1
|
Mancini M, Chapurlat R, Isidor B, Desjonqueres M, Couture G, Guggenbuhl P, Coutant R, El Chehadeh S, Fradin M, Frazier A, Goldenberg A, Guillot P, Koumakis E, Mehsen-Cêtre N, Rossi M, Schaefer É, Sigaudy S, Porquet-Bordes V, Fontanges É, Letard P, Edouard T, Javier RM, Cohen-Solal M, Funck-Brentano T, Collet C. Early-Onset Osteoporosis: Molecular Analysis in Large Cohort and Focus on the PLS3 Gene. Calcif Tissue Int 2024; 115:591-598. [PMID: 39316135 DOI: 10.1007/s00223-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Osteoporosis is a skeletal disorder characterized by abnormal bone microarchitecture and low bone mineral density (BMD), responsible for an increased risk of fractures and skeletal fragility. It is a common pathology of the aging population. However, when osteoporosis occurs in children or young adults, it strongly suggests an underlying genetic etiology. Over the past two decades, several genes have been identified as responsible for this particular kind of considered monogenic early-onset osteoporosis (EOOP) or juvenile osteoporosis, the main ones being COL1A1, COL1A2, LRP5, LRP6, WNT1, and more recently PLS3. In this study, the objective was to characterize a large cohort of patients diagnosed with primary osteoporosis and to establish its diagnosis yield. The study included 577 patients diagnosed with primary osteoporosis and its diagnosis yield was established. To this end, next-generation sequencing (NGS) of a panel of 21 genes known to play a role in bone fragility was carried out. A genetic etiology was explained in about 18% of cases, while the others remain unexplained. The most frequently identified gene associated with EOOP is LRP5, which was responsible for 8.2% of the positive results (47 patients). As unexpected, 17 patients (2.9%) had a variant in PLS3 which encodes plastin 3. Alterations of PLS3 are associated with dominant X-linked osteoporosis, an extremely rare disease. Given the rarity of this disease, we focused on it. It was observed that males were more affected than females, but it is noteworthy that three females with a particularly severe phenotype were identified. Of these three, two had a variant in an additional gene involved in EOP, illustrating the probable existence of digenism. We significantly increase the number of variants potentially associated with EOOP, especially in PLS3. The results of our study demonstrate that molecular analysis in EOOP is beneficial and useful.
Collapse
Affiliation(s)
- Maxence Mancini
- Biochemistry and Molecular Genetics Department, Lariboisière Hospital, AP-HP, Paris, France
| | - Roland Chapurlat
- Rheumatology and Bone Pathology Department, Inserm UMR 1033, Université de Lyon, Edouard Herriot Hospital, HCL, Lyon, France
| | - Bertrand Isidor
- Medical Genetics Department, CHU de Nantes, Hôtel Dieu Hospital, Nantes, France
| | - Marine Desjonqueres
- Nephrology - Rheumatology - Dermatology Paediatric Department, Edouard Herriot Hospital, HCL, Lyon, France
| | - Guillaume Couture
- Endocrine, Bone Diseases and Genetics Unit, Rheumatology Department, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | | | - Régis Coutant
- Department of Paediatrics and Endocrinology, CHU d'Angers, Angers, France
| | - Salima El Chehadeh
- Medical Genetics Department, Institut de Génétique Médicale d'alsace, CHU de Strasbourg, Strasbourg, France
| | - Mélanie Fradin
- Clinical Genetics Department, CHU Rennes, Sud Hospital, Rennes, France
| | - Aline Frazier
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Alice Goldenberg
- Medical Genetics Department, Charles- Nicolle Hospital, CHU de Rouen, Rouen, France
| | - Pascaline Guillot
- Rheumatology Department, CHU de Nantes, Hôpital Hôtel Dieu, Nantes, France
| | | | | | - Massimiliano Rossi
- Medical Genetics Department, Edouard Herriot Hospital, HCL, Lyon, France
| | - Élise Schaefer
- Medical Genetics Department, Institut de Génétique Médicale d'alsace, CHU de Strasbourg, Strasbourg, France
| | - Sabine Sigaudy
- Medical Genetics Department, CHU de Marseille, Timone Hospital, Marseille, France
| | - Valérie Porquet-Bordes
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Paediatric Research Unit, Children's Hospital, Toulouse University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | - Élisabeth Fontanges
- Rheumatology and Bone Pathology Department, Inserm UMR 1033, Université de Lyon, Edouard Herriot Hospital, HCL, Lyon, France
| | - Pauline Letard
- Medical Genetics Department, CHU de Poitiers, Poitiers, France
| | - Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Paediatric Research Unit, Children's Hospital, Toulouse University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | - Rose-Marie Javier
- Rheumatology Department, CHU de Strasbourg, Hautepierre Hospital, Strasbourg, France
| | - Martine Cohen-Solal
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Thomas Funck-Brentano
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Corinne Collet
- Rare Disease Genomic Medicine Department, CHU Necker-Enfants Malades, INSERM UMR1163, Institut Imagine, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
Pereira RC, Noche KJ, Gales B, Chen Z, Salusky IB, Albrecht LV. Sclerostin and Wnt Signaling in Idiopathic Juvenile Osteoporosis Using High-Resolution Confocal Microscopy for Three-Dimensional Analyses. CHILDREN (BASEL, SWITZERLAND) 2024; 11:820. [PMID: 39062269 PMCID: PMC11276078 DOI: 10.3390/children11070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Idiopathic juvenile osteoporosis (IJO) is a rare condition characterized by low bone mass that can increase the risk of fractures in children. Treatment options for these patients are limited as the molecular mechanisms of disease initiation and progression are incompletely understood. Sclerostin inhibits canonical Wnt signaling, which is important for the bone formation activity of osteoblasts, and elevated sclerostin has been implicated in adult osteoporosis. OBJECTIVE To evaluate the role of sclerostin in IJO, high-resolution confocal microscopy analyses were performed on bone biopsies collected from 13 pediatric patients. METHODS Bone biopsies were stained with sclerostin, and β-catenin antibodies showed elevated expression across osteocytes and increased sclerostin-positive osteocytes in 8 of the 13 total IJO patients (62%). RESULTS Skeletal sclerostin was associated with static and dynamic histomorphometric parameters. Further, colocalization analyses showed that bone sclerostin colocalized with phosphorylated β-catenin, a hallmark of Wnt signaling that indicates Wnt inhibition. In contrast, sclerostin-positive osteocytes were not colocalized with an "active" unphosphorylated form of β-catenin. CONCLUSIONS These results support a model that altered levels of sclerostin and Wnt signaling activity occur in IJO patients.
