1
|
Jidigam VK, Sawant OB, Fuller RD, Wilcots K, Singh R, Lang RA, Rao S. Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Commun Biol 2022; 5:792. [PMID: 35933488 PMCID: PMC9357084 DOI: 10.1038/s42003-022-03774-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Eversight, Cleveland, OH, 44103, USA
| | - Rebecca D Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
3
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
4
|
Mir HA, Ali R, Mushtaq U, Khanday FA. Structure-functional implications of longevity protein p66Shc in health and disease. Ageing Res Rev 2020; 63:101139. [PMID: 32795504 DOI: 10.1016/j.arr.2020.101139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
ShcA (Src homologous- collagen homologue), family of adapter proteins, consists of three isoforms which integrate and transduce external stimuli to different signaling networks. ShcA family consists of p46Shc, p52Shc and p66Shc isoforms, characterized by having multiple protein-lipid and protein-protein interaction domains implying their functional diversity. Among the three isoforms p66Shc is structurally different containing an additional CH2 domain which attributes to its dual functionality in cell growth, mediating both cell proliferation and apoptosis. Besides, p66Shc is also involved in different biological processes including reactive oxygen species (ROS) production, cell migration, ageing, cytoskeletal reorganization and cell adhesion. Moreover, the interplay between p66Shc and ROS is implicated in the pathology of various dreadful diseases. Accordingly, here we discuss the recent structural aspects of all ShcA adaptor proteins but are highlighting the case of p66Shc as model isoform. Furthermore, this review insights the role of p66Shc in progression of chronic age-related diseases like neuro diseases, metabolic disorders (non-alcoholic fatty liver, obesity, diabetes, cardiovascular diseases, vascular endothelial dysfunction) and cancer in relation to ROS. We finally conclude that p66Shc might act as a valuable biomarker for the prognosis of these diseases and could be used as a potential therapeutic target.
Collapse
|
5
|
CELF2 regulates the species-specific alternative splicing of TREM2. Sci Rep 2020; 10:17995. [PMID: 33093587 PMCID: PMC7582162 DOI: 10.1038/s41598-020-75057-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.
Collapse
|
6
|
Lin YH, Wang YC, Wu MS, Lu KC, Lin HY, Kuo HS, Chang GD, Lin CM, Hsiao C. The study of isotopic enrichment of water in human plasma and erythrocyte. FASEB J 2020; 34:13049-13062. [PMID: 32779304 DOI: 10.1096/fj.202000388rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/11/2022]
Abstract
Life does not sustain without water. For water, there is a natural abundance of stable isotope hydrogen and oxygen. Water molecules get across cell membranes through a plasma membrane protein, named aquaporin. Moreover, the kidney is the main organ to maintain water homeostasis. Here, we study the stable isotopic ratios of hydrogen and oxygen in human blood plasma and erythrocyte corresponding to kidney functions. We extract waters from human plasma and erythrocyte, collected from 110 participants, including 51 clinically stable outpatients with end-stage renal disease (ESRD) and 59 subjects with normal renal function (NRF). We observed that (i) both extracellular (blood plasma) and intracellular (erythrocyte) biology waters are isotopic differences between the ESRD and NRF participants, (ii) the natural abundance of isotopic waters of ESRD is hypo-isotopic, and (iii) the isotopic enrichment of water between erythrocyte and blood plasma are distinct. In addition, we introduce an empirical formula using entropy transformation to describe isotopic water enrichment for biology. Accordingly, the natural abundance of stable isotope water of blood plasma and erythrocyte may be possibly put in practice a new sign for assessments of kidney dysfunctions.
Collapse
Affiliation(s)
- Yuan-Hau Lin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chi Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mai-Szu Wu
- College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hsin-Yi Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Shou Kuo
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Mao Lin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiaolong Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66 Shc. Int J Mol Sci 2019; 20:ijms20040985. [PMID: 30813483 PMCID: PMC6412263 DOI: 10.3390/ijms20040985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
Initially reported as a longevity-related protein, the 66 kDa isoform of the mammalian Shc1 locus has been implicated in several metabolic pathways, being able to act both as an adaptor protein and as a redox enzyme capable of generating reactive oxygen species (ROS) when it localizes to the mitochondrion. Ablation of p66Shc has been shown to be protective against obesity and the insurgence of insulin resistance, but not all the studies available in the literature agree on these points. This review will focus in particular on the role of p66Shc in the modulation of glucose homeostasis, obesity, body temperature, and respiration/energy expenditure. In view of the obesity and diabetes epidemic, p66Shc may represent a promising therapeutic target with enormous implications for human health.
Collapse
|
8
|
Xi G, Shen X, Wai C, White MF, Clemmons DR. Hyperglycemia induces vascular smooth muscle cell dedifferentiation by suppressing insulin receptor substrate-1-mediated p53/KLF4 complex stabilization. J Biol Chem 2018; 294:2407-2421. [PMID: 30578299 DOI: 10.1074/jbc.ra118.005398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia and insulin resistance accelerate atherosclerosis by an unclear mechanism. The two factors down-regulate insulin receptor substrate-1 (IRS-1), an intermediary of the insulin/IGF-I signaling system. We previously reported that IRS-1 down-regulation leads to vascular smooth muscle cell (VSMC) dedifferentiation and that IRS-1 deletion from VSMCs in normoglycemic mice replicates this response. However, we did not determine IRS-1's role in mediating differentiation. Here, we sought to define the mechanism by which IRS-1 maintains VSMC differentiation. High glucose or IRS-1 knockdown decreased p53 levels by enhancing MDM2 proto-oncogene (MDM2)-mediated ubiquitination, resulting in decreased binding of p53 to Krüppel-like factor 4 (KLF4). Exposure to nutlin-3, which dissociates MDM2/p53, decreased p53 ubiquitination and enhanced the p53/KLF4 association and differentiation marker protein expression. IRS-1 overexpression in high glucose inhibited the MDM2/p53 association, leading to increased p53 and p53/KLF4 levels, thereby increasing differentiation. Nutlin-3 treatment of diabetic or Irs1 -/- mice enhanced p53/KLF4 and the expression of p21, smooth muscle protein 22 (SM22), and myocardin and inhibited aortic VSMC proliferation. Injecting normoglycemic mice with a peptide disrupting the IRS-1/p53 association reduced p53, p53/KLF4, and differentiation. Analyzing atherosclerotic lesions in hypercholesterolemic, diabetic pigs, we found that p53, IRS-1, SM22, myocardin, and KLF4/p53 levels are significantly decreased compared with their expression in nondiabetic pigs. We conclude that IRS-1 is critical for maintaining VSMC differentiation. Hyperglycemia- or insulin resistance-induced IRS-1 down-regulation decreases the p53/KLF4 association and enhances dedifferentiation and proliferation. Our results suggest that enhancing IRS-1-dependent p53 stabilization could attenuate the progression of atherosclerotic lesions in hyperglycemia and insulin-resistance states.
