1
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
2
|
Ham S, Mukaida S, Sato M, Keov P, Bengtsson T, Furness S, Holliday ND, Evans BA, Summers RJ, Hutchinson DS. Role of G protein-coupled receptor kinases (GRKs) in β 2 -adrenoceptor-mediated glucose uptake. Pharmacol Res Perspect 2024; 12:e1176. [PMID: 38332691 PMCID: PMC10853676 DOI: 10.1002/prp2.1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Truncation of the C-terminal tail of the β2 -AR, transfection of βARKct or over-expression of a kinase-dead GRK mutant reduces isoprenaline-stimulated glucose uptake, indicating that GRK is important for this response. We explored whether phosphorylation of the β2 -AR by GRK2 has a role in glucose uptake or if this response is related to the role of GRK2 as a scaffolding protein. CHO-GLUT4myc cells expressing wild-type and mutant β2 -ARs were generated and receptor affinity for [3 H]-CGP12177A and density of binding sites determined together with the affinity of isoprenaline and BRL37344. Following receptor activation by β2 -AR agonists, cAMP accumulation, GLUT4 translocation, [3 H]-2-deoxyglucose uptake, and β2 -AR internalization were measured. Bioluminescence resonance energy transfer was used to investigate interactions between β2 -AR and β-arrestin2 or between β2 -AR and GRK2. Glucose uptake after siRNA knockdown or GRK inhibitors was measured in response to β2 -AR agonists. BRL37344 was a poor partial agonist for cAMP generation but displayed similar potency and efficacy to isoprenaline for glucose uptake and GLUT4 translocation. These responses to β2 -AR agonists occurred in CHO-GLUT4myc cells expressing β2 -ARs lacking GRK or GRK/PKA phosphorylation sites as well as in cells expressing the wild-type β2 -AR. However, β2 -ARs lacking phosphorylation sites failed to recruit β-arrestin2 and did not internalize. GRK2 knock-down or GRK2 inhibitors decreased isoprenaline-stimulated glucose uptake in rat L6 skeletal muscle cells. Thus, GRK phosphorylation of the β2 -AR is not associated with isoprenaline- or BRL37344-stimulated glucose uptake. However, GRKs acting as scaffold proteins are important for glucose uptake as GRK2 knock-down or GRK2 inhibition reduces isoprenaline-stimulated glucose uptake.
Collapse
Affiliation(s)
- Seungmin Ham
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Saori Mukaida
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Masaaki Sato
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Peter Keov
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Tore Bengtsson
- Atrogi ABStockholmSweden
- Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholmSweden
| | - Sebastian Furness
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Nicholas D. Holliday
- School of Life Sciences, The Medical School, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Excellerate Bioscience, BiocityNottinghamUK
| | - Bronwyn A. Evans
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Roger J. Summers
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Dana S. Hutchinson
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Gao Z, Min X, Kim KM, Liu H, Hu L, Wu C, Zhang X. The tyrosine phosphorylation of GRK2 is responsible for activated D2R-mediated insulin resistance. Biochem Biophys Res Commun 2022; 628:40-48. [DOI: 10.1016/j.bbrc.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
4
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
5
|
G protein-coupled receptor kinase 5 deletion suppresses synovial inflammation in a murine model of collagen antibody-induced arthritis. Sci Rep 2021; 11:10481. [PMID: 34006987 PMCID: PMC8131379 DOI: 10.1038/s41598-021-90020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptor kinase 5 (GRK5) regulates inflammatory responses via the nuclear factor-kappa B (NF-κB) pathway. This study investigated the functional involvement of GRK5 in the pathogenesis of inflammatory arthritis. Immunohistochemically, rheumatoid arthritis (RA) synovium had a significantly higher proportion of GRK5-positive cells in the synovial lining layer than healthy control synovium. Gene expression and NF-κB activation in lipopolysaccharide-stimulated human SW982 synovial cells were significantly suppressed by silencing of the GRK5 gene. Similarly, GRK5 kinase activity inhibition in human primary RA synovial cells attenuated gene expressions of inflammatory factors. In a murine model of collagen antibody-induced arthritis, arthritis scores and serum IL6 production of GRK5 knockout (GRK5-/-) mice were significantly lower than those of wild-type mice. Histologically, the degree of synovitis and cartilage degeneration in GRK5-/- mice was significantly lower than in wild-type mice. In in vitro analyses using activated murine macrophages and fibroblast-like synoviocytes, gene expression of inflammatory factors and p65 nuclear translocation were significantly lower in GRK5-/- mice compared to wild-type mice. In conclusion, our results suggested that GRK5 is deeply involved in the pathogenesis of inflammatory arthritis, therefore, GRK5 inhibition could be a potential therapeutic target for types of inflammatory arthritis such as RA.
Collapse
|
6
|
Sueishi T, Akasaki Y, Goto N, Kurakazu I, Toya M, Kuwahara M, Uchida T, Hayashida M, Tsushima H, Bekki H, Lotz MK, Nakashima Y. GRK5 Inhibition Attenuates Cartilage Degradation via Decreased NF-κB Signaling. Arthritis Rheumatol 2020; 72:620-631. [PMID: 31696655 DOI: 10.1002/art.41152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE NF-κB-dependent signaling is an important modulator in osteoarthritis (OA), and G protein-coupled receptor kinase 5 (GRK5) regulates the NF-κB pathway. This study was undertaken to investigate the functional involvement of GRK5 in OA pathogenesis. METHODS GRK5 expression in normal and OA human knee joints was analyzed immunohistochemically. Gain- or loss-of-function experiments were performed using human and mouse chondrocytes. OA was induced in GRK5-knockout mice by destabilization of the medial meniscus, and histologic examination was performed. OA was also induced in wild-type mice, which were then treated with an intraarticular injection of amlexanox, a selective GRK5 inhibitor, every 5 days for 8 weeks. RESULTS GRK5 protein expression was increased in human OA cartilage. In vitro, expression levels of OA-related factors and NF-κB transcriptional activation were down-regulated by suppression of the GRK5 gene in human OA chondrocytes (3.49-fold decrease in IL6 [P < 0.01], 2.43-fold decrease in MMP13 [P < 0.01], and 2.66-fold decrease in ADAMTS4 [P < 0.01]). Conversely, GRK5 overexpression significantly increased the expression of OA-related catabolic mediators and NF-κB transcriptional activation. On Western blot analysis, GRK5 deletion reduced IκBα phosphorylation (up to 4.4-fold decrease [P < 0.05]) and decreased p65 nuclear translocation (up to 6.4-fold decrease [P < 0.01]) in mouse chondrocytes. In vivo, both GRK5 deletion and intraarticular amlexanox protected mouse cartilage against OA. CONCLUSION Our results suggest that GRK5 regulates cartilage degradation through a catabolic response mediated by NF-κB signaling, and is a potential target for OA treatment. Furthermore, amlexanox may be a major compound in relevant drugs.
