1
|
Xia Y, Jin J, Sun Y, Kong X, Shen Z, Yan R, Huang R, Liu X, Xia W, Ma J, Zhu X, Li Q, Ma J. Tirzepatide's role in targeting adipose tissue macrophages to reduce obesity-related inflammation and improve insulin resistance. Int Immunopharmacol 2024; 143:113499. [PMID: 39471690 DOI: 10.1016/j.intimp.2024.113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are significant global health challenges, with adipose tissue inflammation being a pivotal contributor to metabolic dysfunction. The involvement of adipose tissue macrophages (ATMs) in obesity-associated inflammation is well recognized, yet the therapeutic strategies specifically targeting ATM-mediated inflammation remain limited. OBJECTIVE This study aims to explore the effects of tirzepatide, a novel dual GLP-1 and GIP receptor agonist, on ATMs, adipose tissue inflammation, and insulin resistance in the context of obesity. METHODS Obese mouse models were established through high-fat diet feeding and subsequently treated with tirzepatide at a dose of 1.2 mg/kg twice weekly for 12 weeks. The study assessed the impact on ATM phenotype, inflammatory markers, and key metabolic indicators. RESULTS Tirzepatide treatment significantly mitigated the infiltration of pro-inflammatory M1 ATMs within adipose tissue and concurrently reduced levels of inflammatory cytokines, thereby enhancing insulin sensitivity. Tirzepatide demonstrated therapeutic efficacy through its modulation of the ERK signaling pathway and promotion of M1-type macrophage apoptosis. CONCLUSION Tirzepatide's potential as a therapeutic strategy for addressing metabolic diseases associated with obesity and T2DM by targeting ATM activity and mitigating obesity-associated inflammation.
Collapse
Affiliation(s)
- Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jing Jin
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yaqin Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rengna Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaomei Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
2
|
Abdul-Ghani M, Maffei P, DeFronzo RA. Managing insulin resistance: the forgotten pathophysiological component of type 2 diabetes. Lancet Diabetes Endocrinol 2024; 12:674-680. [PMID: 39098317 DOI: 10.1016/s2213-8587(24)00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists have gained widespread use in the treatment of individuals with type 2 diabetes because of their potent weight loss promoting effect, ability to augment β-cell function, and cardiovascular protective effects. However, despite causing impressive weight loss, GLP-1 receptor agonists do not normalise insulin sensitivity in people with type 2 diabetes and obesity, and the long-term effects of this class of antidiabetic medication on muscle mass, frailty, and bone density have been poorly studied. Although GLP-1 receptor agonists improve insulin sensitivity secondary to weight loss, the only true direct insulin-sensitising drugs are thiazolidinediones. Because of side-effects associated with type 2 diabetes therapy, these drugs have not gained widespread use. In lieu of the important role of insulin resistance in the cause of type 2 diabetes and in the pathogenesis of atherosclerotic cardiovascular disease in type 2 diabetes, development of potent insulin-sensitising drugs that can be used in combination with GLP-1 receptor agonists remains a large unmet need in the management of individuals with type 2 diabetes.
Collapse
|
3
|
Alfawaz S, Burzangi A, Esmat A. Mechanisms of Non-alcoholic Fatty Liver Disease and Beneficial Effects of Semaglutide: A Review. Cureus 2024; 16:e67080. [PMID: 39286709 PMCID: PMC11404706 DOI: 10.7759/cureus.67080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Non-alcoholic fatty liver disease stands as the predominant cause of chronic liver disease, with its prevalence and morbidity expected to escalate significantly, leading to substantial healthcare costs and diminished health-related quality of life. It comprises a range of disease manifestations that commence with basic steatosis, involving the accumulation of lipids in hepatocytes, a distinctive histological feature. If left untreated, it often advances to non-alcoholic steatohepatitis, marked by inflammatory and/or fibrotic hepatic changes, leading to the eventual development of non-alcoholic fatty liver disease-related cirrhosis and hepatocellular carcinoma. Because of the liver's vital role in body metabolism, non-alcoholic fatty liver disease is considered both a consequence and a contributor to the metabolic abnormalities observed in the metabolic syndrome. As of date, there are no authorized pharmacological agents for non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. Semaglutide, with its glycemic and weight loss advantages, could potentially offer benefits for individuals with non-alcoholic fatty liver disease. This review aims to investigate the impact of semaglutide on non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sultan Alfawaz
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| | - Abdulhadi Burzangi
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| | - Ahmed Esmat
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| |
Collapse
|
4
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Rogers AM. Invited Commentary: Examining the Gastric Bypass Long-Term Metabolic Benefit. J Am Coll Surg 2024; 238:872-873. [PMID: 38372337 DOI: 10.1097/xcs.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
|
7
|
Hansen HH, Pors S, Andersen MW, Vyberg M, Nøhr-Meldgaard J, Nielsen MH, Oró D, Madsen MR, Lewinska M, Møllerhøj MB, Madsen AN, Feigh M. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci Rep 2023; 13:23056. [PMID: 38155202 PMCID: PMC10754821 DOI: 10.1038/s41598-023-50328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a major cause of hepatocellular carcinoma (HCC), however, it is not resolved if compounds in late-stage clinical development for NASH may have additional therapeutic benefits in NASH-driven HCC (NASH-HCC). Here, we profiled monotherapy with semaglutide (glucagon-like-receptor-1 receptor agonist) and lanifibranor (pan-peroxisome proliferator-activated receptor agonist) in a diet-induced obese (DIO) mouse model of NASH-HCC. Disease progression was characterized in male C57BL/6 J mice fed the GAN (Gubra Amylin NASH) diet high in fat, fructose and cholesterol for 12-72 weeks (n = 15 per group). Other GAN DIO-NASH-HCC mice fed the GAN diet for 54 weeks and with biopsy-confirmed NASH (NAFLD Activity Score ≥ 5) and advanced fibrosis (stage F3) received vehicle (n = 16), semaglutide (30 nmol/kg, s.c., n = 15), or lanifibranor (30 mg/kg, p.o., n = 15) once daily for 14 weeks. GAN DIO-NASH-HCC mice demonstrated progressive NASH, fibrosis and HCC burden. Tumors presented with histological and molecular signatures of poor prognostic HCC. Consistent with clinical trial outcomes in NASH patients, both lanifibranor and semaglutide improved NASH while only lanifibranor reduced fibrosis in GAN DIO-NASH-HCC mice. Notably, only semaglutide reduced tumor burden in GAN DIO-NASH-HCC mice. In conclusion, the GAN DIO-NASH-HCC mouse is a clinical translational model of NASH-HCC. Semaglutide improves both NASH and tumor burden in GAN DIO-NASH-HCC mice, highlighting the suitability of this preclinical model for profiling novel drug therapies targeting NASH-HCC.
