1
|
Zhang J, Liu J, Yue Y, Wang L, He Q, Xu S, Li J, Liao Y, Chen Y, Wang S, Xie Y, Zhang B, Bian Y, Dimitrov DS, Yuan Y, Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J Exp Clin Cancer Res 2024; 43:173. [PMID: 38898487 PMCID: PMC11188579 DOI: 10.1186/s13046-024-03099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Shuyi Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yunji Liao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | | | - Yueqing Xie
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China.
| |
Collapse
|
2
|
Hannan FM, Elajnaf T, Vandenberg LN, Kennedy SH, Thakker RV. Hormonal regulation of mammary gland development and lactation. Nat Rev Endocrinol 2023; 19:46-61. [PMID: 36192506 DOI: 10.1038/s41574-022-00742-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 2022; 13:949396. [PMID: 36187116 PMCID: PMC9520000 DOI: 10.3389/fendo.2022.949396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPβ dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.
Collapse
Affiliation(s)
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Sinha S, Haque M. Insulin Resistance and Type 2 Diabetes Mellitus: An Ultimatum to Renal Physiology. Cureus 2022; 14:e28944. [PMID: 36111327 PMCID: PMC9462660 DOI: 10.7759/cureus.28944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Insulin resistance (IR) is stated as diminished insulin action regardless of hyperinsulinemia. The usual target organs for insulin activities are the liver, skeletal muscle, and adipose tissue. Hence, the vasculature and kidneys are nonconventional target organs as the impacts of insulin on these are comparatively separate from other conventional target organs. Vasodilation is achieved by raising endothelial nitric oxide (NO) generation by initiating the phosphoinositide 3-kinase (PI3K) pathway. In insulin-nonresponsive conditions, this process is defective, and there is increased production of endothelin-1 through the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which predominates the NO effects, causing vasoconstriction. Renal tubular cells and podocytes have insulin receptors, and their purposeful importance has been studied, which discloses critical acts of insulin signaling in podocyte survivability and tubular action. Diabetic nephropathy (DN) is a prevalent problem in individuals with hypertension, poor glycemic management, hereditary susceptibility, or glomerular hyperfiltration. DN could be a significant contributing factor to end-stage renal disease (ESRD) that results from chronic kidney disease (CKD). IR and diabetes mellitus (DM) are the constituents of syndrome X and are accompanied by CKD progression. IR performs a key part in syndrome X leading to CKD. However, it is indistinct whether IR individually participates in enhancing the threat to CKD advancement rather than CKD complexity. CKD is an extensive public health problem affecting millions of individuals worldwide. The tremendous spread of kidney disease intensifies people’s health impacts related to communicable and noncommunicable diseases. Chronic disease regulator policies do not include CKD at global, local, and/or general levels. Improved knowledge of the character of CKD-associated problems might aid in reforming diagnosis, prevention, and management.
Collapse
|
5
|
Costa-Brito AR, Gonçalves I, Santos CRA. The brain as a source and a target of prolactin in mammals. Neural Regen Res 2022; 17:1695-1702. [PMID: 35017416 PMCID: PMC8820687 DOI: 10.4103/1673-5374.332124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prolactin is a polypeptide hormone associated with an extensive variety of biological functions. Among the roles of prolactin in vertebrates, some were preserved throughout evolution. This is the case of its function in the brain, where prolactin receptors, are expressed in different structures of the central nervous system. In the brain, prolactin actions are principally associated with reproduction and parental behavior, and involves the modulation of adult neurogenesis, neuroprotection, and neuroplasticity, especially during pregnancy, thereby preparing the brain to parenthood. Prolactin is mainly produced by specialized cells in the anterior pituitary gland. However, during vertebrate evolution many other extrapituitary tissues do also produce prolactin, like the immune system, endothelial cells, reproductive structures and in several regions of the brain. This review summarizes the relevance of prolactin for brain function, the sources of prolactin in the central nervous system, as well as its local production and secretion. A highlight on the impact of prolactin in human neurological diseases is also provided.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
6
|
Abstract
Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women. However, it has been more difficult to determine its actions and clinical consequences in established tumors. Here we review experimental data implicating multiple mechanisms by which prolactin may increase the risk of breast cancer. We then consider the evidence for role(s) of prolactin and its downstream signaling cascades in disease progression and treatment responses, and discuss how new approaches are beginning to illuminate the biology behind the seemingly conflicting epidemiologic and experimental studies of prolactin actions across diverse breast cancers.
Collapse
|
7
|
Liu HM, Ma LL, Li C, Cao B, Jiang Y, Han L, Xu R, Lin J, Zhang D. The molecular mechanism of chronic stress affecting the occurrence and development of breast cancer and potential drug therapy. Transl Oncol 2021; 15:101281. [PMID: 34875482 PMCID: PMC8652015 DOI: 10.1016/j.tranon.2021.101281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
According to the 2020 data released by the International Agency for Research on Cancer, breast cancer has surpassed lung cancer as the world's most newly diagnosed first-time cancer. Compared with patients with other types of cancer, those with breast cancer experience greater mental stress and more severe psychological impacts because of the life-threatening diagnosis, physical changes, treatment side effects, and family and social life dysfunctions. These usually manifest as anxiety, depression, nervousness, and insomnia, all of which elicit stress responses. Particularly under chronic stress, the continuous release of neurotransmitters from the neuroendocrine system can have a highly profound impact on the occurrence and prognosis of breast cancer. However, because of the complex mechanisms underlying chronic stress and the variability in individual tolerance, evidence of the role of chronic stress in the occurrence and evolution of breast cancer remains unclear. This article reviewed previous research on the correlation between chronic stress and the occurrence and development of breast cancer, particularly the molecular mechanism through which chronic stress promotes breast cancer via neurotransmitters secreted by the nervous system. We also review the progress in the development of potential drugs or blockers for the treatment of breast cancer by targeting the neuroendocrine system.
Collapse
Affiliation(s)
- Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Le-le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Chunyu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China; National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Road Shierqiao, Chengdu 610072, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Road Shierqiao, Chengdu 610072, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China.
| |
Collapse
|
8
|
Development of 2'-aminospiro [pyrano[3,2-c]quinoline]-3'-carbonitrile derivatives as non-ATP competitive Src kinase inhibitors that suppress breast cancer cell migration and proliferation. Bioorg Chem 2021; 116:105344. [PMID: 34598088 DOI: 10.1016/j.bioorg.2021.105344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
Src kinase activity controls diverse cellular functions, including cell growth, migration, adhesion, and survival. It is de-regulated in several cancers, including breast cancer, where it is highly expressed and phosphorylated. Thus, targeting Src by a small molecule is a feasible strategy for managing different breast cancer types. Several Src kinase inhibitors are available, including the FDA-approved drug (dasatinib). However, they are primarily ATP-competitive inhibitors that have been reported to lack specificity towards Src. We have a long-time interest in discovering protein kinase inhibitors that are non-competitive for ATP. In this project, three groups of 2'-aminospiro[pyrano[3,2-c]quinoline]-3'-carbonitrile derivatives were designed and synthesized, hypothesizing that small molecules with a spiro scaffold appended to a pyrano[3,2-c]quinoline analog could act as non-ATP competitive Src kinase inhibitors. 3b, 3c, and 3d inhibited Src kinase activity with IC50s of 4.9, 5.9, and 0.9 μM, respectively. At the same time, they did not impact the MDM2/p53 interaction in HEK293 cells, which has been reported to be affected by some spirocyclic compounds. 25 µM of 3b, 3c, or 3d did not inhibit the kinase activity of ERK2, JNK1, or p38-alpha in an in-vitro kinase assay. Steady-state kinetic studies for the effect of 3d on the ability of recombinant Src to phosphorylate its substrate (Srctide) revealed a non-ATP competitive inhibition mechanism. 1.6 µM of 3d was enough to diminish Src, Fak, and paxillin phosphorylation in the breast cancer cell lines MDA-MB-231 and MCF7. In the NCI screening, 3d induced broad tumor cytotoxicity for the NCI-60 cell lines, including all the breast cancer cell lines. The potency of 3b, 3c, and 3d to inhibit migration, proliferation, and colony formation of MDA-MB-231 and proliferation of MCF7 cells correlates with their potency to suppress Src kinase activity in the same cell line. Noticeably, the cell growth suppression and apoptosis induction in the tested cell lines can be attributed to the ability of the new derivatives to suppress the ERK and Akt survival pathways downstream of Src.
