1
|
Sarkar P, Raju SV, Velayutham M, Guru A, Pasupuleti M, Al Olayan EM, Boushra AF, Juliet A, Arockiaraj J. A synthetic antioxidant molecule, GP13 derived from cysteine desulfurase of spirulina, Arthrospira platensis exhibited anti-diabetic activity on L6 rat skeletal muscle cells through GLUT-4 pathway. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102450. [DOI: 10.1016/j.jksus.2022.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
2
|
Bianchi M, Manco M. Circulating levels of PIN1 and glucose metabolism in young people with obesity. J Endocrinol Invest 2022; 45:1741-1748. [PMID: 35585295 DOI: 10.1007/s40618-022-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Impaired activity of the peptidylprolyl cis/trans isomerase NIMA-interacting 1 (PIN1) isomerase might contribute to link disturbed glucose metabolism and risk of glucose related neurotoxicity, neurodegeneration and cognitive decline. The isomerase modulates also pathways of peripheral insulin sensitivity and secretion. We aimed at investigating the levels of circulating PIN1 in adolescents with obesity and any association with their glucose metabolism. METHODS We enrolled 145 adolescents (age 12-17.8 years); 67 lean controls (46.2%) and 78 (53.8%) with overweight or obesity (males n = 62, 46%). We estimated glucose and insulin in fasting condition and after a standard oral glucose tolerance test; fasting serum levels of PIN1, amyloid β-protein 42 (Aβ42), presenilin 1 (PSEN1), glucagon-like peptide 1 (GLP1) and Non Esterified Fatty Acids (NEFA). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), the β cell function (HOMA-β) and the Adipo-IR. RESULTS There was no difference in PIN1 serum levels between normal weight individuals and patients with obesity. However, there was an inverse correlation between serum fasting PIN1 and glucose (r - 0.183 and p = 0.027). We confirmed levels of Aβ42 and PSEN1 were higher in teens with obesity than in lean controls and their correlation with the body mass index (Aβ42: r = 0.302, p = 0.0001, PSEN1 r = 0.231, p = 0.005) and the HOMA-IR (Aβ42: r = 0.219, p = 0.009, r = 0.170, p < 0.042). CONCLUSIONS There was no significant rise of circulating PIN1 levels in young individuals with obesity. Increased levels reported in the literature in adult patients are likely to occur late in the natural history of the disease with the onset of an overt impairment of glucose homeostasis.
Collapse
Affiliation(s)
- M Bianchi
- Research Area for Multi-Factorial Diseases, Bambino Gesù Children's Hospital, IRCCS, viale di San Paolo 15, 00146, Rome, Italy
| | - M Manco
- Research Area for Multi-Factorial Diseases, Bambino Gesù Children's Hospital, IRCCS, viale di San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
3
|
Campbell IH, Campbell H, Smith DJ. Insulin signaling as a therapeutic mechanism of lithium in bipolar disorder. Transl Psychiatry 2022; 12:350. [PMID: 36038539 PMCID: PMC9424309 DOI: 10.1038/s41398-022-02122-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
In this paper, we propose that lithium may exert its therapeutic effect in bipolar disorder by acting on insulin signaling pathways. Specifically, we assess the importance of the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) insulin signaling pathway and we assess how the action of lithium on both glycogen synthase kinase-3 (GSK3) and the phosphatidylinositol cycle may lead to mood stabilization mediated by PI3K/Akt insulin signaling. We also highlight evidence that several other actions of lithium (including effects on Akt, Protein kinase C (PKC), and sodium myo-inositol transporters) are putative mediators of insulin signaling. This novel mode of action of lithium is consistent with an emerging consensus that energy dysregulation represents a core deficit in bipolar disorder. It may also provide context for the significant co-morbidity between bipolar disorder, type 2 diabetes, and other forms of metabolic illness characterized by impaired glucose metabolism. It is suggested that developments in assessing neuronal insulin signaling using extracellular vesicles would allow for this hypothesis to be tested in bipolar disorder patients.
Collapse
Affiliation(s)
- Iain H. Campbell
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Smith
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Giha HA, Alamin OAO, Sater MS. Diabetic sarcopenia: metabolic and molecular appraisal. Acta Diabetol 2022; 59:989-1000. [PMID: 35429264 DOI: 10.1007/s00592-022-01883-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Myopathy is the missing slot from the routine clinical checkup for diabetic complications. Similarly, its pathophysiological, metabolic, and molecular bases are insufficiently explored. In this review, the above issues are highlighted with a focus on skeletal muscle atrophy (also described as diabetic sarcopenia), in contrast to the normal histological, physiological, and molecular features of the muscles. Literature search using published data from different online resources was used. Several diabetic myopathy etiological factors are discussed explicitly including; inflammation and immunological responses, with emphasis on TNFα and IL-6 overproduction, oxidative stress, neuropathy and vasculopathy, aging sarcopenia, antidiabetic drugs, and insulin resistance as a denominator. The pathophysiological hallmark of diabetic muscle atrophy is the decreased muscle proteins synthesis and increased degradation. The muscle protein degradation is conveyed by 4 systems; ubiquitin-proteasome, lysosomal autophagy, caspase-3, and calpain systems, and is mostly mediated via the IL6/STAT, TNF&IL6/NFκB, myostatin/Smad2/3, and FOXO1/3 signaling pathways, while the protein synthesis inhibition is mediated via suppression of the IGF1-PI3K-Akt-mTOR, and SC-Gαi2-pathways. Moreover, the satellite cells and multilineage muscle mesenchymal progenitor cells differentiation plays a major role on the fate of the affected muscle cells by taking an adipogenic, fibrogenic, or connective tissue lineage. As a conclusion, in this article, the pathological features of diabetic sarcopenia are reviewed at gross level, while at a molecular level the normal protein turnover, signal transduction, and pathways involved in muscle atrophy are described. Finally, an integrated network describing the molecular partakers in diabetic sarcopenia is presented.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| | - Osman A O Alamin
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Alneelain University, Khartoum, Sudan
- Interventional Cardiology, Ahmad Gasim Cardiac Centre, Ahmad Gasim Hospital, Khartoum North, Sudan
- Internal Medicine Council, Sudan Medical Specialization Board (S.M.S.B), Khartoum, Sudan
| | - Mai S Sater
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| |
Collapse
|
5
|
Guru A, Issac PK, Saraswathi NT, Seshadri VD, Gabr GA, Arockiaraj J. Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose-induced rat skeletal muscle L6 cells. Cell Biol Int 2021; 45:1698-1709. [PMID: 33818831 DOI: 10.1002/cbin.11608] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
