in the pathogenesis of diabetes and obesity.
Collapse
Affiliation(s)
- Weronika Bielka
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Agnieszka Przezak
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.
| |
Collapse
|
6
|
Atorrasagasti C, Onorato AM, Mazzolini G. The role of SPARC (secreted protein acidic and rich in cysteine) in the pathogenesis of obesity, type 2 diabetes, and non-alcoholic fatty liver disease. J Physiol Biochem 2023; 79:815-831. [PMID: 36018492 DOI: 10.1007/s13105-022-00913-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.
Collapse
Affiliation(s)
- Catalina Atorrasagasti
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
| | - Agostina M Onorato
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, CONICET- Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
- Liver Unit, Hospital Universitario Austral, Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ) Derqui-Pilar, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Ryu S, Spadaro O, Sidorov S, Lee AH, Caprio S, Morrison C, Smith SR, Ravussin E, Shchukina I, Artyomov MN, Youm YH, Dixit VD. Reduction of SPARC protects mice against NLRP3 inflammasome activation and obesity. J Clin Invest 2023; 133:e169173. [PMID: 37781916 PMCID: PMC10541189 DOI: 10.1172/jci169173] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
The comprehensive assessment of long-term effects of reducing intake of energy (CALERIE-II; NCT00427193) clinical trial established that caloric restriction (CR) in humans lowers inflammation. The identity and mechanism of endogenous CR-mimetics that can be deployed to control obesity-associated inflammation and diseases are not well understood. Our studies have found that 2 years of 14% sustained CR in humans inhibits the expression of the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), in adipose tissue. In mice, adipose tissue remodeling caused by weight loss through CR and low-protein diet feeding decreased, while high-fat diet-induced (HFD-induced) obesity increased SPARC expression in adipose tissue. Inducible SPARC downregulation in adult mice mimicked CR's effects on lowering adiposity by regulating energy expenditure. Deletion of SPARC in adipocytes was sufficient to protect mice against HFD-induced adiposity, chronic inflammation, and metabolic dysfunction. Mechanistically, SPARC activates the NLRP3 inflammasome at the priming step and downregulation of SPARC lowers macrophage inflammation in adipose tissue, while excess SPARC activated macrophages via JNK signaling. Collectively, reduction of adipocyte-derived SPARC confers CR-like metabolic and antiinflammatory benefits in obesity by serving as an immunometabolic checkpoint of inflammation.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, South Korea
| | - Olga Spadaro
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sviatoslav Sidorov
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aileen H. Lee
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yun-Hee Youm
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vishwa Deep Dixit
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Li W, Xu H, Li Y, Shi X, Ma Z, Yang F, Chen W. Identifying Ferroptosis-Related Genes Associated with Weight Loss Outcomes and Regulation of Adipocyte Microenvironment. Mol Nutr Food Res 2023; 67:e2300168. [PMID: 37599272 DOI: 10.1002/mnfr.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Indexed: 08/22/2023]
Abstract
SCOPE The study is about the influence of ferroptosis-related genes combined with the immune microenvironment exerted on weight control outcomes and systematic analysis. METHODS AND RESULTS Subcutaneous adipose tissue (sWAT) samples from 11 subjects with good outcome and 10 subjects with poor outcome in weight management are obtained from the Gene Expression Omnibus database. The results are validated in vivo in animal models with different weight loss outcomes. The CIBERSORT algorithm is used to evaluate the differences in immune cell infiltration in each sample. Patients with poor outcome have higher levels of ferroptosis in the adipose tissue. Remarkable differences in cytokine production, nuclear factor kappa-B(NF-κB) transcription factor activity, leukocyte migration involved in the inflammatory response, and other biological processes are also observed compared to that in the well-controlled group. Aldo-keto reductase family 1-member C1(AKR1C1), nuclear receptor coactivator 4(NCOA4), and glutamate-cysteine ligase catalytic subunit(GCLC) are identified as core predictive markers and their expression patterns are confirmed in animal models. CONCLUSIONS Ferroptosis and its mediated inflammation play an important role in long-term weight control, and analyses of the role of ferroptosis-related genes(FRGs) in weight control may provide new potential therapeutic targets for long-term weight control. Anti-inflammatory diets that mitigate inflammatory responses and affect ferroptosis may be considered in the future to improve weight control.