Collapse
Affiliation(s)
- Renata C. Pereira
- Department of Pediatrics, David School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (R.C.P.); (K.J.N.); (B.G.); (I.B.S.)
| | - Kathleen J. Noche
- Department of Pediatrics, David School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (R.C.P.); (K.J.N.); (B.G.); (I.B.S.)
| | - Barbara Gales
- Department of Pediatrics, David School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (R.C.P.); (K.J.N.); (B.G.); (I.B.S.)
| | - Zhangying Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA;
| | - Isidro B. Salusky
- Department of Pediatrics, David School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (R.C.P.); (K.J.N.); (B.G.); (I.B.S.)
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA;
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Formosa MM, Christou MA, Mäkitie O. Bone fragility and osteoporosis in children and young adults. J Endocrinol Invest 2024; 47:285-298. [PMID: 37668887 PMCID: PMC10859323 DOI: 10.1007/s40618-023-02179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Osteoporosis is a metabolic bone disorder which increases fragility fracture risk. Elderly individuals, especially postmenopausal women, are particularly susceptible to osteoporosis. Although rare, osteoporosis in children and young adults is becoming increasingly evident, highlighting the need for timely diagnosis, management and follow-up. Early-onset osteoporosis is defined as the presence of a low BMD (Z-score of ≤ -2.0 in individuals aged < 20 years; T-score of ≤ -2.5 in those aged between 20 to 50 years) accompanied by a clinically significant fracture history, or the presence of low-energy vertebral compression fractures even in the absence of osteoporosis. Affected children and young adults should undergo a thorough diagnostic workup, including collection of clinical history, radiography, biochemical investigation and possibly bone biopsy. Once secondary factors and comorbidities are excluded, genetic testing should be considered to determine the possibility of an underlying monogenic cause. Defects in genes related to type I collagen biosynthesis are the commonest contributors of primary osteoporosis, followed by loss-of-function variants in genes encoding key regulatory proteins of canonical WNT signalling (specifically LRP5 and WNT1), the actin-binding plastin-3 protein (encoded by PLS3) resulting in X-linked osteoporosis, and the more recent sphingomyelin synthase 2 (encoded by SGMS2) which is critical for signal transduction affecting sphingomyelin metabolism. Despite these discoveries, genetic causes and underlying mechanisms in early-onset osteoporosis remain largely unknown, and if no causal gene is identified, early-onset osteoporosis is deemed idiopathic. This calls for further research to unravel the molecular mechanisms driving early-onset osteoporosis that consequently will aid in patient management and individualised targeted therapy.
Collapse
Affiliation(s)
- M M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M A Christou
- Department of Endocrinology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - O Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Maus I, Dreiner M, Zetzsche S, Metzen F, Ross BC, Mählich D, Koch M, Niehoff A, Wirth B. Osteoclast-specific Plastin 3 knockout in mice fail to develop osteoporosis despite dramatic increased osteoclast resorption activity. JBMR Plus 2024; 8:ziad009. [PMID: 38549711 PMCID: PMC10971598 DOI: 10.1093/jbmrpl/ziad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 05/07/2024] Open
Abstract
PLS3 loss-of-function mutations in humans and mice cause X-linked primary osteoporosis. However, it remains largely unknown how PLS3 mutations cause osteoporosis and which function PLS3 plays in bone homeostasis. A recent study showed that ubiquitous Pls3 KO in mice results in osteoporosis. Mainly osteoclasts were impacted in their function However, it has not been proven if osteoclasts are the major cell type affected and responsible for osteoporosis development in ubiquitous Pls3 KO mice. Here, we generated osteoclast-specific Pls3 KO mice. Additionally, we developed a novel polyclonal PLS3 antibody that showed specific PLS3 loss in immunofluorescence staining of osteoclasts in contrast to previously available antibodies against PLS3, which failed to show PLS3 specificity in mouse cells. Moreover, we demonstrate that osteoclast-specific Pls3 KO causes dramatic increase in resorptive activity of osteoclasts in vitro. Despite these findings, osteoclast-specific Pls3 KO in vivo failed to cause any osteoporotic phenotype in mice as proven by micro-CT and three-point bending test. This demonstrates that the pathomechanism of PLS3-associated osteoporosis is highly complex and cannot be reproduced in a system singularly focused on one cell type. Thus, the loss of PLS3 in alternative bone cell types might contributes to the osteoporosis phenotype in ubiquitous Pls3 KO mice.