This study investigates the antioxidant and antidiabetic activity of the WL15 peptide derived from Channa striatus on regulating the antioxidant property in the rat skeletal muscle cell line (L6) and enhancing glucose uptake via glucose metabolism. Increased oxidative stress plays a major role in the development of diabetes and its complications. Strategies are needed to mitigate the oxidative stress that can reduce these pathogenic processes. Our results showed that with treatment with WL15 peptide, the reactive oxygen species significantly decreased in L6 myotubes in a dose-dependent manner, and increased antioxidant enzymes help to prevent the formation of lipid peroxidation in L6 myotubes. The cytotoxicity of WL15 is evaluated in the L6 cells and found to be non-cytotoxic at the tested concentration. Also, for the analysis of glucose uptake activity in L6 cells, the 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy- d -glucose assay was performed in the presence of wortmannin and genistein inhibitors. WL15 demonstrated antidiabetic activities through a dose-dependent increase in glucose uptake (64%) and glycogen storage (7.8 mM). The optimal concentration for the maximum activity was found to be 50 µM. In addition, studies of gene expression in L6 myotubes demonstrated upregulation of antioxidant genes and genes involved in the pathway of insulin signaling. In cell-based assays, WL15 peptide decreased intracellular reactive oxygen species levels and demonstrated insulin mimic activity by enhancing the primary genes involved in the insulin signaling pathway by increased glucose uptake indicating that glucose transporter type 4 (GLUT4) is regulated from the intracellular pool to the plasma membrane.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Sampath C, Srinivasan S, Freeman ML, Gangula PR. Inhibition of GSK-3β restores delayed gastric emptying in obesity-induced diabetic female mice. Am J Physiol Gastrointest Liver Physiol 2020; 319:G481-G493. [PMID: 32812777 PMCID: PMC7654647 DOI: 10.1152/ajpgi.00227.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetic gastroparesis (DG) is a clinical syndrome characterized by delayed gastric emptying (DGE). Loss of nuclear factor erythroid 2-related factor 2 (Nrf2) is associated with reduced neuronal nitric oxide synthase-α (nNOSα)-mediated gastric motility and DGE. Previous studies have shown that nuclear exclusion and inactivation of Nrf2 is partly regulated by glycogen synthase kinase 3β (GSK-3β). In the current study, the molecular signaling of GSK-3β-mediated Nrf2 activation and its mechanistic role on DG were investigated in high-fat diet (HFD)-induced obese/Type 2 diabetes (T2D) female mice. Adult female C57BL/6J mice were fed with HFD or normal diet (ND) with or without GSK-3β inhibitor (SB 216763, 10 mg/kg body wt ip) start from the 14th wk and continued feeding mice for an additional 3-wk time period. Our results show that treatment with GSK-3β inhibitor SB attenuated DGE in obese/T2D mice. Treatment with SB restored impaired gastric 1) Nrf2 and phase II antioxidant enzymes through PI3K/ERK/AKT-mediated pathway, 2) tetrahydrobiopterin (BH4, cofactor of nNOS) biosynthesis enzyme dihydrofolate reductase, and 3) nNOSα dimerization in obese/T2 diabetic female mice. SB treatment normalized caspase 3 activity and downstream GSK-3β signaling in the gastric tissues of the obese/T2 diabetic female mice. In addition, GSK-3β inhibitor restored impaired nitrergic relaxation in hyperglycemic conditions. Finally, SB treatment reduced GSK3 marker, pTau in adult primary enteric neuronal cells. These findings emphasize the importance of GSK-3β on regulating gastric Nrf2 and nitrergic mediated gastric emptying in obese/diabetic rodents.NEW & NOTEWORTHY Inhibition of glycogen synthase kinase 3β (GSK-3β) with SB 216763 attenuates delayed gastric emptying through gastric nuclear factor erythroid 2-related factor 2 (Nrf2)-phase II enzymes in high-fat diet-fed female mice. SB 216763 restored impaired gastric PI3K/AKT/ β-catenin/caspase 3 expression. Inhibition of GSK-3β normalized gastric dihydrofolate reductase, neuronal nitric oxide synthase-α expression, dimerization and nitrergic relaxation. SB 216763 normalized both serum estrogen and nitrate levels in female obese/Type 2 diabetes mice. SB 216763 reduced downstream signaling of GSK-3β in enteric neuronal cells in vitro.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia and Atlanta Veterans Affairs Health Care System, Decatur, Atlanta, Georgia
| | - Michael L. Freeman
- 3Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pandu R. Gangula
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
7
|
Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol Biol Rep 2020; 47:6727-6740. [PMID: 32809102 DOI: 10.1007/s11033-020-05728-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Sri Snehaa Chandrakumar
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - N T Saraswathi
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, 71050, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
8
|
Stygar D, Andrare D, Bażanów B, Chełmecka E, Sawczyn T, Skrzep-Poloczek B, Olszańska E, Karcz KW, Jochem J. The Impact of DJOS Surgery, a High Fat Diet and a Control Diet on the Enzymes of Glucose Metabolism in the Liver and Muscles of Sprague-Dawley Rats. Front Physiol 2019; 10:571. [PMID: 31164832 PMCID: PMC6534097 DOI: 10.3389/fphys.2019.00571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
The prevalence of diabetes type 2 (T2DM) and obesity is growing exponentially and becoming a global public health problem. The enzymes of glucose metabolism play a role in the pathogenesis of insulin resistance and T2DM. A pathophysiological link between different dietary patterns, HFD, obesity, T2DM and the enzymes of glucose metabolism can be used as a potential target in therapeutic strategies for the treatment of obesity, and T2DM. The aim of this study was to measure the impact of DJOS bariatric surgery and different types of dietary patterns on glycogen synthase kinase 3 α (GSK-3α), glycogen phosphorylase (PYGM, PYGL), and phosphofructokinase (PFK-1) concentrations in liver and soleus muscle tissues of rats. After 8 weeks on a high-fat diet (HF) or control diet (CD), rats underwent duodenal-jejunal omega switch (DJOS) or SHAM (control) surgery. After surgery, for the next 8 weeks, half of DJOS/SHAM animals were kept on the same diet as before, and half had a changed diet. The concentrations of GSK-3α, PYGM, PYGL and PFK-1 were measured in the soleus muscles and livers of the Sprague-Dawley rats. The type of diet applied before/after surgery had stronger impact on levels of selected metabolic enzymes than DJOS or SHAM surgery. The impact of DJOS surgery was visible for GSK-3α and PYGL concentration in the liver but not in the soleus muscle tissue. The type of bariatric surgery had an impact on liver GSK-3α concentration in all studied groups except the CD/CD group, where the impact of diet was stronger. DJOS bariatric surgery influenced the level of PYGL in the livers of rats maintained on the CD/CD diet but not from other groups. The dietary patterns applied before and after bariatric surgery, had a stronger impact on enzymes’ concentrations than DJOS surgery, and the strong, deleterious effect of an HF was observed. A change of the diet per se showed a negative impact on the enzymes’ tissue concentration.
Collapse
Affiliation(s)
- Dominika Stygar
- Department of Physiology in Zabrze, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorian Andrare
- Clinic of General, Visceral, Transplantation and Vascular Surgery, Hospital of the Ludwig Maximilian University, Munich, Germany
| | - Barbara Bażanów
- Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Elżbieta Chełmecka
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Tomasz Sawczyn
- Department of Physiology in Zabrze, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bronisława Skrzep-Poloczek
- Department of Physiology in Zabrze, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ewa Olszańska
- Department of Physiology in Zabrze, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Konrad Wojciech Karcz
- Clinic of General, Visceral, Transplantation and Vascular Surgery, Hospital of the Ludwig Maximilian University, Munich, Germany
| | - Jerzy Jochem
- Department of Physiology in Zabrze, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Teng S, Huang P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 2019; 10:103. [PMID: 30898146 PMCID: PMC6427880 DOI: 10.1186/s13287-019-1186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In addition to its primary function to provide movement and maintain posture, the skeletal muscle plays important roles in energy and glucose metabolism. In healthy humans, skeletal muscle is the major site for postprandial glucose uptake and impairment of this process contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). A key component to the maintenance of skeletal muscle integrity and plasticity is the presence of muscle progenitor cells, including satellite cells, fibroadipogenic progenitors, and some interstitial progenitor cells associated with vessels (myo-endothelial cells, pericytes, and mesoangioblasts). In this review, we aim to discuss the emerging concepts related to these progenitor cells, focusing on the identification and characterization of distinct progenitor cell populations, and the impact of obesity and T2DM on these cells. The recent advances in stem cell therapies by targeting diabetic and obese muscle are also discussed.
