1
|
Ducreux B, Patrat C, Firmin J, Ferreux L, Chapron C, Marcellin L, Parpex G, Bourdon M, Vaiman D, Santulli P, Fauque P. Systematic review on the DNA methylation role in endometriosis: current evidence and perspectives. Clin Epigenetics 2025; 17:32. [PMID: 39985111 PMCID: PMC11846336 DOI: 10.1186/s13148-025-01828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/30/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Endometriosis appears to have a multilayered etiology, with genetic and epigenetic factors each contributing half of the pathogenesis. The molecular processes that underlie the onset of endometriosis are yet unclear, but it is assumed that an important contributor in the etiopathology of the disease is DNA methylation. METHODS We conducted a systematic review of the literature regarding DNA methylation in endometriosis following PRISMA guidelines. Records were obtained from PubMed and Web of Science on May 31, 2024. Original research articles analyzing regional or genome-wide DNA methylation in patients with confirmed endometriosis (by surgery and/or histological examination) were given consideration for inclusion. Only human studies were included, and there were no restrictions on the types of tissue that was analyzed (i.e., endometrium, blood, or fetal tissue). The study selection process was run by two manual reviewers. In parallel, an adapted virtual artificial intelligence-powered reviewer operated study selection and results were compared with the manual reviewers' selection. Studies were divided into targeted (e.g., single gene or region level) and epigenome-wide association studies. For each, we extracted a list of genes studied with precise location of CpGs analyzed and the DNA methylation status according to the groups compared. Quality assessment of studies was performed following the Newcastle-Ottawa scale. Quality of evidence was graded following the Grading of Recommendations Assessment, Development and Evaluation. RESULTS A total of 955 studies were screened, and 70 were identified as relevant for systematic review. Our analyses displayed that endometriosis could be polyepigenetic and with alterations in specific genes implicated in major signaling pathways contributing to the disease etiopathology (cell proliferation, differentiation, and division [PI3K-Akt and Wnt-signaling pathway], cell division [MAPK pathway], cell adhesion, cell communication, developmental processes, response to hormone, apoptosis, immunity, neurogenesis, and cancer). CONCLUSION Our systematic review indicates that endometriosis is associated with DNA methylation modifications at specific genes involved in key endometrial biological processes, particularly in the ectopic endometrium. As DNA methylation appears to be an integral component of the pathogenesis of endometriosis, the identification of DNA methylation biomarkers would likely help better understand its causes and aggravating factors as well as potentially facilitate its diagnosis and support the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Bastien Ducreux
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Centre Hospitalier Universitaire (CHU), Faculty of Medicine, INSERM 1231, Université de Bourgogne-Europe, Dijon, France
| | - Catherine Patrat
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Julie Firmin
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Lucile Ferreux
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Charles Chapron
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Louis Marcellin
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Guillaume Parpex
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Mathilde Bourdon
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Daniel Vaiman
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
| | - Pietro Santulli
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France
- Department of Gynecology-Obstetric and Assisted Reproduction, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France
| | - Patricia Fauque
- Faculty of Medicine, Inserm U1016, Université de Paris Cité, 75014, Paris, France.
- Department of Reproductive Biology-CECOS, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 75014, Paris, France.
| |
Collapse
|
2
|
Stephens VR, Horner KB, Avila WM, Spicer SK, Chinni R, Bernabe EB, Hinton AO, Damo SM, Eastman AJ, McCallister MM, Osteen KG, Gaddy JA. The impact of persistent organic pollutants on fertility: exposure to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin alters reproductive tract immune responses. Front Immunol 2024; 15:1497405. [PMID: 39720712 PMCID: PMC11666484 DOI: 10.3389/fimmu.2024.1497405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Exposure to environmental contaminants can result in profound effects on the host immune system. One class of environmental toxicants, known as dioxins, are persistent environmental contaminants termed "forever chemicals". The archetype toxicant from this group of chemicals is 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), an immunotoxicant that activates the aryl-hydrocarbon receptor pathway leading to a variety of changes in immune cell responses. Immune cell functions are crucial to the development and maintenance of healthy reproduction. Immune cells facilitate tolerance between at the maternal-fetal interface between the parent and the semi-allogenic fetus and help defend the gravid reproductive tract from infectious assault. Epidemiological studies reveal that exposure to environmental contaminants (such as TCDD) are linked to adverse reproductive health outcomes including endometriosis, placental inflammation, and preterm birth. However, little is known about the molecular mechanisms that underpin how environmental toxicant exposures impact immune functions at the maternal-fetal interface or within the reproductive tract in general. This review presents the most recent published work that studies interactions between dioxin or TCDD exposure, the host immune system, and reproduction.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kensley B. Horner
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Walter M. Avila
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Sabrina K. Spicer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Riya Chinni
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States
| | - Emily B. Bernabe
- Tennessee Valley Health Systems, Department of Veterans Affairs, Nashville, TN, United States
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Monique M. McCallister
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Kevin G. Osteen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Valley Health Systems, Department of Veterans Affairs, Nashville, TN, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Obstetrics and Gynecology, Meharry Medical College, Nashville, TN, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States
- Tennessee Valley Health Systems, Department of Veterans Affairs, Nashville, TN, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Sherwani S, Khan MWA, Rajendrasozhan S, Al-Motair K, Husain Q, Khan WA. The vicious cycle of chronic endometriosis and depression-an immunological and physiological perspective. Front Med (Lausanne) 2024; 11:1425691. [PMID: 39309679 PMCID: PMC11412830 DOI: 10.3389/fmed.2024.1425691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Endometriosis is a chronic, estrogen-dependent, proinflammatory disease that can cause various dysfunctions. The main clinical manifestations of endometriosis include chronic pelvic pain and impaired fertility. The disease is characterized by a spectrum of dysfunctions spanning hormonal signaling, inflammation, immune dysregulation, angiogenesis, neurogenic inflammation, epigenetic alterations, and tissue remodeling. Dysregulated hormonal signaling, particularly involving estrogen and progesterone, drives abnormal growth and survival of endometrial-like tissue outside the uterus. Chronic inflammation, marked by immune cell infiltration and inflammatory mediator secretion, perpetuates tissue damage and pain. Altered immune function, impaired ectopic tissue clearance, and dysregulated cytokine production contribute to immune dysregulation. Enhanced angiogenesis promotes lesion growth and survival. Epigenetic modifications influence gene expression patterns, e.g., HSD11B1 gene, affecting disease pathogenesis. Endometriosis related changes and infertility lead to depression in diagnosed women. Depression changes lifestyle and induces physiological and immunological changes. A higher rate of depression and anxiety has been reported in women diagnosed with endometriosis, unleashing physiological, clinical and immune imbalances which further accelerate chronic endometriosis or vice versa. Thus, both endometriosis and depression are concomitantly part of a vicious cycle that enhance disease complications. A multidimensional treatment strategy is needed which can cater for both endometrial disease and depression and anxiety disorders.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Saravanan Rajendrasozhan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Khalid Al-Motair
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Cetera GE, Merli CEM, Facchin F, Viganò P, Pesce E, Caprara F, Vercellini P. Non-response to first-line hormonal treatment for symptomatic endometriosis: overcoming tunnel vision. A narrative review. BMC Womens Health 2023; 23:347. [PMID: 37391793 PMCID: PMC10311799 DOI: 10.1186/s12905-023-02490-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023] Open
Abstract
One-fourth to one-third of women with endometriosis receiving first-line hormonal treatment lacks an adequate response in terms of resolution of painful symptoms. This phenomenon has been ascribed to "progesterone resistance", an entity that was theorized to explain the gap between the ubiquity of retrograde menstruation and the 10% prevalence of endometriosis among women of reproductive age.Nevertheless, the hypothesis of progesterone resistance is not free of controversies. As our understanding of endometriosis is increasing, authors are starting to set aside the traditionally accepted tunnel vision of endometriosis as a strictly pelvic disease, opening to a more comprehensive perspective of the condition. The question is: are patients not responding to first-line treatment because they have an altered signaling pathway for such treatment, or have we been overlooking a series of other pain contributors which may not be resolved by hormonal therapy?Finding an answer to this question is evermore impelling, for two reasons mainly. Firstly, because not recognizing the presence of further pain contributors adds a delay in treatment to the already existing delay in diagnosis of endometriosis. This may lead to chronicity of the untreated pain contributors as well as causing adverse consequences on quality of life and psychological health. Secondly, misinterpreting the consequences of untreated pain contributors as a non-response to standard first-line treatment may imply the adoption of second-line medical therapies or of surgery, which may entail non-negligible side effects and may not be free of physical, psychological and socioeconomic repercussions.The current narrative review aims at providing an overview of all the possible pain contributors in endometriosis, ranging from those strictly organic to those with a greater neuro-psychological component. Including these aspects in a broader psychobiological approach may provide useful suggestions for treating those patients who report persistent pain symptoms despite receiving first-line hormonal medical treatment.
Collapse
Affiliation(s)
- Giulia Emily Cetera
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federica Facchin
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Pesce
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Caprara
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Vercellini
- Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Orazov MR, Mikhaleva LM, Mullina IA. Endometrial hyperplasia and progesterone resistance: a complex relationship. RUDN JOURNAL OF MEDICINE 2023. [DOI: 10.22363/2313-0245-2023-27-1-65-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The endometrium is one of the most dynamic tissues that constantly undergoes changes during the menstrual cycle in women of the reproductive period. All these processes take place mainly under the influence of steroid hormones that are produced in the woman’s body. However, it is important to remember that throughout life the endometrial tissue undergoes changes under the influence of various factors that lead to imbalances in hormonal regulation. All these changes can lead to the development of endometrial hyperplasia, which has a high risk of both recurrence and malignization. Over the past few decades, the incidence of endometrial cancer has increased in many countries. This trend is thought to be related to the increasing prevalence of obesity, as well as to changing female reproductive patterns. Although there are currently no well-established screening programmers for endometrial cancer, endometrial hyperplasia is a recognized precursor, and its detection provides an opportunity for prevention. Studying the pathogenesis and risk factors will give a great advantage in the future to prevent possible complications. At this point, the activity and inhibition of the different hormone isoforms can lead to different hyperplastic processes. The management of patients depends on many factors: age, species, reproductive potential and other factors. Therefore, a comprehensive approach to treatment is always necessary. In recent years, interest in the study of endometrial hyperplasia has increased dramatically due to the increase in endometrial cancer. Therefore, the issue of early diagnosis and prevention is most urgent in modern gynecology and requires further study. This review reflects the current understanding of the disruption of progesterone signaling mechanisms in endometrial hyperplasia according to domestic and foreign literature.