Collapse
|
9
|
Kavarthapu R, Anbazhagan R, Dufau ML. Crosstalk between PRLR and EGFR/HER2 Signaling Pathways in Breast Cancer. Cancers (Basel) 2021; 13:4685. [PMID: 34572912 PMCID: PMC8467304 DOI: 10.3390/cancers13184685] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Prolactin receptor (PRLR) and epidermal growth factor receptor (EGFR/ERBB) signaling pathways activated by prolactin (PRL) and epidermal growth factor (EGF), have a major role in the mammary gland development and in the etiology of breast cancer, respectively. ER+ breast tumors comprise up to 75% of all breast cancers and 10% of these are HER2+. Elevated levels of PRLR in breast tumors, high circulating levels of PRL and increased expression of ERBB1/2 in patients that become resistant to endocrine therapy have shown to be associated with higher risk of cancer progression. In this review, we examine the role of crosstalk between PRLR and ERBB1/2 signaling pathways in the activation of unliganded ERα, cyclin-D1 and other oncogenic factors (MYC, FOS, JUN) in breast cancer. PRL/PRLR and EGF/EGFR induces phosphorylation of ERα through activation of MEK/MAPK and PI3K/AKT signaling pathways. PRL in breast cancer cells via PRLR/JAK2 can also induce phosphorylation of ERBB2/HER2, which in turn activates the downstream RAS/MEK/ERK pathway required for ERα phosphorylation. EGFR, independent of PRL/PRLR, can activate STAT5 indirectly via c-SRC and drive the expression of target genes involved in cell proliferation and survival. The crosstalk between PRLR and HER2, where PRL induces HER2 signaling can be an alternative route for ERα activation to induce transcription of PRLR and other ER target genes. We believe that overexpression of EGFR/HER2 and PRLR in breast tumors could maximize the actions of their ligands, and further induce cell proliferation promoting malignancy. This could also explain the resistance to endocrine therapy resulting in tumor growth.
Collapse
Affiliation(s)
| | | | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (R.K.); (R.A.)
| |
Collapse
|
10
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
11
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
12
|
Targeting SRC Kinase Signaling in Pancreatic Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21207437. [PMID: 33050159 PMCID: PMC7588004 DOI: 10.3390/ijms21207437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene nonreceptor tyrosine-protein kinase SRC is a member of the SRC family of tyrosine kinases (SFKs), and its activation and overexpression have been shown to play a protumorigenic role in multiple solid cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is currently the seventh-leading cause of cancer-related death worldwide, and, by 2030, it is predicted to become the second-leading cause of cancer-related death in the United States. PDAC is characterized by its high lethality (5-year survival of rate of <10%), invasiveness, and chemoresistance, all of which have been shown to be due to the presence of pancreatic cancer stem cells (PaCSCs) within the tumor. Due to the demonstrated overexpression of SRC in PDAC, we set out to determine if SRC kinases are important for PaCSC biology using pharmacological inhibitors of SRC kinases (dasatinib or PP2). Treatment of primary PDAC cultures established from patient-derived xenografts with dasatinib or PP2 reduced the clonogenic, self-renewal, and tumor-initiating capacity of PaCSCs, which we attribute to the downregulation of key signaling factors such as p-FAK, p-ERK1-2, and p-AKT. Therefore, this study not only validates that SRC kinases are relevant and biologically important for PaCSCs but also suggests that inhibitors of SRC kinases may represent a possible future treatment option for PDAC patients, although further studies are still needed.
Collapse
|
13
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
14
|
Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martínez-Costa ÓH, González-Páramos C, Ciordia S, Hardisson D, Aragón JJ, Fernández-Moreno MÁ, Martín-Pérez J. c-Src functionality controls self-renewal and glucose metabolism in MCF7 breast cancer stem cells. PLoS One 2020; 15:e0235850. [PMID: 32673341 PMCID: PMC7365443 DOI: 10.1371/journal.pone.0235850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023] Open
Abstract
Deregulation of Src kinases is associated with cancer. We previously showed that SrcDN conditional expression in MCF7 cells reduces tumorigenesis and causes tumor regression in mice. However, it remained unclear whether SrcDN affected breast cancer stem cell functionality or it reduced tumor mass. Here, we address this question by isolating an enriched population of Breast Cancer Stem Cells (BCSCs) from MCF7 cells with inducible expression of SrcDN. Induction of SrcDN inhibited self-renewal, and stem-cell marker expression (Nanog, Oct3-4, ALDH1, CD44). Quantitative proteomic analyses of mammospheres from MCF7-Tet-On-SrcDN cells (data are available via ProteomeXchange with identifier PXD017789, project DOI: 10.6019/PXD017789) and subsequent GSEA showed that SrcDN expression inhibited glycolysis. Indeed, induction of SrcDN inhibited expression and activity of hexokinase, pyruvate kinase and lactate dehydrogenase, resulting in diminished glucose consumption and lactate production, which restricted Warburg effect. Thus, c-Src functionality is important for breast cancer stem cell maintenance and renewal, and stem cell transcription factor expression, effects linked to glucose metabolism reduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Ciordia
- Servicio de Espectrometría de Masas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - David Hardisson
- Servicio de Anatomía Patológica, Hospital Universitario La Paz, Madrid
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de investigaciones sanitarias del hospital La Paz (IdiPAZ), Madrid, Spain
| | - Juan J. Aragón
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jorge Martín-Pérez
- Instituto de Investigaciones Biomédicas A. Sols (CSIC/UAM), Madrid, Spain
- Instituto de investigaciones sanitarias del hospital La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
15
|
Popnikolov N, Brzezinska K, Platoff RM, Binnebose R, Rothstein-Rubin R, Komarnicky LT, Woodworth A. Upregulation of Prolactin Receptor Expression and Activation of Prolactin Signaling in an Aggressive Triple-Negative Breast Carcinoma During Pregnancy: A Case Report. Clin Breast Cancer 2020; 20:e529-e539. [PMID: 32360085 DOI: 10.1016/j.clbc.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Nikolay Popnikolov
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Katarzyna Brzezinska
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Rebecca M Platoff
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Rhonda Binnebose
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | | | - Lydia T Komarnicky
- Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, PA
| | - Amanda Woodworth
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
16
|
Huang J, Pan Y, Hu G, Sun W, Jiang L, Wang P, Ding X. SRC fine-tunes ADAM10 shedding activity to promote pituitary adenoma cell progression. FEBS J 2019; 287:190-204. [PMID: 31365784 DOI: 10.1111/febs.15026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022]
Abstract
A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a metalloproteinase known to modulate the progression of several types of tumor. However, the role played by ADAM10 in pituitary adenomas is currently unknown, and what factors orchestrate the activation of ADAM10 in this kind of tumor is also unclear. Here, we found that SRC kinase is an ADAM10-interacting partner and that SRC kinase activity is required for this interaction. As a new positive regulator promoting the shedding activity of ADAM10, SRC could compete with calmodulin 1 (CALM1) for ADAM10 binding in a mutually exclusive manner. Strikingly, the interaction between ADAM10 and CALM1 is regulated by SRC activity. Furthermore, we proved that the cytoplasmic region of ADAM10 is required for the shedding activity of ADAM10 upon SRC activation. As a proof-of-concept, we discovered that the combination of ADAM10 and SRC inhibitors can inhibit cell proliferation and migration to a great extent. Thus, our findings shed light on a novel therapeutic strategy to block the tumorigenesis and migration of pituitary adenoma.