Collapse
Affiliation(s)
| | - Susanne Pors
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | | | | | | | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| |
Collapse
|
8
|
Várkonyi TT, Pósa A, Pávó N, Pavo I. Perspectives on weight control in diabetes - Tirzepatide. Diabetes Res Clin Pract 2023:110770. [PMID: 37279858 DOI: 10.1016/j.diabres.2023.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Tirzepatide, a once-weekly glucose-dependent insulinotropic polypeptide (GIP)/glucagon-like peptide-1 (GLP-1) receptor agonist (GIP/GLP-1 RA) improves glycemic control. Besides improvement of glycemic control, tirzepatide treatment is associated with significantly more weight loss as compared to potent selective GLP-1 receptor agonists as well as other beneficial changes in cardio-metabolic parameters, such as reduced fat mass, blood pressure, improved insulin sensitivity, lipoprotein concentrations, and circulating metabolic profile in individuals with type 2 diabetes (T2D). Some of these changes are partially associated with weight reduction. We review here the putative mechanisms of GIP receptor agonism contributing to GLP-1 receptor agonism-induced weight loss and respective findings with GIP/GLP-1 RAs, including tirzepatide in T2D preclinical models and clinical studies. Subsequently, we summarize the clinical data on weight loss and related non-glycemic metabolic changes of tirzepatide in T2D. These findings suggest that the robust weight loss and associated changes are important contributors to the clinical profile of tirzepatide for the treatment of T2D diabetes and serve as the basis for further investigations including clinical outcomes.
Collapse
Affiliation(s)
- Tamas T Várkonyi
- Department of Internal Medicine, University of Szeged, Kálvária sgt. 57, H-6725 Szeged, Hungary.
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary.
| | - Noémi Pávó
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Erdberger Lände 26/A, A-1030 Vienna, Austria.
| |
Collapse
|
9
|
Razzaki TS, Weiner A, Shukla AP. Tirzepatide: Does the Evidence to Date Show Potential for the Treatment of Early Stage Type 2 Diabetes? Ther Clin Risk Manag 2022; 18:955-964. [PMID: 36199834 PMCID: PMC9527616 DOI: 10.2147/tcrm.s328056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Tirzepatide is a novel “twincretin” with glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide receptor agonist activity, which was recently approved by the Food and Drug Administration for the treatment of type 2 diabetes mellitus. In this review, we discuss preclinical and mechanistic human studies, which demonstrate improvements in insulin sensitivity and beta-cell function with the use of tirzepatide, as compared to placebo and glucagon-like peptide 1 receptor agonists. We then discuss SURPASS trials 1–5, which evaluated the safety and efficacy of tirzepatide for type 2 diabetes mellitus as either monotherapy or combination therapy with other antidiabetic agents. The magnitude of tirzepatide’s effects and the efficacy relative to other anti-diabetes medications on weight, glycemic control, and beta-cell function may prove beneficial for the treatment of early type 2 diabetes mellitus. Further studies, including data on cardiovascular outcomes and long-term safety, will continue to elucidate the role of tirzepatide in the treatment algorithm of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tanzila S Razzaki
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism Weill Cornell Medicine, New York, NY, USA
| | - Alyson Weiner
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism Weill Cornell Medicine, New York, NY, USA
| | - Alpana P Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism Weill Cornell Medicine, New York, NY, USA
- Correspondence: Alpana P Shukla, Email
| |
Collapse
|
10
|
Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord 2022; 23:521-539. [PMID: 34993760 PMCID: PMC8736331 DOI: 10.1007/s11154-021-09699-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Semaglutide, a glucagon like peptide-1 (GLP-1) receptor agonist, is available as monotherapy in both subcutaneous as well as oral dosage form (first approved oral GLP-1 receptor agonist). It has been approved as a second line treatment option for better glycaemic control in type 2 diabetes and currently under scrutiny for anti-obesity purpose. Semaglutide has been proved to be safe in adults and elderly patients with renal or hepatic disorders demanding no dose modification. Cardiovascular (CV) outcome trials established that it can reduce various CV risk factors in patients with established CV disorders. Semaglutide is well tolerated with no risk of hypoglycaemia in monotherapy but suffers from gastrointestinal adverse effects. A large population affected with COVID-19 infection were diabetic; therefore use of semaglutide in diabetes as well as CV patients would be very much supportive in maintaining health care system during this pandemic situation. Hence, this peptidic drug can be truly considered as a quintessential of GLP-1 agonists for management of type 2 diabetes.