Collapse
Affiliation(s)
- Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
10
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
11
|
Gaster M. The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. APMIS 2018; 127:3-26. [DOI: 10.1111/apm.12908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Gaster
- Laboratory for Molecular Physiology Department of Pathology and Department of Endocrinology Odense University Hospital Odense Denmark
| |
Collapse
|
12
|
GSK-3 Inhibitors: Anti-Diabetic Treatment Associated with Cardiac Risk? : Editorial to: "The Impact of Chronic Glycogen Synthase Kinase-3 Inhibition on Remodeling of Normal and Pre-Diabetic Rat Hearts." by Barbara Huisamen et al. Cardiovasc Drugs Ther 2017; 30:233-5. [PMID: 27311575 DOI: 10.1007/s10557-016-6669-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
14
|
Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS One 2016; 11:e0158209. [PMID: 27453994 PMCID: PMC4959771 DOI: 10.1371/journal.pone.0158209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle secretes factors, termed myokines. We employed differentiated human skeletal muscle cells (hSMC) cultured from Type 2 diabetic (T2D) and non-diabetic (ND) subjects to investigate the impact of T2D on myokine secretion. Following 24 hours of culture concentrations of selected myokines were determined to range over 4 orders of magnitude. T2D hSMC released increased amounts of IL6, IL8, IL15, TNFa, Growth Related Oncogene (GRO)a, monocyte chemotactic protein (MCP)-1, and follistatin compared to ND myotubes. T2D and ND hSMC secreted similar levels of IL1ß and vascular endothelial growth factor (VEGF). Treatment with the inflammatory agents lipopolysaccharide (LPS) or palmitate augmented the secretion of many myokines including: GROa, IL6, IL8, IL15, and TNFa, but did not consistently alter the protein content and/or phosphorylation of IkBa, p44/42 MAPK, p38 MAPK, c-Jun N-terminal kinase (JNK) and NF-kB, nor lead to consistent changes in basal and insulin-stimulated glucose uptake or free fatty acid oxidation. Conversely, treatment with pioglitazone or oleate resulted in modest reductions in the secretion of several myokines. Our results demonstrate that altered secretion of a number of myokines is an intrinsic property of skeletal muscle in T2D, suggesting a putative role of myokines in the response of skeletal muscle to T2D.
Collapse
|
15
|
Aguer C, Pasqua M, Thrush AB, Moffat C, McBurney M, Jardine K, Zhang R, Beauchamp B, Dent R, McPherson R, Harper ME. Increased proton leak and SOD2 expression in myotubes from obese non-diabetic subjects with a family history of type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1624-33. [PMID: 23685312 DOI: 10.1016/j.bbadis.2013.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH+) or without (FH-) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH+ myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH+ myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH+ myotubes. Surprisingly, mtDNA content was higher in FH+ myotubes. Oxidative stress level was not different between FH+ and FH- groups. Reactive oxygen species content was lower in FH+ myotubes when differentiated in high glucose/insulin (25mM/150pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH+ myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.
Collapse
Affiliation(s)
- Céline Aguer
- Department of Biochemistry, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Montori-Grau M, Tarrats N, Osorio-Conles O, Orozco A, Serrano-Marco L, Vázquez-Carrera M, Gómez-Foix AM. Glucose dependence of glycogen synthase activity regulation by GSK3 and MEK/ERK inhibitors and angiotensin-(1-7) action on these pathways in cultured human myotubes. Cell Signal 2013; 25:1318-27. [PMID: 23453973 DOI: 10.1016/j.cellsig.2013.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/31/2013] [Accepted: 02/13/2013] [Indexed: 11/18/2022]
Abstract
Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1-7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3β activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3β activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1-7) raised phospho-ERK1/2 but not phospho-GSK3β (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1-7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3β (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3β or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1-7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose deprivation reverts both hormone effects. Thus, the ERK1/2 pathway negatively regulates GS activity in myotubes, without involving GSK3 regulation, and as a function of the presence of glucose.
Collapse
Affiliation(s)
- Marta Montori-Grau
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Shen SC, Chang WC, Chang CL. Fraction from wax apple [Syzygium samarangense (Blume) Merrill and Perry] fruit extract ameliorates insulin resistance via modulating insulin signaling and inflammation pathway in tumor necrosis factor α-treated FL83B mouse hepatocytes. Int J Mol Sci 2012; 13:8562-8577. [PMID: 22942720 PMCID: PMC3430251 DOI: 10.3390/ijms13078562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 06/05/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022] Open
Abstract
Inflammation is associated with the development of insulin resistance in Type 2 diabetes mellitus. In the present study, mouse FL83B cells were treated with tumor necrosis factor-alpha (TNF-α) to induce insulin resistance, and then co-incubated with a fraction from wax apple fruit extract (FWFE). This fraction significantly increased the uptake of the nonradioactive fluorescent indicator 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in insulin resistant cells. Western blot analysis revealed that, compared with the TNF-α-treated control group, FWFE increased the expression of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), protein kinase B (Akt/PKB), phosphatidylinositol-3 kinase (PI3K), and glucose transporter 2 (GLUT-2), and increased IR tyrosyl phosporylation, in insulin resistant FL83B cells. However, FWFE decreased phosphorylation of c-Jun N-terminal kinases (JNK), but not the expression of the intercellular signal-regulated kinases (ERK), in the same cells. These results suggest that FWFE might alleviate insulin resistance in TNF-α-treated FL83B cells by activating PI3K-Akt/PKB signaling and inhibiting inflammatory response via suppression of JNK, rather than ERK, activation.
Collapse
Affiliation(s)
- Szu-Chuan Shen
- Department of Human Development and Family Studies, National Taiwan Normal University, No. 162, Sec. 1, Heping East Road, Taipei 10610, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-77341437; Fax: +886-2-23639635
| | - Wen-Chang Chang
- Graduate Institute of Food Science and Technology, National Taiwan University, P.O. Box 23-14, Taipei 10672, Taiwan; E-Mails: (W.-C.C.); (C.-L.C.)
| | - Chiao-Li Chang
- Graduate Institute of Food Science and Technology, National Taiwan University, P.O. Box 23-14, Taipei 10672, Taiwan; E-Mails: (W.-C.C.); (C.-L.C.)
| |
Collapse
|
18
|
Choi SA, Suh HJ, Yun JW, Choi JW. Differential gene expression in pancreatic tissues of streptozocin-induced diabetic rats and genetically-diabetic mice in response to hypoglycemic dipeptide cyclo (His-Pro) treatment. Mol Biol Rep 2012; 39:8821-35. [PMID: 22707198 DOI: 10.1007/s11033-012-1746-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/07/2012] [Indexed: 01/12/2023]
Abstract
Diabetic studies are mostly interested in gene expression in the pancreas, the site of insulin secretion that regulates blood glucose levels. However, a single gene approach has been ruled out for many years in discovering new genes or the molecular networks involved in the induction process of diabetes. To understand the molecular mechanisms by which cyclo (His-Pro) (CHP) affects amelioration of diabetes mellitus, we performed gene expression profiling in the pancreatic tissues of two diabetic animal models, streptozocin (STZ)-induced diabetic rats (T1DM) and genetically-diabetic (C57BL/6J ob/ob) mice (T2DM). To understand the healing process of these diabetic rodents, we examined the effects of CHP on various gene expression in pancreatic tissues of both animal models. Our microarray analysis revealed that a total of 1,175 genes were down-regulated and 629 genes were up-regulated in response to STZ treatment, and the altered expression levels of numerous genes were restored to normal state upon CHP treatment. In particular, 476 genes showed significantly altered gene expression upon CHP treatment. In a functional classification, 7,198 genes were counted as differentially expressed in pancreatic tissues of STZ- and CHP-treated rats compared with control, whereas 1,534 genes were restored to normal states by CHP treatment. Microarray data demonstrated for the first time that overexpression of the genes encoding IL-1 receptor, lipid metabolic enzymes (e.g. Mte1, Ptdss1, and Sult2a1), myo-inositol oxygenase, glucagon, and somatostatin as well as down-regulation of olfactory receptor 984 and mitochondrial ribosomal protein, which are highly linked to T1DM etiology. In genetically-diabetic mice, 4,384 genes were altered in gene expression by more than 2-fold compared to the control mice, when counted differentially expressed. In genetically-diabetic mice, 4,384 genes altered in expression by higher than 2-fold were counted as differentially expressed genes in pancreatic tissues of CHP-treated mice. On the other hand, 2,140 genes were up-regulated and 2,244 genes were down-regulated by CHP treatment. The results of the microarray analysis revealed that up-regulation of IL-2, IL12a, and leptin receptor and down-regulation of PIK3 played important physiological roles in the onset of T2DM. In conclusion, we hypothesize that CHP accelerates alterations of gene expression in ameliorating diabetes and antagonizes those that induces the disease.