Collapse
Affiliation(s)
- Jinxiang Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Pan
- Department of Neurosurgery, No.971 Hospital of People's Liberation Army Navy, Qingdao, Shandong, China
| | - Guohan Hu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Peng Wang
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuehua Ding
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
On-Chip Preparation of Amphiphilic Nanomicelles-in-Sodium Alginate Spheroids as a Novel Platform Against Triple-Negative Human Breast Cancer Cells: Fabrication, Study of Microfluidics Flow Hydrodynamics and Proof of Concept for Anticancer and Drug Delivery Applications. J Pharm Sci 2019; 108:3528-3539. [PMID: 31351864 DOI: 10.1016/j.xphs.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/20/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
Abstract
Spheroidal microparticles versatility as a drug carrier makes it a real workhorse in drug delivery applications. Despite of their long history, few research publications emphasize on how to improve their potential targeting ability, production rate, and dissolution characteristics. The current research presents an example of the combined state of the art of nano- and microparticles development technologies. Here in a novel on-chip, microfluidics approach is developed for encapsulating amphiphilic nanomicelles-in-sodium alginate spheroid. The designed nano-in-micro drug delivery system revealed a superior cytotoxicity against triple-negative human breast cancer cell line (MDA-MB-231), besides, a more sustained release of the drug. Hydrodynamics of the designed microchip was also investigated as a function of different flow rates with an insight on the dimensionless numbers; capillary number and Weber number throughout the microchannels. Our study confirmed the efficient encapsulation of nanomicelles within the alginate shell. The current microfluidics approach can be efficiently applied for uniform production of nano-in-microparticles with potential anticancer capability.
Collapse
|
18
|
Sabra SA, Sheweita SA, Haroun M, Ragab D, Eldemellawy MA, Xia Y, Goodale D, Allan AL, Elzoghby AO, Rohani S. Magnetically Guided Self-Assembled Protein Micelles for Enhanced Delivery of Dasatinib to Human Triple-Negative Breast Cancer Cells. J Pharm Sci 2018; 108:1713-1725. [PMID: 30528944 DOI: 10.1016/j.xphs.2018.11.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
Magnetic nanocarriers are useful in targeted cancer therapy. Dasatinib (DAS)-loaded magnetic micelles were prepared for magnetically guided drug delivery. The magnetic nanoplatform is composed of hydrophobic oleic acid-coated magnetite (Fe3O4) core along with DAS encapsulated in amphiphilic zein-lactoferrin self-assembled polymeric micelles. Transmission electron microscope analysis manifested formation of these magnetic micelles with a mean diameter of about 100 nm. In addition, drug-loaded magnetic micelles displayed a saturation magnetization of about 10.01 emu.g-1 with a superparamagnetic property. They also showed good in vitro serum stability and hemocompatibility accompanied with a sustained release of DAS in acidic pH. More importantly, they exhibited 1.35-fold increase in their in vitro cytotoxicity against triple-negative human breast cancer cell line (MDA-MB-231) using an external magnetic field compared to drug-loaded magnetic micelles in the absence of a magnetic field. Enhanced inhibition of p-c-Src protein expression level and in vitro cellular migration under the effect of magnetic field was noted owing to the dual-targeting strategy offered by the presence of a magnetic sensitive core, as well as the active targeting property of lactoferrin corona. Taken all together, these results suggest that DAS-loaded magnetic micelles possess a great potential for targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa Ragab
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maha A Eldemellawy
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City for Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, 21934, Alexandria, Egypt
| | - Ying Xia
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada; Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
19
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
Lim ST, Jeon YW, Gwak H, Kim SY, Suh YJ. Synergistic anticancer effects of ruxolitinib and calcitriol in estrogen receptor‑positive, human epidermal growth factor receptor 2‑positive breast cancer cells. Mol Med Rep 2018; 17:5581-5588. [PMID: 29436642 PMCID: PMC5865997 DOI: 10.3892/mmr.2018.8580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
The Janus kinase (JAK)1 and JAK2 inhibitor, ruxolitinib, and the active form of vitamin D (calcitriol) were previously reported to possess anticancer effects in breast cancer. The present study investigated the combined effects of ruxolitinib and calcitriol on an estrogen receptor (ER)‑positive, human epidermal growth factor receptor 2 (HER2)‑positive, breast cancer cell line. The ER and HER2‑positive MCF7‑HER18 breast cancer cell line was used to investigate the combination effect of ruxolitinib and calcitriol. A bromodeoxyuridine (BrdU) assay was used to investigate cell growth inhibition. The synergism of this combination therapy was examined using the Chou‑Talalay method. Cell cycle analysis was performed by flow cytometry, and apoptosis was evaluated by flow cytometry following Annexin V‑fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining. Alterations in protein expression levels were analyzed by western blotting. The BrdU assay indicated that combination treatment using ruxolitinib and calcitriol produced a synergistic anti‑proliferative effect in MCF7‑HER18 breast cancer cells. Annexin V‑FITC/PI staining and cell cycle analysis identified a synergistic increase in apoptosis and sub‑G1 arrest in the presence of ruxolitinib and calcitriol. Western blot analysis revealed that these synergistic effects of ruxolitinib and calcitriol were associated with reduced protein levels of JAK2, phosphorylated JAK2, c‑Myc proto oncogene protein, cyclin‑D1, apoptosis regulator Bcl‑2 and Bcl‑2‑like protein 1, and with increased levels of caspase‑3 and Bcl‑2‑associated agonist of cell death proteins. The results of the present study demonstrated the synergistic anticancer effects of ruxolitinib and calcitriol in ER and HER2‑positive MCF7‑HER18 breast cancer cells. Based on these findings, ruxolitinib and calcitriol may have potential as a combination therapy for patients with ER and HER2‑positive breast cancer.