Collapse
Affiliation(s)
- Manoj Kumar Mahapatra
- Kanak Manjari Institute of Pharmaceutical Sciences, Rourkela, 769015, Odisha, India.
| | - Muthukumar Karuppasamy
- YaAn Pharmaceutical and Medical Communications, 6/691H1, Balaji Nagar, Sithurajapuram, Sivakasi, 626189, Tamilnadu, India
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India
| |
Collapse
|
11
|
Heise T, Mari A, DeVries JH, Urva S, Li J, Pratt EJ, Coskun T, Thomas MK, Mather KJ, Haupt A, Milicevic Z. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol 2022; 10:418-429. [PMID: 35468322 DOI: 10.1016/s2213-8587(22)00085-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Tirzepatide, a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonist, shows a remarkable ability to lower blood glucose, enabling many patients with long-standing type 2 diabetes to achieve normoglycaemia. We aimed to understand the physiological mechanisms underlying the action of tirzepatide in type 2 diabetes. METHODS This multicentre, randomised, double-blind, parallel-arm, phase 1 study was done at two centres in Germany. Eligible patients were aged 20-74 years, had type 2 diabetes for at least 6 months, and were being treated with lifestyle advice and stable doses of metformin, with or without one additional stable dose of another oral antihyperglycaemic medicine, 3 months before study entry. Via a randomisation table, patients were randomly assigned (3:3:2) to subcutaneously receive either tirzepatide 15 mg, semaglutide 1 mg, or placebo once per week. Endpoint measurements were done at baseline and the last week of therapy (week 28). The primary endpoint was the effect of tirzepatide versus placebo on the change in clamp disposition index (combining measures of insulin secretion and sensitivity) from baseline to week 28 of treatment and was analysed in the pharmacodynamic analysis set, which comprised all randomly assigned participants who received at least one dose of a study drug and had evaluable pharmacodynamic data. Safety was analysed in the safety population, which comprised all randomly assigned participants who received at least one dose of a study drug. Secondary endpoints included the effect of tirzepatide versus semaglutide on the change in clamp disposition index from baseline to week 28 of treatment, glucose control, total insulin secretion rate, M value (insulin sensitivity), and fasting and postprandial glucagon concentrations. Exploratory endpoints included the change in fasting and postprandial insulin concentrations. This study is registered with ClinicalTrials.gov, NCT03951753, and is complete. FINDINGS Between June 28, 2019, and April 8, 2021, we screened 184 individuals and enrolled 117 participants, all of whom were included in the safety population (45 in the tirzepatide 15 mg group, 44 in the semaglutide 1 mg group, and 28 in the placebo group). Because of discontinuations and exclusions due to missing or unevaluable data, 39 patients in each treatment group and 24 patients in the placebo group comprised the pharmacodynamic analysis set. With tirzepatide, the clamp disposition index increased from a least squares mean of 0·3 pmol m-2 L min-2 kg-1 (SE 0·03) at baseline by 1·9 pmol m-2 L min-2 kg-1 (0·16) to total 2·3 pmol m-2 L min-2 kg-1 (SE 0·16) at week 28 and, with placebo, the clamp disposition index did not change much from baseline (least squares mean at baseline 0·4 pmol m-2 L min-2 kg-1 [SE 0·04]; change from baseline 0·0 pmol m-2 L min-2 kg-1 [0·03]; least squares mean at week 28 0·3 [SE 0·03]; estimated treatment difference [ETD] tirzepatide vs placebo 1·92 [95% CI 1·59-2·24]; p<0·0001). The improvement with tirzepatide in clamp disposition index was significantly greater than with semaglutide (ETD 0·84 pmol m-2 L min-2 kg-1 [95% CI 0·46-1·21]). This result reflected significant improvements in total insulin secretion rate (ETD 102·09 pmol min-1 m-2 [51·84-152·33]) and insulin sensitivity (ETD 1·52 mg min-1 kg-1 [0·53-2·52]) for tirzepatide versus semaglutide. On meal tolerance testing, tirzepatide significantly reduced glucose excursions (lower insulin and glucagon concentrations) compared with placebo, with effects on these variables being greater than with semaglutide. The safety profiles of tirzepatide and semaglutide were similar, with gastrointestinal adverse events being the most common (11 [24%], 13 [30%], and seven [25%] with nausea; nine [20%], 13 [30%], and six [21%] with diarrhoea; and three [7%], five [11%], and one [4%] with vomiting, for tirzepatide, semaglutide, and placebo, respectively). There were no deaths. INTERPRETATION The glycaemic efficacy of GIP/GLP-1 receptor agonist tirzepatide in type 2 diabetes results from concurrent improvements in key components of diabetes pathophysiology, namely β-cell function, insulin sensitivity, and glucagon secretion. These effects were large and help to explain the remarkable glucose-lowering ability of tirzepatide seen in phase 3 studies. FUNDING Eli Lilly.
Collapse
Affiliation(s)
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | | | | | - Jing Li
- Eli Lilly, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Møllerhøj MB, Veidal SS, Thrane KT, Oró D, Overgaard A, Salinas CG, Madsen MR, Pfisterer L, Vyberg M, Simon E, Broermann A, Vrang N, Jelsing J, Feigh M, Hansen HH. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet‐induced obese and biopsy‐confirmed mouse model of NASH. Clin Transl Sci 2022; 15:1167-1186. [PMID: 35143711 PMCID: PMC9099137 DOI: 10.1111/cts.13235] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Non‐alcoholic steatohepatitis (NASH) has emerged as a major challenge for public health because of high global prevalence and lack of evidence‐based therapies. Most animal models of NASH lack sufficient validation regarding disease progression and pharmacological treatment. The Gubra‐Amylin NASH (GAN) diet‐induced obese (DIO) mouse demonstrate clinical translatability with respect to disease etiology and hallmarks of NASH. This study aimed to evaluate disease progression and responsiveness to clinically effective interventions in GAN DIO‐NASH mice. Disease phenotyping was performed in male C57BL/6J mice fed the GAN diet high in fat, fructose, and cholesterol for 28–88 weeks. GAN DIO‐NASH mice with biopsy‐confirmed NASH and fibrosis received low‐caloric dietary intervention, semaglutide (30 nmol/kg/day, s.c.) or lanifibranor (30 mg/kg/day, p.o.) for 8 and 12 weeks, respectively. Within‐subject change in nonalcoholic fatty liver disease (NAFLD) Activity Score (NAS) and fibrosis stage was evaluated using automated deep learning‐based image analysis. GAN DIO‐NASH mice showed clear and reproducible progression in NASH, fibrosis stage, and tumor burden with high incidence of hepatocellular carcinoma. Consistent with clinical trial outcomes, semaglutide and lanifibranor improved NAS, whereas only lanifibranor induced regression in the fibrosis stage. Dietary intervention also demonstrated substantial benefits on metabolic outcomes and liver histology. Differential therapeutic efficacy of semaglutide, lanifibranor, and dietary intervention was supported by quantitative histology, RNA sequencing, and blood/liver biochemistry. In conclusion, the GAN DIO‐NASH mouse model recapitulates various histological stages of NASH and faithfully reproduces histological efficacy profiles of compounds in advanced clinical development for NASH. Collectively, these features highlight the utility of GAN DIO‐NASH mice in preclinical drug development.