Collapse
Affiliation(s)
- Song Ah Choi
- Department of Bioindustry, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Aguer C, Foretz M, Lantier L, Hebrard S, Viollet B, Mercier J, Kitzmann M. Increased FAT/CD36 cycling and lipid accumulation in myotubes derived from obese type 2 diabetic patients. PLoS One 2011; 6:e28981. [PMID: 22194967 PMCID: PMC3241688 DOI: 10.1371/journal.pone.0028981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.
Collapse
Affiliation(s)
- Celine Aguer
- INSERM, U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Montpellier, France
- Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Louise Lantier
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Sophie Hebrard
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Jacques Mercier
- INSERM, U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Montpellier, France
- Université Montpellier 1, Université Montpellier 2, Montpellier, France
- CHRU Montpellier, Montpellier, France
| | - Magali Kitzmann
- INSERM, U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Montpellier, France
- Université Montpellier 1, Université Montpellier 2, Montpellier, France
- * E-mail:
| |
Collapse
|
20
|
Aguer C, Gambarotta D, Mailloux RJ, Moffat C, Dent R, McPherson R, Harper ME. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One 2011; 6:e28536. [PMID: 22194845 PMCID: PMC3240634 DOI: 10.1371/journal.pone.0028536] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1) characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2) determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. METHODOLOGY/PRINCIPAL FINDINGS Oxygen consumption rate (OCR), lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG)), 5 mM glucose (low glucose (LG)) or 10 mM galactose (GAL). Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. CONCLUSIONS/SIGNIFICANCE Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell culture model elicited an abnormal response in cells from post-diabetic patients, it may be useful in further studies of the molecular mechanisms of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Daniela Gambarotta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Ryan J. Mailloux
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Cynthia Moffat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Robert Dent
- Ottawa Hospital Weight Management Clinic, Ottawa, Ontario, Canada
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Kitzmann M, Lantier L, Hébrard S, Mercier J, Foretz M, Aguer C. Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients. Biochim Biophys Acta Mol Basis Dis 2010; 1812:423-30. [PMID: 21172433 DOI: 10.1016/j.bbadis.2010.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/15/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) accumulation. To determine whether impaired lipid oxidation is involved in IMCL accumulation, we measured expression of genes involved in mitochondrial oxidative metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and after palmitate overload (600μM for 16h), in myotubes derived from healthy subjects and obese T2D patients. Mitochondrial gene expression, content and network were not different between groups. Basal palmitate beta-oxidation was not affected in T2D myotubes, whereas after 16h of palmitate pre-treatment, T2D myotubes in contrast to control myotubes, showed an inability to increase palmitate beta-oxidation (p<0.05). Interestingly, acetyl-CoA carboxylase (ACC) phosphorylation was increased with a tendency for statistical significance after palmitate pre-treatment in control myotubes (p=0.06) but not in T2D myotubes which can explain their inability to increase palmitate beta-oxidation after palmitate overload. To determine whether the activation of the AMP activated protein kinase (AMPK)-ACC pathway was able to decrease lipid content in T2D myotubes, cells were treated with AICAR and metformin. These AMPK activators had no effect on ACC and AMPK phosphorylation in T2D myotubes as well as on lipid content, whereas AICAR, but not metformin, increased AMPK phosphorylation in control myotubes. Interestingly, metformin treatment and mitochondrial inhibition by antimycin induced increased lipid content in control myotubes. We conclude that T2D myotubes display an impaired capacity to respond to metabolic stimuli.
Collapse
Affiliation(s)
- Magali Kitzmann
- INSERM, ESPRI25 Muscle et pathologies, Montpellier, F-34295, France
| | | | | | | | | | | |
Collapse
|
22
|
Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim Biophys Acta Mol Basis Dis 2009; 1792:83-92. [DOI: 10.1016/j.bbadis.2008.10.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/03/2023]
|
23
|
MacAulay K, Woodgett JR. Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin Ther Targets 2008; 12:1265-74. [PMID: 18781825 DOI: 10.1517/14728222.12.10.1265] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In spite of its rather specific name, glycogen synthase kinase-3 (GSK-3) is an eclectic cellular regulator that modulates an array of processes from nuclear transcription, to neurological functions and metabolism. The enzyme is also a focal point for diverse signaling pathways that act to suppress its activity. OBJECTIVES To review recent evidence supporting the important role GSK-3 plays in glucose homeostasis and discuss the therapeutic potential of inhibiting this enzyme in the treatment of diabetes and insulin resistance. RESULTS/CONCLUSION Despite its pleiotropic nature, GSK-3 has significant promise as a target for diabetes due to functional partitioning of the enzyme, tissue-selectivity and acute dosage-dependency of effects of inhibition, suggesting useful therapeutic windows.
Collapse
Affiliation(s)
- Katrina MacAulay
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
24
|
Frederiksen CM, Højlund K, Hansen L, Oakeley EJ, Hemmings B, Abdallah BM, Brusgaard K, Beck-Nielsen H, Gaster M. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia 2008; 51:2068-77. [PMID: 18719883 DOI: 10.1007/s00125-008-1122-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 07/07/2008] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Microarray-based studies of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated that insulin resistance and reduced mitochondrial biogenesis co-exist early in the pathogenesis of type 2 diabetes independently of hyperglycaemia and obesity. It is unknown whether reduced mitochondrial biogenesis or other transcriptional alterations co-exist with impaired insulin responsiveness in primary human muscle cells from patients with type 2 diabetes. METHODS Using cDNA microarray technology and global pathway analysis with the Gene Map Annotator and Pathway Profiler (GenMapp 2.1) and Gene Set Enrichment Analysis (GSEA 2.0.1), we examined transcript levels in myotubes established from obese patients with type 2 diabetes and matched obese healthy participants, who had been extensively metabolically characterised both in vivo and in vitro. We have previously reported reduced basal lipid oxidation and impaired insulin-stimulated glycogen synthesis and glucose oxidation in these diabetic myotubes. RESULTS No single gene was differently expressed after correction for multiple testing, and no biological pathway was differently expressed using either method of global pathway analysis. In particular, we found no evidence for differential expression of genes involved in mitochondrial oxidative metabolism. Consistently, there was no difference in mRNA levels of genes known to mediate the transcriptional control of mitochondrial biogenesis (PPARGC1A and NRF1) or in mitochondrial mass between diabetic and control myotubes. CONCLUSIONS/INTERPRETATION These results support the hypothesis that impaired mitochondrial biogenesis is not a primary defect in the sequence of events leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- C M Frederiksen
- Department of Endocrinology, Odense University Hospital, Kløvervaenget 6, 5000, Odense C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol Cell Biol 2008; 28:6314-28. [PMID: 18694957 DOI: 10.1128/mcb.00763-08] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of the protein kinase glycogen synthase kinase 3 (GSK-3) has been implicated in the development of type 2 diabetes mellitus. GSK-3 protein expression and kinase activity are elevated in diabetes, while selective GSK-3 inhibitors have shown promise as modulators of glucose metabolism and insulin sensitivity. There are two GSK-3 isoforms in mammals, GSK-3alpha and GSK-3beta. Mice engineered to lack GSK-3beta die in late embryogenesis from liver apoptosis, whereas mice engineered to lack GSK-3alpha are viable and exhibit improved insulin sensitivity and hepatic glucose homeostasis. To assess the potential role of GSK-3beta in insulin function, a conditional gene-targeting approach whereby mice in which expression of GSK-3beta was specifically ablated within insulin-sensitive tissues were generated was undertaken. Liver-specific GSK-3beta knockout mice are viable and glucose and insulin tolerant and display "normal" metabolic characteristics and insulin signaling. Mice lacking expression of GSK-3beta in skeletal muscle are also viable but, in contrast to the liver-deleted animals, display improved glucose tolerance that is coupled with enhanced insulin-stimulated glycogen synthase regulation and glycogen deposition. These data indicate that there are not only distinct roles for GSK-3alpha and GSK-3beta within the adult but also tissue-specific phenotypes associated with each of these isoforms.