Collapse
Affiliation(s)
- Gang Xi
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Xinchun Shen
- the College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China, and
| | - Christine Wai
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Morris F White
- the Division of Endocrinology, Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - David R Clemmons
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,
| |
Collapse
|
9
|
Mabruk ZA, Ahmed SBM, Thomas AC, Prigent SA. The role of the ShcD and RET interaction in neuroblastoma survival and migration. Biochem Biophys Rep 2018; 13:99-108. [PMID: 29556564 PMCID: PMC5857170 DOI: 10.1016/j.bbrep.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 01/15/2023] Open
Abstract
Preliminary screening data showed that the ShcD adaptor protein associates with the proto-oncogene RET receptor tyrosine kinase. In the present study, we aimed to investigate the molecular interaction between ShcD and RET in human neuroblastoma cells and study the functional impact of this interaction. We were able to show that ShcD immunoprecipitated with RET from SK-N-AS neuroblastoma cell lysates upon GDNF treatment. This result was validated by ShcD-RET co-localization, which was visualized using a fluorescence microscope. ShcD-RET coexpression promoted ShcD and RET endosomal localization, resulting in unexpected inhibition of the downstream ERK and AKT pathways. Interestingly, ShcD-RET association reduced the viability and migration of SK-N-AS cells. Although ShcD was previously shown to trigger melanoma cell migration and tumorigenesis, our data showed an opposite role for ShcD in neuroblastoma SK-N-AS cells via its association with RET in GDNF-treated cells. In conclusion, ShcD acts as a switch molecule that promotes contrasting biological responses depending on the stimulus ad cell type. The melanoma associated Shc adaptor, ShcD, is found to interact with Ret oncogene receptor in SK-N-AS neuroblastoma cells. ShcD and Ret coexpression favoures their endosomal localization. ShcD-Ret association has suppressed ERK and AKT signalling. The functional consequence of ShcD and Ret interaction was shown to negatively affect cell survival and cellular migration in.
Collapse
Key Words
- ALK,, Anaplastic Lymphoma Kinase
- Akt,, Protein kinase B;
- CMV,, Cytomegalovirus
- DMEM,, Dulbecoo Modified Eagle's Medium;
- DNA,, Deoxyribonucleic Acid
- ECL,, Enhanced Chemiluminescence;
- EGF,, Epidermal Growth Factor;
- EGFR,, Epidermal Growth Factor Receptor;
- ERK,, Extracellular Signal–Regulated Kinases;
- Endosomes
- FBS,, Fetal Bovine Serum
- FGFR,, fibroblast growth factor receptors
- GDNF
- GDNF,, Glial Cell Line-Derived Neurotropic Factor;
- GFLs,, GDNF Family Ligands;
- GFP,, Green Fluorescent Protein
- GPCR,, G-Protein Coupled Receptor
- GRB2,, Growth Factor Receptor-Bound Protein 2;
- HGFR,, hepatocyte growth factor receptor;
- HRP,, Horseradish Peroxidase
- IGF,, Insulin Growth Factor;
- LB,, Luria-Bertani
- MAP,, Mitogen-Activated Protein;
- MAPK,, Mitogen-Activated Protein Kinases
- MuSK,, Muscle Specific Kinase
- NFDM,, Non-Fat Dry Milk
- Neuroblastoma
- PBS,, Phosphate-Buffered Saline
- PBST,, Phosphate-Buffered Saline Tween
- PDGF,, Platelet-Derived Growth Factor;
- PI3K,, Phosphoinositide 3-Kinase
- PMSF,, Phenylmethylsulfonyl Fluoride
- PVDF,, Polyvinylidene Fluoride
- RET
- RET,, Rearranged During Transfection
- RT,, Room Temperature;
- RTKs,, Receptor Tyrosine Kinase
- SDS-PAGE,, Sodium Dodecylsulphate Polyacrylamide Gel Electrophoresis
- ShcD
- ShcD,, Src Homology And Collagen D
- Src,, Proto-Oncogene Tyrosine-Protein Kinase Src
- TKRs,, Tyrosine Kinase Receptor;
- TrkA/B/C,, Tropomyosin-Related Kinase Receptor A/B/C
- hrs,, Hours
- mAb,, Monoclonal Antibody
- min,, Minute
- pAb,, Polyclonal Antibody
- pTyr,, Phospho-Tyrosine
- rpm,, revolution per minute;
Collapse
Affiliation(s)
- Zeanap A Mabruk
- Sharjah Institute for Medical Research and College of Medicine University of Sharjah, United Arab Emirates
| | - Samrein B M Ahmed
- Sharjah Institute for Medical Research and College of Medicine University of Sharjah, United Arab Emirates
| | - Asha Caroline Thomas
- Sharjah Institute for Medical Research and College of Medicine University of Sharjah, United Arab Emirates
| | - Sally A Prigent
- Department of Molecular and Cellular Biology, University of Leicester, UK
| |
Collapse
|
10
|
Dean M, Lassak A, Wilk A, Zapata A, Marrero L, Molina P, Reiss K. Acute Ethanol Increases IGF-I-Induced Phosphorylation of ERKs by Enhancing Recruitment of p52-Shc to the Grb2/Shc Complex. J Cell Physiol 2017; 232:1275-1286. [PMID: 27607558 PMCID: PMC5381968 DOI: 10.1002/jcp.25586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
Ethanol plays a detrimental role in the development of the brain. Multiple studies have shown that ethanol inhibits insulin-like growth factor I receptor (IGF-IR) function. Because the IGF-IR contributes to brain development by supporting neural growth, survival, and differentiation, we sought to determine the molecular mechanism(s) involved in ethanol's effects on this membrane-associated tyrosine kinase. Using multiple neuronal cell types, we performed Western blot, immunoprecipitation, and GST-pulldowns following acute (1-24 h) or chronic (3 weeks) treatment with ethanol. Surprisingly, exposure of multiple neuronal cell types to acute (up to 24 h) ethanol (50 mM) enhanced IGF-I-induced phosphorylation of extracellular regulated kinases (ERKs), without affecting IGF-IR tyrosine phosphorylation itself, or Akt phosphorylation. This acute increase in ERKs phosphorylation was followed by the expected inhibition of the IGF-IR signaling following 3-week ethanol exposure. We then expressed a GFP-tagged IGF-IR construct in PC12 cells and used them to perform fluorescence recovery after photobleaching (FRAP) analysis. Using these fluorescently labeled cells, we determined that 50 mM ethanol decreased the half-time of the IGF-IR-associated FRAP, which implied that cell membrane-associated signaling events could be affected. Indeed, co-immunoprecipitation and GST-pulldown studies demonstrated that the acute ethanol exposure increased the recruitment of p52-Shc to the Grb2-Shc complex, which is known to engage the Ras-Raf-ERKs pathway following IGF-1 stimulation. These experiments indicate that even a short and low-dose exposure to ethanol may dysregulate function of the receptor, which plays a critical role in brain development. J. Cell. Physiol. 232: 1275-1286, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Dean