Collapse
|
6
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Bianchi P, Guo SW, Habiba M, Benagiano G. Utility of the Levonorgestrel-Releasing Intrauterine System in the Treatment of Abnormal Uterine Bleeding and Dysmenorrhea: A Narrative Review. J Clin Med 2022; 11:5836. [PMID: 36233703 PMCID: PMC9570961 DOI: 10.3390/jcm11195836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION We undertook a literature review of the use of levonorgestrel-releasing intrauterine devices when utilized for heavy menstrual bleeding and/or dysmenorrhea. METHODS A narrative review of articles in the Scopus and Medline databases was conducted. RESULTS A number of options exist for the management of both abnormal uterine bleeding (AUB) and dysmenorrhea, and evidence is accumulating that the insertion of a levonorgestrel-releasing intrauterine system (LNG-IUS) represents a useful option for their long-term treatment. The idea of using a progestogen released in utero was initially conceived to achieve long-term contraception, but it was quickly found that these systems could be utilized for a number of therapeutic applications. The first device to be made commercially available, Progestasert, was withdrawn from the market because, in the event of contraceptive failure, it caused a disproportionate percentage of extrauterine pregnancies. On the other hand, the LNG-IUS continues to be successfully utilized in its various variants, releasing 20, 13, or 8 μg/day. These devices have a respective duration of action of 7 (possibly 8), 5, and 3 years, and there exist versions of frameless systems affixed to the myometrium of the uterine fundus. In the present review, following a brief description of the major causes of AUB and dysmenorrhea, the molecular bases for the use of the LNG-IUS are summarized. This is followed by a compendium of its use in AUB and dysmenorrhea, concluding that the insertion of the system improves the quality of life, reduces menstrual blood loss better than other medical therapies, and decreases the extent of dysmenorrhea and pelvic pain. In addition, there is no evidence of a significant difference in these outcomes when the use of the LNG-IUS was compared with improvements offered by endometrial ablation or hysterectomy. Possibly, the most important mechanism of action of the system consists of its ability to induce amenorrhea, which effectively eliminates heavy bleeding and dysmenorrhea. However, no method is ideal for every woman, and, in the case of the LNG-IUS, younger age and severe dysmenorrhea seem to be associated with a higher risk of discontinuation. CONCLUSION The higher-dose LNG-IUS is a useful tool for HMB and dysmenorrhea in women of all ages. The low cost and ease of use make the LNG-IUS an attractive option, especially when contraception is also desired.
Collapse
Affiliation(s)
- Paola Bianchi
- Department of Medico-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza, University of Rome, 00161 Rome, Italy
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Marwan Habiba
- Department of Health Sciences, University Hospitals of Leicester, University of Leicester, Leicester LE1 7RH, UK
| | - Giuseppe Benagiano
- Faculty of Medicine and Dentistry, Sapienza, University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Epigenetic Factors in Eutopic Endometrium in Women with Endometriosis and Infertility. Int J Mol Sci 2022; 23:ijms23073804. [PMID: 35409163 PMCID: PMC8998720 DOI: 10.3390/ijms23073804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Eutopic endometrium in patients with endometriosis is characterized by aberrant expression of essential genes during the implantation window. It predisposes to disturbance of endometrial receptivity. The pathomechanism of implantation failures in women with endometriosis remains unclear. This paper aims to summarize the knowledge on epigenetic mechanisms in eutopic endometrium in the group of patients with both endometriosis and infertility. The impaired DNA methylation patterns of gene promoter regions in eutopic tissue was established. The global profile of histone acetylation and methylation and the analysis of selected histone modifications showed significant differences in the endometrium of women with endometriosis. Aberrant expression of the proposed candidate genes may promote an unfavorable embryonic implantation environment of the endometrium due to an immunological dysfunction, inflammatory reaction, and apoptotic response in women with endometriosis. The role of the newly discovered proteins regulating gene expression, i.e., TET proteins, in endometrial pathology is not yet completely known. The cells of the eutopic endometrium in women with endometriosis contain a stable, impaired methylation pattern and a histone code. Medication targeting critical genes responsible for the aberrant gene expression pattern in eutopic endometrium may help treat infertility in women with endometriosis.
Collapse
|
9
|
Lin YK, Li YY, Li Y, Li DJ, Wang XL, Wang L, Yu M, Zhu YZ, Cheng JJ, Du MR. SCM-198 Prevents Endometriosis by Reversing Low Autophagy of Endometrial Stromal Cell via Balancing ERα and PR Signals. Front Endocrinol (Lausanne) 2022; 13:858176. [PMID: 35784569 PMCID: PMC9245568 DOI: 10.3389/fendo.2022.858176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Endometriosis (EMS), an endocrine-related inflammatory disease, is characterized by estrogen and progesterone imbalance in ectopic lesions. However, its pathogenic mechanism has not been fully elucidated. While SCM-198 is the synthetic form of leonurine and has multiple pharmacological activities such as antioxidation and anti-inflammation, it remains unknown whether it could inhibit the progress of EMS by regulating estrogen signaling and inflammation. METHODS The therapeutic effects of SCM-198 on EMS and its potential mechanism were analyzed by establishing EMS mouse models and performing an RNA sequencing (RNA-seq) assay. ELISA was performed to detect estrogen and tumor necrosis factor (TNF) -α concentrations in normal endometrial stromal cells (nESCs) and ectopic endometrial stromal cells (eESCs) with or without SCM-198 treatment. Western blotting, RNA silencing, and plasmid overexpression were used to analyze the relationship between inflammation, endocrine factors, and autophagy and the regulatory activity of SCM-198 on the inflammation-endocrine-autophagy axis. RESULTS Increased estrogen-estrogen receptor (ER) α signaling and decreased progesterone receptor isoform B (PRB) expression synergistically led to a hypo-autophagy state in eESCs, which further inhibited the apoptosis of eESCs. The high expression of TNF-α in eESCs enhanced the antiapoptotic effect mediated by low autophagy through the activation of the aromatase-estrogen-ERα signaling pathway. SCM-198 inhibited the growth of ectopic lesions in EMS mice and promoted the apoptosis of eESCs both in vivo and in vitro. The apoptotic effect of SCM-198 on eESCs was attained by upregulating the autophagy level via the inhibition of the TNF-α-activated aromatase-estrogen-ERα signal and the increase in PRB expression. CONCLUSION Inflammation facilitated the progress of EMS by disrupting the estrogen regulatory axis. SCM-198 inhibited EMS progression by regulating the inflammation-endocrine-autophagy axis.
Collapse
Affiliation(s)
- Yi-Kong Lin
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yun-Yun Li
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yue Li
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Da-Jin Li
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiao-Lin Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Li Wang
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Min Yu
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Mei-Rong Du, ; Jia-Jing Cheng, ; Yi-Zhun Zhu,
| | - Jia-Jing Cheng
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Mei-Rong Du, ; Jia-Jing Cheng, ; Yi-Zhun Zhu,
| | - Mei-Rong Du
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Obstetrics and Gynecology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Mei-Rong Du, ; Jia-Jing Cheng, ; Yi-Zhun Zhu,
| |
Collapse
|
10
|
Zhou Y, Jin Y, Wang Y, Wu R. Hypoxia activates the unfolded protein response signaling network: An adaptive mechanism for endometriosis. Front Endocrinol (Lausanne) 2022; 13:945578. [PMID: 36339404 PMCID: PMC9630844 DOI: 10.3389/fendo.2022.945578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Endometriosis (EMS) is a chronic gynecological disease that affects women of childbearing age. However, the exact cause remains unclear. The uterus is a highly vascularized organ that continuously exposes endometrial cells to high oxygen concentrations. According to the "planting theory" of EMS pathogenesis, when endometrial cells fall from the uterine cavity and retrograde to the peritoneal cavity, they will face severe hypoxic stress. Hypoxic stress remains a key issue even if successfully implanted into the ovaries or peritoneum. In recent years, increasing evidence has confirmed that hypoxia is closely related to the occurrence and development of EMS. Hypoxia-inducible factor-1α (HIF-1α) can play an essential role in the pathological process of EMS by regulating carbohydrate metabolism, angiogenesis, and energy conversion of ectopic endometrial cells. However, HIF-1α alone is insufficient to achieve the complete program of adaptive changes required for cell survival under hypoxic stress, while the unfolded protein response (UPR) responding to endoplasmic reticulum stress plays an essential supplementary role in promoting cell survival. The formation of a complex signal regulation network by hypoxia-driven UPR may be the cytoprotective adaptation mechanism of ectopic endometrial cells in unfavorable microenvironments.
Collapse
|
11
|
GnRH Antagonists with or without Add-Back Therapy: A New Alternative in the Management of Endometriosis? Int J Mol Sci 2021; 22:ijms222111342. [PMID: 34768770 PMCID: PMC8583814 DOI: 10.3390/ijms222111342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
To evaluate the effectiveness of a new class of medical drugs, namely oral gonadotropin-releasing hormone (GnRH) antagonists, in the management of premenopausal women with endometriosis-associated pelvic pain. We reviewed the most relevant papers (n = 27) on the efficacy of new medical alternatives (oral GnRH antagonists) as therapy for endometriosis. We first briefly summarized the concept of progesterone resistance and established that oral contraceptives and progestogens work well in two-thirds of women suffering from endometriosis. Since clinical evidence shows that estrogens play a critical role in the pathogenesis of the disease, lowering their levels with oral GnRH antagonists may well prove effective, especially in women who fail to respond to progestogens. There is a need for reliable long-term oral treatment capable of managing endometriosis symptoms, taking into consideration both the main symptoms and phenotype of the disease. Published studies reviewed and discussed here confirm the efficacy of GnRH antagonists. There is a place for GnRH antagonists in the management of symptomatic endometriosis. Novel algorithms that take into account the different phenotypes are proposed.
Collapse
|
12
|
Donnez J, Stratopoulou CA, Dolmans MM. Uterine Adenomyosis: From Disease Pathogenesis to a New Medical Approach Using GnRH Antagonists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18199941. [PMID: 34639243 PMCID: PMC8508387 DOI: 10.3390/ijerph18199941] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Uterine adenomyosis is a common chronic disorder frequently encountered in reproductive-age women, causing heavy menstrual bleeding, intense pelvic pain, and infertility. Despite its high prevalence, its etiopathogenesis is not yet fully understood, so there are currently no specific drugs to treat the disease. A number of dysregulated mechanisms are believed to contribute to adenomyosis development and symptoms, including sex steroid signaling, endometrial proliferation and invasiveness, and aberrant immune response. Abnormal sex steroid signaling, particularly hyperestrogenism and subsequent progesterone resistance, are known to play a pivotal role in its pathogenesis, which is why various antiestrogenic agents have been used to manage adenomyosis-related symptoms. Among them, gonadotropin-releasing hormone (GnRH) antagonists are swiftly gaining ground, with recent studies reporting efficient lesion regression and symptom alleviation. The aim of the present review is to compile available information on the pathogenesis of adenomyosis, explore the etiology and mechanisms of hyperestrogenism, and discuss the potential of antiestrogenic therapies for treating the disease and improving patient quality of life.
Collapse
Affiliation(s)
- Jacques Donnez
- Société de Recherche Pour l’Infertilité, 1150 Brussels, Belgium
- Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence:
| | - Christina Anna Stratopoulou
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.A.S.); (M.-M.D.)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.A.S.); (M.-M.D.)