Collapse
|
26
|
Cozzone D, Fröjdö S, Disse E, Debard C, Laville M, Pirola L, Vidal H. Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia 2008; 51:512-21. [PMID: 18204829 DOI: 10.1007/s00125-007-0913-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/30/2007] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The serine/threonine kinase Akt/protein kinase B (PKB) is required for the metabolic actions of insulin. Controversial data have been reported regarding Akt defective activation in the muscle of type 2 diabetic patients. Because three Akt isoforms exist, each having a distinct physiological role, we investigated the contribution of isoform-specific defects to insulin signalling in human muscle. METHODS The phosphorylation pattern and kinase activity of each Akt isoform were compared in primary myotubes from healthy control participants and type 2 diabetic patients. Phosphorylation of Ser(473) and of Thr(308) in each isoform was determined after immunoprecipitation in myotubes treated or not with insulin. RESULTS Muscle cells from diabetic patients displayed defective insulin action and a drastic reduction of insulin-stimulated activity of all Akt isoforms. This was associated with specific defects of their phosphorylation pattern in response to insulin, with impaired Akt2- (and to a lower extent Akt3-) Ser(473) phosphorylation, and with altered Akt1-Thr(308) phosphorylation. These defects were not due to faulty phosphoinositide-dependent protein kinase 1 (PDK1) production or activation. Rather, we found higher levels of the Akt2-Ser(473)-specific protein phosphatase PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) in muscle from diabetic patients, which may contribute to the alteration of Akt2-Ser(473) phosphorylation. CONCLUSIONS/INTERPRETATION These results suggest that several mechanisms affecting Akt isoforms, including deregulated production of PHLPP1, could underlie the alterations of skeletal muscle insulin signalling in type 2 diabetes. Taking into account the recently described isoform-specific metabolic functions of Akt, our results provide mechanistic insight that may contribute to the defective regulation of glucose and lipid metabolisms in the muscle of diabetic patients.
Collapse
Affiliation(s)
- D Cozzone
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Chemin du Grand Revoyet, F-69600 Oullins, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Ciaraldi TP, Nikoulina SE, Bandukwala RA, Carter L, Henry RR. Role of glycogen synthase kinase-3 alpha in insulin action in cultured human skeletal muscle cells. Endocrinology 2007; 148:4393-9. [PMID: 17569761 DOI: 10.1210/en.2006-0932] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An association between glycogen synthase kinase-3 (GSK3) in skeletal muscle and insulin resistance has been demonstrated in type 2 diabetic patients. In addition, inhibition of GSK3 improves insulin action. The aim of the present study was to elucidate the role of the alpha-isoform of GSK3 in insulin resistance in human skeletal muscle cells from nondiabetic subjects maintained in culture. Transfection of muscle cells with specific antisense oligonucleotides resulted in a 30-50% decrease of GSK3alpha protein expression (P < 0.05). Whereas neither the basal fractional velocity of glycogen synthase (GS FV) (an indicator of the activation state of the enzyme) nor glucose uptake (GU) were altered, reducing GSK3alpha expression resulted in increases in insulin stimulation of both GS FV and GU. GSK3alpha overexpression (60-100% increase over control) did not alter basal GS FV or GU but impaired insulin stimulation of both responses. Knockdown of GSK alpha also led to an increase in insulin receptor substrate-1 protein expression but did not alter insulin stimulation of pS473-Akt phosphorylation. However, GSK3alpha overexpression impaired insulin action on pS473-Akt. In summary, we concluded the following: 1) modulation of GSK3alpha expression has no effect on basal GU and glycogen synthase activities; 2) reduction of GSK3alpha expression results in improvements in insulin action; and 3) elevation of GSK3alpha in human skeletal muscle cells can induce insulin resistance for several responses. We conclude that GSK3alpha is an important regulator of muscle insulin action.
Collapse
Affiliation(s)
- Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, California 92161, USA
| | | | | | | | | |
Collapse
|
28
|
Coderre L, Vallega GA, Pilch PF, Chipkin SR. Regulation of glycogen concentration and glycogen synthase activity in skeletal muscle of insulin-resistant rats. Arch Biochem Biophys 2007; 464:144-50. [PMID: 17509520 DOI: 10.1016/j.abb.2007.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/13/2007] [Accepted: 04/14/2007] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the effect of insulin resistance on glycogen concentration and glycogen synthase activity in the red and white gastrocnemius muscles and to determine whether the inverse relationship existing between glycogen concentration and enzyme activity is maintained in insulin resistant state. These questions were addressed using 3 models that induce various degrees of insulin resistance: sucrose feeding, dexamethasone administration, and a combination of both treatments (dex+sucrose). Sucrose feeding raised triglyceride levels without affecting plasma glucose or insulin concentrations whereas dexamethasone and dex+sucrose provoked severe hyperinsulinemia, hyperglycemia and hypertriglyceridemia. Sucrose feeding did not alter muscle glycogen concentration but provoked a small reduction in the glycogen synthase activity ratio (-/+ glucose-6-phosphate) in red but not in white gastrocnemius. Dexamethasone administration augmented glycogen concentration and reduced glycogen synthase activity ratio in both muscle fiber types. In contrast, dex+sucrose animals showed decreased muscle glycogen concentration compared to dexamethasone group, leading to levels similar to those of control animals. This was associated with lower glycogen synthase activity compared to control animals leading to levels comparable to those of dexamethasone-treated animals. Thus, in dex+sucrose animals, the inverse relationship observed between glycogen levels and glycogen synthase activity was not maintained, suggesting that factors other than the glycogen concentration modulate the enzyme's activity. In conclusion, while insulin resistance was associated with a reduced glycogen synthase activity ratio, we found no correlation between muscle glycogen concentration and insulin resistance. Furthermore, our results suggest that sucrose treatment may modulate dexamethasone action in skeletal muscle.