Collapse
Affiliation(s)
- Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Hanyuan Xu
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Xiaodong Shi
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
9
|
Janjanam VD, Ewart S, Zhang H, Jiang Y, Arshad H, Ziyab AH, Karmaus W. Offspring epigenetic markers at birth related to gestational BMI predict offspring BMI-trajectories from infancy to 26 years. Obes Sci Pract 2023; 9:424-434. [PMID: 37546290 PMCID: PMC10399520 DOI: 10.1002/osp4.660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Objective To date, epigenetic studies identified differential DNA methylation (DNAm) related to gestational-body mass index (BMI) in offspring at birth. This study investigated whether the identified DNAm in offspring were also associated with BMI trajectories from infancy to age 26 years. Methods Data of 794 participants from Isle of Wight birth cohort in UK were investigated to study association between BMI trajectories and DNAm related to gestational-BMI at birth. Multinominal logistic regression models were applied to test the association between 1090 DNAm sites reported in three prior epigenome-wide association studies and BMI trajectories. Results DNAm site cg23089913 (NANOS1) and cg13217064 (SOX14) were associated with early persistent obesity (EPO) and delayed overweight (DOW) trajectories respectively. A higher methylation of cg23089913 showed low odds of being in EPO trajectory (OR: 0.84; 95% CI: 0.76-0.93) while higher methylation of cg13217064 resulted in 1.4-times the odds of being in DOW trajectory when compared to the normal trajectory [Correction added on 22 February 2023, after first online publication: Range of the DNAm site cg23089913 has been changed from 'lower' to 'higher' in the preceding sentence.]. In a gender-stratified analysis, the odds of developing into DOW was 1.8 times in female participants for cg13217064 while not such association was observed in males. Conclusions Deviations in methylation of cg23089913 (NANOS1) and cg13217064 (SOX14) in newborns may change the risk of having excess body weight.
Collapse
Affiliation(s)
- Vimala Devi Janjanam
- Division of Epidemiology, Biostatistics, and Environmental HealthSchool of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | - Susan Ewart
- Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental HealthSchool of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental HealthSchool of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | - Hasan Arshad
- Faculty of MedicineClinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
- The David Hide Asthma and Allergy Research CentreIsle of WightUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital SouthamptonSouthamptonUK
| | - Ali H. Ziyab
- Faculty of MedicineDepartment of Community and Behavioral SciencesKuwait UniversitySafatKuwait
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental HealthSchool of Public HealthUniversity of MemphisMemphisTennesseeUSA
| |
Collapse
|
10
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
11
|
Sergi CM. The role of SPARC/ON in human osteosarcoma. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:181-192. [PMID: 36707201 DOI: 10.1016/bs.apcsb.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human osteosarcoma is a malignant tumor of the arthro-skeletal system. It has been recognized that it is the most common malignancy followed by the Ewing sarcoma or primitive neuroectodermal tumor. The prognosis is worrisome and is not preserved by the use of classical chemotherapy drugs. High rates of recurrence and metastases often accompany this malignant tumor. Chemotherapy often fails because of the onset of multidrug resistance, even though the mechanism to reach chemotherapy resistance is still intriguing and contains unclear pathways. The secreted protein acidic and rich in cysteine (SPARC) or osteonectin (ON) (SPARC/ON) has been associated with poor prognosis in several malignant neoplasms. In this mini-review, we are going to highlight the role of SPARC/ON in human osteosarcoma. Extracellular vesicles are fundamental in cell-to-cell communication. We suggest that a liquid biopsy targeting SPARC/ON may be critical to implement in the surveillance of patients with this malignant bony neoplasm.