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
- Department of Genetics, LSU Health New Orleans
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Adam Lassak
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Anna Wilk
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604
| | | | - Luis Marrero
- Morphology and Imaging Core, LSU Health New Orleans
| | - Patricia Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
| | | |
Collapse
|
11
|
Di Lisa F, Giorgio M, Ferdinandy P, Schulz R. New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol 2017; 174:1690-1703. [PMID: 26990284 PMCID: PMC5446581 DOI: 10.1111/bph.13478] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
Although reactive oxygen species (ROS) act as crucial factors in the onset and progression of a wide array of diseases, they are also involved in numerous signalling pathways related to cell metabolism, growth and survival. ROS are produced at various cellular sites, and it is generally agreed that mitochondria generate the largest amount, especially those in cardiomyocytes. However, the identification of the most relevant sites within mitochondria, the interaction among the various sources, and the events responsible for the increase in ROS formation under pathological conditions are still highly debated, and far from being clarified. Here, we review the information linking the adaptor protein p66Shc with cardiac injury induced by ischaemia and reperfusion (I/R), including the contribution of risk factors, such as metabolic syndrome and ageing. In response to several stimuli, p66Shc migrates into mitochondria where it catalyses electron transfer from cytochrome c to oxygen resulting in hydrogen peroxide formation. Deletion of p66Shc has been shown to reduce I/R injury as well as vascular abnormalities associated with diabetes and ageing. However, p66Shc-induced ROS formation is also involved in insulin signalling and might contribute to self-endogenous defenses against mild I/R injury. In addition to its role in physiological and pathological conditions, we discuss compounds and conditions that can modulate the expression and activity of p66Shc. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Fabio Di Lisa
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaPadovaItaly
| | - Marco Giorgio
- Department of Experimental OncologyInstitute of OncologyMilanItaly
| | - Peter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Rainer Schulz
- Institut für PhysiologieJustus‐Liebig Universität GiessenGiessenGermany
| |
Collapse
|
12
|
Xi G, Wai C, White MF, Clemmons DR. Down-regulation of Insulin Receptor Substrate 1 during Hyperglycemia Induces Vascular Smooth Muscle Cell Dedifferentiation. J Biol Chem 2016; 292:2009-2020. [PMID: 28003360 DOI: 10.1074/jbc.m116.758987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
Diabetes is a major risk factor for the development of atherosclerosis, but the mechanism by which hyperglycemia accelerates lesion development is not well defined. Insulin and insulin-like growth factor I (IGF-I) signal through the scaffold protein insulin receptor substrate 1 (IRS-1). In diabetes, IRS-1 is down-regulated, and cells become resistant to insulin. Under these conditions, the IGF-I receptor signals through an alternate scaffold protein, SHPS-1, resulting in pathophysiologic stimulation of vascular smooth muscle cell (VSMC) migration and proliferation. These studies were undertaken to determine whether IRS-1 is functioning constitutively to maintain VSMCs in their differentiated state and, thereby, inhibit aberrant signaling. Here we show that deletion of IRS-1 expression in VSMCs in non-diabetic mice results in dedifferentiation, SHPS-1 activation, and aberrant signaling and that these changes parallel those that occur in response to hyperglycemia. The mice showed enhanced sensitivity to IGF-I stimulation of VSMC proliferation and a hyperproliferative response to vascular injury. KLF4, a transcription factor that induces VSMC dedifferentiation, was up-regulated in IRS-1-/- mice, and the differentiation inducer myocardin was undetectable. Importantly, these changes were replicated in wild-type mice during hyperglycemia. These findings illuminate a new function of IRS-1: that of maintaining cells in their normal, differentiated state. Because IRS-1 is down-regulated in states of insulin resistance that occur in response to metabolic stresses such as obesity and cytokine stimulation, the findings provide a mechanism for understanding how patients with metabolic stress and/or diabetes are predisposed to developing vascular complications.
Collapse
Affiliation(s)
- Gang Xi
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Christine Wai
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Morris F White
- the Division of Endocrinology, Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - David R Clemmons
- From the Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.
| |
Collapse
|
13
|
Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor. Biochem J 2016; 473:1617-27. [PMID: 27048591 PMCID: PMC4888465 DOI: 10.1042/bcj20160249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/04/2016] [Indexed: 11/26/2022]
Abstract
The present study identifies a novel and unexpected mechanism underscoring the diversification of p66Shc among other Shc (Src homology and collagen homology) proteins, with respect to its mode of interaction with the receptor Met and impacts on key binding effectors of Met-regulated signalling. Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure–function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met–p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc–Grb2–Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor.