Collapse
Affiliation(s)
- Ilka Maus
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Sebastian Zetzsche
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Fabian Metzen
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, 50931 Cologne, Germany
- Medical Faculty, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Bryony C Ross
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Daniela Mählich
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, 50931 Cologne, Germany
- Medical Faculty, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
- Faculty of Medicine, Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Chin SM, Unnold-Cofre C, Naismith T, Jansen S. The actin-bundling protein, PLS3, is part of the mechanoresponsive machinery that regulates osteoblast mineralization. Front Cell Dev Biol 2023; 11:1141738. [PMID: 38089885 PMCID: PMC10711096 DOI: 10.3389/fcell.2023.1141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/07/2023] [Indexed: 02/01/2024] Open
Abstract
Plastin-3 (PLS3) is a calcium-sensitive actin-bundling protein that has recently been linked to the development of childhood-onset osteoporosis. Clinical data suggest that PLS3 mutations lead to a defect in osteoblast function, however the underlying mechanism remains elusive. To investigate the role of PLS3 in bone mineralization, we generated MC3T3-E1 preosteoblast cells that are stably depleted of PLS3. Analysis of osteogenic differentiation of control and PLS3 knockdown (PLS3 KD) cells showed that depletion of PLS3 does not alter the first stage of osteoblast mineralization in which a collagen matrix is deposited, but severely affects the subsequent mineralization of that matrix. During this phase, osteoblasts heavily rely on mechanosensitive signaling pathways to sustain mineral deposition in response to increasing stiffness of the extracellular matrix (ECM). PLS3 prominently localizes to focal adhesions (FAs), which are intricately linked to mechanosensation. In line with this, we observed that depletion of PLS3 rendered osteoblasts unresponsive to changes in ECM stiffness and showed the same cell size, FA lengths and number of FAs when plated on soft (6 kPa) versus stiff (100 kPa) substrates in contrast to control cells, which showed an increased in each of these parameters when plated on 100 kPa substrates. Defective cell spreading of PLS3 KD cells on stiff substrates could be rescued by expression of wildtype PLS3, but not by expression of three PLS3 mutations that were identified in patients with early onset osteoporosis and that have aberrant actin-bundling activity. Altogether, our results show that actin-bundling by PLS3 is part of the mechanosensitive mechanism that promotes osteoblast mineralization and thus begins to elucidate how PLS3 contributes to the development of bone defects such as osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
6
|
Zhong W, Pathak JL, Liang Y, Zhytnik L, Pals G, Eekhoff EMW, Bravenboer N, Micha D. The intricate mechanism of PLS3 in bone homeostasis and disease. Front Endocrinol (Lausanne) 2023; 14:1168306. [PMID: 37484945 PMCID: PMC10361617 DOI: 10.3389/fendo.2023.1168306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Since our discovery in 2013 that genetic defects in PLS3 lead to bone fragility, the mechanistic details of this process have remained obscure. It has been established that PLS3 variants cause syndromic and nonsyndromic osteoporosis as well as osteoarthritis. PLS3 codes for an actin-bundling protein with a broad pattern of expression. As such, it is puzzling how PLS3 specifically leads to bone-related disease presentation. Our review aims to summarize the current state of knowledge regarding the function of PLS3 in the predominant cell types in the bone tissue, the osteocytes, osteoblasts and osteoclasts. This is related to the role of PLS3 in regulating mechanotransduction, calcium regulation, vesicle trafficking, cell differentiation and mineralization as part of the complex bone pathology presented by PLS3 defects. Considering the consequences of PLS3 defects on multiple aspects of bone tissue metabolism, our review motivates the study of its mechanism in bone diseases which can potentially help in the design of suitable therapy.
Collapse
Affiliation(s)
- Wenchao Zhong
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Janak L. Pathak
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Gerard Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department Internal Medicine Section Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Rare Bone Disease Center, AMS, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
7
|
Costantini A, Mäkitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Søe K, Mäkitie O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J Bone Miner Res 2022; 37:1623-1641. [PMID: 35949115 PMCID: PMC9542053 DOI: 10.1002/jbmr.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022]
Abstract
Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Paris Cité University, INSERM UMR1163, Institut Imagine, Paris, France
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Abstract
Osteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < - 2.0 in growing children and a Z-score ≤ - 2.0 or a T-score ≤ - 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.
Collapse
Affiliation(s)
- Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland.