Collapse
Affiliation(s)
- Lise Coderre
- The Montreal Diabetes Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu and Department of Medicine, Université de Montréal, 3850 St. Urbain, Montréal, Que., Canada H2W 1T8.
| | | | | | | |
Collapse
|
29
|
Debard C, Cozzone D, Ricard N, Vouillarmet J, Disse E, Husson B, Laville M, Vidal H. Short-term activation of peroxysome proliferator-activated receptor beta/delta increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients. J Mol Med (Berl) 2006; 84:747-52. [PMID: 16897074 DOI: 10.1007/s00109-006-0077-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/29/2006] [Indexed: 12/25/2022]
Abstract
Defective fatty acid oxidation in skeletal muscle is one of the possible causes of insulin resistance. Peroxisome proliferator-activated receptor beta activators are strong inducers of fatty acid oxidation. The aim of this study was to verify whether activation of fatty acid oxidation by PPARbeta agonists in human skeletal muscle cells prepared from type 2 diabetic patients could improve the reduced responses to insulin that characterized this cell model. GW0742 (10 nM) significantly increased fatty acid oxidation and oxidative gene expression in myotubes prepared from both healthy subjects and type 2 diabetic patients. In cells from control subjects, incubation with the agonist for 48 h affected neither insulin-induced rate of glycogen synthesis nor the phosphorylation state of protein kinase B (PKB serine 473). Myotubes from type 2 diabetic patients displayed marked reduction in the effects of insulin on glycogen synthesis and on PKB phosphorylation. However, treatment with PPARbeta agonists did not restore these defects. Therefore, these results indicate that induction of fatty acid oxidation with PPARbeta activators during short-term exposition is not sufficient to correct for insulin resistance in muscle cells from type 2 diabetic patients. This suggests that additional studies are needed to better characterize the link between fatty acid oxidation and insulin sensitivity in humans.
Collapse
Affiliation(s)
- Cyrille Debard
- INSERM U-449, INRA U-1235, R. Laennec Faculty of Medicine, Human Nutrition Research Center, Claude Bernard-Lyon 1 University, Rue G. Paradin, 69372, Lyon, Cedex 08, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Burén J, Eriksson JW. Is insulin resistance caused by defects in insulin's target cells or by a stressed mind? Diabetes Metab Res Rev 2005; 21:487-94. [PMID: 15977304 DOI: 10.1002/dmrr.567] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The importance of understanding insulin action is emphasized by the increasing prevalence of insulin resistance in various populations and by the fact that it plays an important pathophysiological role in many common disorders, for example, diabetes, obesity, hypertension and dyslipidemia. The primary factors responsible for the development of insulin resistance are so far unknown, although both genetic and environmental factors are involved. The genetic defects responsible for the common forms of insulin resistance, for example, in type 2 diabetes, are largely unidentified. Some studies from our group as well as by other investigators suggest that cellular insulin resistance is reversible and that it may be secondary to factors in the in vivo environment. These may include insulin-antagonistic action of hormones like catecholamines, glucocorticoids, sex steroids and adipokines as well as dysregulation of autonomic nervous activity and they could contribute to the early development of insulin resistance. Some of these factors can directly impair glucose uptake capacity and this might be due to alterations in key proteins involved in insulin's intracellular signaling pathways. This article briefly summarizes proposed mechanisms behind cellular and whole-body insulin resistance. In particular, we question the role of intrinsic defects in insulin's target cells as primary mechanisms in the development of insulin resistance in type 2 diabetes and we suggest that metabolic and neurohormonal factors instead are the main culprits.
Collapse
Affiliation(s)
- Jonas Burén
- Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, Umeå, Sweden.
| | | |
Collapse
|
31
|
Cha BS, Ciaraldi TP, Park KS, Carter L, Mudaliar SR, Henry RR. Impaired fatty acid metabolism in type 2 diabetic skeletal muscle cells is reversed by PPARgamma agonists. Am J Physiol Endocrinol Metab 2005; 289:E151-9. [PMID: 15727952 DOI: 10.1152/ajpendo.00141.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The impact of type 2 diabetes on the ability of muscle to accumulate and dispose of fatty acids and triglycerides was evaluated in cultured muscle cells from nondiabetic (ND) and type 2 diabetic (T2D) subjects. In the presence of 5 microM palmitate, T2D muscle cells accumulated less lipid than ND cells (11.5 +/- 1.2 vs. 15.1 +/- 1.4 nmol/mg protein, P < 0.05). Chronic treatment (4 days) with the peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist troglitazone increased palmitate accumulation, normalizing uptake in T2D cells. There were no significant differences between groups with regard to the relative incorporation of palmitate into neutral lipid species. This distribution was also unaffected by troglitazone treatment. beta-Oxidation of both long-chain (palmitate) and medium-chain (octanoate) fatty acids in T2D muscle cells was reduced by approximately 40% compared with ND cells. Palmitate oxidation occurred primarily in mitochondrial ( approximately 40-50% of total) and peroxisomal (20-30%) compartments. The diabetes-related defect in palmitate oxidation was localized to the mitochondrial component. Both palmitate and octanoate oxidation were stimulated by a series of thiazolidinediones. Oxidation in T2D muscle cells was normalized after treatment. Troglitazone increased the mitochondrial component of palmitate oxidation. Skeletal muscle cells from T2D subjects express defects in free fatty acid metabolism that are retained in vitro, most importantly defects in beta-oxidation. These defects can be corrected by treatment with PPARgamma agonists. Augmentation of fatty acid disposal in skeletal muscle, potentially reducing intramyocellular triglyceride content, may represent one mechanism for the lipid-lowering and insulin-sensitizing effects of thiazolidinediones.
Collapse
Affiliation(s)
- Bong-Soo Cha
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
32
|
Keeton AB, Bortoff KD, Franklin JL, Messina JL. Blockade of rapid versus prolonged extracellularly regulated kinase 1/2 activation has differential effects on insulin-induced gene expression. Endocrinology 2005; 146:2716-25. [PMID: 15731359 DOI: 10.1210/en.2004-1662] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work, insulin's regulation of expression of activating transcription factor 3 (ATF-3), the putative transcription factor proline-rich induced protein (Pip)92, and insulin-inducible gene-1 (Insig-1) (an ER resident protein involved in regulation of sterol-responsive element-binding protein 1 activation) have been examined in a liver-derived cell line (rat H4IIE hepatoma cells). We report that: 1) insulin-induced transcription of ATF-3, Pip92, and Insig-1 required MEK-ERK activation; 2) insulin-induced transcription of ATF-3 and Pip92 reached maximum levels within 15 min and was blocked by wortmannin but not LY294002; 3) in contrast, the maximum level of insulin-induced transcription of Insig-1 was delayed and was not blocked by either wortmannin or LY294002; 4) insulin activated ERK1/2 in two distinct phases, a rapid peak and a later plateau; 5) the delayed plateau phase of insulin-induced ERK1/2 activation was partially phosphatidylinositol 3-OH-kinase dependent; and 6) however, the rapid, insulin-induced peak of ERK1/2 activation was blocked by wortmannin but not LY294002.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Boulevard, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
33
|
Lulu Strat A, Kokta TA, Dodson MV, Gertler A, Wu Z, Hill RA. Early signaling interactions between the insulin and leptin pathways in bovine myogenic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:164-75. [PMID: 15950750 DOI: 10.1016/j.bbamcr.2005.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 02/18/2005] [Accepted: 03/16/2005] [Indexed: 11/25/2022]
Abstract
Cross-talk between hormone signaling pathways provides mechanisms to facilitate flexibility in the cellular response to extracellular conditions. One function of insulin is to signal high extracellular glucose, while leptin may signal the abundance of extracellular lipid, both energy sources being readily utilized by muscle. The present study reports early signaling events in the insulin and leptin cascades in primary bovine myogenic cells (BMC). BMC were treated with insulin, or leptin for 1, 10, 30 and 120 min, or pretreated with leptin for 10 min followed by insulin for 1, 10, 30 and 120 min. BMC were insulin resistant, showing a significant inhibition of IRS-1 association with the insulin receptor (IR) following insulin stimulation, a corresponding increase in PI 3-kinase association with the IR, and a slow and modest increase in GLUT4 recruitment to the plasma membrane. Pretreatment of BMC for 10 min leptin, followed by insulin time-course, caused IRS-1 recruitment to be unresponsive, but evoked a rapid, phasic response of PI 3-kinase recruitment to the IR and abrogated the response of GLUT4 translocation to the plasma membrane evoked by insulin alone. The lack of insulin response was independent of IR abundance or affinity. JAK-2 association with the ObR and JAK-2 tyrosine phosphorylation were responsive to all three treatments. Insulin alone down-regulated the leptin signaling pathway, JAK-2 association with ObR decreased at all time-points, and JAK-2 phosphorylation decreased similarly. Leptin alone also appeared to down-regulate JAK-2 association with the ObR, but stimulated the down-regulated pathway to signal, JAK-2 tyrosine phosphorylation being increased at later time-points. Pretreatment with leptin followed by insulin time-course showed marked up-regulation of the early leptin signaling pathway, JAK-2 association with the ObR being increased by insulin while JAK-2 tyrosine phosphorylation was also increased. The contrasting responses of BMC to insulin alone, leptin alone and the sequential leptin-insulin treatment may point to the ability of these cells to respond to energy substrate availability, as bovine muscle has evolved to utilize lipids and fatty acids in response to a metabolism which provides only limited glucose. This cross-talk between insulin and leptin signaling pathways points to a better understanding of the mechanisms driving energy substrate utilization in ruminant muscle and may provide a useful model for greater understanding of the molecular mechanisms underlying the development of insulin resistance and Type 2 diabetes in man.