Collapse
Affiliation(s)
- Takuya Sueishi
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yukio Akasaki
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Norio Goto
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ichiro Kurakazu
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masakazu Toya
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masanari Kuwahara
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Taisuke Uchida
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | - Hirofumi Bekki
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan, and Scripps Research Institute, San Diego, California
| | | | | |
Collapse
|
7
|
Sex Differences in High Fat Diet-Induced Metabolic Alterations Correlate with Changes in the Modulation of GRK2 Levels. Cells 2019; 8:cells8111464. [PMID: 31752326 PMCID: PMC6912612 DOI: 10.3390/cells8111464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such sex and age-related changes in the susceptibility to diabetes and obesity are not fully understood. Herein, we report that the relative protection that is displayed by young female mice, as compared to male littermates, against some of the metabolic alterations that are induced by feeding a high fat diet (HFD), correlates with a lower upregulation of the protein levels of G protein-coupled receptor kinase (GRK2), which is a key regulator of both insulin and G protein-coupled receptor signaling, in the liver and adipose tissue. Interestingly, when the HFD is initiated in middle-aged (32 weeks) female mice, these animals are no longer protected and display a more overt obese and insulin-resistant phenotype, along with a more evident increase in the GRK2 protein levels in metabolically relevant tissues in such conditions. Our data suggest that GRK2 dosage might be involved in the sex and age-biased sensitivity to insulin resistance-related pathologies.
Collapse
|
8
|
Pathania AS, Ren X, Mahdi MY, Shackleford GM, Erdreich-Epstein A. GRK2 promotes growth of medulloblastoma cells and protects them from chemotherapy-induced apoptosis. Sci Rep 2019; 9:13902. [PMID: 31554835 PMCID: PMC6761358 DOI: 10.1038/s41598-019-50157-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptor kinase 2 (GRK2; ADRBK1, BARK1) is most known as a regulator of G-protein coupled receptors. However, GRK2 also has other functions. Medulloblastomas are the most common malignant brain cancers in children. GRK2 has not been implicated in medulloblastoma biology. Here we report that GRK2 knockdown slowed cell growth, diminished proliferation, and enhanced cisplatin- and etoposide-induced apoptosis in medulloblastoma cell lines UW228-2 and Daoy. Reciprocally, GRK2 overexpression attenuated apoptosis induced by these chemotherapy drugs. Cisplatin and etoposide increased phosphorylation of AKT (S473) and GRK2 knockdown mitigated this increase. Cisplatin and etoposide attenuated ERK phosphorylation, but GRK2 knockdown did not alter this effect. Wildtype GRK2 reversed the increase in cisplatin- and etoposide-induced apoptosis caused by GRK2 knockdown. GRK2-K220R (kinase dead) and GRK2-S670A (unphosphorylated, constitutively active) conferred protection from cisplatin that was similar to wildtype GRK2, suggesting that this protection may be mediated though a kinase-independent activity of GRK2. These data demonstrate that GRK2 contributes to proliferation and survival of these medulloblastoma cell lines and to their protection from cisplatin- and etoposide-induced apoptosis.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiuhai Ren
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Min Y Mahdi
- Department of Radiology, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Gregory M Shackleford
- Department of Radiology, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Anat Erdreich-Epstein
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
- Department of Pathology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
9
|
Cipolletta E, Gambardella J, Fiordelisi A, Del Giudice C, Di Vaia E, Ciccarelli M, Sala M, Campiglia P, Coscioni E, Trimarco B, Sorriento D, Iaccarino G. Antidiabetic and Cardioprotective Effects of Pharmacological Inhibition of GRK2 in db/db Mice. Int J Mol Sci 2019; 20:ijms20061492. [PMID: 30934608 PMCID: PMC6470575 DOI: 10.3390/ijms20061492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the availability of several therapies for the management of blood glucose in diabetic patients, most of the treatments do not show benefits on diabetic cardiomyopathy, while others even favor the progression of the disease. New pharmacological targets are needed that might help the management of diabetes and its cardiovascular complications at the same time. GRK2 appears a promising target, given its established role in insulin resistance and in systolic heart failure. Using a custom peptide inhibitor of GRK2, we assessed in vitro in L6 myoblasts the effects of GRK2 inhibition on glucose extraction and insulin signaling. Afterwards, we treated diabetic male mice (db/db) for 2 weeks. Glucose tolerance (IGTT) and insulin sensitivity (ITT) were ameliorated, as was skeletal muscle glucose uptake and insulin signaling. In the heart, at the same time, the GRK2 inhibitor ameliorated inflammatory and cytokine responses, reduced oxidative stress, and corrected patterns of fetal gene expression, typical of diabetic cardiomyopathy. GRK2 inhibition represents a promising therapeutic target for diabetes and its cardiovascular complications.
Collapse
Affiliation(s)
- Ersilia Cipolletta
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Carmine Del Giudice
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy.
| | - Marina Sala
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Enrico Coscioni
- AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy.
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| |
Collapse
|
10
|
Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F. G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Front Pharmacol 2019; 10:112. [PMID: 30837878 PMCID: PMC6390810 DOI: 10.3389/fphar.2019.00112] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a central signaling node involved in the modulation of many G protein-coupled receptors (GPCRs) and also displaying regulatory functions in other cell signaling routes. GRK2 levels and activity have been reported to be enhanced in patients or in preclinical models of several relevant pathological situations, such as heart failure, cardiac hypertrophy, hypertension, obesity and insulin resistance conditions, or non-alcoholic fatty liver disease (NAFLD), and to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Therefore, targeting GRK2 by different strategies emerges as a potentially relevant approach to treat cardiovascular disease, obesity, type 2 diabetes, or NAFLD, pathological conditions which are frequently interconnected and present as co-morbidities.