Collapse
Affiliation(s)
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | | | | | | | - Larissa Pfisterer
- Boehringer‐Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss Germany
| | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University Copenhagen Denmark
| | - Eric Simon
- Boehringer‐Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss Germany
| | - Andre Broermann
- Boehringer‐Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss Germany
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | | |
Collapse
|
13
|
Pirro V, Roth KD, Lin Y, Willency JA, Milligan PL, Wilson JM, Ruotolo G, Haupt A, Newgard CB, Duffin KL. Effects of Tirzepatide, a Dual GIP and GLP-1 RA, on Lipid and Metabolite Profiles in Subjects With Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:363-378. [PMID: 34608929 DOI: 10.1210/clinem/dgab722] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/06/2023]
Abstract
CONTEXT Tirzepatide substantially reduced hemoglobin A1c (HbA1c) and body weight in subjects with type 2 diabetes (T2D) compared with the glucagon-like peptide 1 receptor agonist dulaglutide. Improved glycemic control was associated with lower circulating triglycerides and lipoprotein markers and improved markers of beta-cell function and insulin resistance (IR), effects only partially attributable to weight loss. OBJECTIVE Assess plasma metabolome changes mediated by tirzepatide. DESIGN Phase 2b trial participants were randomly assigned to receive weekly subcutaneous tirzepatide, dulaglutide, or placebo for 26 weeks. Post hoc exploratory metabolomics and lipidomics analyses were performed. SETTING Post hoc analysis. PARTICIPANTS 259 subjects with T2D. INTERVENTION(S) Tirzepatide (1, 5, 10, 15 mg), dulaglutide (1.5 mg), or placebo. MAIN OUTCOME MEASURE(S) Changes in metabolite levels in response to tirzepatide were assessed against baseline levels, dulaglutide, and placebo using multiplicity correction. RESULTS At 26 weeks, a higher dose tirzepatide modulated a cluster of metabolites and lipids associated with IR, obesity, and future T2D risk. Branched-chain amino acids, direct catabolic products glutamate, 3-hydroxyisobutyrate, branched-chain ketoacids, and indirect byproducts such as 2-hydroxybutyrate decreased compared to baseline and placebo. Changes were significantly larger with tirzepatide compared with dulaglutide and directly proportional to reductions of HbA1c, homeostatic model assessment 2-IR indices, and proinsulin levels. Proportional to metabolite changes, triglycerides and diglycerides were lowered significantly compared to baseline, dulaglutide, and placebo, with a bias toward shorter and highly saturated species. CONCLUSIONS Tirzepatide reduces body weight and improves glycemic control and uniquely modulates metabolites associated with T2D risk and metabolic dysregulation in a direction consistent with improved metabolic health.
Collapse
Affiliation(s)
| | | | - Yanzhu Lin
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology and Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
14
|
Berra CC, Rossi MC, Mirani M, Ceccarelli Ceccarelli D, Romano C, Sassi L, Peretti E, Favacchio G, Pastore I, Folini L, Graziano G, Lunati ME, Solerte SB, Fiorina P. Real world effectiveness of subcutaneous semaglutide in type 2 diabetes: A retrospective, cohort study (Sema-MiDiab01). Front Endocrinol (Lausanne) 2022; 13:1099451. [PMID: 36743930 PMCID: PMC9889982 DOI: 10.3389/fendo.2022.1099451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Aim of the present study was to evaluate the real-world impact of once-weekly (OW) subcutaneous semaglutide on different end-points indicative of metabolic control, cardiovascular risk factors, and beta-cell function in type 2 diabetes (T2D). METHODS This was a retrospective, observational study conducted in 5 diabetes clinics in Italy. Changes in HbA1c, fasting blood glucose (FBG), body weight, blood pressure, lipid profile, renal function, and beta-cell function (HOMA-B) during 12 months were evaluated. RESULTS Overall, 594 patients (97% GLP-1RA naïve) were identified (mean age 63.9 ± 9.5 years, 58.7% men, diabetes duration 11.4 ± 8.0 years). After 6 months of treatment with OW semaglutide, HbA1c levels were reduced by 0.90%, FBG by 26 mg/dl, and body weight by 3.43 kg. Systolic blood pressure, total and LDL-cholesterol significantly improved. Benefits were sustained at 12 months. Renal safety was documented. HOMA-B increased from 40.2% to 57.8% after 6 months (p<0.0001). DISCUSSION The study highlighted benefits of semaglutide on metabolic control, multiple CV risk factors, and renal safety in the real-world. Semaglutide seems to be an advisable option for preservation of β-cell function and early evidence suggests it might have a role in modifying insulin resistance (HOMA-IR), the pathogenetic basis of prediabetes and T2D.