Collapse
Affiliation(s)
- Seung Taek Lim
- Division of Breast and Thyroid Surgical Oncology, Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi 16247, Republic of Korea
| | - Ye Won Jeon
- Division of Breast and Thyroid Surgical Oncology, Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi 16247, Republic of Korea
| | - Hongki Gwak
- Division of Breast and Thyroid Surgical Oncology, Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi 16247, Republic of Korea
| | - Se Young Kim
- Division of Breast and Thyroid Surgical Oncology, Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi 16247, Republic of Korea
| | - Young Jin Suh
- Division of Breast and Thyroid Surgical Oncology, Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi 16247, Republic of Korea
| |
Collapse
|
21
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
22
|
|
23
|
Castillo LF, Rivero EM, Goffin V, Lüthy IA. Alpha 2 -adrenoceptor agonists trigger prolactin signaling in breast cancer cells. Cell Signal 2017; 34:76-85. [DOI: 10.1016/j.cellsig.2017.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
|
24
|
Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of Growth Hormone in Breast Cancer. Endocrinology 2017; 158:1543-1555. [PMID: 28379395 DOI: 10.1210/en.2016-1928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the most common cancers diagnosed in women. Approximately two-thirds of all breast cancers diagnosed are classified as hormone dependent, which indicates that hormones are the key factors that drive the growth of these breast cancers. Ovarian and pituitary hormones play a major role in the growth and development of normal mammary glands and breast cancer. In particular, the effect of the ovarian hormone estrogen has received much attention in regard to breast cancer. Pituitary hormones prolactin and growth hormone have also been associated with breast cancer. Although the role of these pituitary hormones in breast cancers has been studied, it has not been investigated extensively. In this review, we attempt to compile basic information from most of the currently available literature to understand and demonstrate the significance of growth hormone in breast cancer. Based on the available literature, it is clear that growth hormone plays a significant role in the development, progression, and metastasis of breast cancer by influencing tumor angiogenesis, stemness, and chemoresistance.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Sushmita B Nandy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| |
Collapse
|
25
|
Zeng F, Ju RJ, Liu L, Xie HJ, Mu LM, Zhao Y, Yan Y, Hu YJ, Wu JS, Lu WL. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer. Oncotarget 2017; 6:36625-42. [PMID: 26429872 PMCID: PMC4742200 DOI: 10.18632/oncotarget.5382] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023] Open
Abstract
Standard chemotherapy cannot eradicate triple-negative breast cancer (TNBC) while the residual cancer cells readily form the vasculogenic mimicry (VM) channels, which lead to the relapse of cancer after treatment. In this study, the functional vincristine plus dasatinib liposomes, modified by a targeting molecule DSPE-PEG2000-c(RGDyK), were fabricated to address this issue. The investigations were performed on TNBC MDA-MB-231 cells and MDA-MB-231 xenografts in nude mice. The liposomes exhibited the superior performances in the following aspects: the enhancement of cellular uptake via targeted action; the induction of apoptosis via activation of caspase 8, 9, and 3, increased expression of Bax, decreased expression of Mcl-1, and generation of reactive oxygen species (ROS); and the deletion of VM channels via inhibitions on the VM channel indicators, which consisted of vascular endothelial-cadherin (VE-Cad), focal adhesion kinase (FAK), phosphatidylinositide 3-kinase (PI3K), and matrix metallopeptidases (MMP-2, and MMP-9). Furthermore, the liposomes displayed the prolonged circulation time in the blood, the increased accumulation in tumor tissue, and the improved therapeutic efficacy along with deletion of VM channels in the TNBC-bearing mice. In conclusion, the nanostructured functional drug-loaded liposomes may provide a promising strategy for the treatment of invasive TNBC along with deletion of VM channels.
Collapse
Affiliation(s)
- Fan Zeng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hong-Jun Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
26
|
Dasatinib inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells which overexpress Syndecan-Binding Protein (SDCBP). PLoS One 2017; 12:e0171169. [PMID: 28141839 PMCID: PMC5283743 DOI: 10.1371/journal.pone.0171169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) progresses rapidly but lacks effective targeted therapies. Our previous study showed that downregulating syndecan-binding protein (SDCBP) in TNBC inhibits the proliferation of TNBC cells. Dasatinib is a new small-molecule inhibitor of c-src phosphorylation. The aim of this study was to investigate if SDCBP is a potential marker to indicate whether a TNBC is suitable for dasatinib therapy. This study applied co-immunoprecipitation to identify the interaction between SDCBP and c-src in TNBC cell lines. In addition, immunohistochemistry was used to investigate SDCBP and tyrosine-419 phosphorylated c-src (p-c-src-Y419) expression in TNBC tissues. SDCBP-overexpressing MDA-MB-231 cells were then constructed to evaluate the effects of dasatinib on SDCBP-induced TNBC progression in vitro and tumor formation in nude mice. We found wild-type SDCBP interacted with c-src and promoted the phosphorylation of c-src; this phosphorylation was completely blocked by dasatinib. SDCBP lacking the PDZ domain had no such effect. Among the 52 consecutive random TNBC cases examined, the expression of SDCBP was consistent with that of p-c-src-Y419, and positively correlated with histological grading or Ki-67 levels. SDCBP overexpression significantly accelerated the proliferation and cell cycle progression of the TNBC cell line MDA-MB-231; these effects were prevented by dasatinib treatment. However, the subsequent inhibition of p27 expression partially restored the proliferation and viability of the TNBC cells. The results of this study suggest that SDCBP interacts with c-src, regulates G1/S in TNBC cells, and enhances tumor cell proliferation by promoting the tyrosine phosphorylation of c-src at residue 419. Dasatinib inhibits such phosphorylation and blocks SDCBP-induced cell cycle progression. Therefore, SDCBP might be an important marker for identifying TNBC cases that are suitable for dasatinib therapy.
Collapse
|
27
|
Barcus CE, O'Leary KA, Brockman JL, Rugowski DE, Liu Y, Garcia N, Yu M, Keely PJ, Eliceiri KW, Schuler LA. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res 2017; 19:9. [PMID: 28103936 PMCID: PMC5244528 DOI: 10.1186/s13058-017-0801-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/24/2016] [Indexed: 12/26/2022] Open
Abstract
Background The development and progression of estrogen receptor alpha positive (ERα+) breast cancer has been linked epidemiologically to prolactin. However, activation of the canonical mediator of prolactin, STAT5, is associated with more differentiated cancers and better prognoses. We have reported that density/stiffness of the extracellular matrix potently modulates the repertoire of prolactin signals in human ERα + breast cancer cells in vitro: stiff matrices shift the balance from the Janus kinase (JAK)2/STAT5 cascade toward pro-tumor progressive extracellular regulated kinase (ERK)1/2 signals, driving invasion. However, the consequences for behavior of ERα + cancers in vivo are not known. Methods In order to investigate the importance of matrix density/stiffness in progression of ERα + cancers, we examined tumor development and progression following orthotopic transplantation of two clonal green fluorescent protein (GFP) + ERα + tumor cell lines derived from prolactin-induced tumors to 8-week-old wild-type FVB/N (WT) or collagen-dense (col1a1tm1Jae/+) female mice. The latter express a mutant non-cleavable allele of collagen 1a1 “knocked-in” to the col1a1 gene locus, permitting COL1A1 accumulation. We evaluated the effect of the collagen environment on tumor progression by examining circulating tumor cells and lung metastases, activated signaling pathways by immunohistochemistry analysis and immunoblotting, and collagen structure by second harmonic generation microscopy. Results ERα + primary tumors did not differ in growth rate, histologic type, ERα, or prolactin receptor (PRLR) expression between col1a1tm1Jae/+ and WT recipients. However, the col1a1tm1Jae/+ environment significantly increased circulating tumor cells and the number and size of lung metastases at end stage. Tumors in col1a1tm1Jae/+ recipients displayed reduced STAT5 activation, and higher phosphorylation of ERK1/2 and AKT. Moreover, intratumoral collagen fibers in col1a1tm1Jae/+ recipients were aligned with tumor projections into the adjacent fat pad, perpendicular to the bulk of the tumor, in contrast to the collagen fibers wrapped around the more uniformly expansive tumors in WT recipients. Conclusions A collagen-dense extracellular matrix can potently interact with hormonal signals to drive metastasis of ERα + breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0801-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Craig E Barcus
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Garcia
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Menggang Yu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Linda A Schuler
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA. .,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Espada J, Martín-Pérez J. An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:83-122. [DOI: 10.1016/bs.ircmb.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Shemanko CS. Prolactin receptor in breast cancer: marker for metastatic risk. J Mol Endocrinol 2016; 57:R153-R165. [PMID: 27658959 DOI: 10.1530/jme-16-0150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 11/08/2022]
Abstract
Prolactin and prolactin receptor signaling and function are complex in nature and intricate in function. Basic, pre-clinical and translational research has opened up our eyes to the understanding that prolactin and prolactin receptor signaling function differently within different cellular contexts and microenvironmental conditions. Its multiple roles in normal physiology are subverted in cancer initiation and progression, and gradually we are teasing out the intricacies of function and therapeutic value. Recently, we observed that prolactin has a role in accelerating the time to bone metastasis in breast cancer patients and identified the mechanism by which prolactin stimulated breast cancer cell-mediated lytic osteoclast formation. The possibility that the prolactin receptor is a marker for metastasis, and specifically bone metastasis, is one that may have to be put into the context of the different variants of prolactin, different prolactin receptor isoforms and intricate signaling pathways that are regulated by the microenvironment. The more complete the picture, the better one can test biomarker identity and design clinical trials to test therapeutic intervention. This review will cover the recent advances and highlight the complexity of prolactin receptor biology.