Collapse
Affiliation(s)
- Cristina Murga
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mercedes Salaices
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
11
|
Huang QY, Lai XN, Qian XL, Lv LC, Li J, Duan J, Xiao XH, Xiong LX. Cdc42: A Novel Regulator of Insulin Secretion and Diabetes-Associated Diseases. Int J Mol Sci 2019; 20:ijms20010179. [PMID: 30621321 PMCID: PMC6337499 DOI: 10.3390/ijms20010179] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cdc42, a member of the Rho GTPases family, is involved in the regulation of several cellular functions including cell cycle progression, survival, transcription, actin cytoskeleton organization and membrane trafficking. Diabetes is a chronic and metabolic disease, characterized as glycometabolism disorder induced by insulin deficiency related to β cell dysfunction and peripheral insulin resistance (IR). Diabetes could cause many complications including diabetic nephropathy (DN), diabetic retinopathy and diabetic foot. Furthermore, hyperglycemia can promote tumor progression and increase the risk of malignant cancers. In this review, we summarized the regulation of Cdc42 in insulin secretion and diabetes-associated diseases. Organized researches indicate that Cdc42 is a crucial member during the progression of diabetes, and Cdc42 not only participates in the process of insulin synthesis but also regulates the insulin granule mobilization and cell membrane exocytosis via activating a series of downstream factors. Besides, several studies have demonstrated Cdc42 as participating in the pathogenesis of IR and DN and even contributing to promote cancer cell proliferation, survival, invasion, migration, and metastasis under hyperglycemia. Through the current review, we hope to cast light on the mechanism of Cdc42 in diabetes and associated diseases and provide new ideas for clinical diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Qi-Yuan Huang
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Xing-Ning Lai
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Xian-Ling Qian
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Lin-Chen Lv
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Jun Li
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Jing Duan
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Xing-Hua Xiao
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| |
Collapse
|
12
|
Grisanti LA, Schumacher SM, Tilley DG, Koch WJ. Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:550-562. [PMID: 30175279 PMCID: PMC6115700 DOI: 10.1016/j.jacbts.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
Abstract
The new horizon for cardiac therapy may lie beneath the surface, with the downstream mediators of G protein–coupled receptor (GPCR) activity. Targeted approaches have shown that receptor activation may be biased toward signaling through G proteins or through GPCR kinases (GRKs) and β-arrestins, with divergent functional outcomes. In addition to these canonical roles, numerous noncanonical activities of GRKs and β-arrestins have been demonstrated to modulate GPCR signaling at all levels of receptor activation and regulation. Further, research continues to identify novel GRK/effector and β-arrestin/effector complexes with distinct impacts on cardiac function in the normal heart and the diseased heart. Coupled with the identification of once orphan receptors and endogenous ligands with beneficial cardiovascular effects, this expands the repertoire of GPCR targets. Together, this research highlights the potential for focused therapeutic activation of beneficial pathways, with simultaneous exclusion or inhibition of detrimental signaling, and represents a new wave of therapeutic development.
Collapse
Key Words
- AR, adrenergic receptor
- AT1R, angiotensin II type 1A receptor
- CRF, corticotropin-releasing factor
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase
- G protein–coupled receptor kinases
- G protein–coupled receptors
- GPCR, G protein–coupled receptor
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- ICL, intracellular loop
- PI3K, phosphoinositide 3-kinase
- SERCA2a, sarco(endo)plasmic reticulum Ca2+-ATPase
- SII, [Sar(1), Ile (4), Ile(8)]-angiotensin II
- biased ligands
Collapse
Affiliation(s)
- Laurel A Grisanti
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Sarah M Schumacher
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Douglas G Tilley
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Abstract
G protein-coupled receptor kinases (GRKs) are classically known for their role in regulating the activity of the largest known class of membrane receptors, which influence diverse biological processes in every cell type in the human body. As researchers have tried to uncover how this family of kinases, containing only 7 members, achieves selective and coordinated control of receptors, they have uncovered a growing number of noncanonical activities for these kinases. These activities include phosphorylation of nonreceptor targets and kinase-independent molecular interactions. In particular, GRK2, GRK3, and GRK5 are the predominant members expressed in the heart. Their canonical and noncanonical actions within cardiac and other tissues have significant implications for cardiovascular function in healthy animals and for the development and progression of disease. This review summarizes what is currently known regarding the activity of these kinases, and particularly the role of GRK2 and GRK5 in the molecular alterations that occur during heart failure. This review further highlights areas of GRK regulation that remain poorly understood and how they may represent novel targets for therapeutic development.
Collapse
|
14
|
Horinouchi T, Mazaki Y, Terada K, Miwa S. [Molecular mechanism for ET-1-induced insulin resistance in skeletal muscle cells]. Nihon Yakurigaku Zasshi 2018; 151:140-147. [PMID: 29628461 DOI: 10.1254/fpj.151.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insulin resistance is a condition where the sensitivity to insulin of the tissues expressing insulin receptor (InsR) is decreased due to a functional disturbance of InsR-mediated intracellular signaling. Insulin promotes the entry of glucose into the tissues and skeletal muscle is the most important tissue responsible for the insulin's action of decreasing blood glucose levels. Endothelin-1 (ET-1), a potent vasoconstrictor and pro-inflammatory peptide, induces insulin resistance through a direct action on skeletal muscle. However, the signaling pathways of ET-1-induced insulin resistance in skeletal muscle remain unclear. Here we show molecular mechanism underlying the inhibitory effect of ET-1 on insulin-stimulated Akt phosphorylation and glucose uptake in myotubes of rat L6 skeletal muscle cell line. mRNA expression levels of differentiation marker genes, MyoD and myogenin, were increased during L6 myoblasts differentiation into myotubes. Some of myotubes possessed the ability to spontaneously contract. In myotubes, insulin promoted Akt phosphorylation at Thr308 and Ser473, and [3H]-labelled 2-deoxy-D-glucose ([3H]2-DG) uptake. The insulin-facilitated Akt phosphorylation and [3H]2-DG uptake were inhibited by ET-1. The inhibitory effect of ET-1 was counteracted by blockade of ET type A receptor (ETAR), inhibition of Gq/11 protein, and siRNA knockdown of G protein-coupled receptor kinase 2 (GRK2). The exogenously overexpressed GRK2 directly bound to endogenous Akt and their association was facilitated by ET-1. In summary, activation of ETAR with ET-1 inhibits insulin-induced Akt phosphorylation and [3H]2-DG uptake in a Gq/11 protein- and GRK2-dependent manner in skeletal muscle. These findings indicate that ETAR and GRK2 are potential targets for insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Koji Terada
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
15
|
Xiao P, Huang X, Huang L, Yang J, Li A, Shen K, Wedegaertner PB, Jiang X. G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. Exp Cell Res 2017; 360:273-280. [PMID: 28912086 DOI: 10.1016/j.yexcr.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Senescent cells have lost their capacity for proliferation and manifest as irreversibly in cell cycle arrest. Many membrane receptors, including G protein-coupled receptors (GPCRs), initiate a variety of intracellular signaling cascades modulating cell division and potentially play roles in triggering cellular senescence response. GPCR kinases (GRKs) belong to a family of serine/threonine kinases. Although their role in homologous desensitization of activated GPCRs is well established, the involvement of the kinases in cell proliferation is still largely unknown. In this study, we isolated GRK4-GFP expressing HEK293 cells by fluorescence-activated cell sorting (FACS) and found that the ectopic expression of GRK4 halted cell proliferation. Cells expressing GRK4 (GRK4(+)) demonstrated cell cycle G1/G0 phase arrest, accompanied with significant increase of senescence-associated-β-galactosidase (SA-β-Gal) activity. Expression profiling analysis of 78 senescence-related genes by qRT-PCR showed a total of 17 genes significantly changed in GRK4(+) cells (≥ 2 fold, p < 0.05). Among these, 9 genes - AKT1, p16INK4, p27KIP1, p19INK4, IGFBP3, MAPK14, PLAU, THBS1, TP73 - were up-regulated, while 8 genes, Cyclin A2, Cyclin D1, CDK2, CDK6, ETS1, NBN, RB1, SIRT1, were down-regulated. The increase in cyclin-dependent kinase inhibitors (p16, p27) and p38 MAPK proteins (MAPK14) was validated by immunoblotting. Neither p53 nor p21Waf1/Cip1 protein was detectable, suggesting no p53 activation in the HEK293 cells. These results unveil a novel function of GRK4 on triggering a p53-independent cellular senescence, which involves an intricate signaling network.