Collapse
Affiliation(s)
- Cesare C. Berra
- Department of Endocrine and Metabolic Diseases, I.R.C.C.S. MultiMedica – Sesto San Giovanni, Milan, Italy
- *Correspondence: Cesare C. Berra, ; Maria Chiara Rossi,
| | - Maria Chiara Rossi
- CORESEARCH – Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
- *Correspondence: Cesare C. Berra, ; Maria Chiara Rossi,
| | - Marco Mirani
- Department of Internal Medicine, I.R.C.C.S Humanitas Research Hospital – Rozzano, Milan, Italy
| | | | - Cristina Romano
- Diabetology, Azienda Ospedaliera ASST Sette Laghi - Osp. di Circolo, Varese, Italy
| | - Lorenza Sassi
- Diabetology, Azienda Ospedaliera ASST Sette Laghi - Osp. di Circolo, Varese, Italy
| | - Elena Peretti
- Diabetology, Azienda Ospedaliera ASST Sette Laghi - Osp. di Circolo, Varese, Italy
| | - Giuseppe Favacchio
- Department of Internal Medicine, I.R.C.C.S Humanitas Research Hospital – Rozzano, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Laura Folini
- Department of Endocrine and Metabolic Diseases, I.R.C.C.S. MultiMedica – Sesto San Giovanni, Milan, Italy
| | - Giusi Graziano
- CORESEARCH – Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | | | - Sebastiano Bruno Solerte
- Department of Internal Medicine, UOC Geriatrics and Diabetology, University of Pavia, Pavia, Italy
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| |
Collapse
|
15
|
Marinho TDS, Martins FF, Cardoso LEDM, Aguila MB, Mandarim-de-Lacerda CA. Pancreatic islet cells disarray, apoptosis, and proliferation in obese mice. The role of Semaglutide treatment. Biochimie 2021; 193:126-136. [PMID: 34742857 DOI: 10.1016/j.biochi.2021.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
There are significant injuries of pancreatic islets due to obesity and insulin resistance. Therefore, GLP-1 receptor agonists like Semaglutide might benefit the islet structural remodeling and its endocrine function in diet-induced obese mice. One-month-old male C57BL/6 mice were allotted into two dietary groups (n = 60/group) and fed for 16 weeks a control diet (C) or a high‒fat diet (HF). Then, for an additional four weeks, the main groups were resampled to include treatment (Semaglutide, S, 40 μg/kg), or paired feed with the treated group (PF), totaling six groups (n = 20/group): C, CS, CPF, HF, HFS, HFPF. Biochemistry, stereology, immunohistochemistry/immunofluorescence, confocal microscopy, and RT-qPCR were used in the study. The mouse model reproduced metabolism and bodily changes due to diet-induced obesity. Pancreatic islet hypertrophy was observed with alpha- and beta-cell remodeling, cell disarray, and apoptosis. Semaglutide increased islet cell proliferation and recovered islet size and alpha- and beta-cell masses. The changes include recovery of glucose and hormone levels, reduction of pro-inflammatory markers, improvement of pancreatic duodenal homeobox 1 (PDX-1), glucose transporter 2 (GLUT-2), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAF-A), and peroxisome proliferator-activated receptors (PPAR) -gamma. In conclusion, damage to the pancreatic islet caused by insulin resistance and the attempt to adapt the islet of obese mice involved different pathways, especially the pro-inflammatory pathway, PDX1, and PPAR-alpha and gamma. Semaglutide showed beneficial effects on these pathways, reducing the lesion on the islet. However, the weight loss influence of Semaglutide was of little relevance in the pancreatic islet.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabiane Ferreira Martins
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo de Macedo Cardoso
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
17
|
Dahl K, Brooks A, Almazedi F, Hoff ST, Boschini C, Bækdal TA. Oral semaglutide improves postprandial glucose and lipid metabolism, and delays gastric emptying, in subjects with type 2 diabetes. Diabetes Obes Metab 2021; 23:1594-1603. [PMID: 33710717 PMCID: PMC8251575 DOI: 10.1111/dom.14373] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
AIM To assess the effects of oral semaglutide on postprandial glucose and lipid metabolism, and gastric emptying, in subjects with type 2 diabetes (T2D). MATERIALS AND METHODS In this randomized, double-blind, single-centre, crossover trial, subjects with T2D received once-daily oral semaglutide (escalated to 14 mg) followed by placebo, or vice versa, over two consecutive 12-week periods. Glucose and lipid metabolism, and gastric emptying (paracetamol absorption) were assessed before and after two types of standardized meals (standard and/or fat-rich) at the end of each treatment period. The primary endpoint was area under the glucose 0-5-h curve (AUC0-5h ) after the standard breakfast. RESULTS Fifteen subjects were enrolled (mean age 58.2 years, HbA1c 6.9%, body weight 93.9 kg, diabetes duration 3.1 years; 13 [86.7%] males). Fasting concentrations of glucose were significantly lower, and C-peptide significantly greater, with oral semaglutide versus placebo. Postprandial glucose (AUC0-5h ) was significantly lower with oral semaglutide versus placebo (estimated treatment ratio, 0.71; 95% CI, 0.63, 0.81; p < .0001); glucose incremental AUC (iAUC0-5h/5h ) and glucagon AUC0-5h were also significantly reduced, with similar results after the fat-rich breakfast. Fasting concentrations of triglycerides, very low-density lipoprotein (VLDL) and apolipoprotein B48 (ApoB48) were significantly lower with oral semaglutide versus placebo. AUC0-8h for triglycerides, VLDL and ApoB48, and triglycerides iAUC0-8h/8h , were significantly reduced after oral semaglutide versus placebo. During the first postprandial hour, gastric emptying was delayed (a 31% decrease in paracetamol AUC0-1h ) with oral semaglutide versus placebo. One serious adverse event (acute myocardial infarction) occurred during oral semaglutide treatment. CONCLUSION Oral semaglutide significantly improved fasting and postprandial glucose and lipid metabolism, and delayed gastric emptying.
Collapse
|
18
|
Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, Holland AK, Friedrich JL, Wojnicki S, Konkol DL, Cosgrove R, Furber EPC, Ruan X, O'Farrell LS, Long AM, Dogra M, Willency JA, Lin Y, Ding L, Cheng CC, Cabrera O, Briere DA, Alsina-Fernandez J, Gimeno RE, Moyers JS, Coskun T, Coghlan MP, Sloop KW, Roell WC. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J Clin Invest 2021; 131:146353. [PMID: 34003802 DOI: 10.1172/jci146353] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.