Collapse
Affiliation(s)
- Carrie S Shemanko
- Department of Biological SciencesCharbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Harrington KM, Clevenger CV. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem 2016; 291:21388-21406. [PMID: 27489110 PMCID: PMC5076809 DOI: 10.1074/jbc.m116.726190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence supports a role for prolactin (PRL) in the development and progression of human breast cancer. Although PRL is an established chemoattractant for breast cancer cells, the precise molecular mechanisms of how PRL regulates breast cancer cell motility and invasion are not fully understood. PRL activates the serine/threonine kinase NEK3, which was reported to enhance breast cancer cell migration, invasion, and the actin cytoskeletal reorganization necessary for these processes. However, the specific mechanisms of NEK3 activation in response to PRL signaling have not been defined. In this report, a novel PRL-inducible regulatory phosphorylation site within the activation segment of NEK3, threonine 165 (Thr-165), was identified. Phosphorylation at NEK3 Thr-165 was found to be dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway using both pharmacological inhibition and siRNA-mediated knockdown approaches. Strikingly, inhibition of phosphorylation at NEK3 Thr-165 by expression of a phospho-deficient mutant (NEK3-T165V) resulted in increased focal adhesion size, formation of zyxin-positive focal adhesions, and reorganization of the actin cytoskeleton into stress fibers. Concordantly, NEK3-T165V cells exhibited migratory defects. Together, these data support a modulatory role for phosphorylation at NEK3 Thr-165 in focal adhesion maturation and/or turnover to promote breast cancer cell migration.
Collapse
Affiliation(s)
- Katherine M Harrington
- From the Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
31
|
Pedraz-Cuesta E, Fredsted J, Jensen HH, Bornebusch A, Nejsum LN, Kragelund BB, Pedersen SF. Prolactin Signaling Stimulates Invasion via Na(+)/H(+) Exchanger NHE1 in T47D Human Breast Cancer Cells. Mol Endocrinol 2016; 30:693-708. [PMID: 27176613 DOI: 10.1210/me.2015-1299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolactin (PRL) and its receptor (PRLR) are implicated in breast cancer invasiveness, although their exact roles remain controversial. The Na(+)/H(+) exchanger (NHE1) plays essential roles in cancer cell motility and invasiveness, but the PRLR and NHE1 have not previously been linked. Here we show that in T47D human breast cancer cells, which express high levels of PRLR and NHE1, exposure to PRL led to the activation of Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5), Akt, and ERK1/2 signaling and the rapid formation of peripheral membrane ruffles, known to be associated with cell motility. NHE1 was present in small ruffles prior to PRL treatment and was further recruited to the larger, more dynamic ruffles induced by PRL exposure. In PRL-induced ruffles, NHE1 colocalized with activated Akt, ERK1/2, and the ERK effector p90Ribosomal S kinase (p90RSK), known regulators of NHE1 activity. Stimulation of T47D cells with PRL augmented p90RSK activation, Ser703-phosphorylation of NHE1, NHE1-dependent intracellular pH recovery, pericellular acidification, and NHE1-dependent invasiveness. NHE1 activity and localization to ruffles were attenuated by the inhibition of Akt and/or ERK1/2. In contrast, noncancerous MCF10A breast epithelial cells expressed NHE1 and PRLR at lower levels than T47D cells, and their stimulation with PRL induced neither NHE1 activation nor NHE1-dependent invasiveness. In conclusion, we show for the first time that PRLR activation stimulates breast cancer cell invasiveness via the activation of NHE1. We propose that PRL-induced NHE1 activation and the resulting NHE1-dependent invasiveness may contribute to the metastatic behavior of human breast cancer cells.
Collapse
Affiliation(s)
- Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jacob Fredsted
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Helene H Jensen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Annika Bornebusch
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lene N Nejsum
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Birthe B Kragelund
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
32
|
Hammer A, Laghate S, Diakonova M. Src tyrosyl phosphorylates cortactin in response to prolactin. Biochem Biophys Res Commun 2015; 463:644-9. [PMID: 26043691 DOI: 10.1016/j.bbrc.2015.05.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/30/2015] [Indexed: 12/18/2022]
Abstract
The hormone/cytokine prolactin (PRL) is implicated in breast cancer cell invasion and metastasis. PRL-induced pathways are mediated by two non-receptor tyrosine kinases, JAK2 and Src. We previously demonstrated that prolactin stimulates invasion of breast cancer cells TMX2-28 through JAK2 and its target serine/threonine kinase PAK1. We hypothesize herein that the actin-binding protein cortactin, a protein involved in invadopodia formation and cell invasion, is activated by PRL. We demonstrate that TMX2-28 cells are more invasive than T47D breast cancer cells in response to PRL. We determine that cortactin is tyrosyl phosphorylated in response to PRL in a time and dose-dependent manner in TMX2-28 cells, but not in T47D cells. Furthermore, we show that PRL mediates cortactin tyrosyl phosphorylation via Src, but not JAK2. Finally, we demonstrate that maximal PRL-mediated TMX2-28 cell invasion requires both Src and JAK2 kinase activity, while T47D cell invasion is JAK2- but not Src-dependent. Thus PRL may induce cell invasion via two pathways: through a JAK2/PAK1 mediated pathway that we have previously demonstrated, and Src-dependent activation and tyrosyl phosphorylation of cortactin.
Collapse
Affiliation(s)
- Alan Hammer
- The Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA.
| | - Sneha Laghate
- The Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA.
| | - Maria Diakonova
- The Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA.
| |
Collapse
|
33
|
Progesterone and Src family inhibitor PP1 synergistically inhibit cell migration and invasion of human basal phenotype breast cancer cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:426429. [PMID: 26075237 PMCID: PMC4449873 DOI: 10.1155/2015/426429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/19/2014] [Indexed: 01/01/2023]
Abstract
Basal phenotype breast cancer is one of the most aggressive breast cancers that frequently metastasize to brain. The role of sex hormones and their receptors in development of this disease is largely unclear. We demonstrated that mPRα was expressed at a moderate level in a brain metastatic BPBC cell line MB231Br, which was derived from the parent mPRα undetectable MB231 cells. It functioned as an essential mediator for progesterone induced inhibitory effects on cell migration of MB231Br and, when coincubated with PP1, synergistically enhanced the progesterone's inhibitory effect on cell migration and invasion in vitro. Progesterone and PP1 cotreatment induced a cascade of molecular signaling events, such as dephosphorylation of FAK, downregulation of MMP9, VEGF, and KCNMA1 expressions. Our in vitro study demonstrated that mPRα was expressed and functioned as an essential mediator for progesterone induced inhibitory effects on cell migration and invasion in BPBC cells. This inhibitory effect was enhanced by PP1 via FAK dephosphorylation, MMP9, VEGF, and KCNMA1 downregulation mechanisms. Our study provides a new clue toward the development of novel promising agents and pathways for inhibiting nuclear hormonal receptor-negative and endocrine-resistant breast cancers.