Collapse
Affiliation(s)
- Consolato M Sergi
- Anatomic Pathology Division, Children's Hospital of Eastern Ontario (CHEO), Ottawa, ON, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Li X, Zhang H, Ma X, Wang Y, Han X, Yang Y, Yu H, Bao Y. FSTL3 is highly expressed in adipose tissue of individuals with overweight or obesity and is associated with inflammation. Obesity (Silver Spring) 2023; 31:171-183. [PMID: 36502285 PMCID: PMC10107713 DOI: 10.1002/oby.23598] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression of follistatin-like 3 (FSTL3) in adipose tissue in individuals with overweight or obesity and to explore the role of FSTL3 in human adipocytes, as well as the relationship between serum FSTL3 levels and fat distribution and inflammation. METHODS This study enrolled 236 individuals (171 with overweight or obesity; aged 18-67 years). Bulk transcriptome sequencing was performed on subcutaneous and visceral adipose tissue. The function of FSTL3 was studied in human adipocytes. Serum FSTL3 levels were measured using enzyme-linked immunosorbent assay. RESULTS Adipose FTSL3 expression was higher in individuals with overweight or obesity than in individuals with normal weight. FSTL3 was mainly expressed in mature adipocytes and stimulated by tumor necrosis factor alpha (TNFα). FSTL3 suppressed inflammatory responses in human adipocytes, whereas FSTL3 knockdown promoted inflammatory responses. Serum FSTL3 levels were correlated with adipose FTSL3 expression and obesity-related indicators (all p < 0.05). Multiple linear regression analysis showed that serum FSTL3 levels were independently associated with the visceral fat area and serum TNFα levels (both p < 0.05). CONCLUSIONS FSTL3 was highly expressed in adipose tissue in individuals with overweight or obesity and could suppress adipocyte inflammation. Serum FSTL3 levels might be considered as a biomarker of visceral obesity and inflammation.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongwei Zhang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaodong Han
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Yang MN, Huang R, Zheng T, Dong Y, Wang WJ, Xu YJ, Mehra V, Zhou GD, Liu X, He H, Fang F, Li F, Fan JG, Zhang J, Ouyang F, Briollais L, Li J, Luo ZC. Genome-wide placental DNA methylations in fetal overgrowth and associations with leptin, adiponectin and fetal growth factors. Clin Epigenetics 2022; 14:192. [PMID: 36585686 PMCID: PMC9801645 DOI: 10.1186/s13148-022-01412-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fetal overgrowth "programs" an elevated risk of type 2 diabetes in adulthood. Epigenetic alterations may be a mechanism in programming the vulnerability. We sought to characterize genome-wide alterations in placental gene methylations in fetal overgrowth and the associations with metabolic health biomarkers including leptin, adiponectin and fetal growth factors. RESULTS Comparing genome-wide placental gene DNA methylations in large-for-gestational-age (LGA, an indicator of fetal overgrowth, n = 30) versus optimal-for-gestational-age (OGA, control, n = 30) infants using the Illumina Infinium Human Methylation-EPIC BeadChip, we identified 543 differential methylation positions (DMPs; 397 hypermethylated, 146 hypomethylated) at false discovery rate < 5% and absolute methylation difference > 0.05 after adjusting for placental cell-type heterogeneity, maternal age, pre-pregnancy BMI and HbA1c levels during pregnancy. Twenty-five DMPs annotated to 20 genes (QSOX1, FCHSD2, LOC101928162, ADGRB3, GCNT1, TAP1, MYO16, NAV1, ATP8A2, LBXCOR1, EN2, INCA1, CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1,USP53, OR2L13 and NR3C2) could explain 80% of the birth weight variations. Pathway analyses did not detect any statistically significant pathways after correcting for multiple tests. We validated a newly discovered differentially (hyper-)methylated gene-visual system homeobox 1 (VSX1) in an independent pyrosequencing study sample (LGA 47, OGA 47). Our data confirmed a hypermethylated gene-cadherin 13 (CDH13) reported in a previous epigenome-wide association study. Adiponectin in cord blood was correlated with its gene methylation in the placenta, while leptin and fetal growth factors (insulin, IGF-1, IGF-2) were not. CONCLUSIONS Fetal overgrowth may be associated with a large number of altered placental gene methylations. Placental VSX1 and CDH13 genes are hypermethylated in fetal overgrowth. Placental ADIPOQ gene methylations and fetal circulating adiponectin levels were correlated, suggesting the contribution of placenta-originated adiponectin to cord blood adiponectin.
Collapse
Affiliation(s)
- Meng-Nan Yang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China ,grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Rong Huang
- grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Tao Zheng
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Yu Dong
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Wen-Juan Wang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Ya-Jie Xu
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Vrati Mehra
- grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Guang-Di Zhou
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Xin Liu
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Hua He
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Fang Fang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Fei Li
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Jian-Gao Fan
- grid.16821.3c0000 0004 0368 8293Center for Fatty Liver, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Jun Zhang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Fengxiu Ouyang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Laurent Briollais
- grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Jiong Li
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Olof Palmes Allé 43-45, 8200 Aathus, Denmark
| | - Zhong-Cheng Luo
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China ,grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | | |
Collapse
|
14
|
Imbert A, Vialaneix N, Marquis J, Vion J, Charpagne A, Metairon S, Laurens C, Moro C, Boulet N, Walter O, Lefebvre G, Hager J, Langin D, Saris WHM, Astrup A, Viguerie N, Valsesia A. Network Analyses Reveal Negative Link Between Changes in Adipose Tissue GDF15 and BMI During Dietary-induced Weight Loss. J Clin Endocrinol Metab 2022; 107:e130-e142. [PMID: 34415992 DOI: 10.1210/clinem/dgab621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.