Collapse
Affiliation(s)
- Pingping Xiao
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China; Graduate College, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xishi Huang
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China; Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Lanzhen Huang
- Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jing Yang
- Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ang Li
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ke Shen
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaoshan Jiang
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China; Graduate College, Guilin Medical University, Guilin, Guangxi 541004, China.
| |
Collapse
|
16
|
Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Sci Rep 2017; 7:8436. [PMID: 28814745 PMCID: PMC5559446 DOI: 10.1038/s41598-017-08998-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/04/2023] Open
Abstract
Despite the associations between diabetic complications and vascular endothelial dysfunction, a direct therapeutic method targeting endothelial dysfunction remains poorly characterized. We have previously shown that chemical inhibition of G-protein-coupled receptor kinase 2 (GRK2) slightly enhances insulin sensitivity and reduces endothelial dysfunction in type 2 diabetic mice. In this study, we identified GRK2 as a novel therapeutic target of diabetic endothelial dysfunction and investigated the effect on diabetic endothelial dysfunction through the systemic administration of GRK2 siRNA using a hydrodynamic-based procedure, resulting in suppression of increased GRK2 protein levels in the liver. Suppressed GRK2 levels in the liver markedly improved glucose homeostasis, as well as improved the impaired endothelial Akt/eNOS-dependent signal activation (insulin-stimulated phosphorylation of Akt and eNOS) and vascular responses (clonidine-induced and insulin-induced endothelial-dependent relaxation response and phenylephrine-induced contractile response) in type 2 diabetic aortas. Interestingly, insulin-stimulated Akt/eNOS signaling was increased only by normalizing the glucose concentration in human umbilical vein endothelial cells (HUVECs) with GRK2 overexpression, suggesting of an important role of hepatic GRK2. Our results clarified the relationship among hepatic GRK2, glucose homeostasis, and vascular endothelial function. Liver-targeting GRK2 siRNA delivery represents a novel therapeutic tool to restore glucose homeostasis and reduce endothelial dysfunction.
Collapse
|
17
|
Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res 2017; 120:226-241. [PMID: 28408314 DOI: 10.1016/j.phrs.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.
Collapse
|
18
|
Mangmool S, Denkaew T, Parichatikanond W, Kurose H. β-Adrenergic Receptor and Insulin Resistance in the Heart. Biomol Ther (Seoul) 2017; 25:44-56. [PMID: 28035081 PMCID: PMC5207462 DOI: 10.4062/biomolther.2016.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Center of Excellence for Innovation in Drug Design and Discovery, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Tananat Denkaew
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
IGF-1 mediated phosphorylation of specific IRS-1 serines in Ames dwarf fibroblasts is associated with longevity. Oncotarget 2016; 6:35315-23. [PMID: 26474286 PMCID: PMC4742107 DOI: 10.18632/oncotarget.6112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022] Open
Abstract
Insulin/IGF-1 signaling involves phosphorylation/dephosphorylation of serine/threonine or tyrosine residues of the insulin receptor substrate (IRS) proteins and is associated with hormonal control of longevity determination of certain long-lived mice. The stimulation of serine phosphorylations by IGF-1 suggests there is insulin/IGF-1 crosstalk that involves the phosphorylation of the same serine residues. By this mechanism, insulin and IGF-1 mediated phosphorylation of specific IRS-1 serines could play a role in longevity determination. We used fibroblasts from WT and Ames dwarf mice to examine whether: (a) IGF-1 stimulates phosphorylation of IRS-1 serines targeted by insulin; (b) the levels of serine phosphorylation differ in WT vs. Ames fibroblasts; and (c) aging affects the levels of these serine phosphorylations which are altered in the Ames dwarf mutant. We have shown that IRS-1 is a substrate for IGF-1 induced phosphorylation of Ser307, Ser612, Ser636/639, and Ser1101; that the levels of phosphorylation of these serines are significantly lower in Ames vs. WT cells; that IGF-1 mediated phosphorylation of these serines increases with age in WT cells. We propose that insulin/IGF-1 cross talk and level of phosphorylation of specific IRS-1 serines may promote the Ames dwarf longevity phenotype.
Collapse
|
20
|
Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016; 59:9277-9294. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.
Collapse
Affiliation(s)
- Manuela Guccione
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
21
|
Taguchi K, Matsumoto T, Kobayashi T. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms. J Smooth Muscle Res 2016; 51:37-49. [PMID: 26447102 PMCID: PMC5137304 DOI: 10.1540/jsmr.51.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood
vessels. The principal function of vascular SMC in the body is to regulate blood flow and
pressure through contraction and relaxation. The endothelium performs a crucial role in
maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the
production of factors associated with vasoconstriction or vasorelaxation. In this review,
we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The
extent of NO production represents a key marker in vascular health. A decrease in NO is
capable of inducing pathological conditions associated with endothelial dysfunction, such
as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have
strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the
progression of cardiovascular disease. Vasculature which is affected by insulin resistance
and type 2 diabetes expresses high levels of GRK2, which may induce endothelial
dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the
subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In
this review, we describe the pathophysiological mechanisms of insulin resistance and
diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2,
providing novel insights into the potential field of translational investigation in the
treatment of diabetic complications.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Horinouchi T, Hoshi A, Harada T, Higa T, Karki S, Terada K, Higashi T, Mai Y, Nepal P, Mazaki Y, Miwa S. Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells. Br J Pharmacol 2016; 173:1018-32. [PMID: 26660861 DOI: 10.1111/bph.13406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. EXPERIMENTAL APPROACH We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). KEY RESULTS In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. CONCLUSIONS AND IMPLICATIONS Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Akimasa Hoshi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Takuya Harada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunaki Higa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Sarita Karki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Koji Terada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yosuke Mai
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Prabha Nepal
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| |
Collapse
|
23
|
Abstract
The metabolic syndrome (MetS) is comprised of a cluster of closely related risk factors, including visceral adiposity, insulin resistance, hypertension, high triglyceride, and low high-density lipoprotein cholesterol; all of which increase the risk for the development of type 2 diabetes and cardiovascular disease. A chronic state of inflammation appears to be a central mechanism underlying the pathophysiology of insulin resistance and MetS. In this review, we summarize recent research which has provided insight into the mechanisms by which inflammation underlies the pathophysiology of the individual components of MetS including visceral adiposity, hyperglycemia and insulin resistance, dyslipidemia, and hypertension. On the basis of these mechanisms, we summarize therapeutic modalities to target inflammation in the MetS and its individual components. Current therapeutic modalities can modulate the individual components of MetS and have a direct anti-inflammatory effect. Lifestyle modifications including exercise, weight loss, and diets high in fruits, vegetables, fiber, whole grains, and low-fat dairy and low in saturated fat and glucose are recommended as a first line therapy. The Mediterranean and dietary approaches to stop hypertension diets are especially beneficial and have been shown to prevent development of MetS. Moreover, the Mediterranean diet has been associated with reductions in total and cardiovascular mortality. Omega-3 fatty acids and peroxisome proliferator-activated receptor α agonists lower high levels of triglyceride; their role in targeting inflammation is reviewed. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone blockers comprise pharmacologic therapies for hypertension but also target other aspects of MetS including inflammation. Statin drugs target many of the underlying inflammatory pathways involved in MetS.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.
| | - Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| |
Collapse
|
24
|
Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HLDM, Heijnen CJ, Kavelaars A, Mayor F, Murga C. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal 2015. [PMID: 26198359 DOI: 10.1126/scisignal.aaa4374] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Marta Cruces-Sande
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Elisa Lucas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Hanneke L D M Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands. Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands. Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Federico Mayor
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain.
| | - Cristina Murga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain.
| |
Collapse
|
25
|
Ceperuelo-Mallafré V, Ejarque M, Duran X, Pachón G, Vázquez-Carballo A, Roche K, Núñez-Roa C, Garrido-Sánchez L, Tinahones FJ, Vendrell J, Fernández-Veledo S. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase. PLoS One 2015; 10:e0129644. [PMID: 26068931 PMCID: PMC4465909 DOI: 10.1371/journal.pone.0129644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022] Open
Abstract
Objective Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. Methods ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. Results ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. Conclusions ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.
Collapse
Affiliation(s)
- Victòria Ceperuelo-Mallafré
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Ejarque
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Duran
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gisela Pachón
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Vázquez-Carballo
- Departament of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Kelly Roche
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Núñez-Roa
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Garrido-Sánchez
- Hospital Universitario Virgen de la Victoria, Instituto de Investigaciones Biomédicas de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J. Tinahones
- Hospital Universitario Virgen de la Victoria, Instituto de Investigaciones Biomédicas de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Vendrell
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (JV); (SFV)
| | - Sonia Fernández-Veledo
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (JV); (SFV)
| |
Collapse
|
26
|
Benabdelkamel H, Masood A, Almidani GM, Alsadhan AA, Bassas AF, Duncan MW, Alfadda AA. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects. Mol Cell Endocrinol 2015; 401:142-54. [PMID: 25498962 DOI: 10.1016/j.mce.2014.11.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 02/08/2023]
Abstract
Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by immunoblotting. These findings provide insights into metabolic differences in OW and MOB individuals.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Ghaith M Almidani
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Abdulmajeed A Alsadhan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Abdulelah F Bassas
- Department of Surgery, Security Forces Hospital, P.O. Box 3643, Riyadh 11481, Saudi Arabia
| | - Mark W Duncan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, MS8106, E. 19th Avenue, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
27
|
Lucas E, Cruces-Sande M, Briones AM, Salaices M, Mayor F, Murga C, Vila-Bedmar R. Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch Physiol Biochem 2015; 121:163-77. [PMID: 26643283 DOI: 10.3109/13813455.2015.1107589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a worldwide problem that has reached epidemic proportions both in developed and developing countries. The excessive accumulation of fat poses a risk to health since it favours the development of metabolic alterations including insulin resistance and tissue inflammation, which further contribute to the progress of the complex pathological scenario observed in the obese. In this review we put together the different outcomes of fat accumulation and insulin resistance in the main insulin-responsive tissues, and discuss the role of some of the key molecular routes that control disease progression both in an organ-specific and also in a more systemic manner. In particular, we focus on the importance of studying the integrated regulation of different organs and pathways that contribute to the global pathophysiology of this condition with a specific emphasis on the role of emerging key molecular nodes such as the G protein-coupled receptor kinase 2 (GRK2) signalling hub.
Collapse
Affiliation(s)
- Elisa Lucas
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Marta Cruces-Sande
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Ana M Briones
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Mercedes Salaices
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Federico Mayor
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Cristina Murga
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Rocio Vila-Bedmar
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| |
Collapse
|
28
|
de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G. Adrenal adrenoceptors in heart failure. Front Physiol 2014; 5:246. [PMID: 25071591 PMCID: PMC4084669 DOI: 10.3389/fphys.2014.00246] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a chronic clinical syndrome characterized by the reduction in left ventricular (LV) function and it represents one of the most important causes of morbidity and mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Sympathetic outflow, characterized by increased circulating catecholamines (CA) biosynthesis and secretion, is peculiar in HF and sympatholytic treatments (as β-blockers) are presently being used for the treatment of this disease. Adrenal gland secretes Epinephrine (80%) and Norepinephrine (20%) in response to acetylcholine stimulation of nicotinic cholinergic receptors on the chromaffin cell membranes. This process is regulated by adrenergic receptors (ARs): α2ARs inhibit CA release through coupling to inhibitory Gi-proteins, and β ARs (mainly β2ARs) stimulate CA release through coupling to stimulatory Gs-proteins. All ARs are G-protein-coupled receptors (GPCRs) and GPCR kinases (GRKs) regulate their signaling and function. Adrenal GRK2-mediated α2AR desensitization and downregulation are increased in HF and seem to be a fundamental regulator of CA secretion from the adrenal gland. Consequently, restoration of adrenal α2AR signaling through the inhibition of GRK2 is a fascinating sympatholytic therapeutic strategy for chronic HF. This strategy could have several significant advantages over existing HF pharmacotherapies minimizing side-effects on extra-cardiac tissues and reducing the chronic activation of the renin–angiotensin–aldosterone and endothelin systems. The role of adrenal ARs in regulation of sympathetic hyperactivity opens interesting perspectives in understanding HF pathophysiology and in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Claudio de Lucia
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Grazia D Femminella
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppina Gambino
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Gennaro Pagano
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Candida Silvestri
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Dario Leosco
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Nicola Ferrara
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| |
Collapse
|
29
|
Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 2014; 114:1661-70. [PMID: 24812353 DOI: 10.1161/circresaha.114.300513] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting >23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor kinase-2 (GRK2), a kinase originally discovered to be involved in G protein-coupled receptor desensitization, especially β-adrenergic receptors. Higher levels of GRK2 can impair β-adrenergic receptor-mediated inotropic reserve and its inhibition, or molecular reduction has shown to improve pump function in several animal models including a preclinical pig model of HF. Recently, nonclassical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role in G protein-coupled receptor desensitization. In this review, classical and nonclassical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development.