Collapse
|
34
|
Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. Biochem J 2015; 468:495-506. [PMID: 25846210 DOI: 10.1042/bj20141243] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 01/29/2023]
Abstract
Class 1 cytokine receptors regulate essential biological processes through complex intracellular signalling networks. However, the structural platform for understanding their functions is currently incomplete as structure-function studies of the intracellular domains (ICDs) are critically lacking. The present study provides the first comprehensive structural characterization of any cytokine receptor ICD and demonstrates that the human prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids of the inner plasma membrane leaflet through conserved motifs resembling immuno receptor tyrosine-based activation motifs (ITAMs). However, contrary to the observations made for ITAMs, lipid association of the PRLR and GHR ICDs was shown to be unaccompanied by changes in transient secondary structure and independent of tyrosine phosphorylation. The results of the present study provide a new structural platform for studying class 1 cytokine receptors and may implicate the membrane as an active component regulating intracellular signalling.
Collapse
|
35
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
36
|
Zhang C, Cherifi I, Nygaard M, Haxholm GW, Bogorad RL, Bernadet M, England P, Broutin I, Kragelund BB, Guidotti JE, Goffin V. Residue 146 regulates prolactin receptor folding, basal activity and ligand-responsiveness: potential implications in breast tumorigenesis. Mol Cell Endocrinol 2015; 401:173-88. [PMID: 25524456 DOI: 10.1016/j.mce.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022]
Abstract
PRLR(I146L) is the first identified gain-of-function variant of the prolactin receptor (PRLR) that was proposed to be associated with benign breast tumorigenesis. Structural investigations suggested this hydrophobic core position in the extracellular D2 domain to be linked to receptor dimerization. Here, we used a mutational approach to address how the conservative I-to-L substitution induced constitutive activity. Using cell-based assays of different I146-PRLR variants in combination with spectroscopic/nuclear magnetic resonance analyses we found that chemical manipulation of position 146 profoundly altered folding, PRL-responsiveness, and ligand-independent activity of the receptor in a mutation-specific manner. Together, these data further add to the critical role of position 146, showing it to also be crucial to structural integrity thereby imposing on the biological PRLR properties. When stably introduced in MCF-7 (luminal) and MDA-MB231 (mesenchymal) breast cancer cells, the most potent of the PRL-insensitive mutants (PRLR(I146D)) had minimal impact on cell proliferation and cell differentiation status.
Collapse
Affiliation(s)
- Chi Zhang
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Ibtissem Cherifi
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mads Nygaard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Roman L Bogorad
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Marie Bernadet
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Patrick England
- Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Isabelle Broutin
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France; Laboratoire de Cristallographie et RMN Biologiques CNRS, UMR 8015 Paris, France
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacques-Emmanuel Guidotti
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France.
| |
Collapse
|
37
|
Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015; 10:e0116891. [PMID: 25607819 PMCID: PMC4301649 DOI: 10.1371/journal.pone.0116891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth C Holt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
38
|
O'Leary KA, Shea MP, Schuler LA. Modeling prolactin actions in breast cancer in vivo: insights from the NRL-PRL mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:201-20. [PMID: 25472540 DOI: 10.1007/978-3-319-12114-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated exposure to prolactin (PRL) is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to PRL without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA,
| | | | | |
Collapse
|
39
|
da Silva PL, do Amaral VC, Gabrielli V, Montt Guevara MM, Mannella P, Baracat EC, Soares-Jr JM, Simoncini T. Prolactin Promotes Breast Cancer Cell Migration through Actin Cytoskeleton Remodeling. Front Endocrinol (Lausanne) 2015; 6:186. [PMID: 26733941 PMCID: PMC4681777 DOI: 10.3389/fendo.2015.00186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/03/2015] [Indexed: 02/01/2023] Open
Abstract
The role of prolactin on breast cancer development and progression is debated. Breast cancer progression largely depends on cell movement and on the ability to remodel the actin cytoskeleton. In this process, actin-binding proteins are requested to achieve fibrillar actin de-polymerization and relocation at the cell membrane. Kinases such as focal adhesion kinase (FAK) are later required to form actin/vinculin-enriched structures called focal adhesion complexes, which mediate firm adhesion to the extracellular matrix. These controllers are regulated by c-Src, which forms multiprotein signaling complexes with membrane receptors and is regulated by a number of hormones, including -prolactin. We here show that breast cancer cells exposed to prolactin display an elevated c-Src expression and phosphorylation. In parallel, increased moesin and FAK expression and phosphorylation are found. These molecular changes are associated to relocation to the plasma membrane of cytoskeletal actin fibers and to increased horizontal cell movement. In conclusion, prolactin regulates actin remodeling and enhances breast cancer cell movement. This finding broadens the understanding of prolactin actions on breast cancer cells, highlighting new pathways that may be relevant to on breast cancer progression.
Collapse
Affiliation(s)
- Priscilla Ludovico da Silva
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Structural and Molecular Gynecology (LIM58), Discipline of Gynecology, Department of Obstetrics and Gynecology, University of São Paulo, São Paulo, Brazil
| | - Vinicius Cestari do Amaral
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Health Sciences Institute (ICS), Paulista University, São Paulo, Brazil
| | - Valentina Gabrielli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Paolo Mannella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edmund Chada Baracat
- Laboratory of Structural and Molecular Gynecology (LIM58), Discipline of Gynecology, Department of Obstetrics and Gynecology, University of São Paulo, São Paulo, Brazil
| | - Jose Maria Soares-Jr
- Laboratory of Structural and Molecular Gynecology (LIM58), Discipline of Gynecology, Department of Obstetrics and Gynecology, University of São Paulo, São Paulo, Brazil
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Simoncini,
| |
Collapse
|
40
|
Hammer A, Oladimeji P, De Las Casas LE, Diakonova M. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover. FASEB J 2014; 29:943-59. [PMID: 25466889 DOI: 10.1096/fj.14-259366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The p21-activated serine-threonine kinase (PAK1) regulates cell motility and adhesion. We have previously shown that the prolactin (PRL)-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo and in vitro and identified tyrosines 153, 201, and 285 in PAK1 as sites of JAK2 tyrosyl phosphorylation. Here, we further investigate the role of the tyrosyl phosphorylated PAK1 (pTyr-PAK1) in regulation of cell adhesion. We use human breast cancer T47D cell lines that stably overexpress PAK1 wild type or PAK1 Y3F mutant in which these 3 JAK2 phosphorylation sites were mutated to phenylalanine. We demonstrate that PRL/JAK2-dependent phosphorylation of these tyrosines promotes a motile phenotype in the cells upon adhesion, participates in regulation of cell adhesion on collagen IV, and is required for maximal PAK1 kinase activity. Down-regulation of PAK1 abolishes the effect of PAK1 on cell adhesion. We show that the tyrosyl phosphorylation of PAK1 promotes PAK1 binding to β-PAK1-interacting guanine-nucleotide exchange factor (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), phosphorylation of paxillin on Ser273, and formation and distribution of adhesion complexes. Using phosphospecific antibodies (Abs) directed to single phosphorylated tyrosines on PAK1, we identified Tyr285 as a site of PRL-dependent phosphorylation of PAK1 by JAK2. Furthermore, using PAK1 Y285F mutant, we provide evidence for a role of pTyr285 in cell adhesion, enhanced βPIX/GIT1 binding, and adhesion turnover. Our immunohistochemistry analysis demonstrates that pTyr285- PAK1 may modulate PAK1 signaling during tumor progression.