Collapse
Affiliation(s)
- A Lulu Strat
- Department of Animal and Veterinary Science, University of Idaho, Moscow, 8344, USA
| | | | | | | | | | | |
Collapse
|
34
|
Corbould A, Kim YB, Youngren JF, Pender C, Kahn BB, Lee A, Dunaif A. Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am J Physiol Endocrinol Metab 2005; 288:E1047-54. [PMID: 15613682 DOI: 10.1152/ajpendo.00361.2004] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance in polycystic ovary syndrome (PCOS) is due to a postbinding defect in signaling that persists in cultured skin fibroblasts and is associated with constitutive serine phosphorylation of the insulin receptor (IR). Cultured skeletal muscle from obese women with PCOS and age- and body mass index-matched control women (n = 10/group) was studied to determine whether signaling defects observed in this tissue in vivo were intrinsic or acquired. Basal and insulin-stimulated glucose transport and GLUT1 abundance were significantly increased in cultured myotubes from women with PCOS. Neither IR beta-subunit abundance and tyrosine autophosphorylation nor insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity differed in the two groups. However, IRS-1 protein abundance was significantly increased in PCOS, resulting in significantly decreased PI 3-kinase activity when normalized for IRS-1. Phosphorylation of IRS-1 on Ser312, a key regulatory site, was significantly increased in PCOS, which may have contributed to this signaling defect. Insulin signaling via IRS-2 was also decreased in myotubes from women with PCOS. In summary, decreased insulin-stimulated glucose uptake in PCOS skeletal muscle in vivo is an acquired defect. Nevertheless, there are intrinsic abnormalities in glucose transport and insulin signaling in myotubes from affected women, including increased phosphorylation of IRS-1 Ser312, that may confer increased susceptibility to insulin resistance-inducing factors in the in vivo environment. These abnormalities differ from those reported in other insulin resistant states consistent with the hypothesis that PCOS is a genetically unique disorder conferring an increased risk for type 2 diabetes.
Collapse
Affiliation(s)
- Anne Corbould
- Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Carnitine, the L-beta-hydroxy-gamma-N-trimethylaminobutyric acid, is synthesized primarily in the liver and kidneys from lysine and methionine. Carnitine covers an important role in lipid metabolism, acting as an obligatory cofactor for beta-oxidation of fatty acids by facilitating the transport of long-chain fatty acids across the mitochondrial membrane as acylcarnitine esters. Furthermore, since carnitine behaves as a shuttle for acetyl groups from inside to outside the mitochondrial membrane, it covers also a key role in glucose metabolism and assists in fuel-sensing. A reduction of the fatty acid transport inside the mitochondria results in the cytosolic accumulation of triglycerides, which is implicated in the pathogenesis of insulin resistance. Acute hypercarnitinemia stimulates nonoxidative glucose disposal during euglycemic hyperinsulinemic clamp in healthy volunteers. Similar results were obtained in type 2 diabetic patients. The above findings were confirmed in healthy volunteers using the minimal modeling of glucose kinetics. The total end-clamp glucose tissue uptake was significantly increased by the administration of doses of acetyl-L-carnitine (ALC) from 3.8 to 5.2 mg/kg/min, without a significant dose-response effect. In conclusion, both L-carnitine and ALC are effective in improving insulin-mediated glucose disposal either in healthy subjects or in type 2 diabetic patients. Two possible mechanisms might be invoked in the metabolic effect of carnitine and its derivative: the first is a regulation of acetyl and acyl cellular trafficking for correctly meeting the energy demand; the second is a control action in the synthesis of key glycolytic and gluconeogenic enzymes.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Department of Internal Medicine, Catholic University, School of Medicine, 00135 Roma, Italy.
| |
Collapse
|
36
|
McIntyre EA, Halse R, Yeaman SJ, Walker M. Cultured muscle cells from insulin-resistant type 2 diabetes patients have impaired insulin, but normal 5-amino-4-imidazolecarboxamide riboside-stimulated, glucose uptake. J Clin Endocrinol Metab 2004; 89:3440-8. [PMID: 15240629 DOI: 10.1210/jc.2003-031919] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Impaired insulin action is a characteristic feature of type 2 diabetes. The study aims were to investigate whether after prolonged culture skeletal muscle cultures from insulin-resistant, type 2 diabetic patients (taking >100 U insulin/d) displayed impaired insulin signaling effects compared with cultures from nondiabetic controls and to determine whether retained abnormalities were limited to insulin action by studying an alternative pathway of stimulated glucose uptake. Studies were performed on myotubes differentiated for 7 d between passages 4 and 6. Insulin-stimulated glucose uptake (100 nm; P < 0.05) and insulin-stimulated glycogen synthesis (1 nm; P < 0.01) were significantly impaired in the diabetic vs. control cultures. Protein kinase B (PKB) expression and phosphorylated PKB levels in response to insulin stimulation (20 nm) were comparable in the diabetic and control cultures. 5-Amino-4-imidazolecarboxamide riboside (AICAR) mimics the effect of exercise on glucose uptake by activating AMP-activated protein kinase. There was no difference in AICAR (2 mm)-stimulated glucose uptake between diabetic vs. control myotube cultures (P = not significant). In conclusion, diabetic muscle cultures retain signaling defects after prolonged culture that appear specific to the insulin signaling pathway, but not involving PKB. This supports an intrinsic abnormality of the diabetic muscle cells that is most likely to have a genetic basis.
Collapse
Affiliation(s)
- E A McIntyre
- School of Clinical Medical Sciences, The Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
37
|
Bouzakri K, Roques M, Debard C, Berbe V, Rieusset J, Laville M, Vidal H. WY-14643 and 9-cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients. Diabetologia 2004; 47:1314-1323. [PMID: 15292987 DOI: 10.1007/s00125-004-1428-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS To determine the effects of peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptor (RXR) agonists on insulin action, we investigated the effects of Wy-14643 and 9-cis-retinoic acid (9-cis-RA) on insulin signalling and glucose uptake in human myotubes. METHODS Primary cultures of differentiated human skeletal muscle cells, established from healthy subjects and Type 2 diabetic patients, were used to study the effects of Wy-14643 and 9-cis-RA on the expression and activity of proteins involved in the insulin signalling cascade. Glucose transport was assessed by measuring the rate of [3H]2-deoxyglucose uptake. RESULTS Wy-14643 and 9-cis-RA increased IRS-2 and p85α phosphatidylinositol 3-kinase (PI 3-kinase) mRNA and protein expression in myotubes from non-diabetic and Type 2 diabetic subjects. This resulted in increased insulin stimulation of protein kinase B phosphorylation and increased glucose uptake in cells from control subjects. Myotubes from diabetic patients displayed marked alterations in the stimulation by insulin of the IRS-1/PI 3-kinase pathway. These alterations were associated with blunted stimulation of glucose transport. Treatment with Wy-14643 and 9-cis-RA did not restore these defects but increased the basal rate of glucose uptake. CONCLUSIONS/INTERPRETATION These results demonstrate that PPARα and RXR agonists can directly affect insulin signalling in human muscle cells. They also indicate that an increase in the IRS-2/PI 3-kinase pathway does not overcome the impaired stimulation of the IRS-1-dependent pathway and does not restore insulin-stimulated glucose uptake in myotubes from Type 2 diabetic patients.