Collapse
|
14
|
Xi G, Rosen CJ, Clemmons DR. IGF-I and IGFBP-2 Stimulate AMPK Activation and Autophagy, Which Are Required for Osteoblast Differentiation. Endocrinology 2016; 157:268-81. [PMID: 26556533 PMCID: PMC4701891 DOI: 10.1210/en.2015-1690] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022]
Abstract
IGF-I/insulin-like growth factor binding protein 2 (IGFBP-2) coordinately stimulate osteoblast differentiation but the mechanisms by which they function have not been determined. AMP-activated protein kinase (AMPK) is induced during differentiation and AMPK knockout mice have reduced bone mass. IGF-I modulates AMPK in other cell types; therefore, these studies determined whether IGF-I/IGFBP-2 stimulate AMPK activation and the mechanism by which AMPK modulates differentiation. Calvarial osteoblasts and MC-3T3 cells expressed activated AMPK early in differentiation and AMPK inhibitors attenuated differentiation. However, expression of constitutively activated AMPK inhibited differentiation. To resolve this discrepancy we analyzed the time course of AMPK induction. AMPK activation was required early in differentiation (day 3-6) but down-regulation of AMPK after day 9 was also necessary. IGF-I/IGFBP-2 induced AMPK through their respective receptors and blocking-receptor activation blocked AMPK induction. To determine the mechanism by which AMPK functioned we analyzed components of the autophagosome. Activated AMPK stimulated ULK-1 S555 phosphorylation as well as beclin-1 and microtubule-associated protein 1A/1B light-chain phosphatidylethanolamine conjugate (LC3II) induction. Inhibition of AMPK attenuated these changes and direct inhibition of autophagy inhibited differentiation. Conversely, expression of activated AMPK was associated with persistence of these changes beyond day 9 and inhibited differentiation. Blocking AMPK activation after day 9 down-regulated these autophagosome components and rescued differentiation. This allowed induction of mechanistic target of rapamycin and AKT, which suppressed autophagy. The results show that early induction of AMPK in response to IGF-I/IGFBP-2 followed by suppression is required for osteoblast differentiation. AMPK functions through stimulation of autophagy. The findings suggest that these early catabolic changes are important for determining the energy source for osteoblast respiration and down-regulation of these components may be required for induction of glycolysis, which is required during the final anabolic stages of differentiation.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine (G.X., D.R.C.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Maine Medical Center Research Institute (C.J.R.), Scarborough, Maine 04074
| | - Clifford J Rosen
- Department of Medicine (G.X., D.R.C.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Maine Medical Center Research Institute (C.J.R.), Scarborough, Maine 04074
| | - David R Clemmons
- Department of Medicine (G.X., D.R.C.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Maine Medical Center Research Institute (C.J.R.), Scarborough, Maine 04074
| |
Collapse
|
15
|
Xi G, Shen X, Wai C, Vilas CK, Clemmons DR. Hyperglycemia stimulates p62/PKCζ interaction, which mediates NF-κB activation, increased Nox4 expression, and inflammatory cytokine activation in vascular smooth muscle. FASEB J 2015; 29:4772-82. [PMID: 26231202 DOI: 10.1096/fj.15-275453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022]
Abstract
Hyperglycemia leads to vascular smooth muscle cell (VSMC) dedifferentiation and enhances responses to IGF-I. Prior studies showed that hyperglycemia stimulated NADPH oxidase 4 (Nox4) synthesis, and IGF-I facilitated its recruitment to a signaling complex where it oxidized src, leading to AKT and MAPK activation. To determine the mechanism that led to these changes, we analyzed the roles of p62 (sequestrosome1) and PKCζ. Hyperglycemia induced a 4.9 ± 1.0-fold increase in p62/PKCζ association, and disruption of PKCζ/p62 using a peptide inhibitor or p62 knockdown reduced PKCζ activation (78 ± 6%). 3-Phosphoinoside-dependent protein kinase 1 was also recruited to the p62 complex and directly phosphorylated PKCζ, leading to its activation (3.1 ± 0.4-fold). Subsequently, activated PKCζ phosphorylated p65 rel, which led to increased Nox4 synthesis. Studies in diabetic mice confirmed these findings (6.0 ± 0.4-fold increase in p62/PKCζ) and their disruption of attenuated Nox4 synthesis (76 ± 9% reduction). PKCζ/p62 activation stimulated inflammatory cytokine production and enhanced IGF-I-stimulated VSMC proliferation. These results define the molecular mechanism by which PKCζ is activated in response to hyperglycemia and suggest that this could be a mechanism by which other stimuli such as cytokines or metabolic stress function to stimulate NF-κB activation, thereby altering VSMC sensitivity to IGF-I.
Collapse
Affiliation(s)
- Gang Xi
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Christine Wai
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Caroline K Vilas
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - David R Clemmons
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
16
|
Xi G, Wai C, DeMambro V, Rosen CJ, Clemmons DR. IGFBP-2 directly stimulates osteoblast differentiation. J Bone Miner Res 2014; 29:2427-38. [PMID: 24839202 PMCID: PMC5117190 DOI: 10.1002/jbmr.2282] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP-2) is important for acquisition of normal bone mass in mice; however, the mechanism by which IGFBP-2 functions is not defined. These studies investigated the role of IGFBP-2 in stimulating osteoblast differentiation. MC-3T3 preosteoblasts expressed IGFBP-2, and IGFBP-2 knockdown resulted in a substantial delay in osteoblast differentiation, reduced osteocalcin expression and Alizarin red staining. These findings were replicated in primary calvarial osteoblasts obtained from IGFBP-2(-/-) mice, and addition of IGFBP-2 rescued the differentiation program. In contrast, overexpression of IGFBP-2 accelerated the time course of differentiation as well as increasing the total number of differentiating cells. By day 6, IGFBP-2-overexpressing cells expressed twice as much osteocalcin as control cultures and this difference persisted. To determine the mechanism by which IGFBP-2 functions, the interaction between IGFBP-2 and receptor tyrosine phosphatase β (RPTPβ) was examined. Disruption of this interaction inhibited the ability of IGFBP-2 to stimulate AKT activation and osteoblast differentiation. Knockdown of RPTPβ enhanced osteoblast differentiation, whereas overexpression of RPTPβ was inhibitory. Adding back IGFBP-2 to RPTPβ-overexpressing cells was able to rescue cell differentiation via enhancement of AKT activation. To determine the region of IGFBP-2 that mediated this effect, an IGFBP-2 mutant that contained substitutions of key amino acids in the heparin-binding domain-1 (HBD-1) was prepared. This mutant had a major reduction in its ability to stimulate differentiation of calvarial osteoblasts from IGFBP-2(-/-) mice. Addition of a synthetic peptide that contained the HBD-1 sequence to calvarial osteoblasts from IGFBP-2(-/-) mice rescued differentiation and osteocalcin expression. In summary, the results clearly demonstrate that IGFBP-2 stimulates osteoblast differentiation and that this effect is mediated through its heparin-binding domain-1 interacting with RPTPβ. The results suggest that stimulation of differentiation is an important mechanism by which IGFBP-2 regulates the acquisition of normal bone mass in mice.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
17
|
Frijhoff J, Dagnell M, Augsten M, Beltrami E, Giorgio M, Östman A. The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radic Biol Med 2014; 68:268-77. [PMID: 24378437 DOI: 10.1016/j.freeradbiomed.2013.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022]
Abstract
Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Markus Dagnell
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Martin Augsten
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Elena Beltrami
- Department of Experimental Oncology, European Institute of Oncology, 20142 Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, 20142 Milan, Italy
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden.
| |
Collapse
|
18
|
Soliman MA, Abdel Rahman AM, Lamming DW, Lamming DA, Birsoy K, Pawling J, Frigolet ME, Lu H, Fantus IG, Pasculescu A, Zheng Y, Sabatini DM, Dennis JW, Pawson T. The adaptor protein p66Shc inhibits mTOR-dependent anabolic metabolism. Sci Signal 2014; 7:ra17. [PMID: 24550542 DOI: 10.1126/scisignal.2004785] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adaptor proteins link surface receptors to intracellular signaling pathways and potentially control the way cells respond to nutrient availability. Mice deficient in p66Shc, the most recently evolved isoform of the Shc1 adaptor proteins and a mediator of receptor tyrosine kinase signaling, display resistance to diabetes and obesity. Using quantitative mass spectrometry, we found that p66Shc inhibited glucose metabolism. Depletion of p66Shc enhanced glycolysis and increased the allocation of glucose-derived carbon into anabolic metabolism, characteristics of a metabolic shift called the Warburg effect. This change in metabolism was mediated by the mammalian target of rapamycin (mTOR) because inhibition of mTOR with rapamycin reversed the glycolytic phenotype caused by p66Shc deficiency. Thus, unlike the other isoforms of Shc1, p66Shc appears to antagonize insulin and mTOR signaling, which limits glucose uptake and metabolism. Our results identify a critical inhibitory role for p66Shc in anabolic metabolism.