Collapse
Affiliation(s)
- Alan Hammer
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| | - Peter Oladimeji
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| | - Luis E De Las Casas
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| | - Maria Diakonova
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
41
|
Kim S, Sundaramoorthi H, Jagadeeswaran P. Dioxin-induced thrombocyte aggregation in zebrafish. Blood Cells Mol Dis 2014; 54:116-22. [PMID: 25129381 DOI: 10.1016/j.bcmd.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Hemalatha Sundaramoorthi
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA.
| |
Collapse
|
42
|
Cunnick JM, Kim S, Hadsell J, Collins S, Cerra C, Reiser P, Flynn DC, Cho Y. Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland. Oncogene 2014; 34:2640-9. [PMID: 25043309 PMCID: PMC4302073 DOI: 10.1038/onc.2014.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/25/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Actin filament-associated protein 1 (AFAP1) is an adaptor protein of cSrc that binds to filamentous actin and regulates the activity of this tyrosine kinase to affect changes to the organization of the actin cytoskeleton. In breast and prostate cancer cells, AFAP1 has been shown to regulate cellular responses requiring actin cytoskeletal changes such as adhesion, invadopodia formation and invasion. However, a normal physiologic role for AFAP1 has remained elusive. In this study, we generated an AFAP1 knockout mouse model that establishes a novel physiologic role for AFAP1 in lactation. Specifically, these animals displayed a defect in lactation that resulted in an inability to nurse efficiently. Histologically, the mammary glands of the lactating knockout mice were distinguished by the accumulation of large cytoplasmic lipid droplets in the alveolar epithelial cells. There was a reduction in lipid synthesis and the expression of lipogenic genes without a corresponding reduction in the production of β-casein, a milk protein. Furthermore, these defects were associated with histologic and biochemical signs of precocious involution. This study also demonstrated that AFAP1 responds to prolactin, a lactogenic hormone, by forming a complex with cSrc and becoming tyrosine phosphorylated. Taken together, these observations pointed to a defect in secretory activation. Certain characteristics of this phenotype mirrored the defect in secretory activation in the cSrc knockout mouse, but most importantly, the activity of cSrc in the mammary gland was reduced during early lactation in the AFAP1-null mouse and the localization of active cSrc at the apical surface of luminal epithelial cells during lactation was selectively lost in the absence of AFAP1. These data define, for the first time, the requirement of AFAP1 for the spatial and temporal regulation of cSrc activity in the normal breast, specifically for milk production.
Collapse
Affiliation(s)
- J M Cunnick
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - S Kim
- Graduate School of Medicine, The Commonwealth Medical College, Scranton, PA, USA
| | - J Hadsell
- Fortis Institute Scranton, Scranton, PA, USA
| | - S Collins
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - C Cerra
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - P Reiser
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - D C Flynn
- College of Health Science, University of Delaware, Newark, DE, USA
| | - Y Cho
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
43
|
Goldstein J, Fletcher S, Roth E, Wu C, Chun A, Horsley V. Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev 2014; 28:983-94. [PMID: 24732379 PMCID: PMC4018496 DOI: 10.1101/gad.236554.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In most tissues, the prevailing view is that stem cell (SC) niches are generated by signals from within the nearby tissue environment. Here, we define genetic changes altered in hair follicle (HF) SCs in mice treated with a potent SC activator, cyclosporine A (CSA), which inhibits the phosphatase calcineurin (CN) and the activity of the transcription factor nuclear factor of activated T cells c1 (Nfatc1). We show that CN/Nfatc1 regulates expression of prolactin receptor (Prlr) and that canonical activation of Prlr and its downstream signaling via Jak/Stat5 drives quiescence of HF SCs during pregnancy and lactation, when serum prolactin (Prl) levels are highly elevated. Using Prl injections and genetic/pharmacological loss-of-function experiments in mice, we show that Prl signaling stalls follicular SC activation through its activity in the skin epithelium. Our findings define a unique CN-Nfatc1-Prlr-Stat5 molecular circuitry that promotes persistent SC quiescence in the skin.
Collapse
Affiliation(s)
- Jill Goldstein
- Department of Molecular, Cell, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
44
|
IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep 2013; 3:3456. [PMID: 24316750 PMCID: PMC3856404 DOI: 10.1038/srep03456] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023] Open
Abstract
The proinflammatory cytokine Interleukin 17A (hereafter named IL–17A) or IL-17A producing cells are elevated in breast tumors environment and correlate with poor prognosis. Increased IL-17A is associated with ER(−) or triple negative tumors and reduced Disease Free Survival. However, the pathophysiological role of IL-17A in breast cancer remains unclear although several studies suggested its involvement in cancer cell dissemination. Here we demonstrated that a subset of breast tumors is infiltrated with IL-17A-producing cells. Increased IL-17A seems mainly associated to ER(−) and triple negative/basal-like tumors. Isolation of tumor infiltrating T lymphocytes (TILs) from breast cancer biopsies revealed that these cells secreted significant amounts of IL-17A. We further established that recombinant IL-17A recruits the MAPK pathway by upregulating phosphorylated ERK1/2 in human breast cancer cell lines thereby promoting proliferation and resistance to conventional chemotherapeutic agents such as docetaxel. We also confirmed here that recombinant IL-17A stimulates migration and invasion of breast cancer cells as previously reported. Importantly, TILs also induced tumor cell proliferation, chemoresistance and migration and treatment with IL-17A-neutralizing antibodies abrogated these effects. Altogether these results demonstrated the pathophysiological role of IL-17A-producing cell infiltrate in a subset of breast cancers. Therefore, IL-17A appears as potential therapeutic target for breast cancer.
Collapse
|
45
|
Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer. Breast Cancer Res Treat 2013; 142:31-44. [PMID: 24146212 PMCID: PMC3825490 DOI: 10.1007/s10549-013-2731-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/08/2013] [Indexed: 11/08/2022]
Abstract
The pituitary hormone prolactin (PRL) has been implicated in tumourigenesis. Expression of PRL and its receptor (PRLR) was reported in human breast epithelium and breast cancer cells. It was suggested that PRL may act as an autocrine/paracrine growth factor. Here, we addressed the role of locally synthesised PRL in breast cancer. We analysed the expression of PRL in human breast cancer tumours using qPCR analysis and in situ hybridization (ISH). PRL mRNA expression was very low or undetectable in the majority of samples in three cDNA arrays representing samples from 144 breast cancer patients and in 13 of 14 breast cancer cell lines when analysed by qPCR. In accordance, PRL expression did not reach detectable levels in any of the 19 human breast carcinomas or 5 cell lines, which were analysed using a validated ISH protocol. Two T47D-derived breast cancer cell lines were stably transfected with PRL-expressing constructs. Conditioned medium from the T47D/PRL clones promoted proliferation of lactogen-dependent Nb2 cells and control T47D cells. Surprisingly, the PRL-producing clones themselves displayed a lower proliferation rate as compared to the control cells. Their PRLR protein level was reduced and the cells were no longer responsive to exogenous recombinant PRL. Taken together, these data strongly indicate that autocrine PRL signalling is unlikely to be a general mechanism promoting tumour growth in breast cancer patients.