Collapse
Affiliation(s)
- Alyssa Imbert
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
- INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326 Castanet-Tolosan, France
| | - Nathalie Vialaneix
- INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326 Castanet-Tolosan, France
| | - Julien Marquis
- Université de Lausanne, Genomic Technologies Facility, 1015, Lausanne, Switzerland
| | - Julie Vion
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
| | - Aline Charpagne
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Claire Laurens
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
| | - Nathalie Boulet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Adipose tissue, microbiota and cardiometabolic flexibility, 31400, Toulouse, France
| | - Ondine Walter
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Grégory Lefebvre
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Jörg Hager
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, 31000, Toulouse, France
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Denmark
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Vion J, Sramkova V, Montastier E, Marquès MA, Caspar-Bauguil S, Duparc T, Martinez LO, Bourlier V, Harant I, Larrouy D, Moussaoui N, Bonnel S, Vindis C, Dray C, Valet P, Saulnier-Blache JS, Schanstra JP, Thalamas C, Viguerie N, Moro C, Langin D. Metabolic and cardiovascular adaptations to an 8-wk lifestyle weight loss intervention in younger and older obese men. Am J Physiol Endocrinol Metab 2021; 321:E325-E337. [PMID: 34250814 DOI: 10.1152/ajpendo.00109.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.
Collapse
Affiliation(s)
- Julie Vion
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Veronika Sramkova
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
| | - Emilie Montastier
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Marie-Adeline Marquès
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Thibaut Duparc
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Isabelle Harant
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Dominique Larrouy
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Nabila Moussaoui
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Sophie Bonnel
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Cécile Vindis
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Clinical Investigation Center, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Toulouse University Hospitals, CIC1436, F-CRIN/FORCE Network, Toulouse, France
| | - Cédric Dray
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Philippe Valet
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Joost P Schanstra
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Claire Thalamas
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Clinical Investigation Center, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Toulouse University Hospitals, CIC1436, F-CRIN/FORCE Network, Toulouse, France
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
- Institut Universitaire de France, IUF, Paris, France
| |
Collapse
|
16
|
Powell DR, Revelli JP, Doree DD, DaCosta CM, Desai U, Shadoan MK, Rodriguez L, Mullens M, Yang QM, Ding ZM, Kirkpatrick LL, Vogel P, Zambrowicz B, Sands AT, Platt KA, Hansen GM, Brommage R. High-Throughput Screening of Mouse Gene Knockouts Identifies Established and Novel High Body Fat Phenotypes. Diabetes Metab Syndr Obes 2021; 14:3753-3785. [PMID: 34483672 PMCID: PMC8409770 DOI: 10.2147/dmso.s322083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.
Collapse
Affiliation(s)
- David R Powell
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Jean-Pierre Revelli
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Deon D Doree
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Christopher M DaCosta
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Urvi Desai
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Melanie K Shadoan
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Lawrence Rodriguez
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Michael Mullens
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Qi M Yang
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Zhi-Ming Ding
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Laura L Kirkpatrick
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Peter Vogel
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Brian Zambrowicz
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Arthur T Sands
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Kenneth A Platt
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Gwenn M Hansen
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Robert Brommage
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| |
Collapse
|
17
|
Felicidade I, Bocchi M, Ramos MRZ, Carlos LDO, Wagner NRF, Campos ACL, Ribeiro LR, Mantovani MS, Watanabe MAE, Vitiello GAF. Transforming growth factor beta 1 (TGFβ1) plasmatic levels and haplotype structures in obesity: a role for TGFβ1 in steatosis development. Mol Biol Rep 2021; 48:6401-6411. [PMID: 34403036 DOI: 10.1007/s11033-021-06640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obesity is considered a chronic inflammatory disease and transforming growth factor beta 1 (TGFβ1) might exert important roles in disease pathogenesis regulating adipocyte differentiation and immune-inflammatory environment. However, the role of this cytokine as a biomarker in obesity is poorly addressed. Therefore, the present study aimed to evaluate the impact of TGFB1 polymorphisms and TGFβ1 plasmatic levels in obesity METHODS AND RESULTS: TGFB1 promoter region polymorphisms (rs1800468, G-800A and rs1800469, C-509 T) were evaluated in 75 obese patients and 45 eutrophic patients through PCR-RFLP and plasmatic TGFβ1 was quantified through ELISA from 37 of the obese patients, and correlations with clinical and biochemical parameters were tested. Despite no association was found between TGFB1 polymorphisms and obesity susceptibility, several correlations with clinical data were noted. Among others, AC haplotype negatively correlated with plasmatic TGFβ1, while plasmatic TGFβ1 negatively correlated with C-reactive protein and positively correlated with liver abnormalities on ultrasound and, specifically, with steatosis presence and degree. Conversely, GT haplotype, which associates with higher TGFβ1 production, was also positively correlated with the same parameters of liver abnormalities. Further, plasmatic vitamin D negatively correlated with TGFβ1, while positively correlated with AC haplotype. CONCLUSION Overall, the results indicate that TGFβ1 might exert important roles in obesity pathophysiology and correlate with biochemical and clinical parameters both at systemic protein as well as at genetic level. Importantly, the consistent positive correlation at both levels with steatosis might suggest this cytokine as a biomarker for this hepatic abnormality in obese patients.