Collapse
Affiliation(s)
- Mohamed A Soliman
- 1Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haines E, Saucier C, Claing A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J Biol Chem 2014; 289:5687-703. [PMID: 24407288 DOI: 10.1074/jbc.m113.516047] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells.
Collapse
Affiliation(s)
- Eric Haines
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | | | | |
Collapse
|
20
|
Xi G, Solum MA, Wai C, Maile LA, Rosen CJ, Clemmons DR. The heparin-binding domains of IGFBP-2 mediate its inhibitory effect on preadipocyte differentiation and fat development in male mice. Endocrinology 2013; 154:4146-57. [PMID: 23981772 PMCID: PMC3800754 DOI: 10.1210/en.2013-1236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IGF-binding protein (IGFBP)-2 overexpression confers resistance to high-fat feeding and inhibits the differentiation of preadipocytes in vitro. However, whether administration of IGFBP-2 can regulate adipogenesis in vivo and the domains that mediate this response have not been defined. IGFBP-2 contains 2 heparin-binding domains (HBD), which are localized in the linker region (HBD1) and C-terminal region (HBD2) of IGFBP-2. To determine the relative importance of these domains, we used synthetic peptides as well as mutagenesis. Both HBD1 and HBD2 peptides inhibited preadipocyte differentiation, but the HBD2 peptide was more effective. Selective substitution of charged residues in the HBD1 or HBD2 regions attenuated the ability of the full-length protein to inhibit cell differentiation, but the HBD2 mutant had the greatest reduction. To determine their activities in vivo, pegylated forms of each peptide were administered to IGFBP-2(-/-) mice for 12 weeks. Magnetic resonance imaging scanning showed that only the HBD2 peptide significantly reduced (48 ± 9%, P < .05) gain in total fat mass. Both inguinal (32 ± 7%, P < .01) and visceral fat (44 ± 7%, P < .01) were significantly decreased by HBD2 whereas HBD1 reduced only visceral fat accumulation (24 ± 5%, P < .05). The HBD2 peptide was more effective peptide in reducing triglyceride content and serum adiponectin, but only the HBD2 peptide increased serum leptin. These findings demonstrate that the HBD2 domain of IGFBP-2 is the primary region that accounts for its ability to inhibit adipogenesis and that a peptide encompassing this region has activity that is comparable with native IGFBP-2.
Collapse
Affiliation(s)
- Gang Xi
- MD, CB no. 7170, 8024 Burnett Womack, Division of Endocrinology, University of North Carolina, Chapel Hill, NC 27599-7170.
| | | | | | | | | | | |
Collapse
|
21
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
22
|
Xi G, Shen XC, Wai C, Clemmons DR. Recruitment of Nox4 to a plasma membrane scaffold is required for localized reactive oxygen species generation and sustained Src activation in response to insulin-like growth factor-I. J Biol Chem 2013; 288:15641-53. [PMID: 23612968 DOI: 10.1074/jbc.m113.456046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
23
|
Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis 2013; 4:e592. [PMID: 23598404 PMCID: PMC3668627 DOI: 10.1038/cddis.2013.87] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/01/2013] [Accepted: 02/19/2013] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is a leading cause of cancer death in women in the United States. While the majority of ovarian cancers are serous, some rarer subtypes (i.e. clear cell) are often associated with endometriosis, a benign gynecological disease. Iron is rich in the cyst fluid of endometriosis-associated ovarian cancers and induces persistent oxidative stress. The role of iron, an essential nutrient involved in multiple cellular functions, in normal ovarian cell survival and ovarian cancer remains unclear. Iron, presented as ferric ammonium citrate (FAC), dramatically inhibits cell survival in ovarian cancer cell types associated with Ras mutations, while it is without effect in immortalized normal ovarian surface epithelial (T80) and endometriotic epithelial cells (lacking Ras mutations). Interestingly, FAC induced changes in cytoplasmic vacuolation concurrently with increases in LC3-II levels (an autophagy marker); these changes occurred in an ATG5/ATG7-dependent, beclin-1/hVps34-independent, and Ras-independent manner. Knockdown of autophagy mediators in HEY ovarian cancer cells reversed FAC-induced LC3-II levels, but there was little effect on reversing the cell death response. Intriguingly, transmission electron microscopy of FAC-treated T80 cells demonstrated abundant lysosomes (confirmed using Lysotracker) rich in iron particles, which occurred in a Ras-independent manner. Although the mitogen-activated protein kinase (MAPK) inhibitor, U0126, reversed FAC-induced LC3-II/autophagic punctae and lysosomes in a Ras-independent manner, it was remarkable that U0126 reversed cell death in malignant ovarian cells associated with Ras mutations. Moreover, FAC increased heme oxygenase-1 expression in H-Ras-overexpressing T80 cells, which was associated with increased cell death when overexpressed in T80 cells. Disruption of intracellular iron levels, via chelation of intracellular iron (deferoxamine), was also detrimental to malignant ovarian cell survival; thus, homeostatic intracellular iron levels are essential for cell survival. Collectively, our results implicate iron in modulating cell death in a Ras- and MAPK-dependent manner in ovarian cancer cells.