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 3015, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Loid P, Hauta-alus H, Mäkitie O, Magnusson P, Mäkitie RE. Lipocalin-2 is associated with FGF23 in WNT1 and PLS3 osteoporosis. Front Endocrinol (Lausanne) 2022; 13:954730. [PMID: 36157448 PMCID: PMC9493469 DOI: 10.3389/fendo.2022.954730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The pathogenic mechanisms of early-onset osteoporosis caused by WNT1 and PLS3 mutations are incompletely understood and diagnostic biomarkers of these disorders are limited. Recently, lipocalin-2 has been recognized as an osteokine involved in bone development and homeostasis. However, the role of lipocalin-2 in WNT1 and PLS3 osteoporosis is unknown. OBJECTIVE We aimed to investigate if plasma lipocalin-2 could be utilized as a biomarker for WNT1 and PLS3 osteoporosis and to evaluate the association between lipocalin-2 and other parameters of bone metabolism. METHODS We measured plasma lipocalin-2 in 17 WNT1 and 14 PLS3 mutation-positive patients and compared them to those of 34 mutation-negative (MN) healthy subjects. We investigated possible associations between lipocalin-2 and several bone biomarkers including collagen type I cross-linked C-telopeptide (CTX), alkaline phosphatase (ALP), type I procollagen intact N-terminal propeptide (PINP), intact and C-terminal fibroblast growth factor 23 (FGF23), dickkopf-1 (DKK1) and sclerostin as well as parameters of iron metabolism (iron, transferrin, transferrin saturation, soluble transferrin receptor and ferritin). RESULTS We found no differences in plasma lipocalin-2 levels in WNT1 or PLS3 patients compared with MN subjects. However, lipocalin-2 was associated with C-terminal FGF23 in WNT1 patients (r=0.62; p=0.008) and PLS3 patients (r=0.63, p=0.017), and with intact FGF23 in PLS3 patients (r=0.80; p<0.001). In addition, lipocalin-2 correlated with serum transferrin in WNT1 patients (r=0.72; p=0.001). CONCLUSION We conclude that plasma lipocalin-2 is not altered in WNT1 or PLS3 mutation-positive subjects but is associated with FGF23 in abnormal WNT1 or PLS3 signaling and with iron status in abnormal WNT1 signaling.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- *Correspondence: Petra Loid,
| | - Helena Hauta-alus
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Riikka E. Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Ghatan S, Costantini A, Li R, De Bruin C, Appelman-Dijkstra NM, Winter EM, Oei L, Medina-Gomez C. The Polygenic and Monogenic Basis of Paediatric Fractures. Curr Osteoporos Rep 2021; 19:481-493. [PMID: 33945105 PMCID: PMC8551106 DOI: 10.1007/s11914-021-00680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Fractures are frequently encountered in paediatric practice. Although recurrent fractures in children usually unveil a monogenic syndrome, paediatric fracture risk could be shaped by the individual genetic background influencing the acquisition of bone mineral density, and therefore, the skeletal fragility as shown in adults. Here, we examine paediatric fractures from the perspective of monogenic and complex trait genetics. RECENT FINDINGS Large-scale genome-wide studies in children have identified ~44 genetic loci associated with fracture or bone traits whereas ~35 monogenic diseases characterized by paediatric fractures have been described. Genetic variation can predispose to paediatric fractures through monogenic risk variants with a large effect and polygenic risk involving many variants of small effects. Studying genetic factors influencing peak bone attainment might help in identifying individuals at higher risk of developing early-onset osteoporosis and discovering drug targets to be used as bone restorative pharmacotherapies to prevent, or even reverse, bone loss later in life.
Collapse
Affiliation(s)
- S Ghatan
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - A Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Li
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - C De Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - N M Appelman-Dijkstra
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - E M Winter
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - L Oei
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Carolina Medina-Gomez
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
12
|
Fratzl-Zelman N, Wesseling-Perry K, Mäkitie RE, Blouin S, Hartmann MA, Zwerina J, Välimäki VV, Laine CM, Välimäki MJ, Pereira RC, Mäkitie O. Bone material properties and response to teriparatide in osteoporosis due to WNT1 and PLS3 mutations. Bone 2021; 146:115900. [PMID: 33618074 DOI: 10.1016/j.bone.2021.115900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Patients with osteoporosis-associated WNT1 or PLS3 mutations have unique bone histomorphometric features and osteocyte-specific hormone expression patterns. OBJECTIVE To investigate the effects of WNT1 and PLS3 mutations on bone material properties. DESIGN Transiliac bone biopsies were evaluated by quantitative backscattered electron imaging, immunohistochemistry, and bone histomorphometry. SETTING Ambulatory patients. PATIENTS Three pediatric and eight adult patients with WNT1 or PLS3 mutations. INTERVENTION Bone mineralization density distribution and osteocyte protein expression was evaluated in 11 patients and repeated in six patients who underwent repeat biopsy after 24 months of teriparatide treatment. MAIN OUTCOME MEASURE Bone mineralization density distribution and protein expression. RESULTS Children with WNT1 or PLS3 mutations had heterogeneous bone matrix mineralization, consistent with bone modeling during growth. Bone matrix mineralization was homogenous in adults and increased throughout the age spectrum. Teriparatide had very little effect on matrix mineralization or bone formation in patients with WNT1 or PLS3 mutations. However, teriparatide decreased trabecular osteocyte lacunae size and increased trabecular bone FGF23 expression. CONCLUSION The contrast between preserved bone formation with heterogeneous mineralization in children and low bone turnover with homogenous bone mineral content in adults suggests that WNT1 and PLS3 have differential effects on bone modeling and remodeling. The lack of change in matrix mineralization in response to teriparatide, despite clear changes in osteocyte lacunae size and protein expression, suggests that altered WNT1 and PLS3 expression may interfere with coupling of osteocyte, osteoblast, and osteoclast function. Further studies are warranted to determine the mechanism of these changes.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Ville-Valtteri Välimäki
- Department of Orthopaedics and Traumatology, Helsinki University Central Hospital and Helsinki University, Jorvi Hospital, Espoo, Finland
| | - Christine M Laine
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden
| | - Matti J Välimäki