Collapse
|
46
|
Zhou YH, Liao SJ, Li D, Luo J, Wei JJ, Yan B, Sun R, Shu Y, Wang Q, Zhang GM, Feng ZH. TLR4 ligand/H₂O₂ enhances TGF-β1 signaling to induce metastatic potential of non-invasive breast cancer cells by activating non-Smad pathways. PLoS One 2013; 8:e65906. [PMID: 23734265 PMCID: PMC3667026 DOI: 10.1371/journal.pone.0065906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 has the potential to activate multiple signaling pathways required for inducing metastatic potential of tumor cells. However, TGF-β1 was inefficient in inducing metastatic potential of many non-invasive human tumor cells. Here we report that the enhancement of TGF-β1 signaling is required for inducing metastatic potential of non-invasive breast cancer cells. TGF-β1 alone could not efficiently induce the sustained activation of Smad and non-Smad pathways in non-invasive breast cancer cells. TLR4 ligand (LPS) and H2O2 cooperated with TGF-β1 to enhance the sustained activation of non-Smad pathways, including p38MAPK, ERK, JNK, PI3K, and NF-κB. The activation of MAPK and PI3K pathways resulted in a positive feed-back effect on TGF-β1 signaling by down-regulating Nm23-H1 expression and up-regulating the expression of TβRI and TβRII, favoring further activation of multiple signaling pathways. Moreover, the enhanced TGF-β1 signaling induced higher expression of SNAI2, which also promoted TβRII expression. Therefore, the sustained activation levels of both Smad and non-Smad pathways were gradually increased after prolonged stimulation with TGF-β1/H2O2/LPS. Consistent with the activation pattern of signaling pathways, the invasive capacity and anoikis-resistance of non-invasive breast cancer cells were gradually increased after prolonged stimulation with TGF-β1/H2O2/LPS. The metastatic potential induced by TGF-β1/H2O2/LPS was sufficient for tumor cells to extravasate and form metastatic foci in an experimental metastasis model in nude mice. The findings in this study suggested that the enhanced signaling is required for inducing higher metastatic capacity of tumor cells, and that targeting one of stimuli or signaling pathways might be potential approach in comprehensive strategy for tumor therapy.
Collapse
Affiliation(s)
- Yuan-Hong Zhou
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Sheng-Jun Liao
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Dong Li
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Jing Luo
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Jing-Jing Wei
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Bin Yan
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Rui Sun
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Yu Shu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Qi Wang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
- * E-mail: (GMZ); (ZHF)
| | - Zuo-Hua Feng
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People's Republic of China
- * E-mail: (GMZ); (ZHF)
| |
Collapse
|
47
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem 2013; 288:12722-32. [PMID: 23530035 DOI: 10.1074/jbc.m112.447631] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinically, circulating prolactin levels and density of the extracellular matrix (ECM) are individual risk factors for breast cancer. As tumors develop, the surrounding stroma responds with increased deposition and cross-linking of the collagen matrix (desmoplasia). In mouse models, prolactin promotes mammary carcinomas that resemble luminal breast cancers in women, and increased collagen density promotes tumor metastasis and progression. Although the contributions of the ECM to the physiologic actions of prolactin are increasingly understood, little is known about the functional relationship between the ECM and prolactin signaling in breast cancer. Here, we examined consequences of increased ECM stiffness on prolactin signals to luminal breast cancer cells in three-dimensional collagen I matrices in vitro. We showed that matrix stiffness potently regulates a switch in prolactin signals from physiologic to protumorigenic outcomes. Compliant matrices promoted physiological prolactin actions and activation of STAT5, whereas stiff matrices promoted protumorigenic outcomes, including increased matrix metalloproteinase-dependent invasion and collagen scaffold realignment. In stiff matrices, prolactin increased SRC family kinase-dependent phosphorylation of focal adhesion kinase (FAK) at tyrosine 925, FAK association with the mitogen-activated protein kinase mediator GRB2, and pERK1/2. Stiff matrices also increased co-localization of prolactin receptors and integrin-activated FAK, implicating altered spatial relationships. Together, these results demonstrate that ECM stiffness is a powerful regulator of the spectrum of prolactin signals and that stiff matrices and prolactin interact in a feed-forward loop in breast cancer progression. Our study is the first reported evidence of altered ECM-prolactin interactions in breast cancer, suggesting the potential for new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
48
|
Damiano JS, Wasserman E. Molecular pathways: blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin Cancer Res 2013; 19:1644-50. [PMID: 23515410 DOI: 10.1158/1078-0432.ccr-12-0138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prolactin (PRL)-prolactin receptor (PRLR) signaling complex has been implicated in the pathology of breast and prostate carcinoma. A multitude of pro-oncogenic intracellular signaling pathways are activated by PRL in breast and prostate epithelial cells, leading to enhanced cellular proliferation, survival, and tumorigenesis in numerous model systems. Emerging evidence suggests that targeting the PRL-PRLR axis in human cancer may represent an unexploited avenue for therapeutic intervention and, given the extensive cross-talk between PRLR and other signal transduction pathways, a potential means through which other anticancer agents could be rendered more efficacious in the clinic. LFA102 is a potent anti-PRLR neutralizing antibody that efficiently abrogates the function of this receptor in vivo, mediating significant antitumor effects in preclinical models. The clean safety profile of this antibody in animals and in the clinical experiences to date suggests that blocking the PRLR signaling pathway in human tumors may have few significant toxicologic consequences and may be a promising approach to treating cancer. A phase I trial in patients with breast and prostate cancer is underway to better understand the clinical utility of LFA102 and the contribution of PRL to the maintenance and progression of human cancer.
Collapse
Affiliation(s)
- Jason S Damiano
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608, USA.
| | | |
Collapse
|
49
|
Mendes GA, Pereira-Lima JFS, Kohek MB, Trott G, Di Domenico M, Ferreira NP, Oliveira MDC. Prolactin gene expression in primary central nervous system tumors. J Negat Results Biomed 2013; 12:4. [PMID: 23317095 PMCID: PMC3552985 DOI: 10.1186/1477-5751-12-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 01/03/2013] [Indexed: 02/06/2023] Open
Abstract
Background Prolactin (PRL) is a hormone synthesized in both the pituitary gland and extrapituitary sites. It has been associated with the occurrence of neoplasms and, more recently, with central nervous system (CNS) neoplasms. The aim of this study was to evaluate prolactin expression in primary central nervous system tumors through quantitative real-time PCR and immunohistochemistry (IH). Results Patient mean age was 49.1 years (SD 15.43), and females accounted for 70% of the sample. The most frequent subtype of histological tumor was meningioma (61.5%), followed by glioblastoma (22.9%). Twenty cases (28.6%) showed prolactin expression by immunohistochemistry, most of them females (18 cases, 90%). Quantitative real-time PCR did not show any prolactin expression. Conclusions Despite the presence of prolactin expression by IH, the lack of its expression by quantitative real-time PCR indicates that its presence in primary tumors in CNS is not a reflex of local production.
Collapse
Affiliation(s)
- Graziella Alebrant Mendes
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | | | | | | | | | | | | |
Collapse
|
50
|
Prolactin stimulates the L-type calcium channel-mediated transepithelial calcium transport in the duodenum of male rats. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|