Collapse
Affiliation(s)
- Ingrid Felicidade
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mayara Bocchi
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | | | | | | | | | - Lúcia Regina Ribeiro
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil.
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, PR445, Km 380 Celso Garcia Cid highway, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
18
|
Gui D, Dong Z, Peng W, Jiang W, Huang G, Liu G, Ye Z, Wang Y, Xu Z, Fu J, Luo S, Zhao Y. Ubiquitin-specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF-κB pathway inactivation. Cancer Med 2021; 10:3674-3688. [PMID: 33973730 PMCID: PMC8178486 DOI: 10.1002/cam4.3911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent malignant diseases in the urinary system with more than 140,000 related deaths annually. Ubiquitination–deubiquitination homeostasis is an important factor in ccRCC progression; ubiquitin‐specific peptidase 53 (USP53) belongs to the family of deubiquitinating enzymes, but its functions are rarely reported. Methods Databases obtained from GEO and TCGA were analyzed to reveal the role of USP53 in ccRCC. CCK‐8/BrdU and EDU assays were used to detect the proliferation of ccRCC after USP53 overexpression or knockdown. A tumor xenograft experiment was used to verify the effect of the proliferation of ccRCC after USP53 knockdown. Transwell assays were used to detect the metastasis of ccRCC after USP53 overexpression or knockdown. RNA sequencing and western blot analysis were employed to detect the change in genes after USP53 overexpression and knockdown. Then we tested the effect of USP53 on IκBα protein stability through western blot analysis. Detect the effect of USP53 on IκBα ubiquitination in vitro by immunoprecipitation method. Results USP53 expression was downregulated in ccRCC tissues and USP53 expression was significantly negatively correlated with the tumor progression and clinical prognosis. The ability of growth and metastasis of ccRCC was inhibited after USP53 overexpression. In addition, USP53 knockdown promoted ccRCC growth and metastasis. Moreover, USP53 knockdown promoted the ability of clone formation of ccRCC in vivo. NF‐κB signaling pathway significantly enriched and downregulated in USP53 overexpressed cells, and genes in the NF‐κB pathway (such as IL1B, CXCL1‐3, RELA, RELB, etc.) were obviously downregulated in USP53 overexpressed cells. USP53 overexpression decreased the phosphorylation of IKKβ and P65 in both Caki‐1 and 786‐O cells, and the expression of IκBα was increased. Phosphorylation of IKKβ and P65 was increased in both Caki‐1 and 786‐O cells after USP53 knockdown. As the expression of USP53 increases, the protein expression of IκBα was also gradually increased and USP53 reduced the ubiquitination of IκBα. Conclusion In summary, our data indicate that USP53 inhibits the inactivation of the NF‐κB pathway by reducing the ubiquitination of IκBα to further inhibit ccRCC proliferation and metastasis. These findings may help understand the pathogenesis of ccRCC and introduce new potential therapeutic targets for kidney cancer patients.