- Division of Endocrinology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Renata C Pereira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Hu J, Li LJ, Zheng WB, Zhao DC, Wang O, Jiang Y, Xing XP, Li M, Xia W. A novel mutation in PLS3 causes extremely rare X-linked osteogenesis imperfecta. Mol Genet Genomic Med 2020; 8:e1525. [PMID: 33166085 PMCID: PMC7767536 DOI: 10.1002/mgg3.1525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous bone disease characterized by bone fragility and recurrent fractures. X-linked inherited OI with mutation in PLS3 is so rare that its genotype-phenotype characteristics are not available. METHODS We designed a novel targeted next-generation sequencing (NGS) panel with the candidate genes of OI to detect pathogenic mutations and confirmed them by Sanger sequencing. The phenotypes of the patients were also investigated. RESULTS The proband, a 12-year-old boy from a nonconsanguineous family, experienced multiple fractures of long bones and vertebrae and had low bone mineral density (BMD Z-score of -3.2 to -2.0). His younger brother also had extremity fractures. A novel frameshift mutation (c.1106_1107insGAAA; p.Phe369Leufs*5) in exon 10 of PLS3 was identified in the two patients, which was inherited from their mother who had normal BMD. Blue sclerae were the only extraskeletal symptom in all affected individuals. Zoledronic acid was beneficial for increasing BMD and reshaping the compressed vertebral bodies of the proband. CONCLUSION We first identify a novel mutation in PLS3 that led to rare X-linked OI and provide practical information for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu-Jiao Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen-Bin Zheng
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di-Chen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Ping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Mäkitie RE, Kämpe A, Costantini A, Alm JJ, Magnusson P, Mäkitie O. Biomarkers in WNT1 and PLS3 Osteoporosis: Altered Concentrations of DKK1 and FGF23. J Bone Miner Res 2020; 35:901-912. [PMID: 31968132 DOI: 10.1002/jbmr.3959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Recent advancements in genetic research have uncovered new forms of monogenic osteoporosis, expanding our understanding of the molecular pathways regulating bone health. Despite active research, knowledge on the pathomechanisms, disease-specific biomarkers, and optimal treatment in these disorders is still limited. Mutations in WNT1, encoding a WNT/β-catenin pathway ligand WNT1, and PLS3, encoding X chromosomally inherited plastin 3 (PLS3), both result in early-onset osteoporosis with prevalent fractures and disrupted bone metabolism. However, despite marked skeletal pathology, conventional bone markers are usually normal in both diseases. Our study aimed to identify novel bone markers in PLS3 and WNT1 osteoporosis that could offer diagnostic potential and shed light on the mechanisms behind these skeletal pathologies. We measured several parameters of bone metabolism, including serum dickkopf-1 (DKK1), sclerostin, and intact and C-terminal fibroblast growth factor 23 (FGF23) concentrations in 17 WNT1 and 14 PLS3 mutation-positive subjects. Findings were compared with 34 healthy mutation-negative subjects from the same families. Results confirmed normal concentrations of conventional metabolic bone markers in both groups. DKK1 concentrations were significantly elevated in PLS3 mutation-positive subjects compared with WNT1 mutation-positive subjects (p < .001) or the mutation-negative subjects (p = .002). Similar differences were not seen in WNT1 subjects. Sclerostin concentrations did not differ between any groups. Both intact and C-terminal FGF23 were significantly elevated in WNT1 mutation-positive subjects (p = .039 and p = .027, respectively) and normal in PLS3 subjects. Our results indicate a link between PLS3 and DKK1 and WNT1 and FGF23 in bone metabolism. The normal sclerostin and DKK1 levels in patients with impaired WNT signaling suggest another parallel regulatory mechanism. These findings provide novel information on the molecular networks in bone. Extended studies are needed to investigate whether these biomarkers offer diagnostic value or potential as treatment targets in osteoporosis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Faculty of Medicine, Folkhälsan Institute of Genetics and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica J Alm
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Outi Mäkitie
- Faculty of Medicine, Folkhälsan Institute of Genetics and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital and Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
15
|
Treurniet S, Eekhoff EMW, Schmidt FN, Micha D, Busse B, Bravenboer N. A Clinical Perspective on Advanced Developments in Bone Biopsy Assessment in Rare Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:399. [PMID: 32714279 PMCID: PMC7344330 DOI: 10.3389/fendo.2020.00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Bone biopsies have been obtained for many centuries and are one of the oldest known medical procedures in history. Despite the introduction of new noninvasive radiographic imaging techniques and genetic analyses, bone biopsies are still valuable in the diagnosis of bone diseases. Advanced techniques for the assessment of bone quality in bone biopsies, which have emerged during the last decades, allows in-depth tissue analyses beyond structural changes visible in bone histology. In this review, we give an overview of the application and advantages of the advanced techniques for the analysis of bone biopsies in the clinical setting of various rare metabolic bone diseases. Method: A systematic literature search on rare metabolic bone diseases and analyzing techniques of bone biopsies was performed in PubMed up to 2019 week 34. Results: Advanced techniques for the analysis of bone biopsies were described for rare metabolic bone disorders including Paget's disease of bone, osteogenesis imperfecta, fibrous dysplasia, Fibrodysplasia ossificans progressiva, PLS3 X-linked osteoporosis, Loeys-Diets syndrome, osteopetrosis, Erdheim-Chester disease, and Cherubism. A variety of advanced available analytical techniques were identified that may help to provide additional detail on cellular, structural, and compositional characteristics in rare bone diseases complementing classical histopathology. Discussion: To date, these techniques have only been used in research and not in daily clinical practice. Clinical application of bone quality assessment techniques depends upon several aspects such as availability of the technique in hospitals, the existence of reference data, and a cooperative network of researchers and clinicians. The evaluation of rare metabolic bone disorders requires a repertoire of different methods, owing to their distinct bone tissue characteristics. The broader use of bone material obtained from biopsies could provide much more information about pathophysiology or treatment options and establish bone biopsies as a valuable tool in rare metabolic bone diseases.