- Gynecology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
13
|
Situmorang H, Hestiantoro A, Purbadi S, Flamandita D, Sahlan M. IN-SILICO dynamic analysis of Sulawesi propolis as anti-endometriosis drug: Interaction study with TNF alpha receptor, NF-kB, estrogen receptor, progesterone receptor and prostaglandin receptor. Ann Med Surg (Lond) 2021; 67:102459. [PMID: 34194730 PMCID: PMC8237281 DOI: 10.1016/j.amsu.2021.102459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Endometriosis is a disease that impacts around 10% of all women in reproductive age, with pelvic pain and infertility as its main clinical features. Current medical treatment targeting lowering estrogen activity has not shown sufficient result due its side effects and reproductive function suppression. Propolis has been widely studied, showing anti inflammation and pro-apoptosis property, that could potentially be used in the treatment of endometriosis. This study investigates the interaction between Sulawesi Propolis' active components and receptors and protein related to endometriosis pathogenesis. METHODS Active components of Sulawesi Propolis were initially identified with their targeted protein receptors. Lipinski rules were used to screen potential components. The ligands and proteins were tested using Autodock program to predict the most active compound and possible binding sites between propolis and some target proteins associated with inflammatory and apoptotic activity in endometriosis models. Receptor modelling is then performed using Swiss-Model. RESULTS These active components of Sulawesi Propolis showed a strong binding potential towards TNF- α, NF-kb, Estrogen-α, Estrogen-β, progesterone B, PGE2 EP2 and EP3 subtype respectively: Sanggenon C, Sanggenon H, Epicryptoacetalide, Chrysin-7-O-β-D-glucopyranodside, Irilone, Polydatin and Epicryptoacetalide. Compared to its negative ligand, Sulawesi Propolis displayed a stronger binding capacity to TNF-α, Estrogen-α, and Progesterone B receptors. CONCLUSION Sulawesi Propolis has the ability to interact with receptors related to reproductive function, apoptotic reactions and inflammatory processes, a significant factor associated with the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Herbert Situmorang
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Indonesia – Dr Cipto Mangunkusumo National Referral Hospital, Jl. Salemba Raya No. 6, Central Jakarta, Jakarta Capital Special Region, 10430, Indonesia
| | - Andon Hestiantoro
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Indonesia – Dr Cipto Mangunkusumo National Referral Hospital, Jl. Salemba Raya No. 6, Central Jakarta, Jakarta Capital Special Region, 10430, Indonesia
| | - Sigit Purbadi
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Indonesia – Dr Cipto Mangunkusumo National Referral Hospital, Jl. Salemba Raya No. 6, Central Jakarta, Jakarta Capital Special Region, 10430, Indonesia
| | - Darin Flamandita
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Fuad Hasan, Pancoran MAS, Kukusan, Beji, Depok City, West Java, 16424, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Fuad Hasan, Pancoran MAS, Kukusan, Beji, Depok City, West Java, 16424, Indonesia
| |
Collapse
|
14
|
Mikhaleva LM, Radzinsky VE, Orazov MR, Khovanskaya TN, Sorokina AV, Mikhalev SA, Volkova SV, Shustova VB, Sinelnikov MY. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health 2021; 13:525-537. [PMID: 34104002 PMCID: PMC8179825 DOI: 10.2147/ijwh.s306135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To review the mechanisms of endometriosis development, including those related to epigenetic mutations, cellular dysregulation, inflammatory processes, and oxidative stress. Methods A systematic literature review regarding current aspects of endometriosis etiology, genesis and development was performed using the PubMed, Google Scholar, and eLibrary databases. Keywords included endometriosis, etiology, development, genesis, associations and mechanisms. A multilingual search was performed. Results Several mechanisms underline the pathophysiological pathways for endometriosis development. Epigenetic mutations, external and internal influences, and chronic conditions have a significant impact on endometriosis development, survival and regulation. Several historically valid theories on endometriosis development were discussed, as well as updated findings. Conclusion Despite recent advances, fundamental problems in understanding endometriosis remain unresolved. The identification of unknown circulating epithelial progenitors or stem cells that are responsible for epithelial growth in both the endometrium and endometriotic foci seems to be the next step in solving these questions.
Collapse
Affiliation(s)
- Lyudmila M Mikhaleva
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Tatyana N Khovanskaya
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia V Sorokina
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Victoria B Shustova
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Mikhail Y Sinelnikov
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
15
|
Sirohi D, Al Ramadhani R, Knibbs LD. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: a systematic literature review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:101-115. [PMID: 32903210 DOI: 10.1515/reveh-2020-0046] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Endocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10-15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis. METHOD Following PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria. RESULTS In total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies. CONCLUSION We found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.
Collapse
Affiliation(s)
- Diksha Sirohi
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Ruqaiya Al Ramadhani
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
16
|
Endometriosis and Medical Therapy: From Progestogens to Progesterone Resistance to GnRH Antagonists: A Review. J Clin Med 2021; 10:jcm10051085. [PMID: 33807739 PMCID: PMC7961981 DOI: 10.3390/jcm10051085] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The first objective of this review was to present, based on recent literature, the most frequently applied medical options (oral contraceptive pills (OCPs) and progestogens) for the management of symptomatic endometriosis, and evaluate their effectiveness in treating premenopausal women with endometriosis-associated pelvic pain, dysmenorrhea, non-menstrual pelvic pain and dyspareunia. The second objective was to review the concept of progesterone resistance and newly available treatment options. Methods: We reviewed the most relevant papers (n = 73) on the efficacy of OCPs and progestogens as medical therapy for endometriosis, as well as those on progesterone resistance and new medical alternatives (oral gonadotropin-releasing hormone (GnRH) antagonist). Eleven papers, essentially reviews, were selected and scrutinized from among 94 papers discussing the concept of progesterone resistance. Results: Having reviewed the most significant papers, we can confirm that OCPs and progestogens are effective in two-thirds of women suffering from endometriosis, but that other options are required in case of failure (in one-third of women due to progesterone resistance) or intolerance to these compounds. It is clear that there is a need for effective long-term oral treatment capable of managing endometriosis symptoms, while mitigating the impact of side effects. Biochemical, histological and clinical evidence show that estrogens play a critical role in the pathogenesis of endometriosis, so lowering levels of circulating estrogens should be considered an effective medical approach. The efficacy of three oral GnRH antagonists is discussed on the basis of published studies. Conclusion: There is a place for GnRH antagonists in the management of symptomatic endometriosis and clinical trials should be conducted, taking into account the different phenotypes in order to propose novel algorithms.
Collapse
|
17
|
Jiang L, Zhang M, Wu J, Wang S, Yang X, Yi M, Zhang X, Fang X. Exploring diagnostic m6A regulators in endometriosis. Aging (Albany NY) 2020; 12:25916-25938. [PMID: 33232273 PMCID: PMC7803542 DOI: 10.18632/aging.202163] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Endometriosis is an estrogen-dependent inflammatory disorder, usually causing infertility, pelvic pain, and ovarian masses. This study intended to investigate the implication of N6-methyladenosine (m6A) regulators in endometriosis. We acquired 34 normal, 127 eutopic, and 46 ectopic, samples of endometrium from the Gene Expression Omnibus (GSE7305, GSE7307, GSE51981) database and the Array-express (E-MTAB-694) database. These samples were then used to profile the expression of 20 m6A regulators in endometriosis. The results indicated that most dysregulated (19/20) m6A regulators were significantly downregulated in eutopic vs. normal endometrium and also significantly downregulated in ectopic vs. eutopic endometrium. Several dysregulated m6A regulators were common to both contrast matrices: METTL3, YTHDF2, YTHDF3, HNRNPA2B1, HNRNPC, and FTO. Both HNRNPA2B1 and HNRNPC were associated with the severity of endometriosis in eutopic samples, and also exhibited diagnostic potential for endometriosis. HNRNPA2B1 and HNRNPC may influence immune pathways and the infiltration of immune cells in endometriosis. Abnormalities in the gene transcription factors network associated with endometriosis might affect the expression of HNRNPA2B1 and HNRNPC. In conclusion, we observed significant dysregulation of m6A regulators in endometriosis, and found that HNRNPA2B1 and HNRNPC might correlate with the immune response and serve as useful diagnostic biomarkers for endometriosis.
Collapse
Affiliation(s)
- Li Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingni Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Yoshino O, Ono Y, Honda M, Hattori K, Sato E, Hiraoka T, Ito M, Kobayashi M, Arai K, Katayama H, Tsuchida H, Yamada-Nomoto K, Iwahata S, Fukushi Y, Wada S, Iwase H, Koga K, Osuga Y, Iwaoka M, Unno N. Relaxin-2 May Suppress Endometriosis by Reducing Fibrosis, Scar Formation, and Inflammation. Biomedicines 2020; 8:E467. [PMID: 33142814 PMCID: PMC7693148 DOI: 10.3390/biomedicines8110467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Relaxin (RLX)-2, produced by the corpus luteum and placenta, is known to be potentially effective in fibrotic diseases of the heart, lungs, kidneys, and bladder; however, its effectiveness in endometriosis has not yet been investigated. In the present study, we conducted a comprehensive study on the effect of RLX-2 on endometriosis. We checked the expressions of LGR-7, a primary receptor of RLX-2, in endometriomas using immunohistochemistry. Endometriotic stromal cells (ESCs) purified from surgical specimens were used in in vitro experiments. The effects of RLX-2 on ESCs were evaluated by quantitative-PCR, ELISA, and Western blotting. Gel contraction assay was used to assess the contraction suppressive effect of RLX-2. The effect of RLX-2 was also examined in the endometriosis mouse model. LGR-7 was expressed in endometriotic lesions. In ESCs, RLX-2 increased the production of cAMP and suppressed the secretion of interleukin-8, an inflammatory cytokine, by 15% and mRNA expression of fibrosis-related molecules, plasminogen activator inhibitor-1 (PAI-1), and collagen-I by approximately 50% (p < 0.05). In the gel contraction assay, RLX-2 significantly suppressed the contraction of ESCs, which was cancelled by removing RLX-2 from the medium or by adding H89, a Protein Kinase A (PKA) inhibitor. In ESCs stimulated with RLX-2, p38 MAPK phosphorylation was significantly suppressed. In the endometriosis mouse model, administration of RLX-2 significantly decreased the area of the endometriotic-like lesion with decreasing fibrotic component compared to non-treated control (p = 0.01). RLX-2 may contribute to the control of endometriotic lesion by suppressing fibrosis, scar formation, and inflammation.
Collapse
Affiliation(s)
- Osamu Yoshino
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Hokkaido 006-0811, Japan; (Y.O.); (Y.F.); (S.W.)
| | - Masako Honda
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Kyoko Hattori
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Erina Sato
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Masami Ito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Mutsumi Kobayashi
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Tokyo 259-1292, Japan; (K.A.); (M.I.)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, Tokai University, Tokyo 259-1292, Japan;
| | - Hiroyoshi Tsuchida
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Kaori Yamada-Nomoto
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Shunsuke Iwahata
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Hokkaido 006-0811, Japan; (Y.O.); (Y.F.); (S.W.)
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Hokkaido 006-0811, Japan; (Y.O.); (Y.F.); (S.W.)
| | - Haruko Iwase
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Kaori Koga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan; (K.K.); (Y.O.)
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan; (K.K.); (Y.O.)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Tokyo 259-1292, Japan; (K.A.); (M.I.)
| | - Nobuya Unno
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| |
Collapse
|
19
|
Caravia L, Staicu CE, Radu BM, Condrat CE, Crețoiu D, Bacalbașa N, Suciu N, Crețoiu SM, Voinea SC. Altered Organelle Calcium Transport in Ovarian Physiology and Cancer. Cancers (Basel) 2020; 12:2232. [PMID: 32785177 PMCID: PMC7464720 DOI: 10.3390/cancers12082232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium levels have a huge impact on the physiology of the female reproductive system, in particular, of the ovaries. Cytosolic calcium levels are influenced by regulatory proteins (i.e., ion channels and pumps) localized in the plasmalemma and/or in the endomembranes of membrane-bound organelles. Imbalances between plasma membrane and organelle-based mechanisms for calcium regulation in different ovarian cell subtypes are contributing to ovarian pathologies, including ovarian cancer. In this review, we focused our attention on altered calcium transport and its role as a contributor to tumor progression in ovarian cancer. The most important proteins described as contributing to ovarian cancer progression are inositol trisphosphate receptors, ryanodine receptors, transient receptor potential channels, calcium ATPases, hormone receptors, G-protein-coupled receptors, and/or mitochondrial calcium uniporters. The involvement of mitochondrial and/or endoplasmic reticulum calcium imbalance in the development of resistance to chemotherapeutic drugs in ovarian cancer is also discussed, since Ca2+ channels and/or pumps are nowadays regarded as potential therapeutic targets and are even correlated with prognosis.
Collapse
Affiliation(s)
- Laura Caravia
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.C.); (D.C.)
| | - Cristina Elena Staicu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (C.E.S.); (B.M.R.)