Collapse
Affiliation(s)
- Meryl C Woodall
- From the Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., W.J.K.); and Department of Medicine and Surgery, University of Salerno, Salerno, Italy (M.C.)
| | | | | | | |
Collapse
|
30
|
Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann N Y Acad Sci 2014; 1311:138-50. [PMID: 24650277 DOI: 10.1111/nyas.12395] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide (NO) production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occur in conjunction with activation of the cardiovascular tissue renin-angiotensin-aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial NO-mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation.
Collapse
Affiliation(s)
- Camila Manrique
- Division of Endocrinology, Department of Internal Medicine, University of Missouri, Columbia, Missouri; Harry S. Truman Veteran's Hospital, Columbia, Missouri
| | | | | |
Collapse
|
31
|
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9:1. [PMID: 24597858 PMCID: PMC3973964 DOI: 10.1186/1750-2187-9-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
32
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013. [PMID: 24265619 DOI: 10.3389/fphys.2013.00324.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013; 4:324. [PMID: 24265619 PMCID: PMC3820966 DOI: 10.3389/fphys.2013.00324] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Ciccarelli M, Santulli G, Pascale V, Trimarco B, Iaccarino G. Adrenergic receptors and metabolism: role in development of cardiovascular disease. Front Physiol 2013; 4:265. [PMID: 24106479 PMCID: PMC3789271 DOI: 10.3389/fphys.2013.00265] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/08/2013] [Indexed: 01/08/2023] Open
Abstract
Activation of the adrenergic system has a profound effects on metabolism. Increased circulating catecholamine and activation of the different adrenergic receptors deployed in the various organs produce important metabolic responses which include: (1) increased lipolysis and elevated levels of fatty acids in plasma, (2) increased gluconeogenesis by the liver to provide substrate for the brain, and (3) moderate inhibition of insulin release by the pancreas to conserve glucose and to shift fuel metabolism of muscle in the direction of fatty acid oxidation. These physiological responses, typical of the stress conditions, are demonstrated to be detrimental for the functioning of different organs like the cardiac muscle when they become chronic. Indeed, a common feature of many pathological conditions involving over-activation of the adrenergic system is the development of metabolic alterations which can include insulin resistance, altered glucose and lipid metabolism and mitochondrial dysfunction. These patterns are involved with a variably extent among the different pathologies, however, they are in general strictly correlated to the level of activation of the adrenergic system. Here we will review the effects of the different adrenergic receptors subtypes on the metabolic variation observed in important disease like Heart Failure.
Collapse
Affiliation(s)
- Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno Salerno, Italy ; Center for Translational Medicine, Department of Pharmacology, Temple University of Philadelphia PA, USA
| | | | | | | | | |
Collapse
|
35
|
Ciccarelli M, Sorriento D, Franco A, Fusco A, Giudice CD, Annunziata R, Cipolletta E, Monti MG, Dorn GW, Trimarco B, Iaccarino G. Endothelial G protein-coupled receptor kinase 2 regulates vascular homeostasis through the control of free radical oxygen species. Arterioscler Thromb Vasc Biol 2013; 33:2415-24. [PMID: 23950144 PMCID: PMC4262246 DOI: 10.1161/atvbaha.113.302262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The role of endothelial G protein-coupled receptor kinase 2 (GRK2) was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2(fl/fl)). APPROACH AND RESULTS Aortas from Tie2-CRE/GRK2(fl/fl) presented functional and structural alterations as compared with control GRK2(fl/fl) mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species was increased, leading to expression of cytokines. Chronic treatment with a reactive oxygen species scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities, and reducing macrophage infiltration. CONCLUSIONS These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial reactive oxygen species production.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Salerno, Italy
- Temple University, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | - Guido Iaccarino
- University of Salerno, Salerno, Italy
- IRCCS “multimedica”, Milan, Italy
| |
Collapse
|
36
|
Xing W, Li Y, Zhang H, Mi C, Hou Z, Quon MJ, Gao F. Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 305:H1111-9. [PMID: 23913704 DOI: 10.1152/ajpheart.00290.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training lowers blood pressure and is a recommended nonpharmacological strategy and useful adjunctive therapy for hypertensive patients. Studies demonstrate that physical activity attenuates progression of hypertension. However, underlying mechanisms remain elusive. Vascular insulin resistance and endothelial dysfunction plays a critical role in the development of hypertension. The present study investigated whether long-term physical exercise starting during the prehypertensive period prevents the development of hypertension via improving vascular insulin sensitivity. Young (4 wk old) prehypertensive spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) control rats were subjected to a 10-wk free-of-loading swim training session (60 min/day, 5 days/wk). Blood pressure, mesenteric arteriolar vasorelaxation, G protein-coupled receptor kinase-2 (GRK2) expression and activity, and insulin-stimulated Akt/endothelial nitric oxide synthase (eNOS) activation were determined. SHRs had higher systolic blood pressure, systemic insulin resistance, and impaired vasodilator actions of insulin in resistance vessels when compared with WKY rats. Systolic blood pressure in SHRs postexercise was significantly lower than that in sedentary rats. Vascular insulin sensitivity in mesenteric arteries was improved after exercise training as evidenced by an increased vasodilator response to insulin. In addition, exercise downregulated vascular GRK2 expression and activity, which further increased insulin-stimulated vascular Akt/eNOS activation in exercised SHRs. Specific small interfering RNA knockdown of GRK2 in endothelium mimicked the effect of exercise-enhanced vascular insulin sensitivity. Likewise, upregulation of GRK2 by Chariot-mediated delivery opposed exercise-induced vascular insulin sensitization. Taken together, our results suggest that long-term exercise beginning at the prehypertensive stage improves vascular insulin sensitivity via downregulation of vascular GRK2 that may help to limit the progression of hypertension.