Collapse
Affiliation(s)
- Sanne Treurniet
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Felix N. Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Bravenboer
- Bone and Calcium Metabolism Lab, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
- *Correspondence: Nathalie Bravenboer
| |
Collapse
|
16
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
17
|
Tratwal J, Bekri D, Boussema C, Sarkis R, Kunz N, Koliqi T, Rojas-Sutterlin S, Schyrr F, Tavakol DN, Campos V, Scheller EL, Sarro R, Bárcena C, Bisig B, Nardi V, de Leval L, Burri O, Naveiras O. MarrowQuant Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections. Front Endocrinol (Lausanne) 2020; 11:480. [PMID: 33071956 PMCID: PMC7542184 DOI: 10.3389/fendo.2020.00480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The bone marrow (BM) exists heterogeneously as hematopoietic/red or adipocytic/yellow marrow depending on skeletal location, age, and physiological condition. Mouse models and patients undergoing radio/chemotherapy or suffering acute BM failure endure rapid adipocytic conversion of the marrow microenvironment, the so-called "red-to-yellow" transition. Following hematopoietic recovery, such as upon BM transplantation, a "yellow-to-red" transition occurs and functional hematopoiesis is restored. Gold Standards to estimate BM cellular composition are pathologists' assessment of hematopoietic cellularity in hematoxylin and eosin (H&E) stained histological sections as well as volumetric measurements of marrow adiposity with contrast-enhanced micro-computerized tomography (CE-μCT) upon osmium-tetroxide lipid staining. Due to user-dependent variables, reproducibility in longitudinal studies is a challenge for both methods. Here we report the development of a semi-automated image analysis plug-in, MarrowQuant, which employs the open-source software QuPath, to systematically quantify multiple bone components in H&E sections in an unbiased manner. MarrowQuant discerns and quantifies the areas occupied by bone, adipocyte ghosts, hematopoietic cells, and the interstitial/microvascular compartment. A separate feature, AdipoQuant, fragments adipocyte ghosts in H&E-stained sections of extramedullary adipose tissue to render adipocyte area and size distribution. Quantification of BM hematopoietic cellularity with MarrowQuant lies within the range of scoring by four independent pathologists, while quantification of the total adipocyte area in whole bone sections compares with volumetric measurements. Employing our tool, we were able to develop a standardized map of BM hematopoietic cellularity and adiposity in mid-sections of murine C57BL/6 bones in homeostatic conditions, including quantification of the highly predictable red-to-yellow transitions in the proximal section of the caudal tail and in the proximal-to-distal tibia. Additionally, we present a comparative skeletal map induced by lethal irradiation, with longitudinal quantification of the "red-to-yellow-to-red" transition over 2 months in C57BL/6 femurs and tibiae. We find that, following BM transplantation, BM adiposity inversely correlates with kinetics of hematopoietic recovery and that a proximal to distal gradient is conserved. Analysis of in vivo recovery through magnetic resonance imaging (MRI) reveals comparable kinetics. On human trephine biopsies MarrowQuant successfully recognizes the BM compartments, opening avenues for its application in experimental, or clinical contexts that require standardized human BM evaluation.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Bekri
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chiheb Boussema
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Kunz
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tereza Koliqi
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shanti Rojas-Sutterlin
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédérica Schyrr
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, United States
| | - Rossella Sarro
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne University (UNIL), Lausanne, Switzerland
| | - Carmen Bárcena
- Department of Pathology, University Hospital 12 de Octubre, Madrid, Spain
| | - Bettina Bisig
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne University (UNIL), Lausanne, Switzerland
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne University (UNIL), Lausanne, Switzerland
| | - Olivier Burri
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Oncology, Hematology Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- *Correspondence: Olaia Naveiras ;
| |
Collapse
|
18
|
Yorgan TA, Sari H, Rolvien T, Windhorst S, Failla AV, Kornak U, Oheim R, Amling M, Schinke T. Mice lacking plastin-3 display a specific defect of cortical bone acquisition. Bone 2020; 130:115062. [PMID: 31678489 DOI: 10.1016/j.bone.2019.115062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Although inactivating mutations of PLS3, encoding the actin-bundling protein plastin-3, have been identified to cause X-linked osteoporosis, the cellular and molecular influence of PLS3 on bone remodeling is poorly defined. Moreover, although a previous study has demonstrated moderate osteopenia in 12 week-old Pls3-deficient mice based on μCT scanning, there is no reported analysis of such a model on the basis of undecalcified histology and bone-specific histomorphometry. To fill this knowledge gap we applied a deep phenotyping approach and studied Pls3-deficient mice at different ages. Surprisingly, we did not detect significant differences between wildtype and Pls3-deficient littermates with respect to trabecular bone mass, and the same was the case for all histomorphometric parameters determined at 12 weeks of age. Remarkably however, the cortical thickness in both, tibia and femur, was significantly reduced in Pls3-deficient mice in all age groups. We additionally studied the ex vivo behavior of Pls3-deficient primary osteoblasts, which displayed moderately impaired mineralization capacity. Of note, while most osteoblastogenesis markers were not differentially expressed between wildtype and Pls3-deficient cultures, the expression of Sfrp4 was significantly reduced in the latter, a potentially relevant finding, since Sfrp4 inactivation, in mice and humans, specifically causes cortical thinning. We finally addressed the question, if Pls3-deficiency would impair the osteoanabolic influence of parathyroid hormone (PTH). For this purpose we applied daily injection of PTH into wildtype and Pls3-deficient mice and found a similar response regardless of the genotype. Taken together, our data reveal that Pls3-deficiency in mice only recapitulates the cortical bone phenotype of individuals with X-linked osteoporosis by negatively affecting the early stage of cortical bone acquisition.