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 77125 Măgurele, Romania
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (C.E.S.); (B.M.R.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independenţei, 050095 Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (N.S.)
| | - Dragoș Crețoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.C.); (D.C.)
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (N.S.)
| | - Nicolae Bacalbașa
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (N.S.)
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sanda Maria Crețoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.C.); (D.C.)
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
20
|
Oettel M, Zentel HJ, Nickisch K. A progestin isn't a progestin: dienogest for endometriosis as a blueprint for future research - Review as a contribution for discussion. Horm Mol Biol Clin Investig 2020; 42:133-142. [PMID: 32663169 DOI: 10.1515/hmbci-2020-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/02/2020] [Indexed: 11/15/2022]
Abstract
The different etiopathogenetic mechanisms and the diversity of clinical features of endometriosis has not yet allowed to identify a causal pharmacological monotherapy satisfying the unresolved medical needs in this important female disease. Therefore, despite the search for new therapeutic principles for the indication, the strategy of gradual optimization of established therapeutic principles should not be disregarded.In the case of progestins, the fact that each compound has its own, specific profile may allow to study the therapeutic relevance of the various signal cascades influenced by their receptors.Using the example of the progestin dienogest, the different genomic and non-genomic mechanisms of action are discussed. It is pharmacodynamic profile is unique compared to other progestins.In light of the emerging multitude of pathomechanisms in endometriosis, a monotherapy may not be possible, and then the search for broad spectrum compounds or combination therapies with dual or multiple mode of action in a clinically relevant dose range might be considered. The progestogenic action may greatly benefit from, by way of example, additional anti-inflammatory and/or anti-fibrotic and/or pro-apoptotic activities. Such a strategy could lead to new drug classes.
Collapse
|
21
|
Critchley HOD, Chodankar RR. 90 YEARS OF PROGESTERONE: Selective progesterone receptor modulators in gynaecological therapies. J Mol Endocrinol 2020; 65:T15-T33. [PMID: 32599565 PMCID: PMC7354704 DOI: 10.1530/jme-19-0238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
Abnormal uterine bleeding (AUB) is a chronic, debilitating and common condition affecting one in four women of reproductive age. Current treatments (conservative, medical and surgical) may be unsuitable, poorly tolerated or may result in loss of fertility. Selective progesterone receptor modulators (SPRMs) influence progesterone-regulated pathways, a hormone critical to female reproductive health and disease; therefore, SPRMs hold great potential in fulfilling an unmet need in managing gynaecological disorders. SPRMs in current clinical use include RU486 (mifepristone), which is licensed for pregnancy interruption, and CDB-2914 (ulipristal acetate), licensed for managing AUB in women with leiomyomas and in a higher dose as an emergency contraceptive. In this article, we explore the clinical journey of SPRMs and the need for further interrogation of this class of drugs with the ultimate goal of improving women's quality of life.
Collapse
Affiliation(s)
- H O D Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
| | - R R Chodankar
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
| |
Collapse
|
22
|
Reis FM, Coutinho LM, Vannuccini S, Batteux F, Chapron C, Petraglia F. Progesterone receptor ligands for the treatment of endometriosis: the mechanisms behind therapeutic success and failure. Hum Reprod Update 2020; 26:565-585. [PMID: 32412587 PMCID: PMC7317284 DOI: 10.1093/humupd/dmaa009] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite intense research, it remains intriguing why hormonal therapies in general and progestins in particular sometimes fail in endometriosis. OBJECTIVE AND RATIONALE We review here the action mechanisms of progesterone receptor ligands in endometriosis, identify critical differences between the effects of progestins on normal endometrium and endometriosis and envisage pathways to escape drug resistance and improve the therapeutic response of endometriotic lesions to such treatments. SEARCH METHODS We performed a systematic Pubmed search covering articles published since 1958 about the use of progestins, estro-progestins and selective progesterone receptor modulators, to treat endometriosis and its related symptoms. Two reviewers screened the titles and abstracts to select articles for full-text assessment. OUTCOMES Progesterone receptor signalling leads to down-regulation of estrogen receptors and restrains local estradiol production through interference with aromatase and 17 beta-hydroxysteroid dehydrogenase type 1. Progestins inhibit cell proliferation, inflammation, neovascularisation and neurogenesis in endometriosis. However, progesterone receptor expression is reduced and disrupted in endometriotic lesions, with predominance of the less active isoform (PRA) over the full-length, active isoform (PRB), due to epigenetic abnormalities affecting the PGR gene transcription. Oxidative stress is another mechanism involved in progesterone resistance in endometriosis. Among the molecular targets of progesterone in the normal endometrium that resist progestin action in endometriotic cells are the nuclear transcription factor FOXO1, matrix metalloproteinases, the transmembrane gap junction protein connexin 43 and paracrine regulators of estradiol metabolism. Compared to other phenotypes, deep endometriosis appears to be more resistant to size regression upon medical treatments. Individual genetic characteristics can affect the bioavailability and pharmacodynamics of hormonal drugs used to treat endometriosis and, hence, explain part of the variability in the therapeutic response. WIDER IMPLICATIONS Medical treatment of endometriosis needs urgent innovation, which should start by deeper understanding of the disease core features and diverse phenotypes and idiosyncrasies, while moving from pure hormonal treatments to drug combinations or novel molecules capable of restoring the various homeostatic mechanisms disrupted by endometriotic lesions.
Collapse
Affiliation(s)
- Fernando M Reis
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Larissa M Coutinho
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital University of Florence, Florence, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Felice Petraglia
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital University of Florence, Florence, Italy
| |
Collapse
|
23
|
Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update 2020; 25:473-485. [PMID: 30809650 DOI: 10.1093/humupd/dmz005] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in steroid responsiveness and other signaling pathways are not well understood. OBJECTIVE AND RATIONALE Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosynthesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological processes in endometriosis. SEARCH METHODS We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018 in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone receptor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids. OUTCOMES Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progesterone resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective differentiation and enhanced survival. WIDER IMPLICATIONS Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid receptors and ESR2, may offer novel treatment options.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| |
Collapse
|
24
|
Human Endometriosis Tissue Microarray Reveals Site-specific Expression of Estrogen Receptors, Progesterone Receptor, and Ki67. Appl Immunohistochem Mol Morphol 2020; 27:491-500. [PMID: 29629944 DOI: 10.1097/pai.0000000000000663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most available therapies for endometriosis are hormone-based and generally broadly used without taking into consideration the ovarian hormone receptor expression status. This contrasts strikingly with the standard of care for other hormone-based conditions such as breast cancer. We therefore aimed to characterize the expression of ovarian steroid hormone receptors for estrogen alpha (ESR1), estrogen beta (ESR2), and progesterone (PGR) in different types of endometriotic lesions and eutopic endometrium from women with endometriosis and controls using a tissue microarray (TMA). Nuclear expression levels of the receptors were analyzed by tissue (ie, ectopic vs. eutopic endometrium) and cell type (ie, glands vs. stroma). Ovarian lesions showed the lowest expression of ESR1 and PGR, and the highest expression of ESR2, whereas the fallopian tube lesions showed high expression of the 3 receptors. Differences among endometria included lower expression of ESR1 and higher expression of ESR2 in stroma of proliferative endometrium from patients versus patients, and a trend towards loss of PGR nuclear positivity in proliferative endometrium from patients. The largest ESR2:ESR1 ratios were observed in ovarian lesions and secretory endometrium. The highest proportion of samples with >10% Ki67 positive nuclei was in glands of fallopian tube (54%) and extrapelvic lesions (75%); 60% of glands of secretory endometrium from patients had >10% Ki67 positivity compared with only 15% in controls. Our results provide a better understanding of endometriosis heterogeneity by revealing lesion type-specific differences and case-by-case variability in the expression of ovarian hormone receptors. This knowledge could potentially predict individual responses to hormone therapies, and set the basis for the application of personalized medicine approaches for women with endometriosis.
Collapse
|
25
|
Laganà AS, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi F, Martin DC. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int J Mol Sci 2019; 20:E5615. [PMID: 31717614 PMCID: PMC6888544 DOI: 10.3390/ijms20225615] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
The etiopathogenesis of endometriosis is a multifactorial process resulting in a heterogeneous disease. Considering that endometriosis etiology and pathogenesis are still far from being fully elucidated, the current review aims to offer a comprehensive summary of the available evidence. We performed a narrative review synthesizing the findings of the English literature retrieved from computerized databases from inception to June 2019, using the Medical Subject Headings (MeSH) unique ID term "Endometriosis" (ID:D004715) with "Etiology" (ID:Q000209), "Immunology" (ID:Q000276), "Genetics" (ID:D005823) and "Epigenesis, Genetic" (ID:D044127). Endometriosis may origin from Müllerian or non-Müllerian stem cells including those from the endometrial basal layer, Müllerian remnants, bone marrow, or the peritoneum. The innate ability of endometrial stem cells to regenerate cyclically seems to play a key role, as well as the dysregulated hormonal pathways. The presence of such cells in the peritoneal cavity and what leads to the development of endometriosis is a complex process with a large number of interconnected factors, potentially both inherited and acquired. Genetic predisposition is complex and related to the combined action of several genes with limited influence. The epigenetic mechanisms control many of the processes involved in the immunologic, immunohistochemical, histological, and biological aberrations that characterize the eutopic and ectopic endometrium in affected patients. However, what triggers such alterations is not clear and may be both genetically and epigenetically inherited, or it may be acquired by the particular combination of several elements such as the persistent peritoneal menstrual reflux as well as exogenous factors. The heterogeneity of endometriosis and the different contexts in which it develops suggest that a single etiopathogenetic model is not sufficient to explain its complex pathobiology.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Simone Garzon
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany;
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 60, 20136 Milan, Italy;
| | - Massimo Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Piazzale Aristide Stefani 1, 37126 Verona, Italy;
| | - Fabio Ghezzi
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Dan C. Martin
- School of Medicine, University of Tennessee Health Science Center, 910 Madison Ave, Memphis, TN 38163, USA;
- Virginia Commonwealth University, 907 Floyd Ave, Richmond, VA 23284, USA
| |
Collapse
|
26
|
Colón-Caraballo M, Torres-Reverón A, Soto-Vargas JL, Young SL, Lessey B, Mendoza A, Urrutia R, Flores I. Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod 2019; 99:293-307. [PMID: 29408993 DOI: 10.1093/biolre/ioy030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Although the histone methyltransferase EZH2 and its product H3K27me3 are well studied in cancer, little is known about their role and potential as therapeutic targets in endometriosis. We have previously reported that endometriotic lesions are characterized by global enrichment of H3K27me3. Therefore, we aimed to (1) characterize the expression levels of EZH2 in endometriotic tissues; (2) assess H3K27me3 enrichment in candidate genes promoter regions; and (3) determine if pharmacological inhibition of EZH2 impacts migration, proliferation, and invasion of endometriotic cells. Immunohistochemistry of an endometriosis-focused tissue microarray was used to assess the EZH2 protein levels in tissues. Chromatin immunoprecipitation-qPCR was conducted to assess enrichment of H3K27me3 in candidate gene promoter regions in tissues. Immunofluorescence was performed to assess the effect of an EZH2-specific pharmacological inhibitor on H3K27me3 global enrichment in cell lines. To measure effects of the inhibitor in migration, proliferation, and invasion in vitro we used Scratch, BrdU, and Matrigel assays, respectively. Endometriotic lesions had significantly higher EZH2α nuclear immunostaining levels compared to eutopic endometrium from patients (glands, stroma) and controls (glands). H3K27me3 was enriched within promoter regions of candidate genes in some but not all of the endometriotic lesions. Inhibition of EZH2 reduced H3K27me3 levels in the endometriotic cells specifically, and also reduced migration, proliferation but not invasion of endometriotic epithelial cells (12Z). These findings support future preclinical studies to determine in vivo efficacy of EZH2 inhibitors as promising nonhormonal treatments for endometriosis, still an incurable gynecological disease.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Basic Sciences-Microbiology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Annelyn Torres-Reverón
- Department of Biomedical Sciences, Division of Neurosciences, University of Texas at Rio Grande Valley-School of Medicine, Texas, USA
| | - John Lee Soto-Vargas
- Department of Basic Sciences-Microbiology Division, Step-Up Summer Program, Ponce, Puerto Rico, USA
| | - Steven L Young
- Department of Ob/Gyn, University of North Carolina, Chapel Hill, USA
| | - Bruce Lessey
- Department of Ob/Gyn, University of North Carolina, Chapel Hill, USA
| | - Adalberto Mendoza
- Southern Pathology Inc., Ponce, Puerto Rico, USA.,Department of Basic Sciences-Pathology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Raúl Urrutia
- Epigenetics and Chromatin Dynamics Research Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Idhaliz Flores
- Department of Basic Sciences-Microbiology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA.,Department of Ob/Gyn, Ponce, Puerto Rico, USA
| |
Collapse
|
27
|
Mousazadeh S, Ghaheri A, Shahhoseini M, Aflatoonian R, Afsharian P. Differential expression of progesterone receptor isoforms related to PGR +331g/a polymorphism in endometriosis: A case-control study. Int J Reprod Biomed 2019; 17. [PMID: 31435600 PMCID: PMC6661139 DOI: 10.18502/ijrm.v17i3.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/02/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Background Endometriosis are defined as a progesterone-resistance disease. Two progesterone receptor (PR) isoforms, namely PR-A and PR-B, mediate the special effects of progesterone. One of the most effective polymorphism in the promoter region of PGR is the +331G/A. Objective The differential expression level of PR isoforms due to +331G/A polymorphism may be able to influence the function of progesterone and reduce the susceptibility of endometriosis. Materials and Methods This analytic, case-control study was carried out at Royan Institute, Tehran, Iran. Whole-blood samples were collected from 98 infertile women undergoing laparoscopy for endometriosis and 102 healthy fertile women. After DNA extraction, genotype frequencies were determined by polymerase chain reaction-restriction fragment length polymorphism. Then, RNA was extracted from the selected eutopic tissue samples of endometriosis patients. Analysis of PR-A and PR-B mRNA expressions were performed using Real-time polymerase chain reaction. Results The frequency distribution of GG, GA genotypes in +331G/A polymorphism was 98.04%, 1.96% in the patients and 97.96%, 2.04% in the control groups, respectively (p = 0.968). Although our data did not show any significant association with +331G/A in the patient and control groups, we were able to demonstrate significantly higher expression level of PR-B and no significant lower expression level of PR-A isoforms in patients by favoring GA to GG genotypes (p = 0.017, p = 0.731, respectively). Conclusion Our findings show that patients with GA genotypes had a higher expression level of PR-B compared to patients with GG genotypes.