Collapse
Affiliation(s)
- K A Bauckman
- Moffitt Cancer Center and Research Institute, Cancer Biology Program, Tampa, FL, USA
| | - E Haller
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - I Flores
- Departments of Microbiology, Obstetrics and Gynecology, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | - M Nanjundan
- Moffitt Cancer Center and Research Institute, Cancer Biology Program, Tampa, FL, USA
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
24
|
|
25
|
Kodigepalli KM, Dutta PS, Bauckman KA, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett 2012. [PMID: 23178716 DOI: 10.1016/j.febslet.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SnoN/SkiL (TGFβ regulator) is dysregulated in ovarian cancer, a disease associated with acquired drug-resistance. Arsenic trioxide (As₂O₃, used in treating APL) induces SnoN to oppose the apoptotic response in ovarian cancer cells. We now report that As₂O₃ increases phosphorylation of EGFR/p66ShcA and EGFR degradation. As₂O₃ activates Src(Y416) whose activity (inhibited by PP2) modulates EGFR activation, its interaction with Shc/Grb2, and p-AKT. Inhibition of PI3K reduces SnoN and cell survival. Although EGFR or MAPK1 siRNA did not alter SnoN expression, As₂O₃-induced cleaved PARP was reduced together with increased XIAP. Collectively, As₂O₃ mediates an initial rise in pY-Src(416) to regulate the PI3K/AKT pathway which increases SnoN and cell survival; these early events may counter the cell death response associated with increased pY-EGFR/MAPK activation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, ISA2015, Tampa, FL, United States
| | | | | | | |
Collapse
|
26
|
Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosine phosphatase β and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol Cell Biol 2012; 32:4116-30. [PMID: 22869525 DOI: 10.1128/mcb.01011-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development and progression of atherosclerosis. IGF binding proteins (IGFBPs) modify IGF-I actions independently of IGF binding, but a receptor-based mechanism by which they function has not been elucidated. We investigated the role of IGFBP-2 and receptor protein tyrosine phosphatase β (RPTPβ) in regulating IGF-I signaling and cellular proliferation. IGFBP-2 bound RPTPβ, which led to its dimerization and inactivation. This enhanced PTEN tyrosine phosphorylation and inhibited PTEN activity. Utilization of substrate trapping and phosphatase-dead mutants showed that RPTPβ bound specifically to PTEN and dephosphorylated it. IGFBP-2 knockdown led to decreased PTEN tyrosine phosphorylation and decreased AKT Ser473 activation. IGFBP-2 enhanced IGF-I-stimulated VSMC migration and proliferation. Analysis of aortas obtained from IGFBP-2(-/-) mice showed that RPTPβ was activated, and this was associated with inhibition of IGF-I stimulated AKT Ser473 phosphorylation and VSMC proliferation. These changes were rescued following administration of IGFBP-2. These findings present a novel mechanism for coordinate regulation of IGFBP-2 and IGF-I signaling functions that lead to stimulation of VSMC proliferation. The results have important implications for understanding how IGFBPs modulate the cellular response to IGF-I.
Collapse
|
27
|
Abstract
Insulin-like growth factor 1 (IGF-1) is a pleiotropic polypeptide. Its expression is tightly regulated and it plays significant roles during early development, maturation, and adulthood. This article discusses the roles of IGF-1 in determination of body size, skeletal acquisition, muscle growth, carbohydrate metabolism, and longevity, as learned from mouse models.
Collapse
Affiliation(s)
- Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA.
| | | |
Collapse
|
28
|
Novosyadlyy R, Leroith D. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity. J Gerontol A Biol Sci Med Sci 2012; 67:640-51. [PMID: 22421704 DOI: 10.1093/gerona/gls065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.
Collapse
Affiliation(s)
- Ruslan Novosyadlyy
- Department of Cell Biology, Imclone Systems, a wholly owned subsidiary of Eli Lilly & Co, New York, USA
| | | |
Collapse
|
29
|
Xi G, Shen X, Maile LA, Wai C, Gollahon K, Clemmons DR. Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells. Diabetes 2012; 61:104-13. [PMID: 22148072 PMCID: PMC3237650 DOI: 10.2337/db11-0990] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IGF-I-stimulated sarcoma viral oncogene (Src) activation during hyperglycemia is required for propagating downstream signaling. The aim of the current study was to determine the mechanism by which hyperglycemia enhances IGF-I-stimulated Src activation and the role of NADPH oxidase 4 (Nox4) and protein kinase C ζ (PKCζ) in mediating this response in vascular smooth muscle cells (VSMCs). Nox4 expression was analyzed in VSMCs exposed to hyperglycemia. The role of Nox4-derived reactive oxygen species (ROS) in IGF-I-stimulated Src activation was investigated via knockdown of Nox4. Different isoforms of PKC were screened to investigate their role in hyperglycemia-induced Nox4. The oxidation of Src was shown to be a prerequisite for its activation in response to IGF-I during hyperglycemia. Hyperglycemia induced Nox4, but not Nox1, and p22 phagocyte oxidase (p22phox) expression and IGF-I stimulated Nox4/p22phox complex formation, leading to increased ROS generation. Knockdown of Nox4 prevented ROS generation and impaired the oxidation and activation of Src in response to IGF-I, whereas knockdown of Nox1 had no effect. PKCζ was shown to mediate the hyperglycemia-induced increase in Nox4 expression. The key observations in cultured VSMCs were confirmed in the diabetic mice. Nox4-derived ROS is responsible for the enhancing effect of hyperglycemia on IGF-I-stimulated Src activation, which in turn amplifies IGF-I-linked downstream signaling and biological actions.
Collapse
|
30
|
Ning J, Xi G, Clemmons DR. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 2011; 152:3143-54. [PMID: 21673100 PMCID: PMC3138225 DOI: 10.1210/en.2011-0155] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As a metabolic sensor, the serine/threonine protein kinase AMP-activated protein kinase (AMPK) promotes the adaptation of cells to signals arising from nutrients, hormones, and growth factors. The ability of IGF-I to stimulate protein synthesis is suppressed by AMPK, therefore, these studies were undertaken to determine whether IGF-I modulates AMPK activity. IGF-I dose-dependently suppressed phosphorylation of AMPK T172, and it stimulated AMPK S485 phosphorylation in vascular smooth muscle cells (VSMC). To determine whether stimulation of AMPK S485 phosphorylation was mediating this response, VSMC were transduced with a mutant AMPKα (AMPK S485A). Expression of this altered form inhibited the ability of IGF-I to suppress AMPK T172 activation, which resulted in inhibition of IGF-I-stimulated phosphorylation of P70S6 kinase. In contrast, expression of an AMPK S485D mutant resulted in constitutive suppression of AMPK activity and was associated with increased IGF-I-stimulated P70S6K phosphorylation and protein synthesis. The addition of a specific AKT inhibitor or expression of an AKT1 short hairpin RNA inhibited AMPK S485 phosphorylation, and it attenuated the IGF-I-induced decrease in AMPK T172 phosphorylation. Exposure to high glucose concentrations suppressed AMPK activity and stimulated S485 phosphorylation, and IGF-I stimulated a further increase in S485 phosphorylation and AMPK T172 suppression. We conclude that AMPK S485 phosphorylation negatively regulates AMPK activity by modulating the T172 phosphorylation response to high glucose and IGF-I. IGF-I stimulates S485 phosphorylation through AKT1. The results suggest that AMPK plays an inhibitory role in modulating IGF-I-stimulated protein synthesis and that IGF-I must down-regulate AMPK activity to induce an optimal anabolic response.