Collapse
|
19
|
Saxena AR, Gorman DN, Esquejo RM, Bergman A, Chidsey K, Buckeridge C, Griffith DA, Kim AM. Danuglipron (PF-06882961) in type 2 diabetes: a randomized, placebo-controlled, multiple ascending-dose phase 1 trial. Nat Med 2021; 27:1079-1087. [PMID: 34127852 DOI: 10.1038/s41591-021-01391-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Agonism of the glucagon-like peptide-1 receptor (GLP-1R) results in glycemic lowering and body weight loss and is a therapeutic strategy to treat type 2 diabetes (T2D) and obesity. We developed danuglipron (PF-06882961), an oral small-molecule GLP-1R agonist and found it had comparable efficacy to injectable peptidic GLP-1R agonists in a humanized mouse model. We then completed a placebo-controlled, randomized, double-blind, multiple ascending-dose phase 1 study ( NCT03538743 ), in which we enrolled 98 patients with T2D on background metformin and randomized them to receive multiple ascending doses of danuglipron or placebo for 28 d, across eight cohorts. The primary outcomes were assessment of adverse events (AEs), safety laboratory tests, vital signs and 12-lead electrocardiograms. Most AEs were mild, with nausea, dyspepsia and vomiting most commonly reported. There were no clinically meaningful AEs in laboratory values across groups. Heart rate generally increased with danuglipron treatment at day 28, but no heart-rate AEs were reported. Systolic blood pressure was slightly decreased and changes in diastolic blood pressure were similar with danuglipron treatment at day 28, compared with placebo. There were no clinically meaningful electrocardiogram findings. In this study in T2D, danuglipron was generally well tolerated, with a safety profile consistent with the mechanism of action of GLP-1R agonism.
Collapse
Affiliation(s)
- Aditi R Saxena
- Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| | - Donal N Gorman
- Pfizer Worldwide Research and Development, Cambridge, UK
| | - Ryan M Esquejo
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Arthur Bergman
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Kristin Chidsey
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | | | - Albert M Kim
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| |
Collapse
|
20
|
Thomas MK, Nikooienejad A, Bray R, Cui X, Wilson J, Duffin K, Milicevic Z, Haupt A, Robins DA. Dual GIP and GLP-1 Receptor Agonist Tirzepatide Improves Beta-cell Function and Insulin Sensitivity in Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:388-396. [PMID: 33236115 PMCID: PMC7823251 DOI: 10.1210/clinem/dgaa863] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Novel dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist (RA) tirzepatide demonstrated substantially greater glucose control and weight loss (WL) compared with selective GLP-1RA dulaglutide. OBJECTIVE Explore mechanisms of glucose control by tirzepatide. DESIGN Post hoc analyses of fasting biomarkers and multiple linear regression analysis. SETTING Forty-seven sites in 4 countries. PATIENTS OR OTHER PARTICIPANTS Three hundred and sixteen subjects with type 2 diabetes. INTERVENTIONS Tirzepatide (1, 5, 10, 15 mg), dulaglutide (1.5 mg), placebo. MAIN OUTCOME MEASURES Analyze biomarkers of beta-cell function and insulin resistance (IR) and evaluate WL contributions to IR improvements at 26 weeks. RESULTS Homeostatic model assessment (HOMA) 2-B significantly increased with dulaglutide and tirzepatide 5, 10, and 15 mg compared with placebo (P ≤ .02). Proinsulin/insulin and proinsulin/C-peptide ratios significantly decreased with tirzepatide 10 and 15 mg compared with placebo and dulaglutide (P ≤ .007). Tirzepatide 10 and 15 mg significantly decreased fasting insulin (P ≤ .033) and tirzepatide 10 mg significantly decreased HOMA2-IR (P = .004) compared with placebo and dulaglutide. Markers of improved insulin sensitivity (IS) adiponectin, IGFBP-1, and IGFBP-2 significantly increased by 1 or more doses of tirzepatide (P < .05). To determine whether improvements in IR were directly attributable to WL, multiple linear regression analysis with potential confounding variables age, sex, metformin, triglycerides, and glycated hemoglobin A1c was conducted. WL significantly (P ≤ .028) explained only 13% and 21% of improvement in HOMA2-IR with tirzepatide 10 and 15 mg, respectively. CONCLUSIONS Tirzepatide improved markers of IS and beta-cell function to a greater extent than dulaglutide. IS effects of tirzepatide were only partly attributable to WL, suggesting dual receptor agonism confers distinct mechanisms of glycemic control.
Collapse
Affiliation(s)
- Melissa K Thomas
- Eli Lilly and Company, Indianapolis, IN, USA
- Correspondence: Melissa K. Thomas, MD, PhD, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA. E-mail:
| | | | - Ross Bray
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Xuewei Cui
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
21
|
Boer GA, Holst JJ. Incretin Hormones and Type 2 Diabetes-Mechanistic Insights and Therapeutic Approaches. BIOLOGY 2020; 9:biology9120473. [PMID: 33339298 PMCID: PMC7766765 DOI: 10.3390/biology9120473] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary When we ingest a meal, our intestine secretes hormones that are released into the bloodstream. Amongst these hormones are the incretins hormones which stimulate the release of insulin from the pancreas which is essential for the regulation of in particular postprandial glucose concentrations. In patients with type 2 diabetes, the effect of the incretins is diminished. This is thought to contribute importantly to the pathophysiology of the disease. However, in pharmacological amounts, the incretins may still influence insulin secretion and metabolism. Much research has therefore been devoted to the development of incretin-based therapies for type 2 diabetes. These therapies include compounds that strongly resemble the incretins, hereby stimulating their effects as well as inhibitors of the enzymatic degradation of the hormones, thereby increasing the concentration of incretins in the blood. Both therapeutic approaches have been implemented successfully, but research is still ongoing aimed at the development of further optimized therapies. Abstract Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Correspondence: ; Tel.: +45-2875-7518
| |
Collapse
|
22
|
Abstract