Collapse
Affiliation(s)
- Sepideh Mousazadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
29
|
Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M, Wei J. Endometriosis. Endocr Rev 2019; 40:1048-1079. [PMID: 30994890 PMCID: PMC6693056 DOI: 10.1210/er.2018-00242] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Pelvic endometriosis is a complex syndrome characterized by an estrogen-dependent chronic inflammatory process that affects primarily pelvic tissues, including the ovaries. It is caused when shed endometrial tissue travels retrograde into the lower abdominal cavity. Endometriosis is the most common cause of chronic pelvic pain in women and is associated with infertility. The underlying pathologic mechanisms in the intracavitary endometrium and extrauterine endometriotic tissue involve defectively programmed endometrial mesenchymal progenitor/stem cells. Although endometriotic stromal cells, which compose the bulk of endometriotic lesions, do not carry somatic mutations, they demonstrate specific epigenetic abnormalities that alter expression of key transcription factors. For example, GATA-binding factor-6 overexpression transforms an endometrial stromal cell to an endometriotic phenotype, and steroidogenic factor-1 overexpression causes excessive production of estrogen, which drives inflammation via pathologically high levels of estrogen receptor-β. Progesterone receptor deficiency causes progesterone resistance. Populations of endometrial and endometriotic epithelial cells also harbor multiple cancer driver mutations, such as KRAS, which may be associated with the establishment of pelvic endometriosis or ovarian cancer. It is not known how interactions between epigenomically defective stromal cells and the mutated genes in epithelial cells contribute to the pathogenesis of endometriosis. Endometriosis-associated pelvic pain is managed by suppression of ovulatory menses and estrogen production, cyclooxygenase inhibitors, and surgical removal of pelvic lesions, and in vitro fertilization is frequently used to overcome infertility. Although novel targeted treatments are becoming available, as endometriosis pathophysiology is better understood, preventive approaches such as long-term ovulation suppression may play a critical role in the future.
Collapse
Affiliation(s)
- Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christia Sison
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kaoru Miyazaki
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lia Bernardi
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shimeng Liu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amanda Kohlmeier
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ping Yin
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Magdy Milad
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - JianJun Wei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
30
|
Mousazadeh S, Ghaheri A, Shahhoseini M, Aflatoonian R, Afsharian P. The Effect of Imbalanced Progesterone Receptor-A/-B Ratio on Gelatinase Expressions in Endometriosis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:127-134. [PMID: 31037923 PMCID: PMC6500082 DOI: 10.22074/ijfs.2019.5604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
Background Gelatinases degrade extracellular matrix (ECM) components to allow for physiological remodeling and contribute to pathological tissue destruction in endometriosis. It is known that the function of gelatinases is resistant to suppression by progesterone in endometriosis. The ability of progesterone to impact gene expression depends on the progesterone receptor-A/-B(PR-A/PR-B) ratio. An imbalanced PR-A/PR-B ratio in endometriotic tissue may be the result of the differential expression of MMP-2 and MMP-9, which could be important in the etiology and pathogenesis of the disease. Hence, we decided to study the association of PR-A/PR-B ratio and gelatinases expression in endometriosis. Materials and Methods In this prospective case-control study, we enrolled 40 women, 20 in the case group who were diagnosed with stage III/IV endometriosis and 20 normal subjects without endometriosis (controls) who referred to Royan Institute, Tehran, Iran during 2013-2014. We obtained 60 tissue samples [ectopic (n=20), eutopic (n=20), and normal endometrium (n=20)]. RNA was extracted from the tissue samples in order to analyze PR-A, PR-B, MMP-2, and MMP-9 mRNA levels through real-time polymerase chain reaction (PCR). Results There was significantly lower expression of the PR-B isoform in ectopic tissues compared to the control (P=0.002) and eutopic endometrium (P=0.006) tissues. PR-A expression was higher, but not significantly so, in the same ectopic and eutopic endometrium tissues compared to the control tissues (P=0.643). There was significant overexpression of MMP-9 in ectopic samples compared to control (P=0.014) and eutopic endometrium (P=0.012) samples. The PR-A/PR-B ratio was not significantly higher in either eutopic or ectopic samples compared to the control samples (P=0.305). Conclusion Our findings support an altered PR-B expression in endometriosis, which may be associated with MMP-9 overexpression. This finding can be important for disease pathogenesis.
Collapse
Affiliation(s)
- Sepideh Mousazadeh
- Department of Genetics, School of Natural Sciences, University of Tabriz, Tabriz, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
31
|
Irungu S, Mavrelos D, Worthington J, Blyuss O, Saridogan E, Timms JF. Discovery of non-invasive biomarkers for the diagnosis of endometriosis. Clin Proteomics 2019; 16:14. [PMID: 30992697 PMCID: PMC6451201 DOI: 10.1186/s12014-019-9235-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background Endometriosis is a common gynaecological disorder affecting 5-10% of women of reproductive age who often experience chronic pelvic pain and infertility. Definitive diagnosis is through laparoscopy, exposing patients to potentially serious complications, and is often delayed. Non-invasive biomarkers are urgently required to accelerate diagnosis and for triaging potential patients for surgery. Methods This retrospective case control biomarker discovery and validation study used quantitative 2D-difference gel electrophoresis and tandem mass tagging-liquid chromatography-tandem mass spectrometry for protein expression profiling of eutopic and ectopic endometrial tissue samples collected from 28 cases of endometriosis and 18 control patients undergoing surgery for investigation of chronic pelvic pain without endometriosis or prophylactic surgery. Samples were further sub-grouped by menstrual cycle phase. Selected differentially expressed candidate markers (LUM, CPM, TNC, TPM2 and PAEP) were verified by ELISA in a set of 87 serum samples collected from the same and additional women. Previously reported biomarkers (CA125, sICAM1, FST, VEGF, MCP1, MIF and IL1R2) were also validated and diagnostic performance of markers and combinations established. Results Cycle phase and endometriosis-associated proteomic changes were identified in eutopic tissue from over 1400 identified gene products, yielding potential biomarker candidates. Bioinformatics analysis revealed enrichment of adhesion/extracellular matrix proteins and progesterone signalling. The best single marker for discriminating endometriosis from controls remained CA125 (AUC = 0.63), with the best cross-validated multimarker models improving the AUC to 0.71-0.81, depending upon menstrual cycle phase and control group. Conclusions We have identified menstrual cycle- and endometriosis-associated protein changes linked to various cellular processes that are potential biomarkers and that provide insight into the biology of endometriosis. Our data indicate that the markers tested, whilst not useful alone, have improved diagnostic accuracy when used in combination and demonstrate menstrual cycle specificity. Tissue heterogeneity and blood contamination is likely to have hindered biomarker discovery, whilst a small sample size precludes accurate determination of performance by cycle phase. Independent validation of these biomarker panels in a larger cohort is however warranted, and if successful, they may have clinical utility in triaging patients for surgery.
Collapse
Affiliation(s)
- Stella Irungu
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| | - Dimitrios Mavrelos
- Reproductive Medicine Unit, University College London Hospital, Elizabeth Garrett Anderson Wing, Lower Ground Floor, 235 Euston Road, London, NW1 2BU UK
| | - Jenny Worthington
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| | - Oleg Blyuss
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| | - Ertan Saridogan
- Reproductive Medicine Unit, University College London Hospital, Elizabeth Garrett Anderson Wing, Lower Ground Floor, 235 Euston Road, London, NW1 2BU UK
| | - John F Timms
- 1Department of Women's Cancer, Institute for Women's Health, University College London, Cruciform Building 1.1, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
32
|
Bulun SE, Wan Y, Matei D. Epithelial Mutations in Endometriosis: Link to Ovarian Cancer. Endocrinology 2019; 160:626-638. [PMID: 30657901 PMCID: PMC6382454 DOI: 10.1210/en.2018-00794] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Epidemiologic and histopathologic associations between endometriosis and epithelial ovarian cancer have been reported; however, the underlying molecular and cellular mechanisms are not well understood. A possible genetic link has been suggested in recent publications. Driver mutations in PIK3CA, KRAS, ARID1A, and other genes have been found in the epithelium of intrauterine endometrial tissue, ovarian and extraovarian pelvic endometriosis tissue, ovarian cancers associated with endometriosis (i.e., clear cell and endometrioid type), and other epithelial ovarian cancers. This makes sense because pelvic endometriosis occurs primarily as a result of retrograde menstruation and implantation of endometrial tissue fragments in ovarian inclusion cysts or extraovarian peritoneal or subperitoneal sites. Unlike epithelial cells, endometriotic stromal cells are mutation free but contain widespread epigenetic defects that alter gene expression and induce a progesterone-resistant and intensely inflammatory environment, driven by estrogen via estrogen receptor-β. The resulting increased estrogenic action in the stroma drives inflammation and sends paracrine signals to neighboring epithelial cells to enhance proliferation. In addition, massively high concentrations of estrogen in the ovary may exert an additional and direct genotoxic effect on DNA and cause accumulation of additional mutations and malignant transformation in initially mutated endometriotic epithelial cells in an ovarian endometrioma, which may initiate epithelial ovarian cancer. The same epithelial mutations and inflammatory processes in stroma are seen in extraovarian deep-infiltrating endometriosis, but carcinogenesis does not occur. We provide a focused review of the literature and discuss the implications of recent genetic breakthroughs linking endometriosis and ovarian cancer.