Collapse
Affiliation(s)
- Junyu Ning
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
31
|
Vendelbo MH, Nair KS. Mitochondrial longevity pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:634-44. [PMID: 21295080 DOI: 10.1016/j.bbamcr.2011.01.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/31/2022]
Abstract
Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Better understanding of the underlying mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing oxidative damage. Reactive oxygen species (ROS) have been proposed to cause deleterious effects on DNA, proteins, and lipids, and generation of these highly reactive molecules takes place in the mitochondria. But ROS is positively implicated in cellular stress defense mechanisms and formation of ROS a highly regulated process controlled by a complex network of intracellular signaling pathways. There are endogenous anti-oxidant defense systems that have the potential to partially counteract ROS impact. In this review, we will describe pathways contributing to the regulation of the age-related decline in mitochondrial function and their impact on longevity. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- M H Vendelbo
- Division of endocrinology, Endocrine research Unit, The Mayo Clinic, 200 1st Street SW Joseph 5-194, Rochester, MN 55905, USA
| | | |
Collapse
|
32
|
Tomilov AA, Ramsey JJ, Hagopian K, Giorgio M, Kim KM, Lam A, Migliaccio E, Lloyd KC, Berniakovich I, Prolla TA, Pelicci P, Cortopassi GA. The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell 2011; 10:55-65. [PMID: 21040401 DOI: 10.1111/j.1474-9726.2010.00641.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively - consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the 'lean' phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a 'fat' phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain.
Collapse
Affiliation(s)
- Alexey A Tomilov
- VM-Molecular Biosciences, University of California, Davis, CA 95616 USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Recruitment of Pyk2 to SHPS-1 signaling complex is required for IGF-I-dependent mitogenic signaling in vascular smooth muscle cells. Cell Mol Life Sci 2010; 67:3893-903. [PMID: 20521079 PMCID: PMC11115943 DOI: 10.1007/s00018-010-0411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 10/25/2022]
Abstract
In vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I. Following Src/Pyk2 association, Src phosphorylates Pyk2 on Tyr881 providing a binding site for Grb2. Cells expressing Pyk2/Y881F showed decreased Grb2 recruitment to SHPS-1 and impaired Shc/Grb2 association. This change led to reduced Erk1/2 (MAP kinase) activation and cell proliferation in response to IGF-I. Our results show that, following its recruitment to the SHPS-1 signaling complex, Pyk2 localizes Grb2 in close proximity to Shc thereby facilitating Shc/Grb2 association which leads to Erk1/2 activation in response to IGF-I. Thus, Pyk2 recruitment to SHPS-1 plays an important role in regulating the IGF-I-stimulated mitogenic response.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Gang Xi
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Yashwanth Radhakrishnan
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - David R. Clemmons
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
- Division of Endocrinology, University of North Carolina at Chapel Hill, CB# 7170, 8024 Burnett-Womack, Chapel Hill, NC 27599-7170 USA
| |
Collapse
|
34
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. PDK1 recruitment to the SHPS-1 signaling complex enhances insulin-like growth factor-i-stimulated AKT activation and vascular smooth muscle cell survival. J Biol Chem 2010; 285:29416-24. [PMID: 20643654 PMCID: PMC2937974 DOI: 10.1074/jbc.m110.155325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/16/2010] [Indexed: 12/16/2022] Open
Abstract
In vascular smooth muscle cells, exposed to hyperglycemia and insulin-like growth factor-I (IGF-I), SHPS-1 functions as a scaffold protein, and a signaling complex is assembled that leads to AKT activation. However, the underlying mechanism by which formation of this complex activates the kinase that phosphorylates AKT (Thr(308)) is unknown. Therefore, we investigated the mechanism of PDK1 recruitment to the SHPS-1 signaling complex and the consequences of disrupting PDK1 recruitment for downstream signaling. Our results show that following IGF-I stimulation, PDK1 is recruited to SHPS-1, and its recruitment is mediated by Grb2, which associates with SHPS-1 via its interaction with Pyk2, a component of the SHPS-1-associated complex. A proline-rich sequence in PDK1 bound to an Src homology 3 domain in Grb2 in response to IGF-I. Disruption of Grb2-PDK1 by expression of either a Grb2 Src homology 3 domain or a PDK1 proline to alanine mutant inhibited PDK1 recruitment to SHPS-1, leading to impaired IGF-I-stimulated AKT Thr(308) phosphorylation. Following its recruitment to SHPS-1, PDK1 was further activated via Tyr(373/376) phosphorylation, and this was required for a maximal increase in PDK1 kinase activity and AKT-mediated FOXO3a Thr(32) phosphorylation. PDK1 recruitment was also required for IGF-I to prevent apoptosis that occurred in response to hyperglycemia. Assembly of the Grb2-PDK1 complex on SHPS-1 was specific for IGF-I signaling because inhibiting PDK1 recruitment to SHPS-1 had no effect on EGF-stimulated AKT Thr(308) phosphorylation. These findings reveal a novel mechanism for recruitment of PDK1 to the SHPS-1 signaling complex, which is required for IGF-I-stimulated AKT Thr(308) phosphorylation and inhibition of apoptosis.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Binding Sites
- Cell Line
- Cell Survival/drug effects
- Cells, Cultured
- GRB2 Adaptor Protein/genetics
- GRB2 Adaptor Protein/metabolism
- Humans
- Immunoblotting
- Immunoprecipitation
- In Situ Nick-End Labeling
- Insulin-Like Growth Factor I/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Transport/drug effects
- Protein Transport/genetics
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- RNA Interference
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
- Swine
Collapse
Affiliation(s)
- Xinchun Shen
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Gang Xi
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Yashwanth Radhakrishnan
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - David R. Clemmons
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
35
|
Xi G, Shen X, Radhakrishnan Y, Maile L, Clemmons D. Hyperglycemia-induced p66shc inhibits insulin-like growth factor I-dependent cell survival via impairment of Src kinase-mediated phosphoinositide-3 kinase/AKT activation in vascular smooth muscle cells. Endocrinology 2010; 151:3611-23. [PMID: 20534722 PMCID: PMC2940520 DOI: 10.1210/en.2010-0242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperglycemia has been shown to induce the p66shc expression leading to increased reactive oxygen species (ROS) generation and apoptosis. In the present study, we demonstrated that hyperglycemia induced p66shc expression in vascular smooth muscle cells. This induction was associated with an increase in apoptosis as assessed by the increase of capspase-3 enzymatic activity, cleaved caspase-3 protein, and the number of dead cells. The ability of IGF-I to inhibit apoptosis was also attenuated. Further studies showed that hyperglycemia-induced p66shc inhibited IGF-I-stimulated phosphoinositide (PI)-3 kinase and AKT activation. Mechanistic studies showed that knockdown of p66shc enhanced IGF-I-stimulated SHPS-1/p85, p85/SHP-2, and p85/Grb2 association, all of which are required for PI-3 kinase/AKT activation. These responses were attenuated by overexpression of p66shc. IGF-I-stimulated p85 and AKT recruitment to the cell membrane fraction was altered in the same manner. Disruption of p66shc-Src interaction using either a blocking peptide or by expressing a p66shc mutant that did not bind to Src rescued IGF-I-stimulated PI-3 kinase/AKT activation as well as IGF-I-dependent cell survival. Although the highest absolute level of ROS was detected in p66shc-overexpressing cells, the relative increase in ROS induced by hyperglycemia was independent of p66shc expression. Taken together, our data suggest that the increase in p66shc that occurs in response to hyperglycemia is functioning to inhibit IGF-I-stimulated signaling and that the incremental increase in SMC sensitivity to IGF-I stimulation that occurs in response to p66shc induction of ROS is not sufficient to overcome the inhibitory effect of p66shc on Src kinase activation.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