Collapse
Affiliation(s)
- K Bouzakri
- INSERM U449/INRA U1235 and Human Nutrition Research Center of Lyon, R. Laennec Medical Faculty, Claude Bernard University of Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Højlund K, Staehr P, Hansen BF, Green KA, Hardie DG, Richter EA, Beck-Nielsen H, Wojtaszewski JFP. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 2003; 52:1393-402. [PMID: 12765949 DOI: 10.2337/diabetes.52.6.1393] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites, but the mechanism involved in human muscle and the defect in type 2 diabetes remain unclear. We studied the effect of insulin at physiological concentrations on glucose metabolism, insulin signaling and phosphorylation of GS in skeletal muscle from type 2 diabetic and well-matched control subjects during euglycemic-hyperinsulinemic clamps. Analysis using phospho-specific antibodies revealed that insulin decreases phosphorylation of sites 3a + 3b in human muscle, and this was accompanied by activation of Akt and inhibition of glycogen synthase kinase-3alpha. In type 2 diabetic subjects these effects of insulin were fully intact. Despite that, insulin-mediated glucose disposal and storage were reduced and activation of GS was virtually absent in type 2 diabetic subjects. Insulin did not decrease phosphorylation of sites 2 + 2a in healthy human muscle, whereas in diabetic muscle insulin infusion in fact caused a marked increase in the phosphorylation of sites 2 + 2a. This phosphorylation abnormality likely caused the impaired GS activation and glucose storage, thereby contributing to skeletal muscle insulin resistance, and may therefore play a pathophysiological role in type 2 diabetes.
Collapse
Affiliation(s)
- Kurt Højlund
- Diabetes Research Centre, University of Southern Denmark and Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H. Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 2003; 52:1319-25. [PMID: 12765939 DOI: 10.2337/diabetes.52.6.1319] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand better the defects in the proximal steps of insulin signaling during type 2 diabetes, we used differentiated human skeletal muscle cells in primary culture. When compared with cells from control subjects, myotubes established from patients with type 2 diabetes presented the same defects as those previously evidenced in vivo in muscle biopsies, including defective stimulation of phosphatidylinositol (PI) 3-kinase activity, decreased association of PI 3-kinase with insulin receptor substrate (IRS)-1 and reduced IRS-1 tyrosine phosphorylation during insulin stimulation. In contrast to IRS-1, the signaling through IRS-2 was not altered. Investigating the causes of the reduced tyrosine phosphorylation of IRS-1, we found a more than twofold increase in the basal phosphorylation of IRS-1 on serine 636 in myotubes from patients with diabetes. Concomitantly, there was a higher basal mitogen-activated protein kinase (MAPK) activity in these cells, and inhibition of the MAPKs with PD98059 strongly reduced the level of serine 636 phosphorylation. These results suggest that IRS-1 phosphorylation on serine 636 might be involved in the reduced phosphorylation of IRS-1 on tyrosine and in the subsequent alteration of insulin-induced PI 3-kinase activation. Moreover, increased MAPK activity seems to play a role in the phosphorylation of IRS-1 on serine residue in human muscle cells.
Collapse
Affiliation(s)
- Karim Bouzakri
- INSERM U449 and CRNHL, IFR 62, R. Laennec Medical Faculty, F-69370 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dietze D, Koenen M, Röhrig K, Horikoshi H, Hauner H, Eckel J. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes 2002; 51:2369-76. [PMID: 12145147 DOI: 10.2337/diabetes.51.8.2369] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adipocyte factors play a major role in the induction of insulin resistance in skeletal muscle. To analyze this cross-talk, we established a system of co-culture of human fat and skeletal muscle cells. Cells of three muscle donors were kept in co-culture with cells of various fat cell donors, and insulin signaling was subsequently analyzed in myocytes. Insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was completely blocked, with unaltered expression of IRS-1. Troglitazone increased insulin action on IRS-1 phosphorylation, in both the absence and presence of co-culture. Insulin-regulated activation of Akt kinase in the myocytes was significantly reduced after co-culture, with troglitazone restoring insulin action. Addition of tumor necrosis factor (TNF)-alpha (2.5 nmol/l) to myocytes for 48 h reduced IRS-1 expression and inhibited IRS-1 and Akt phosphorylation comparable to the effect of co-culture. Lower doses of TNF-alpha were ineffective. After co-culture, TNF-alpha in the culture medium was below the detection limit of 0.3 pmol/l. A very low level of resistin was detected in the supernatant of myocytes, but not of adipocytes. In conclusion, the release of fat cell factors induces insulin resistance in human skeletal muscle cells; however, TNF-alpha and resistin appear not to be involved in this process.
Collapse
Affiliation(s)
- Daniela Dietze
- Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Research Institute, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes 2002; 51:2190-8. [PMID: 12086949 DOI: 10.2337/diabetes.51.7.2190] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glycogen synthase kinase (GSK)-3 has been implicated in the regulation of multiple cellular physiological processes in skeletal muscle. Selective cell-permeable reversible inhibitors (INHs) of GSK-3 (CT98014 and CHIR98023 [Chiron, Emeryville, CA] and LiCl) were used to evaluate the role of GSK-3 in controlling glucose metabolism. Acute treatment (30 min) of cultured human skeletal muscle cells with either INH resulted in a dose-dependent activation of glycogen synthase (GS) with a maximally effective concentration of approximately 2 micromol/l. The maximal acute effect of either INH on GS (103 +/- 25% stimulation over basal) was greater than the maximal insulin response (48 +/- 9%, P < 0.05 vs. INH); LiCl was as effective as insulin. The GSK-3 inhibitor effect, like that of insulin, was on the activation state (fractional velocity [FV]) of GS. Cotreatment of muscle cells with submaximal doses of INH and insulin resulted in an additive effect on GS FV (103 +/- 10% stimulation, P < 0.05 vs. either agent alone). Glucose incorporation into glycogen was also acutely stimulated by INH. While prolonged (6-24 h) insulin exposure led to desensitization of GS, INH continued to activate GS FV for at least 24 h. Insulin and LiCl acutely activated glucose uptake, whereas INH stimulation of glucose uptake required more prolonged exposure, starting at 6 h and continuing to 24 h. Chronic (4-day) treatment with INH increased both basal (154 +/- 32% of control) and insulin-stimulated (219 +/- 74%) glucose uptake. Upregulation of uptake activity occurred without any change in total cellular GLUT1 or GLUT4 protein content. Yet the same chronic treatment resulted in a 65 +/- 6% decrease in GSK-3 protein and a parallel decrease (61 +/- 11%) in GSK-3 total activity. Together with the INH-induced increase in insulin-stimulated glucose uptake, there was an approximately 3.5-fold increase (P < 0.05) in insulin receptor substrate (IRS)-1 protein abundance. Despite upregulation of IRS-1, maximal insulin stimulation of Akt phosphorylation was unaltered by INH treatment. The results suggest that selective inhibition of GSK-3 has an impact on both GS and glucose uptake, including effects on insulin action, using mechanisms that differ from and are additive to those of insulin.
Collapse
Affiliation(s)
- Svetlana E Nikoulina
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|