Collapse
Affiliation(s)
- Serdar E Bulun
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine in Science, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Yong Wan
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine in Science, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine in Science, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| |
Collapse
|
33
|
Maekawa R, Mihara Y, Sato S, Okada M, Tamura I, Shinagawa M, Shirafuta Y, Takagi H, Taketani T, Tamura H, Sugino N. Aberrant DNA methylation suppresses expression of estrogen receptor 1 (ESR1) in ovarian endometrioma. J Ovarian Res 2019; 12:14. [PMID: 30728052 PMCID: PMC6364435 DOI: 10.1186/s13048-019-0489-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background In ovarian endometriomas (OE), the expression statuses of various steroid hormone receptors are altered compared with their expression statuses in eutopic endometrium (EE). For example, in OE, the expressions of estrogen receptor 1 (ESR1), which encodes ERα, and progesterone receptor (PGR) are downregulated, while the expression of ESR2, which encodes ERβ, is upregulated. The causes of these changes are unclear. DNA methylation of a specific region of a gene can result in tissue-specific gene expression. Such regions are called tissue-dependent and differentially methylated regions (T-DMRs). We previously reported that the tissue-specific expression of ESR1 is regulated by DNA methylation of a T-DMR in normal tissues. In the present study, we examined whether aberrant DNA methylation of the T-DMR is associated with the altered expressions of ESR1, ESR2 and PGR in OE. Results Gene expression levels of ESR1, ESR2 and PGR were measured by quantitative RT-PCR. The expression levels of ESR1 and PGR were significantly lower and the expression level of ESR2 was significantly higher in OE than in EE. DNA methylation statuses were examined with an Infinium HumanMethylation450K BeadChip and sodium bisulfite sequencing. DNA methylation at the T-DMRs of ESR1 were significantly higher in OE than in EE, but no significant differences were observed in the DNA methylation statuses of ESR2 and PGR. Conclusions Aberrant DNA methylation of the T-DMR was associated with the impaired expression of ESR1, but not the altered expressions of ESR2 and PGR, in OE.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| |
Collapse
|
34
|
García-Gómez E, Vázquez-Martínez ER, Reyes-Mayoral C, Cruz-Orozco OP, Camacho-Arroyo I, Cerbón M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front Endocrinol (Lausanne) 2019; 10:935. [PMID: 32063886 PMCID: PMC7000463 DOI: 10.3389/fendo.2019.00935] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a gynecological disorder characterized by the growth of endometrial tissue (glands and stroma) outside the uterus, mainly in the peritoneal cavity, ovaries, and intestines. This condition shows estrogen dependency and progesterone resistance, and it has been associated with chronic inflammation, severe pain, and infertility, which negatively affect the quality of life in reproductive women. The molecular mechanisms involved in the pathogenesis of endometriosis are not completely understood; however, inflammation plays a key role in the pathophysiology of the disease, mainly by altering the function of immune cells (macrophages, natural killer, and T cells) and increasing levels of pro-inflammatory mediators in the peritoneal cavity, endometrium, and blood. These immune alterations inhibit apoptotic pathways and promote adhesion and proliferation of endometriotic cells, as well as angiogenesis and neurogenesis in endometriotic lesions. It has been demonstrated that hormonal alterations in endometriosis are related to the inflammatory unbalance in this disease. Particularly, steroid hormones (mainly estradiol) promote the expression and release of pro-inflammatory factors. Excessive inflammation in endometriosis contributes to changes of hormonal regulation by modulating sex steroid receptors expression and increasing aromatase activity. In addition, dysregulation of the inflammasome pathway, mediated by an alteration of cellular responses to steroid hormones, participates in disease progression through preventing cell death, promoting adhesion, invasion, and cell proliferation. Furthermore, inflammation is involved in endometriosis-associated infertility, which alters endometrium receptivity by impairing biochemical responses and decidualization. The purpose of this review is to present current research about the role of inflammasome in the pathogenesis of endometriosis as well as the molecular role of sex hormones in the inflammatory responses in endometriosis.
Collapse
Affiliation(s)
- Elizabeth García-Gómez
- Unidad de Investigación en Reproducción Humana, Consejo Nacional de Ciencia y Tecnología (CONACyT)-Instituto Nacional de Perinatología, Mexico City, Mexico
- *Correspondence: Elizabeth García-Gómez
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
35
|
Flores VA, Vanhie A, Dang T, Taylor HS. Progesterone Receptor Status Predicts Response to Progestin Therapy in Endometriosis. J Clin Endocrinol Metab 2018; 103:4561-4568. [PMID: 30357380 PMCID: PMC6226602 DOI: 10.1210/jc.2018-01227] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Context Progestin-based therapy is the first-line treatment for managing endometriosis-associated pain. However, response to progestins is currently variable and unpredictable. Predictive markers for response to progestin-based therapy would allow for a personalized approach to endometriosis treatment. Objective We hypothesize that progesterone receptor (PR) levels in endometriotic lesions determine response to progestin-based therapy. Design Retrospective cohort study. Setting Academic center. Patients Fifty-two subjects with histologically confirmed endometriosis and a previous documented response to hormonal therapy were included. Interventions Immunohistochemistry was performed on sections of endometriotic lesions using a rabbit polyclonal IgG for detection of PR-A/B. Main Outcome Measures The Histo (H)-score was used for quantifying PR status. Response to progestin-based therapies was determined from review of the electronic medical record. Results H-score was higher in responders compared with nonresponders. Subjects were categorized into three groups: high (H-score > 80, n = 7), medium (H-score 6 to 80, n = 28), and low (H-score ≤ 5, n = 17) PR status. The threshold of PR > 80 was associated with a 100% positive predictive value. The threshold of PR < 5 was associated with a 94% negative predictive value. Conclusion PR status is strongly associated with response to progestin-based therapy. Receptor status in endometriosis could be used to tailor hormonal-based regimens after surgery, and negate trialing progestin-based therapy to determine resistance. Ascertainment of PR status may allow for a novel, targeted, precision-based approach to treating endometriosis.
Collapse
Affiliation(s)
- Valerie A Flores
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Arne Vanhie
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Tran Dang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
36
|
Bakhtiarizadeh MR, Hosseinpour B, Shahhoseini M, Korte A, Gifani P. Weighted Gene Co-expression Network Analysis of Endometriosis and Identification of Functional Modules Associated With Its Main Hallmarks. Front Genet 2018; 9:453. [PMID: 30369943 PMCID: PMC6194152 DOI: 10.3389/fgene.2018.00453] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Although many genes have been identified using high throughput technologies in endometriosis (ES), only a small number of individual genes have been analyzed functionally. This is due to the complexity of the disease that has different stages and is affected by various genetic and environmental factors. Many genes are upregulated or downregulated at each stage of the disease, thus making it difficult to identify key genes. In addition, little is known about the differences between the different stages of the disease. We assumed that the study of the identified genes in ES at a system-level can help to better understand the molecular mechanism of the disease at different stages of the development. We used publicly available microarray data containing archived endometrial samples from women with minimal/mild endometriosis (MMES), mild/severe endometriosis (MSES) and without endometriosis. Using weighted gene co-expression analysis (WGCNA), functional modules were derived from normal endometrium (NEM) as the reference sample. Subsequently, we tested whether the topology or connectivity pattern of the modules was preserved in MMES and/or MSES. Common and specific hub genes were identified in non-preserved modules. Accordingly, hub genes were detected in the non-preserved modules at each stage. We identified sixteen co-expression modules. Of the 16 modules, nine were non-preserved in both MMES and MSES whereas five were preserved in NEM, MMES, and MSES. Importantly, two non-preserved modules were found in either MMES or MSES, highlighting differences between the two stages of the disease. Analyzing the hub genes in the non-preserved modules showed that they mostly lost or gained their centrality in NEM after developing the disease into MMES and MSES. The same scenario was observed, when the severeness of the disease switched from MMES to MSES. Interestingly, the expression analysis of the new selected gene candidates including CC2D2A, AEBP1, HOXB6, IER3, and STX18 as well as IGF-1, CYP11A1 and MMP-2 could validate such shifts between different stages. The overrepresented gene ontology (GO) terms were enriched in specific modules, such as genetic disposition, estrogen dependence, progesterone resistance and inflammation, which are known as endometriosis hallmarks. Some modules uncovered novel co-expressed gene clusters that were not previously discovered.
Collapse
Affiliation(s)
| | - Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Peyman Gifani
- Cambridge Systems Biology Centre, Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,AI VIVO Ltd., St. John's Innovation Centre, Cambridge, United Kingdom
| |
Collapse
|
37
|
Bruner-Tran KL, Mokshagundam S, Herington JL, Ding T, Osteen KG. Rodent Models of Experimental Endometriosis: Identifying Mechanisms of Disease and Therapeutic Targets. CURRENT WOMEN'S HEALTH REVIEWS 2018; 14:173-188. [PMID: 29861705 PMCID: PMC5925870 DOI: 10.2174/1573404813666170921162041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although it has been more than a century since endometriosis was initially described in the literature, understanding the etiology and natural history of the disease has been challenging. However, the broad utility of murine and rat models of experimental endometriosis has enabled the elucidation of a number of potentially targetable processes which may otherwise promote this disease. OBJECTIVE To review a variety of studies utilizing rodent models of endometriosis to illustrate their utility in examining mechanisms associated with development and progression of this disease. RESULTS Use of rodent models of endometriosis has provided a much broader understanding of the risk factors for the initial development of endometriosis, the cellular pathology of the disease and the identification of potential therapeutic targets. CONCLUSION Although there are limitations with any animal model, the variety of experimental endometriosis models that have been developed has enabled investigation into numerous aspects of this disease. Thanks to these models, our under-standing of the early processes of disease development, the role of steroid responsiveness, inflammatory processes and the peritoneal environment has been advanced. More recent models have begun to shed light on how epigenetic alterations con-tribute to the molecular basis of this disease as well as the multiple comorbidities which plague many patients. Continued de-velopments of animal models which aid in unraveling the mechanisms of endometriosis development provide the best oppor-tunity to identify therapeutic strategies to prevent or regress this enigmatic disease.