The current paradigm of type 2 diabetes (T2D) is gluco-centric, being exclusively categorized by glycemic characteristics. The gluco-centric paradigm views hyperglycemia as the primary target, being driven by resistance to insulin combined with progressive beta cells failure, and considers glycemic control its ultimate treatment goal. Most importantly, the gluco-centric paradigm considers the non-glycemic diseases associated with T2D, e.g., obesity, dyslipidemia, hypertension, macrovascular disease, microvascular disease and fatty liver as 'risk factors' and/or 'outcomes' and/or 'comorbidities', rather than primary inherent disease aspects of T2D. That is in spite of their high prevalence (60-90%) and major role in profiling T2D morbidity and mortality. Moreover, the gluco-centric paradigm fails to realize that the non-glycemic diseases of T2D are driven by insulin and, except for glycemic control, response to insulin in T2D is essentially the rule rather than the exception. Failure of the gluco-centric paradigm to offer an exhaustive unifying view of the glycemic and non-glycemic diseases of T2D may have contributed to T2D being still an unmet need. An mTORC1-centric paradigm maintains that hyperactive mTORC1 drives the glycemic and non-glycemic disease aspects of T2D. Hyperactive mTORC1 is proposed to act as double-edged agent, namely, to interfere with glycemic control by disrupting the insulin receptor-Akt transduction pathway, while concomitantly driving the non-glycemic diseases of T2D. The mTORC1-centric paradigm may offer a novel perspective for T2D in terms of pathogenesis, clinical focus and treatment strategy.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
23
|
Pratley RE, Aroda VR, Catarig AM, Lingvay I, Lüdemann J, Yildirim E, Viljoen A. Impact of patient characteristics on efficacy and safety of once-weekly semaglutide versus dulaglutide: SUSTAIN 7 post hoc analyses. BMJ Open 2020; 10:e037883. [PMID: 33199417 PMCID: PMC7670946 DOI: 10.1136/bmjopen-2020-037883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE In SUSTAIN 7, once-weekly semaglutide demonstrated superior glycated haemoglobin (HbA1c) and body weight (BW) reductions versus once-weekly dulaglutide in subjects with type 2 diabetes (T2D). This post hoc analysis investigated the impact of clinically relevant subject characteristics on treatment effects of semaglutide versus dulaglutide. DESIGN Analyses by baseline age (<65, ≥65 years), sex (male, female), diabetes duration (≤5, >5-10, >10 years), HbA1c (≤7.5, >7.5-8.5, >8.5% (≤58, >58-69, >69 mmol/mol)) and body mass index (BMI) (<30, 30-<35, ≥35 kg/m2). SETTING 194 sites; 16 countries. PARTICIPANTS Subjects with T2D (n=1199) exposed to treatment. INTERVENTIONS Semaglutide 0.5 mg versus dulaglutide 0.75 mg (low-dose comparison); semaglutide 1.0 mg versus dulaglutide 1.5 mg (high-dose comparison), all subcutaneously once weekly. PRIMARY AND SECONDARY OUTCOME MEASURES Change in HbA1c (primary endpoint) and BW (confirmatory secondary endpoint) from baseline to week 40; proportion of subjects achieving HbA1c targets (<7%, ≤6.5% (<53, ≤48 mmol/mol)) and weight-loss responses (≥5%, ≥10%) at week 40; and safety. RESULTS HbA1c and BW reductions (estimated treatment difference ranges: -0.22 to -0.70%-point; -1.76 to -3.84 kg) and proportion of subjects achieving HbA1c targets and weight-loss responses were statistically significantly greater for the majority of comparisons of semaglutide versus dulaglutide within each subgroup category and, excepting glycaemic control within the low-dose comparison in HbA1c subgroups, this was irrespective of subgroup or dose comparison. Gastrointestinal adverse events, the most common with both treatments, were reported by more women than men and, with semaglutide, decreased with increasing BMI. CONCLUSIONS Consistently greater improvements in HbA1c and BW with semaglutide versus dulaglutide, regardless of age, sex, diabetes duration, glycaemic control and BMI, support the efficacy of semaglutide across the continuum of care in a heterogeneous population with T2D. TRIAL REGISTRATION NUMBER NCT02648204.
Collapse
Affiliation(s)
- Richard E Pratley
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Vanita R Aroda
- Division of Endocrinology, Diabetes & Hypertension, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Ildiko Lingvay
- Department of Internal Medicine/Endocrinology and Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jörg Lüdemann
- Diabetes-Falkensee, Diabetes Centre and Centre for Clinical Studies, Falkensee, Germany
| | - Emre Yildirim
- Global Medical Affairs, Novo Nordisk A/S, Søborg, Denmark
| | - Adie Viljoen
- Borthwick Diabetes Research Centre, Lister Hospital, Stevenage, UK
| |
Collapse
|
24
|
Neto MG, Moon RC, de Quadros LG, Grecco E, Filho AC, de Souza TF, Mattar LA, de Sousa JAG, Dayyeh BKA, Morais H, Matz F, Jawad MA, Teixeira AF. Safety and short-term effectiveness of endoscopic sleeve gastroplasty using overstitch: preliminary report from a multicenter study. Surg Endosc 2020; 34:4388-4394. [PMID: 31624939 DOI: 10.1007/s00464-019-07212-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Endoscopic sleeve gastroplasty (ESG) is an option for patients with Class I and II obesity or patients who refuse to undergo a laparoscopic bariatric surgery. The aims of this study are as follows: (1) to demonstrate a short-term outcome after primary ESG and (2) to compare the effectiveness of weight loss between Class I and Class II obesity patients. METHODS Patients undergoing ESG at four bariatric centers in Brazil between April 1, 2017 and December 31, 2018 were prospectively enrolled in the study (BMI 30.0-39.9 kg/m2). ESG was performed using Overstitch (Apollo Endosurgery, Austin, TX). Descriptive analysis, t test, Chi-square test, and Mann-Whitney test were used to present the results. RESULTS A total of 233 patients underwent primary ESG. The mean age and BMI of the patients were 41.1 years and 34.7 kg/m2, respectively. Following ESG, the mean percentage of total weight loss (TWL) was 17.1% at 6 months and 19.7% at 12 months. Percentage of excess BMI loss (EBMIL) was 47.3% at 6 months and 54.8% at 12 months after ESG. The mean EBMIL was significantly greater among patients with Class I obesity than those with Class II obesity at 6 (51.1% vs. 43.7%) and 12 months (60.2% vs. 49.2%). One patient experienced bleeding during the procedure that was managed with sclerotherapy. CONCLUSION Short-term results suggest that ESG is a safe and effective option for patients with Class I and II obesity.