Collapse
Affiliation(s)
- Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hatice Sari
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonio Virgilio Failla
- Microscopy Core Facility, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|
20
|
Mäkitie RE, Niinimäki T, Suo-Palosaari M, Kämpe A, Costantini A, Toiviainen-Salo S, Niinimäki J, Mäkitie O. PLS3 Mutations Cause Severe Age and Sex-Related Spinal Pathology. Front Endocrinol (Lausanne) 2020; 11:393. [PMID: 32655496 PMCID: PMC7324541 DOI: 10.3389/fendo.2020.00393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Mutations in the X-chromosomal PLS3-gene, encoding Plastin 3, lead to severe early-onset osteoporosis, suggesting a major role for PLS3 in bone metabolism. However, the consequences of abnormal PLS3 function in bone and other tissues remain incompletely characterized. This study evaluated spinal consequences of aberrant PLS3 function in patients with PLS3 mutations. Design: A cross-sectional cohort study with spinal magnetic resonance imaging of 15 PLS3 mutation-positive (age range 9-77 years) and 13 mutation-negative (9-70 years) subjects. Images were reviewed for spinal alignment, vertebral heights and morphology, intervertebral disc changes and possible endplate deterioration. Results: Vertebral changes were significantly more prevalent in the mutation-positive subjects compared with the mutation-negative subjects; they were most abundant in upper thoracic spine, and in all age groups and both sexes, although more prominent in males. Difference in anterior vertebral height reduction was most significant in T5 and T6 (p = 0.046 and p = 0.041, respectively). Mid-vertebral height reduction was most significant in T3 and T5 (p = 0.037 and p = 0.005, respectively), and, for male mutation-positive subjects only, in T4 and T6-10 (p = 0.005-0.030 for each vertebra). Most of the abnormal vertebrae were biconcave in shape but thoracic kyphosis or lumbar lordosis were unchanged. Vertebral endplates were well-preserved in the mutation-positive subjects with even fewer Schmorl nodes than the mutation-negative subjects (10 vs. 16). Conclusions: Compromised PLS3 function introduces severe and progressive changes to spinal structures that are present already in childhood, in both sexes and most abundant in upper thoracic spine. Cartilaginous structures are well-preserved.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- *Correspondence: Riikka E. Mäkitie
| | | | - Maria Suo-Palosaari
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Sanna Toiviainen-Salo
- Department of Pediatric Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaakko Niinimäki
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Mäkitie RE, Costantini A, Kämpe A, Alm JJ, Mäkitie O. New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:70. [PMID: 30858824 PMCID: PMC6397842 DOI: 10.3389/fendo.2019.00070] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis, characterized by deteriorated bone microarchitecture and low bone mineral density, is a chronic skeletal disease with high worldwide prevalence. Osteoporosis related to aging is the most common form and causes significant morbidity and mortality. Rare, monogenic forms of osteoporosis have their onset usually in childhood or young adulthood and have specific phenotypic features and clinical course depending on the underlying cause. The most common form is osteogenesis imperfecta linked to mutations in COL1A1 and COL1A2, the two genes encoding type I collagen. However, in the past years, remarkable advancements in bone research have expanded our understanding of the intricacies behind bone metabolism and identified novel molecular mechanisms contributing to skeletal health and disease. Especially high-throughput sequencing techniques have made family-based studies an efficient way to identify single genes causative of rare monogenic forms of osteoporosis and these have yielded several novel genes that encode proteins partaking in type I collagen modification or regulating bone cell function directly. New forms of monogenic osteoporosis, such as autosomal dominant osteoporosis caused by WNT1 mutations or X-linked osteoporosis due to PLS3 mutations, have revealed previously unidentified bone-regulating proteins and clarified specific roles of bone cells, expanded our understanding of possible inheritance mechanisms and paces of disease progression, and highlighted the potential of monogenic bone diseases to extend beyond the skeletal tissue. The novel gene discoveries have introduced new challenges to the classification and diagnosis of monogenic osteoporosis, but also provided promising new molecular targets for development of pharmacotherapies. In this article we give an overview of the recent discoveries in the area of monogenic forms of osteoporosis, describing the key cellular mechanisms leading to skeletal fragility, the major recent research findings and the essential challenges and avenues in future diagnostics and treatments.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica J. Alm
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Outi Mäkitie
| |
Collapse
|
22
|
Nguyen HH, van de Laarschot DM, Verkerk AJMH, Milat F, Zillikens MC, Ebeling PR. Genetic Risk Factors for Atypical Femoral Fractures (AFFs): A Systematic Review. JBMR Plus 2018; 2:1-11. [PMID: 30283886 PMCID: PMC6124156 DOI: 10.1002/jbm4.10024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022] Open
Abstract