Collapse
Affiliation(s)
- Kaylon L. Bruner-Tran
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
| | - Shilpa Mokshagundam
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
| | - Jennifer L. Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232, USA
| | - Tianbing Ding
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
| | - Kevin G. Osteen
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
- VA Tennessee Valley Healthcare System, NashvilleTN37212, USA
| |
Collapse
|
38
|
Yoo JY, Kang HB, Broaddus RR, Risinger JI, Choi KC, Kim TH. MIG-6 suppresses endometrial epithelial cell proliferation by inhibiting phospho-AKT. BMC Cancer 2018; 18:605. [PMID: 29843645 PMCID: PMC5975686 DOI: 10.1186/s12885-018-4502-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant hyperactivation of epithelial proliferation, AKT signaling, and association with unopposed estrogen (E2) exposure is the most common endometrial cancer dysfunction. In the normal uterus, progesterone (P4) inhibits proliferation by coordinating stromal-epithelial cross-talk, which we previously showed is mediated by the function of Mitogen-inducible gene 6 (Mig-6). Despite their attractive characteristics, non-surgical conservative therapies based on progesterone alone have not been universally successful. One barrier to this success has been the lack of understanding of the P4 effect on endometrial cells. Method To further understand the role of Mig-6 and P4 in controlling uterine proliferation, we developed a Sprr2f-cre driven mouse model where Mig-6 is specifically ablated only in the epithelial cells of the uterus (Sprr2fcre+Mig-6f/f). We examined P4 effect and regulation of AKT signaling in the endometrium of mutant mice. Results Sprr2fcre+Mig-6f/f mice developed endometrial hyperplasia. P4 treatment abated the development of endometrial hyperplasia and restored morphological and histological characteristics of the uterus. P4 treatment reduced cell proliferation which was accompanied by decreased AKT signaling and the restoration of stromal PGR and ESR1 expression. Furthermore, our in vitro studies revealed an inhibitory effect of MIG-6 on AKT phosphorylation as well as MIG-6 and AKT protein interactions. Conclusions These data suggest that endometrial epithelial cell proliferation is regulated by P4 mediated Mig-6 inhibition of AKT phosphorylation, uncovering new mechanisms of P4 action. This information may help guide more effective non-surgical interventions in the future. Electronic supplementary material The online version of this article (10.1186/s12885-018-4502-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee-Bum Kang
- Department of Biomedical Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Russell R Broaddus
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea. .,Department of Pharmacology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
39
|
Taylor HS, Alderman Iii M, D'Hooghe TM, Fazleabas AT, Duleba AJ. Effect of simvastatin on baboon endometriosis. Biol Reprod 2018. [PMID: 28637327 DOI: 10.1093/biolre/iox058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endometriosis, a common disorder affecting women of reproductive age, is characterized by ectopic growth of the endometrial tissues, altered steroid hormone response, and inflammation. Previous studies revealed that statins, selective inhibitors of the key step of mevalonate pathway, inhibit growth of endometrial stromal cells in vitro and reduce endometriotic lesions in murine models of endometriosis. This study evaluated the effects of simvastatin on the development of endometriosis in a baboon model of this disease. Sixteen baboons were randomly assigned to the treatment group (simvastatin, 20 mg daily) or to the control group. Endometriotic lesions were evaluated by laparoscopy after 3 months. The volume of red, orange-red, and white endometriotic lesions was significantly reduced by 78% in animals treated with simvastatin. The expression of a marker of proliferation, proliferating cell nuclear antigen (PCNA), was significantly reduced in animals receiving simvastatin in red lesions, white lesions, black lesions, and in adhesions. Simvastatin was also associated with an increase in the expression of estrogen receptor alpha in red lesions, and a decrease in the expression of estrogen receptor beta in black lesions, in adhesions, and in eutopic endometrium. Furthermore, simvastatin significantly reduced the expression of neopterin, a marker of inflammation, oxidative stress, and immune system activation. Collectively, the present findings indicate that the inhibition of the mevalonate pathway by simvastatin reduces the risk of developing endometriosis in the primate model of this disease by decreasing the growth of endometrial lesions, by modulating the expression of genes encoding for estrogen receptors, and by reducing inflammation.
Collapse
Affiliation(s)
- Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myles Alderman Iii
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas M D'Hooghe
- Research Group Reproductive Medicine and Biology, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven (University of Leuven), Belgium.,Division of Reproductive Health and Reproductive Biology, Institute of Primate Research, Karen, Nairobi, Kenya
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Antoni J Duleba
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Reproductive Endocrinology and Infertility, Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
Zou Y, Zhou JY, Wang F, Zhang ZY, Liu FY, Luo Y, Tan J, Zeng X, Wan XD, Huang OP. Analysis of CARD10 and CARD11 somatic mutations in patients with ovarian endometriosis. Oncol Lett 2018; 16:491-496. [PMID: 29928437 DOI: 10.3892/ol.2018.8659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a complex and heterogeneous pre-malignant inflammatory disease harboring multiple gene mutations. Previous studies have suggested that caspase recruitment domain family member (CARD)10 and CARD11 mutations may exist in endometriosis. In the present study, a collection of endometriotic lesions and paired peripheral blood from 101 patients with ovarian endometriosis were obtained, and the entire coding sequences of the CARD10 and CARD11 genes were sequenced. Evolutionary conservation analysis and online prediction programs were applied to analyze the disease-causing potential of the identified mutations. A total of 4 novel somatic mutations were identified in 4 out of the 101 (4.0%) samples: 2 in-frame deletions in CARD10 (c.785_790delAGGAGA, p.K272_E273delKE; c.785_802delAGGAGAAGGAGAAGGAGA, p.K272_V277delKEPDNV) and 2 heterozygous missense mutations in CARD11 (c.49G>T, p.D17Y; c.160G>C, p.E54Q). The sample with CARD10 p.K272_E273delKE deletion was obtained from a 47-year-old patient who was also diagnosed with uterine leiomyoma, while the CARD10 p.K272_V277delKEPDNV-mutated sample was from a 43-year-old patient exhibiting a decreased blood eosinophil granulocyte ratio (0.3%) and an elevated serum creatine kinase level (314 U/l). The patient with the CARD11 p.D17Y mutation was 38 years old and exhibited an increased level of cancer antigen 125 (45.4 U/ml), while the patient with the CARD11 p.E54Q mutation was 46 years old and exhibited no other gynecological conditions. Evolutionary conservation analysis and online prediction programs suggested that these mutations may be disease-causing. In summary, 4 novel somatic mutations in the CARD10 and CARD11 genes were identified from amongst 101 cases of ovarian endometriosis for the first time, these mutations may serve active roles in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jiang-Yan Zhou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Feng Wang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Tan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xi-Di Wan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ou-Ping Huang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
41
|
Chang HJ, Teasley HE, Yoo JY, Kim TH, Jeong JW. Mitochondrial tumor suppressor 1 is a target of AT-rich interactive domain 1A and progesterone receptor in the murine uterus. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1176-1182. [PMID: 29642667 PMCID: PMC6043432 DOI: 10.5713/ajas.18.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
Abstract
Objective Progesterone receptor (PGR) and AT-rich interactive domain 1A (ARID1A) have important roles in the establishment and maintenance of pregnancy in the uterus. In present studies, we examined the expression of mitochondrial tumor suppressor 1 (MTUS1) in the murine uterus during early pregnancy as well as in response to ovarian steroid hormone treatment. Methods We performed quantitative reverse transcription polymerase chain reaction and immunohistochemistry analysis to investigate the regulation of MTUS1 by ARID1A and determined expression patterns of MTUS1 in the uterus during early pregnancy. Results The expression of MTUS1 was detected on day 0.5 of gestation (GD 0.5) and then gradually increased until GD 3.5 in the luminal and glandular epithelium. However, the expression of MTUS1 was significantly reduced in the uterine epithelial cells of Pgrcre/+Arid1af/f and Pgr knockout (PRKO) mice at GD 3.5. Furthermore, MTUS1 expression was remarkably induced after P4 treatment in the luminal and glandular epithelium of the wild-type mice. However, the induction of MTUS1 expression was not detected in uteri of Pgrcre/+Arid1af/f or PRKO mice treated with P4. Conclusion These results suggest that MTUS1 is a novel target gene by ARID1A and PGR in the uterine epithelial cells.
Collapse
Affiliation(s)
- Hye Jin Chang
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.,Health Promotion Center, Seoul National University Bundang Hospital, Seongnam 132620, Korea
| | - Hanna E Teasley
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.,Department of Biology, Kalamazoo College, Kalamazoo MI 49006, USA
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Hoon Kim
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jae-Wook Jeong
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
42
|
Miller JE, Ahn SH, Monsanto SP, Khalaj K, Koti M, Tayade C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 2018; 8:7138-7147. [PMID: 27740937 PMCID: PMC5351695 DOI: 10.18632/oncotarget.12577] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023] Open
Abstract
Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Broi MGD, Rocha CV, Meola J, Martins WP, Carvalho FM, Ferriani RA, Navarro PA. Expression of PGR, HBEGF, ITGAV, ITGB3 and SPP1 genes in eutopic endometrium of infertile women with endometriosis during the implantation window: a pilot study. JBRA Assist Reprod 2017; 21:196-202. [PMID: 28837027 DOI: 10.5935/1518-0557.20170038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Alterations in endometrial receptivity may be involved in the etiopathogenesis of endometriosis-related infertility. The literature has suggested that patients with endometriosis present progestin resistance, which could affect embryo implantation. We question the presence of alterations in the expression of the progesterone receptor gene (PGR) and the genes related to endometrium-embryo interaction regulated by progesterone. This pilot study compared the expression of PGR, HBEGF, ITGAV, ITGB3, and SPP1 genes in eutopic endometrium during the implantation window (IW) in infertile women with endometriosis with that observed in the endometrium of fertile and infertile controls. METHODS In this prospective case-control study, endometrial biopsies were performed during the IW in patients aged between 18 and 45 years old, with regular cycles and without endocrine/systemic dysfunctions, divided into endometriosis (END), infertile control (IC) and fertile control (FC) groups. Total RNA extraction, cDNA synthesis, and gene expression analysis by Real-Time PCR were performed. We assessed the size of the difference that our series was powered to detect. RESULTS From the 687 patients who underwent diagnostic videolaparoscopy or tubal ligation at the University Hospital, 130 were eligible. Of these, 32 had endometrial samples collected, with 17 confirmed in the IW. Fifteen samples (5 END, 5 IC and 5 FC) were analyzed. There was no significant difference in the expression of any studied gene. Our sample size allowed us to identify or discard large differences (two standard deviations) among the groups. CONCLUSION Endometriosis doesn't cause large changes in the endometrial expression of PGR, HBEGF, ITGAV, ITGB3 and SPP1 during the IW.
Collapse
Affiliation(s)
- Michele G Da Broi
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos V Rocha
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Meola
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wellington P Martins
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Rui A Ferriani
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paula A Navarro
- Human Reproduction Division, Department of Obstetrics and Gynecology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute of Hormones and Woman's Health, CNPq, Brazil
| |
Collapse
|
44
|
Abstract
Endometriosis is a chronic medical condition that affects around 6% to 10% of reproductive age women. Pelvic pain, dysmenorrhea, and infertility are the most common presenting symptoms. The disease is characterized by estrogen-dependent growth of the endometrial glands and stroma outside the endometrial cavity. The diagnosis requires a high degree of suspicion and can be only confirmed on histopathology. Treatment includes medical and surgical options. Both hormonal and nonhormonal medical options are available and are tried at first with a goal to control pain and stop the growth of the endometriotic lesions. Nonsteroidal anti-inflammatory drugs, oral contraceptive pills, gonadotropin-releasing hormone (GnRH) agonists, aromatase inhibitors are some of the commonly used medications. With more research on the molecular and biochemical aspects of endometriosis, newer targets of therapy are being developed like selective progesterone receptor modulators, antiangiogenic factors and immunomodulators. In women who do not respond to medical therapy or have severe symptoms, surgical excision of the endometrial lesions and adhesions is often helpful and offers confirmatory diagnosis by histopathology.