Collapse
Affiliation(s)
- Dingwen Gui
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Zhufeng Dong
- Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Wei Peng
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Weidong Jiang
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Geng Huang
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Gang Liu
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Zhihua Ye
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Yang Wang
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Zuwei Xu
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Jinlun Fu
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Shuai Luo
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Yunfei Zhao
- Department of Urology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
19
|
Cortese R, Khalyfa A, Bao R, Gozal D. Gestational sleep apnea perturbations induce metabolic disorders by divergent epigenomic regulation. Epigenomics 2021; 13:751-765. [PMID: 33929266 DOI: 10.2217/epi-2020-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Late-gestational sleep fragmentation (LG-SF) and intermittent hypoxia (LG-IH), two hallmarks of obstructive sleep apnea, lead to metabolic dysfunction in the offspring. We investigated specific biological processes that are epigenetically regulated by LG-SF and LG-IH. Materials & methods: We analyzed DNA methylation profiles in offspring visceral white adipose tissues by MeDIP-chip followed by pathway analysis. Results: We detected 1187 differentially methylated loci (p < 0.01) between LG-SF and LG-IH. Epigenetically regulated genes in LG-SF offspring were associated with lipid and glucose metabolism, whereas those in LG-IH were related to inflammatory signaling and cell proliferation. Conclusion: While LG-SF and LG-IH will result in equivalent phenotypic alterations in offspring, each paradigm appears to operate through epigenetic regulation of different biological processes.
Collapse
Affiliation(s)
- Rene Cortese
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Abdelnaby Khalyfa
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Riyue Bao
- Hillman Cancer Center, UPMC, Pittsburgh, PA 15232, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David Gozal
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
20
|
Anguita-Ruiz A, Bustos-Aibar M, Plaza-Díaz J, Mendez-Gutierrez A, Alcalá-Fdez J, Aguilera CM, Ruiz-Ojeda FJ. Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction. Int J Mol Sci 2021; 22:2756. [PMID: 33803198 PMCID: PMC7963192 DOI: 10.3390/ijms22052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mireia Bustos-Aibar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Alcalá-Fdez
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain;
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
21
|
Qiao Q, Bouwman FG, van Baak MA, Roumans NJT, Vink RG, Coort SLM, Renes JW, Mariman ECM. Adipocyte abundances of CES1, CRYAB, ENO1 and GANAB are modified in-vitro by glucose restriction and are associated with cellular remodelling during weight regain. Adipocyte 2019; 8:190-200. [PMID: 31037987 PMCID: PMC6768247 DOI: 10.1080/21623945.2019.1608757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long-term weight loss maintenance is a problem of overweight and obesity. Changes of gene expression during weight loss (WL) by calorie restriction (CR) are linked to the risk of weight regain (WR). However, detailed information on genes/proteins involved in the mechanism is still lacking. Therefore, we developed an in-vitro model system for glucose restriction (GR) and refeeding (RF) to uncover proteome differences between GR with RF vs normal feeding, of which we explored the relation with WR after WL. Human Simpson-Golabi-Behmel Syndrome cells were subjected to changing levels of glucose to mimic the condition of CR and RF. Proteome profiling was performed by liquid chromatography tandem mass spectrometry. This in-vitro model revealed 44 proteins differentially expressed after GR and RF versus feeding including proteins of the focal adhesions. Four proteins showed a persistent up- or down-regulation: liver carboxylesterase (CES1), mitochondrial superoxide dismutase [Mn] (SOD2), alpha-crystallin B-chain (CRYAB), alpha-enolase (ENO1). In-vivo weight loss-induced RNA expression changes linked CES1, CRYAB and ENO1 to WR. Moreover, of these 44 proteins, CES1 and glucosidase II alpha subunit (GANAB) during follow up correlated with WR. Correlation clustering of in-vivo protein expression data indicated an interaction of these proteins with structural components of the focal adhesions and cytoplasmic filaments in the adipocytes.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A. van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nadia J. T. Roumans
- Institute for Technology-Inspired Regenerative Medicine, MERLN, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel G. Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Susan L. M. Coort
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Johan W. Renes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Edwin C. M. Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
22
|
Source of Dietary Fat in Pig Diet Affects Adipose Expression of Genes Related to Cancer, Cardiovascular, and Neurodegenerative Diseases. Genes (Basel) 2019; 10:genes10120948. [PMID: 31756991 PMCID: PMC6947373 DOI: 10.3390/genes10120948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
It has been known for many years that excessive consumption of saturated fats has proatherogenic properties, contrary to unsaturated fats. However, the molecular mechanism covering these effects is not fully understood. In this paper, we aimed to identify differentially expressed genes (DEGs) using RNA-sequencing, following feeding pigs with different sources of fat. After comparison of adipose samples from three dietary groups (rapeseed oil (n = 6), beef tallow (n = 5), coconut oil (n = 5)), we identified 29 DEGs (adjusted p-value < 0.05, fold change > 1.3) between beef tallow and rapeseed oil and 2 genes between coconut oil and rapeseed oil groups. No differentially expressed genes were observed between coconut oil and beef tallow groups. Almost all 29 DEGs between rapeseed oil and beef tallow groups are connected to neurodegenerative, cardiovascular diseases, or cancer (e.g., PLAU, CYBB, NCF2, ZNF217, CHAC1, CTCFL). Functional analysis of these genes revealed that they are associated with fluid shear stress response, complement and coagulation cascade, ROS signaling, neurogenesis, and regulation of protein binding and protein catabolic processes. Furthermore, gene set enrichment analysis (GSEA) of the whole datasets from all three comparisons suggests that both beef tallow and coconut oil may trigger changes in the expression level of genes crucial in the pathogenesis of civilization diseases.