Atypical femoral fractures (AFFs) are uncommon and have been associated particularly with long‐term antiresorptive therapy, including bisphosphonates. Although the pathogenesis of AFFs is unknown, their identification in bisphosphonate‐naïve individuals and in monogenetic bone disorders has led to the hypothesis that genetic factors predispose to AFF. Our aim was to review and summarize the evidence for genetic factors in individuals with AFF. We conducted structured literature searches and hand‐searching of conference abstracts/reference lists for key words relating to AFF and identified 2566 citations. Two individuals independently reviewed citations for (i) cases of AFF in monogenetic bone diseases and (ii) genetic studies in individuals with AFF. AFFs were reported in 23 individuals with the following 7 monogenetic bone disorders (gene): osteogenesis imperfecta (COL1A1/COL1A2), pycnodysostosis (CTSK), hypophosphatasia (ALPL), X‐linked osteoporosis (PLS3), osteopetrosis, X‐linked hypophosphatemia (PHEX), and osteoporosis pseudoglioma syndrome (LRP5). In 8 cases (35%), the monogenetic bone disorder was uncovered after the AFF occurred. Cases of bisphosphonate‐naïve AFF were reported in pycnodysostosis, hypophosphatasia, osteopetrosis, X‐linked hypophosphatemia, and osteoporosis pseudoglioma syndrome. A pilot study in 13 AFF patients and 268 controls identified a greater number of rare variants in AFF cases using exon array analysis. A whole‐exome sequencing study in 3 sisters with AFFs showed, among 37 shared genetic variants, a p.Asp188Tyr mutation in the GGPS1 gene in the mevalonate pathway, critical to osteoclast function, which is also inhibited by bisphosphonates. Two studies completed targeted ALPL gene sequencing, an ALPL heterozygous mutation was found in 1 case of a cohort of 11 AFFs, whereas the second study comprising 10 AFF cases did not find mutations in ALPL. Targeted sequencing of ALPL, COL1A1, COL1A2, and SOX9 genes in 5 cases of AFF identified a variant in COL1A2 in 1 case. These findings suggest a genetic susceptibility for AFFs. A large multicenter collaborative study of well‐phenotyped AFF cases and controls is needed to understand the role of genetics in this uncommon condition. © 2017 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hanh H Nguyen
- Department of Medicine School of Clinical Sciences Monash University Clayton Australia.,Department of Endocrinology Monash Health Clayton Australia
| | | | | | - Frances Milat
- Department of Medicine School of Clinical Sciences Monash University Clayton Australia.,Department of Endocrinology Monash Health Clayton Australia.,Hudson Institute of Medical Research Clayton Australia
| | - M Carola Zillikens
- Department of Internal Medicine Erasmus Medical Centre Rotterdam The Netherlands
| | - Peter R Ebeling
- Department of Medicine School of Clinical Sciences Monash University Clayton Australia.,Department of Endocrinology Monash Health Clayton Australia
| |
Collapse
|
23
|
Kämpe AJ, Costantini A, Levy-Shraga Y, Zeitlin L, Roschger P, Taylan F, Lindstrand A, Paschalis EP, Gamsjaeger S, Raas-Rothschild A, Hövel M, Jiao H, Klaushofer K, Grasemann C, Mäkitie O. PLS3 Deletions Lead to Severe Spinal Osteoporosis and Disturbed Bone Matrix Mineralization. J Bone Miner Res 2017; 32:2394-2404. [PMID: 28777485 DOI: 10.1002/jbmr.3233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023]
Abstract
Mutations in the PLS3 gene, encoding Plastin 3, were described in 2013 as a cause for X-linked primary bone fragility in children. The specific role of PLS3 in bone metabolism remains inadequately understood. Here we describe for the first time PLS3 deletions as the underlying cause for childhood-onset primary osteoporosis in 3 boys from 2 families. We carried out thorough clinical, radiological, and bone tissue analyses to explore the consequences of these deletions and to further elucidate the role of PLS3 in bone homeostasis. In family 1, the 2 affected brothers had a deletion of exons 4-16 (NM_005032) in PLS3, inherited from their healthy mother. In family 2, the index patient had a deletion involving the entire PLS3 gene (exons 1-16), inherited from his mother who had osteoporosis. The 3 patients presented in early childhood with severe spinal compression fractures involving all vertebral bodies. The 2 brothers in family 1 also displayed subtle dysmorphic facial features and both had developed a myopathic gait. Extensive analyses of a transiliac bone biopsy from 1 patient showed a prominent increase in osteoid volume, osteoid thickness, and in mineralizing lag time. Results from quantitative backscattered electron imaging and Raman microspectroscopy showed a significant hypomineralization of the bone. Together our results indicate that PLS3 deletions lead to severe childhood-onset osteoporosis resulting from defective bone matrix mineralization, suggesting a specific role for PLS3 in the mineralization process. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anders J Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yael Levy-Shraga
- Pediatric Endocrinology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Zeitlin
- Pediatric Orthopedic Department, Dana-Dwek Children's Hospital, Tel Aviv Sourasly Medical Center, Tel Aviv, Israel
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Annick Raas-Rothschild
- Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | - Matthias Hövel
- Department of Orthopedics and Trauma Surgery, University Hospital Essen and the University of Duisburg-Essen, Essen, Germany
| | - Hong Jiao
- Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Corinna Grasemann
- Klinik für Kinderheilkunde II, University Hospital Essen and the University of Duisburg-Essen, Essen, Germany
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| |
Collapse
|