Collapse
Affiliation(s)
- Saima Rafique
- Howard University Hospital, Department of Obstetrics and Gynecology, Washington, DC, 20060
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Alan H DeCherney
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
45
|
Yoo JY, Kim TH, Fazleabas AT, Palomino WA, Ahn SH, Tayade C, Schammel DP, Young SL, Jeong JW, Lessey BA. KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance. Sci Rep 2017; 7:6765. [PMID: 28754906 PMCID: PMC5533722 DOI: 10.1038/s41598-017-04577-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Endometriosis is an inflammatory condition that is associated with progesterone resistance and cell proliferation, resulting in pain, infertility and pregnancy loss. We previously demonstrated phosphorylation of STAT3 in eutopic endometrium of infertile women with this disorder leading to over-expression of the oncogene BCL6 and stabilization of hypoxia-induced factor 1 alpha (HIF-1α). Here we report coordinated activation of KRAS and over-expression of Sirtuin 1 (SIRT1), a histone deacetylase and gene silencer, in the eutopic endometrium from women with endometriosis throughout the menstrual cycle. The mice with conditional activation of KRAS in the PGR positive cells reveal an increase of SIRT1 expression in the endometrium compared to control mice. The expression of progesterone receptor target genes including the Indian Hedgehog pathway genes are significantly down-regulated in the mutant mice. SIRT1 co-localizes with BCL6 in the nuclei of affected individuals and both proteins bind to and suppress the promoter of GLI1, a critical mediator of progesterone action in the Indian Hedgehog pathway, by ChIP analysis. In eutopic endometrium, GLI1 expression is reduced in women with endometriosis. Together, these data suggest that KRAS, SIRT1 and BCL6 are coordinately over-expressed in eutopic endometrium of women with endometriosis and likely participate in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Tae Hoon Kim
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Asgerally T Fazleabas
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Women's Health, Spectrum Health System, Grand Rapids, MI, 49341, USA
| | - Wilder A Palomino
- Institute for Maternal and Child Research, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON K7L 3N6, Canada
| | - David P Schammel
- Pathology Associates, Greenville Hospital System, Greenville, SC, 29605, USA
| | - Steven L Young
- Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jae-Wook Jeong
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Women's Health, Spectrum Health System, Grand Rapids, MI, 49341, USA.
| | - Bruce A Lessey
- Obstetrics and Gynecology, Greenville Health System, Greenville, SC, 29605, USA.
| |
Collapse
|
46
|
Lessey BA, Kim JJ. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why. Fertil Steril 2017; 108:19-27. [PMID: 28602477 PMCID: PMC5629018 DOI: 10.1016/j.fertnstert.2017.05.031] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
The endometrium maintains complex controls on proliferation and apoptosis as part of repetitive menstrual cycles that prepare the endometrium for the window of implantation and pregnancy. The reliance on inflammatory mechanisms for both implantation and menstruation creates the opportunity in the setting of endometriosis for establishment of chronic inflammation that is disruptive to endometrial receptivity, causing both infertility and abnormal bleeding. Clinically, there can be little doubt that the endometrium of women with endometriosis is less receptive to embryo implantation, and strong evidence exists to suggest that endometrial changes are associated with decreased cycle fecundity as a result of this disease. Here we provide unifying concepts regarding those changes and how they are coordinated to promote progesterone resistance and estrogen dominance through aberrant cell signaling pathways and reduced expression of key homeostatic proteins in eutopic endometrium of women with endometriosis.
Collapse
Affiliation(s)
- Bruce A Lessey
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Greenville Health System, Greenville, South Carolina.
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
47
|
Rojas PA, May M, Sequeira GR, Elia A, Alvarez M, Martínez P, Gonzalez P, Hewitt S, He X, Perou CM, Molinolo A, Gibbons L, Abba MC, Gass H, Lanari C. Progesterone Receptor Isoform Ratio: A Breast Cancer Prognostic and Predictive Factor for Antiprogestin Responsiveness. J Natl Cancer Inst 2017; 109:3064537. [PMID: 28376177 DOI: 10.1093/jnci/djw317] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Compelling evidence shows that progestins regulate breast cancer growth. Using preclinical models, we demonstrated that antiprogestins are inhibitory when the level of progesterone receptor isoform A (PR-A) is higher than that of isoform B (PR-B) and that they might stimulate growth when PR-B is predominant. The aims of this study were to investigate ex vivo responses to mifepristone (MFP) in breast carcinomas with different PR isoform ratios and to examine their clinical and molecular characteristics. Methods We performed human breast cancer tissue culture assays (n = 36) to evaluate the effect of MFP on cell proliferation. PR isoform expression was determined by immunoblotting (n = 282). Tumors were categorized as PRA-H (PR-A/PR-B ≥ 1.2) or PRB-H (PR-A/PR-B ≤ 0.83). RNA was extracted for Ribo-Zero-Seq sequencing to evaluate differentially expressed genes. Subtypes and risk scores were predicted using the PAM50 gene set, the data analyzed using The Cancer Genome Atlas RNA-seq gene analysis and other publicly available gene expression data. Tissue microarrays were performed using paraffin-embedded tissues (PRA-H n = 53, PRB-H n = 24), and protein expression analyzed by immunohistochemistry. All statistical tests were two-sided. Results One hundred sixteen out of 222 (52.3%) PR+ tumors were PRA-H, and 64 (28.8%) PRB-H. Cell proliferation was inhibited by MFP in 19 of 19 tissue cultures from PRA-H tumors. A total of 139 transcripts related to proliferative pathways were differentially expressed in nine PRA-H and seven PRB-H tumors. PRB-H and PRA-H tumors were either luminal B or A phenotypes, respectively ( P = .03). PRB-H cases were associated with shorter relapse-free survival (hazard ratio [HR] = 2.70, 95% confidence interval [CI] = 1.71 to 6.20, P = .02) and distant metastasis-free survival (HR = 4.17, 95% CI = 2.18 to 7.97, P < .001). PRB-H tumors showed increased tumor size ( P < .001), Ki-67 levels ( P < .001), human epidermal growth factor receptor 2 expression ( P = .04), high grades ( P = .03), and decreased total PR ( P = .004) compared with PRA-H tumors. MUC-2 ( P < .001) and KRT6A ( P = .02) were also overexpressed in PRB-H tumors. Conclusion The PRA/PRB ratio is a prognostic and predictive factor for antiprogestin responsiveness in breast cancer.
Collapse
Affiliation(s)
- Paola A Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María May
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Sequeira
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Michelle Alvarez
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Martínez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Pedro Gonzalez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Stephen Hewitt
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaping He
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Alfredo Molinolo
- Moores Cancer Center, University of California, San Diego, CA, USA
| | - Luz Gibbons
- Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | - Martin C Abba
- CINIBA-CONICET, Escuela de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
Babayev SN, Park CW, Keller PW, Carr BR, Word RA, Bukulmez O. Androgens Upregulate Endometrial Epithelial Progesterone Receptor Expression: Potential Implications for Endometriosis. Reprod Sci 2017; 24:1454-1461. [PMID: 28891417 DOI: 10.1177/1933719117691145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Androgenic compounds have been implicated in induction of endometrial atrophy yet the mechanisms of androgen effects on human endometrium have not been well studied. We hypothesized that androgens may promote their endometrial effects via modulation of progesterone receptor (PR) expression. METHODS Proliferative phase endometrial samples were collected at the time of hysterectomy. We evaluated the effect of the potent androgen 5α-dihydrotestosterone (DHT) on endometrial PR expression by treating human endometrial explants, endometrial stromal cells, and Ishikawa cells with DHT. Ishikawa cells were also treated with DHT ± the androgen receptor (AR) blocker flutamide. The PR-B, total PR messenger RNA (mRNA), and PR protein expression were assessed. Expression of cyclin D1 and D2 was checked as markers of cell proliferation. RESULTS As expected, estradiol induced PR expression in isolated stromal cells, endometrial epithelial cells, and tissue explants. The DHT treatment also resulted in increased PR expression in endometrial explants and Ishikawa cells but not in stromal cells. Further, protein levels of both nuclear PR isoforms (PR-A and PR-B) were induced with the DHT treatment. Although flutamide treatment alone did not affect PR expression, flutamide diminished androgen-induced upregulation of PR in both endometrial explants and Ishikawa cells. Although estradiol induced both cyclin D1 and cyclin D2 mRNA, DHT did not induce these markers of cell proliferation. CONCLUSION Androgens may mediate endometrial effects through upregulation of PR gene and protein expression. Endometrial PR upregulation by androgens is mediated, at least in part, through AR.
Collapse
Affiliation(s)
- Samir N Babayev
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chan Woo Park
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea
| | - Patrick W Keller
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce R Carr
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth A Word
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orhan Bukulmez
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
49
|
Kim TH, Yoo JY, Jeong JW. Mig-6 Mouse Model of Endometrial Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:243-259. [PMID: 27910070 DOI: 10.1007/978-3-319-43139-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endometrial cancer is a frequently occurring gynecological disorder. Estrogen-dependent endometrioid carcinoma is the most common type of gynecological cancer. One of the major pathologic phenomena of endometrial cancer is the loss of estrogen (E2) and progesterone (P4) control over uterine epithelial cell proliferation. P4 antagonizes the growth-promoting properties of E2 in the uterus. P4 prevents the development of endometrial cancer associated with unopposed E2 by blocking E2 actions. Mitogen inducible gene 6 (Mig-6, Errfi1, RALT, or gene 33) is an immediate early response gene that can be induced by various mitogens and common chronic stress stimuli. Mig-6 has been identified as an important component of P4-mediated inhibition of E2 signaling in the uterus. Decreased expression of MIG-6 is observed in human endometrial carcinomas. Transgenic mice with Mig-6 ablation in the uterus develop endometrial hyperplasia and E2-dependent endometrial cancer. Thus, MIG-6 has a tumor suppressor function in endometrial tumorigenesis. The following discussion summarizes our current knowledge of Mig-6 mouse models and their role in understanding the molecular mechanisms of endometrial tumorigenesis and in the development of therapeutic approaches for endometrial cancer.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
50
|
Ahn JI, Yoo JY, Kim TH, Kim YI, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Ahn JY, Lim JM, Jeong JW. cAMP-Response Element-Binding 3-Like Protein 1 (CREB3L1) is Required for Decidualization and its Expression is Decreased in Women with Endometriosis. Curr Mol Med 2016; 16:276-87. [PMID: 26917262 DOI: 10.2174/1566524016666160225153659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/22/2022]
Abstract
Endometriosis is a major cause of infertility and pelvic pain, affecting more than 10% of reproductive-aged women. Progesterone resistance has been observed in the endometrium of women with this disease, as evidenced by alterations in progesterone-responsive gene and protein expression. cAMPResponse Element-Binding 3-like protein 1 (Creb3l1) has previously been identified as a progesterone receptor (PR) target gene in mouse uterus via high density DNA microarray analysis. However, CREB3L1 function has not been studied in the context of endometriosis and uterine biology. In this study, we validated progesterone (P4) regulation of Creb3l1 in the uteri of wild-type and progesterone receptor knockout (PRKO) mice. Furthermore, we observed that CREB3L1 expression was significantly higher in secretory phase human endometrium compared to proliferative phase and that CREB3L1 expression was significantly decreased in the endometrium of women with endometriosis. Lastly, by transfecting CREB3L1 siRNA into cultured human endometrial stromal cells (hESCs) prior to hormonal induction of in vitro decidualization, we showed that CREB3L1 is required for the decidualization process. Interestingly, phosphorylation of ERK1/2, critical factor for decidualization, was also significantly reduced in CREB3L1-silenced hESCs. It is known that hESCs from patients with endometriosis show impaired decidualization and that dysregulation of the P4-PR signaling axis is linked to a variety of endometrial diseases including infertility and endometriosis. Therefore, these results suggest that CREB3L1 is required for decidualization in mice and humans and may be linked to the pathogenesis of endometriosis in a P4-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - J M Lim
- Laboratory of Stem Cell and Bioevaluation, Major in Biomodulation, Seoul National University, Seoul 151-921, Republic of Korea.
| | - J-W Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, College of Human Medicine, 333 Bostwick Avenue NE, Suite 4024, Grand Rapids, MI 49503, USA.
| |
Collapse
|