Collapse
|
23
|
Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging (Albany NY) 2019; 10:701-746. [PMID: 29708498 PMCID: PMC5940131 DOI: 10.18632/aging.101424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) has been extensively studied in rodents as an intervention to improve lifespan and healthspan. However, effects of CR can be strain- and species-specific. This study used publically available microarray data to analyze expression responses to CR in males from 7 mouse strains (C57BL/6J, BALB/c, C3H, 129, CBA, DBA, B6C3F1) and 4 tissues (epididymal white adipose tissue (eWAT), muscle, heart, cortex). In each tissue, the largest number of strain-specific CR responses was identified with respect to the C57BL/6 strain. In heart and cortex, CR responses in C57BL/6 mice were negatively correlated with responses in other strains. Strain-specific CR responses involved genes associated with olfactory receptors (Olfr1184, Olfr910) and insulin/IGF-1 signaling (Igf1, Irs2). In each strain, CR responses in eWAT were negatively correlated with those in human subcutaneous WAT (scWAT). In human scWAT, CR increased expression of genes associated with stem cell maintenance and vascularization. However, orthologous genes linked to these processes were down-regulated in mouse. These results identify strain-specific CR responses limiting generalization across mouse strains. Differential CR responses in mouse versus human WAT may be due to differences in the depots examined and/or the presence of “thrifty genes” in humans that resist adipose breakdown despite caloric deficit.
Collapse
|
24
|
Ko CW, Qu J, Tso P. Editorial on Sramkova et al., "Apolipoprotein M: a novel adipokine decreasing with obesity and upregulated by calorie restriction". Am J Clin Nutr 2019; 109:1495-1496. [PMID: 31075794 PMCID: PMC6537933 DOI: 10.1093/ajcn/nqz053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
25
|
Sramkova V, Berend S, Siklova M, Caspar-Bauguil S, Carayol J, Bonnel S, Marques M, Decaunes P, Kolditz CI, Dahlman I, Arner P, Stich V, Saris WHM, Astrup A, Valsesia A, Rossmeislova L, Langin D, Viguerie N. Apolipoprotein M: a novel adipokine decreasing with obesity and upregulated by calorie restriction. Am J Clin Nutr 2019; 109:1499-1510. [PMID: 30869115 DOI: 10.1093/ajcn/nqy331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The adipose tissue (AT) is a secretory organ producing a wide variety of factors that participate in the genesis of metabolic disorders linked to excess fat mass. Weight loss improves obesity-related disorders. OBJECTIVES Transcriptomic studies on human AT, and a combination of analyses of transcriptome and proteome profiling of conditioned media from adipocytes and stromal cells isolated from human AT, have led to the identification of apolipoprotein M (apoM) as a putative adipokine. We aimed to validate apoM as novel adipokine, investigate the relation of AT APOM expression with metabolic syndrome and insulin sensitivity, and study the regulation of its expression in AT and secretion during calorie restriction-induced weight loss. METHODS We examined APOM mRNA level and secretion in AT from 485 individuals enrolled in 5 independent clinical trials, and in vitro in human multipotent adipose-derived stem cell adipocytes. APOM expression and secretion were measured during dieting. RESULTS APOM was expressed in human subcutaneous and visceral AT, mainly by adipocytes. ApoM was released into circulation from AT, and plasma apoM concentrations correlate with AT APOM mRNA levels. In AT, APOM expression inversely correlated with adipocyte size, was lower in obese compared to lean individuals, and reduced in subjects with metabolic syndrome and type 2 diabetes. Regardless of fat depot, there was a positive relation between AT APOM expression and systemic insulin sensitivity, independently of fat mass and plasma HDL cholesterol. In human multipotent adipose-derived stem cell adipocytes, APOM expression was enhanced by insulin-sensitizing peroxisome proliferator-activated receptor agonists and inhibited by tumor necrosis factor α, a cytokine that causes insulin resistance. In obese individuals, calorie restriction increased AT APOM expression and secretion. CONCLUSIONS ApoM is a novel adipokine, the expression of which is a hallmark of healthy AT and is upregulated by calorie restriction. AT apoM deserves further investigation as a potential biomarker of risk for diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Veronika Sramkova
- Department for the Study of Obesity and Diabetes, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sarah Berend
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Michaela Siklova
- Department for the Study of Obesity and Diabetes, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.,Toulouse University Hospitals, Departments of Clinical Biochemistry and Nutrition, Toulouse, France
| | - Jérôme Carayol
- Nestlé Institute of Health Sciences, Metabolic Health Department, Lausanne, Switzerland