Collapse
Affiliation(s)
- Wenjuan Xing
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
37
|
GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 2013; 4:1532. [PMID: 23443560 PMCID: PMC3586722 DOI: 10.1038/ncomms2540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/24/2013] [Indexed: 12/24/2022] Open
Abstract
Efficient engulfment of apoptotic cells is critical for maintaining tissue homoeostasis. When phagocytes recognize ‘eat me’ signals presented on the surface of apoptotic cells, this subsequently induces cytoskeletal rearrangement of phagocytes for the engulfment through Rac1 activation. However, the intracellular signalling cascades that result in Rac1 activation remain largely unknown. Here we show that G-protein-coupled receptor kinase 6 (GRK6) is involved in apoptotic cell clearance. GRK6 cooperates with GIT1 to activate Rac1, which promotes apoptotic engulfment independently from the two known DOCK180/ELMO/Rac1 and GULP1/Rac1 engulfment pathways. As a consequence, GRK6-deficient mice develop an autoimmune disease. GRK6-deficient mice also have increased iron stores in splenic red pulp in which F4/80+ macrophages are responsible for senescent red blood cell clearance. Our results reveal previously unrecognized roles for GRK6 in regulating apoptotic engulfment and its fundamental importance in immune and iron homoeostasis. The clearance of apoptotic cells by macrophages is important for tissue homoeostasis. Here Nakaya et al. reveal a role for GRK6 in the regulation of apoptotic engulfment and show that GRK6 deficiency in mice leads to autoimmune disease and iron accumulation in the spleen.
Collapse
|
38
|
Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56:949-64. [PMID: 23443243 PMCID: PMC3652374 DOI: 10.1007/s00125-013-2869-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
39
|
Nacci C, Leo V, De Benedictis L, Carratù MR, Bartolomeo N, Altomare M, Giordano P, Faienza MF, Montagnani M. Elevated endothelin-1 (ET-1) levels may contribute to hypoadiponectinemia in childhood obesity. J Clin Endocrinol Metab 2013; 98:E683-93. [PMID: 23457411 DOI: 10.1210/jc.2012-4119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Pediatric obesity is associated with endothelial dysfunction and hypoadiponectinemia, but the relationship between these two conditions remains to be fully clarified. Whether enhanced release of endothelin-1 (ET-1) may directly impair adiponectin (Ad) production in obese children is not known. OBJECTIVE The aim of the study was to explore whether and how high circulating levels of ET-1 may contribute to impair Ad production, release, and vascular activity. DESIGN AND PARTICIPANTS Sixty children were included into obese (Ob; n = 30), overweight (OW; n = 11), and lean (n = 19) groups. Total and high-molecular-weight Ad, ET-1, vascular cell adhesion molecule-1, and von Willebrand factor levels were measured in serum samples. Adipocytes were stimulated with exogenous ET-1 or with sera from lean, OW, and Ob, and Ad production and release measured in the absence or in the presence of ETA (BQ-123) and ETB (BQ-788) receptor blockers, p42/44 MAPK inhibitor PD-98059, or c-Jun NH2-terminal protein kinase inhibitor SP-600125. Vasodilation to Ad was evaluated in rat isolated arteries in the absence or in the presence of BQ-123/788. RESULTS Total and high-molecular-weight Ad was significantly decreased and ET-1 levels significantly increased in OW (P < .01) and Ob (P < .001) children. A statistically significant linear regression (P < .01) was found between Ad and ET-1. Exposure of adipocytes to exogenous ET-1 or serum from OW and Ob significantly decreased Ad mRNA and protein levels (P < 0.001). The inhibitory effect of ET-1 on Ad was reverted by BQ-123/788 or PD-98059 but not SP-600125. Ad-mediated vasodilation was further increased in arteries pretreated with BQ-123/788. CONCLUSIONS ET-1-mediated inhibition of Ad synthesis via p42/44 MAPK signaling may provide a possible explanation for hypoadiponectinemia in pediatric obesity and contribute to the development of cardiovascular complications.
Collapse
Affiliation(s)
- Carmela Nacci
- Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, 70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Santulli G, Trimarco B, Iaccarino G. G-protein-coupled receptor kinase 2 and hypertension: molecular insights and pathophysiological mechanisms. High Blood Press Cardiovasc Prev 2013; 20:5-12. [PMID: 23532739 DOI: 10.1007/s40292-013-0001-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022] Open
Abstract
Numerous factors partake in the fine-tuning of arterial blood pressure. The heptahelical G-protein-coupled receptors (GPCRs) represent one of the largest classes of cell-surface receptors. Further, ligands directed at GPCRs account for nearly 30 % of current clinical pharmaceutical agents available. Given the wide variety of GPCRs involved in blood pressure control, it is reasonable to speculate for a potential role of established intermediaries involved in the GPCR desensitization process, like the G-protein-coupled receptor kinases (GRKs), in the regulation of vascular tone. Of the seven mammalian GRKs, GRK2 seems to be the most relevant isoform at the cardiovascular level. This review attempts to assemble the currently available information concerning GRK2 and hypertension, opening new potential fields of translational investigation to treat this vexing disease.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131, Naples, Italy.
| | | | | |
Collapse
|
41
|
Dai M, Freeman B, Bruno FP, Shikani HJ, Tanowitz HB, Weiss LM, Reznik SE, Stephani RA, Desruisseaux MS. The novel ETA receptor antagonist HJP-272 prevents cerebral microvascular hemorrhage in cerebral malaria and synergistically improves survival in combination with an artemisinin derivative. Life Sci 2012; 91:687-92. [PMID: 22820174 PMCID: PMC3523882 DOI: 10.1016/j.lfs.2012.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 11/30/2022]
Abstract
AIM To investigate the association between vasculopathy and survival during experimental cerebral malaria (ECM), and to determine whether targeting the endothelin-1 (ET-1) pathway alone or in combination with the anti-malaria drug artemether (a semi-synthetic derivative of artemisinin) will improve microvascular hemorrhage and survival. MAIN METHODS C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were randomly assigned to four groups: no treatment, artemether treated, ET(A) receptor antagonist (HJP-272) treated, or HJP-272 and artemether treated. The uninfected control mice were treated with HJP-272 and artemether. We analyzed survival, cerebral hemorrhage, weight change, blood glucose levels and parasitemia. KEY FINDINGS Our studies demonstrated decreased brain hemorrhage in PbA-infected (ECM) mice treated when HJP-272, a 1,3,6-trisubstituted-2-carboxy-quinol-4-one novel ET(A) receptor antagonist synthesized by our group, is used in conjunction with artemether, an anti-malarial agent. In addition, despite adversely affecting parasitemia and weight in non-artemether treated infected mice, HJP-272, seemed to confer some survival benefit when used as adjunctive therapy, though this did not reach significance. SIGNIFICANCE Previous studies demonstrate that the endothelin pathway is associated with vasculopathy, neuronal injury and inflammation in ECM. As demonstrated here, components of the ET-1 pathway may be important targets for adjunctive therapy in ECM, and may help in preventing hemorrhage and in improving survival when used as adjunctive therapy during malaria infection. The data presented suggest that our novel agent, HJP-272, may ameliorate alterations in the vasculature which can potentially lead to inflammation, neurological dysfunction, and subsequent death in mice with ECM.