Collapse
Affiliation(s)
| | - Rena C Moon
- Department of Bariatric Surgery, Orlando Regional Medical Center, Orlando Health, 89 W Copeland Dr, 1st Floor, Orlando, FL, USA
| | | | | | | | | | | | | | | | - Helmut Morais
- Hospital Geral de Fortaleza, Fortaleza, Ceara, Brazil
| | | | - Muhammad A Jawad
- Department of Bariatric Surgery, Orlando Regional Medical Center, Orlando Health, 89 W Copeland Dr, 1st Floor, Orlando, FL, USA
| | - Andre F Teixeira
- Department of Bariatric Surgery, Orlando Regional Medical Center, Orlando Health, 89 W Copeland Dr, 1st Floor, Orlando, FL, USA.
| |
Collapse
|
25
|
Samms RJ, Coghlan MP, Sloop KW. How May GIP Enhance the Therapeutic Efficacy of GLP-1? Trends Endocrinol Metab 2020; 31:410-421. [PMID: 32396843 DOI: 10.1016/j.tem.2020.02.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists improve glucose homeostasis, reduce bodyweight, and over time benefit cardiovascular health in type 2 diabetes mellitus (T2DM). However, dose-related gastrointestinal effects limit efficacy, and therefore agents possessing GLP-1 pharmacology that can also target alternative pathways may expand the therapeutic index. One approach is to engineer GLP-1 activity into the sequence of glucose-dependent insulinotropic polypeptide (GIP). Although the therapeutic implications of the lipogenic actions of GIP are debated, its ability to improve lipid and glucose metabolism is especially evident when paired with the anorexigenic mechanism of GLP-1. We review the complexity of GIP in regulating adipose tissue function and energy balance in the context of recent findings in T2DM showing that dual GIP/GLP-1 receptor agonist therapy produces profound weight loss, glycemic control, and lipid lowering.
Collapse
Affiliation(s)
- Ricardo J Samms
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthew P Coghlan
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Naseri R, Navabi SJ, Samimi Z, Mishra AP, Nigam M, Chandra H, Olatunde A, Tijjani H, Morais-Urano RP, Farzaei MH. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 2020; 28:333-358. [PMID: 32006343 PMCID: PMC7095136 DOI: 10.1007/s40199-020-00327-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Glycoproteins are organic compounds formed from proteins and carbohydrates, which are found in many parts of the living systems including the cell membranes. Furthermore, impaired metabolism of glycoprotein components plays the main role in the pathogenesis of diabetes mellitus. The aim of this study is to investigate the influence of glycoprotein levels in the treatment of diabetes mellitus. METHODS All relevant papers in the English language were compiled by searching electronic databases, including Scopus, PubMed and Cochrane library. The keywords of glycoprotein, diabetes mellitus, glycan, glycosylation, and inhibitor were searched until January 2019. RESULTS Glycoproteins are pivotal elements in the regulation of cell proliferation, growth, maturation and signaling pathways. Moreover, they are involved in drug binding, drug transportation, efflux of chemicals and stability of therapeutic proteins. These functions, structure, composition, linkages, biosynthesis, significance and biological effects are discussed as related to their use as a therapeutic strategy for the treatment of diabetes mellitus and its complications. CONCLUSIONS The findings revealed several chemical and natural compounds have significant beneficial effects on glycoprotein metabolism. The comprehension of glycoprotein structure and functions are very essential and inevitable to enhance the knowledge of glycoengineering for glycoprotein-based therapeutics as may be required for the treatment of diabetes mellitus and its associated complications. Graphical abstract.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Jafar Navabi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemwati Nandan Bahuguna Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Manisha Nigam
- Department of Biochemistry, Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Harish Chandra
- Department of Microbiology, Gurukul Kangri Vishwavidhyalya, Haridwar, Uttarakhand, 249404, India
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Habibu Tijjani
- Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau, Nigeria
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Ji Y, Nyamagoud SB, SreeHarsha N, Mishra A, Gubbiyappa SK, Singh Y. Sitagliptin protects liver against aflatoxin B1-induced hepatotoxicity through upregulating Nrf2/ARE/HO-1 pathway. Biofactors 2020; 46:76-82. [PMID: 31600004 DOI: 10.1002/biof.1573] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 inhibitor (DPP-4 inhibitor) such as sitagliptin has been presented as antidiabetic drugs and has numerous restorative advantages over different diseases; however, its defensive role against aflatoxin b1 (AFB1) liver toxicity has not been previously examined. Wistar rats (65 weeks, male) were utilized in the investigation. Animals were divided into five different groups (n = 10): control; AFB1; AFB1 + Sita (50); AFB1 + Sita (100); and Sita (100). Sitagliptin significantly (*p ≤ .05, **p ≤ .01, and ***p ≤ .001) altered the levels of various serum liver enzymes (lactate dehydrogenase, alkaline phosphate, aspartate aminotransferase, and alanine aminotransferase). It decreased the concentration of an oxidative stress marker, that is, malondialdehyde and increased the level of antioxidant enzymes such as reduced glutathione, catalase, superoxide dismutase, and glutathione peroxidase in AFB1-administered rats. It also improved the Nrf2 expression and HO-1 level in AFB1-intoxicated rats. This investigation discusses innovative evidence on the protective role of sitagliptin against AFB1-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Yujiang Ji
- Department of Hepatobiliary, Pancreatic and Minimally Invasive Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Sanatkumar B Nyamagoud
- Department of Pharmacy Practice, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | | | - Yogendra Singh
- Department of Pharmaceutical Sciences, Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur, India
| |
Collapse
|
28
|
Rodbard HW, Bellary S, Hramiak I, Seino Y, Silver R, Damgaard LH, Nayak G, Zacho J, Aroda VR. Greater Combined Reductions in Hba1C ≥1.0% and Weight ≥5.0% with Semaglutide Versus Comparators in type 2 Diabetes. Endocr Pract 2019; 25:589-597. [DOI: 10.4158/ep-2018-0444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|