| | - Sophie Bonnel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Marie Marques
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Pauline Decaunes
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Stroma-vascular cells of adipose tissue, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - Catherine-Ines Kolditz
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Ingrid Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Stich
- Department for the Study of Obesity and Diabetes, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Denmark
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, Metabolic Health Department, Lausanne, Switzerland
| | - Lenka Rossmeislova
- Department for the Study of Obesity and Diabetes, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Dominique Langin
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.,Toulouse University Hospitals, Departments of Clinical Biochemistry and Nutrition, Toulouse, France
| | - Nathalie Viguerie
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| |
Collapse
|
26
|
Allison KC, Goel N. Timing of eating in adults across the weight spectrum: Metabolic factors and potential circadian mechanisms. Physiol Behav 2018; 192:158-166. [PMID: 29486170 PMCID: PMC6019166 DOI: 10.1016/j.physbeh.2018.02.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
Timing of eating is recognized as a significant contributor to body weight regulation. Disruption of sleep-wake cycles from a predominantly diurnal (daytime) to a delayed (evening) lifestyle leads to altered circadian rhythms and metabolic dysfunction. This article reviews current evidence for timed and delayed eating in individuals of normal weight and those with overweight or obesity: although some findings indicate a benefit of eating earlier in the daytime on weight and/or metabolic outcomes, results have not been uniformly consistent, and more rigorous and longer-duration studies are needed. We also review potential circadian mechanisms underlying the metabolic- and weight-related changes resulting from timed and delayed eating. Further identification of such mechanisms using deep phenotyping is required to determine targets for medical interventions for obesity and for prevention of metabolic syndrome and diabetes, and to inform clinical guidelines regarding eating schedules for management of weight and metabolic disease.
Collapse
Affiliation(s)
- Kelly C Allison
- Center for Weight and Eating Disorders, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Namni Goel
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Frostegård J, Hellström C, Nilsson P, Frostegård AG, Ajeganova S. Autoantibody profiling reveals four protein candidate autoantigens associated with systemic lupus erythematosus. Lupus 2018; 27:1670-1678. [PMID: 30041579 DOI: 10.1177/0961203318788153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objectives In systemic lupus erythematosus (SLE) there are typically many autoantibodies. The disease heterogeneity could be better understood with discovery of phenotype-specific antigens targeted by autoantibodies. We here aimed to identify novel autoantigens potentially related to SLE disease and a major complication, atherosclerosis. Methods Antigen microarrays were used to profile IgG autoantibody reactivity against 77 protein fragments (20-140 amino acids (aa) long, median 89 aa) produced within the Human Protein Atlas project, in serum samples from SLE patients ( n = 107) and age- and sex-matched population-based controls ( n = 107). Common carotid intima-media thickness, plaque occurrence and echogenicity were determined by B-mode ultrasound. Results We determined significant differences between patients and controls in IgG reactivity against four proteins. In patients compared to controls, there was an increase of IgG reactivity against zinc finger protein 688 (ZNF688), early B cell factor 2 (EBF2), crystallin, alpha B (CRYAB) and tumor necrosis factor receptor superfamily member 13C (TNFRSF13C). Of these four antigens, only anti-ZNF688 was associated with carotid atherosclerosis (plaque occurrence) and vulnerable plaques in SLE. There was a weak association between anti-EBF2 and SLE disease activity but no significant associations were determined for other measured IgG reactivity. Conclusions In this discovery screening we here demonstrate new candidate autoantigens with differential reactivity (reflecting autoantibody levels) in SLE patients and in controls and in relation to atherosclerosis in SLE.
Collapse
Affiliation(s)
- J Frostegård
- 1 Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Hellström
- 2 Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P Nilsson
- 2 Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A G Frostegård
- 1 Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S Ajeganova
- 3 Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,4 Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|