Collapse
Affiliation(s)
- Minxian Dai
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Brandi Freeman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fernando P. Bruno
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Henry J. Shikani
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sandra E. Reznik
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Queens, New York, United States of America
| | - Ralph A. Stephani
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Queens, New York, United States of America
| | - Mahalia S. Desruisseaux
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
42
|
Kamal FA, Travers JG, Blaxall BC. G protein-coupled receptor kinases in cardiovascular disease: why "where" matters. Trends Cardiovasc Med 2012; 22:213-9. [PMID: 23062971 DOI: 10.1016/j.tcm.2012.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cardiac function is mainly controlled by β-adrenergic receptors (β-ARs), members of the G protein-coupled receptor (GPCR) family. GPCR signaling and expression are tightly controlled by G protein-coupled receptor kinases (GRKs), which induce GPCR internalization and signal termination through phosphorylation. Reduced β-AR density and activity associated with elevated cardiac GRK expression and activity have been described in various cardiovascular diseases. Moreover, alterations in extracardiac GRKs have been observed in blood vessels, adrenal glands, kidneys, and fat cells. The broad tissue distribution of GPCRs and GRKs suggests that a keen appreciation of integrative physiology may drive future therapeutic development. In this review, we provide a brief summary of GRK isoforms, subcellular localization, and interacting partners that impinge directly or indirectly on the cardiovascular system. We also discuss GRK/GPCR interactions and their implications in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
43
|
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55:2565-2582. [PMID: 22869320 PMCID: PMC4011499 DOI: 10.1007/s00125-012-2644-8] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Collapse
Affiliation(s)
- K D Copps
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - M F White
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. G protein-coupled receptor kinase 2, with β-arrestin 2, impairs insulin-induced Akt/endothelial nitric oxide synthase signaling in ob/ob mouse aorta. Diabetes 2012; 61:1978-85. [PMID: 22688330 PMCID: PMC3402304 DOI: 10.2337/db11-1729] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein-coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction.
Collapse
|
45
|
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91:507-16. [PMID: 22483688 DOI: 10.1016/j.lfs.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. It is involved in the development of endothelial dysfunction including important interactions with nitric oxide. The expression and functional effects of ET-1 and its receptors are markedly altered during development of cardiovascular disease. Increased production of ET-1 and its receptors mediate many pathophysiological events contributing to the development of atherosclerosis and vascular complications in diabetes mellitus. The present review focuses on the pathophysiological role of ET-1 and the potential importance of ET receptors as a therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- John Pernow
- Karolinska Institutet, Cardiology Unit, Department of Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
46
|
Evron T, Daigle TL, Caron MG. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 2012; 33:154-64. [PMID: 22277298 DOI: 10.1016/j.tips.2011.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinases (GRKs) regulate numerous G protein-coupled receptors (GPCRs) by phosphorylating the intracellular domain of the active receptor, resulting in receptor desensitization and internalization. GRKs also regulate GPCR trafficking in a phosphorylation-independent manner via direct protein-protein interactions. Emerging evidence suggests that GRK2, the most widely studied member of this family of kinases, modulates multiple cellular responses in various physiological contexts by either phosphorylating non-receptor substrates or interacting directly with signaling molecules. In this review, we discuss traditional and newly discovered roles of GRK2 in receptor internalization and signaling as well as its impact on non-receptor substrates. We also discuss novel exciting roles of GRK2 in the regulation of dopamine receptor signaling and in the activation and trafficking of the atypical GPCR, Smoothened (Smo).
Collapse
Affiliation(s)
- Tama Evron
- Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
47
|
Fusco A, Santulli G, Sorriento D, Cipolletta E, Garbi C, Dorn GW, Trimarco B, Feliciello A, Iaccarino G. Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cell Signal 2011; 24:468-475. [PMID: 21983013 DOI: 10.1016/j.cellsig.2011.09.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 01/24/2023]
Abstract
Metabolic stimuli such as insulin and insulin like growth factor cause cellular accumulation of G protein coupled receptor kinase 2 (GRK2), which in turn is able to induce insulin resistance. Here we show that in fibroblasts, GRK2 is able to increase ATP cellular content by enhancing mitochondrial biogenesis; also, it antagonizes ATP loss after hypoxia/reperfusion. Interestingly, GRK2 is able to localize in the mitochondrial outer membrane, possibly through one region within the RGS homology domain and one region within the catalytic domain. In vivo, GRK2 removal from the skeletal muscle results in reduced ATP production and impaired tolerance to ischemia. Our data show a novel sub-cellular localization of GRK2 in the mitochondria and an unexpected role in regulating mitochondrial biogenesis and ATP generation.
Collapse
Affiliation(s)
- Anna Fusco
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Daniela Sorriento
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Ersilia Cipolletta
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Corrado Garbi
- Cellular and Molecular Biology and Pathology "Federico II" University, Naples, Italy
| | - Gerald W Dorn
- Internal Medicine, Washington University in St. Louis, MO63110 USA
| | - Bruno Trimarco
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Antonio Feliciello
- Cellular and Molecular Biology and Pathology "Federico II" University, Naples, Italy
| | - Guido Iaccarino
- School of Medicine University of Salerno, Baronissi, (Salerno) 84081, Italy.
| |
Collapse
|
48
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are responsible for regulating a wide variety of physiological processes. This is accomplished via ligand binding to GPCRs, activating associated heterotrimeric G proteins and intracellular signaling pathways. G protein-coupled receptor kinases (GRKs), in concert with β-arrestins, classically desensitize receptor signal transduction, thus preventing hyperactivation of GPCR second-messenger cascades. As changes in GRK expression have featured prominently in many cardiovascular pathologies, including heart failure, myocardial infarction, hypertension, and cardiac hypertrophy, GRKs have been intensively studied as potential diagnostic or therapeutic targets. Herein, we review our evolving understanding of the role of GRKs in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
49
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2011; 133:40-69. [PMID: 21903131 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
50
|
Mayor F, Lucas E, Jurado-Pueyo M, Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Fernández-Veledo S, Murga C. G Protein-coupled receptor kinase 2 (GRK2): A novel modulator of insulin resistance. Arch Physiol Biochem 2011; 117:125-30. [PMID: 21615207 DOI: 10.3109/13813455.2011.584693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is emerging as a key, integrative node in many signalling pathways. Besides its canonical role in the modulation of the signalling mediated by many G protein-coupled receptors (GPCR), this protein can display a very complex network of functional interactions with a variety of signal transduction partners, in a stimulus, cell type, or context-specific way. We review herein recent data showing that GRK2 can regulate insulin-triggered transduction cascades at different levels and that this protein plays a relevant role in insulin resistance and obesity in vivo, what uncovers GRK2 as a potential therapeutic target in the treatment of these disorders.
Collapse
Affiliation(s)
- Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|