36
|
Ning J, Clemmons DR. AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Mol Endocrinol 2010; 24:1218-29. [PMID: 20363874 DOI: 10.1210/me.2009-0474] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMP-activated protein kinase (AMPK) inhibits IGF-I actions, but the mechanism by which AMPK functions is undefined. This study identified signaling events that were induced by AMPK that mediated inhibition of IGF-I-stimulated phosphoinosotide-3-kinase (PI3K) pathway activation. The AMPK activator metformin stimulated AMPK Thr172 phosphorylation and inhibited IGF-I-stimulated phosphorylation of Akt/tuberous sclerosis 2 (TSC2)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K). Expression of constitutively active forms of AMPK suppressed IGF-I-stimulated activation of Akt/TSC2/mTOR/p70S6K and protein synthesis, whereas AMPK knockdown resulted in enhanced responses to IGF-I. To determine the mechanism by which AMPK inhibited IGF-I signaling, the role of insulin receptor substrate-1 (IRS-1) was examined. Both metformin and constitutively activated AMPK enhanced phosphorylation of IRS-1 Ser794, which led to decreased IRS-1 tyrosine phosphorylation and recruitment of the p85 subunit of PI3K. Overexpression of IRS-1 S794A was associated with increased IGF-I-stimulated IRS-1 tyrosine phosphorylation, p85 association, and protein synthesis. To determine whether other signaling molecules mediated the effect of AMPK, TSC2 function was examined. Cells overexpressing TSC2/S1345A (the site of AMPK phosphorylation) were less responsive to metformin-induced inhibition of p70S6 kinase. These findings are relevant to whole animal physiology because administration of metformin to mice resulted in inhibition of IGF-I-stimulated phosphorylation of Akt/mTOR/p70S6K. In conclusion, AMPK functions to inhibit IGF-I-stimulated PI3K pathway activation through stimulation of IRS-1 serine 794 phosphorylation. Because IGF-I is an important stimulant of the anabolic response, this effect of AMPK could account for part of its inhibitory effect on protein synthesis, thus allowing more efficient energy use by other cellular processes.
Collapse
Affiliation(s)
- Junyu Ning
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27705, USA
| | | |
Collapse
|
37
|
Xi G, Shen X, Clemmons DR. p66shc inhibits insulin-like growth factor-I signaling via direct binding to Src through its polyproline and Src homology 2 domains, resulting in impairment of Src kinase activation. J Biol Chem 2010; 285:6937-51. [PMID: 20048152 DOI: 10.1074/jbc.m109.069872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
p66(shc) is increased in response to cell stress, and these increases regulate growth factor actions. These studies were conducted to determine how p66(shc) alters IGF-I-stimulated Src activation, leading to decreased IGF-I actions. Our results show that p66(shc) binds to Src through a polyproline sequence motif contained in the CH2 domain, a unique domain in p66(shc), and IGF-I stimulates this interaction. Disruption of this interaction using a synthetic peptide containing the p66(shc) polyproline domain or expression of a p66(shc) mutant containing substitutions for the proline residues (P47A/P48A/P50A) resulted in enhanced Src kinase activity, p52(shc) phosphorylation, MAPK activation, and cell proliferation in response to IGF-I. To determine the mechanism of inhibition, the full-length CH2 domain and intact p66(shc) were tested for their ability to directly inhibit Src kinase activation in vitro. The CH2 domain peptide was clearly inhibitory, but full-length p66(shc) had a greater effect. Deletion of the C-terminal Src homology 2 domain in p66(shc) reduced its ability to inhibit Src kinase activation. These findings demonstrate that p66(shc) utilizes a novel mechanism for modulating Src kinase activation and that this interaction is mediated through both its collagen homologous region 2 and Src homology 2 domains.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
38
|
Abstract
Oxygen
metabolism is thought to impact on aging through the formation of reactive
oxygen species (ROS) that are supposed to damage biological molecules. The
study of p66Shc, a crucial regulator of ROS level involved in
aging dysfunction, suggests that the incidence of degenerative disease and
longevity are determined by a specific signaling function of ROS other than
their unspecific damaging property.
Collapse
|
39
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Identification of novel SHPS-1-associated proteins and their roles in regulation of insulin-like growth factor-dependent responses in vascular smooth muscle cells. Mol Cell Proteomics 2009; 8:1539-51. [PMID: 19299420 DOI: 10.1074/mcp.m800543-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phosphatase non-receptor type substrate-1 (SHPS-1), a transmembrane protein, plays a vital role in cell migration and proliferation. Our previous studies have shown that insulin-like growth factor-I (IGF-I) stimulates SHPS-1 phosphorylation, leading to recruitment of SHP-2, c-Src, Shc, and Grb2.p85 to phosphorylated SHPS-1. Assembly of this signaling complex is required for optimal stimulation of both mitogen-activated protein and phosphatidylinositol 3-kinase pathways. The main aim of the present study was to identify novel proteins that interacted with the cytoplasmic domain of SHPS-1 (SHPS-1/CD) in response to IGF-I stimulation and define the role of these interactions in mediating specific biological functions. We performed a functional proteomic screening to identify SHPS-1 binding partners using combination of mRNA display and the tandem affinity purification-tag methods. Screening identified a number of proteins not previously known to interact with phosphorylated SHPS-1/CD. These novel SHPS-1 binding partners represent several functional categories including heat shock proteins, protein kinases and phosphatases, and proteins that regulate transcription or translation. In Vivo and in vitro studies suggested that most of the proteins bound to SHPS-1 via binding to one of the four SH2 domain containing proteins, SHP-2, CTK, SUPT6H, and STAT1, that directly bound to SHPS-1. Although the binding of most of these proteins to SHPS-1 was positively regulated by IGF-I, a few were negatively regulated, suggesting differential regulation of protein complexes assembled on SHPS-1/CD in response to IGF-I. Further studies showed that truncation of SHPS-1/CD significantly impaired IGF-I-dependent AKT signal transduction and subsequent biological functions including cell survival, protein synthesis, protein aggregation, and prevention of apoptosis. The results emphasize the importance of formation of SHPS-1 signaling complex induced by IGF-I and provide novel insights into our knowledge of the role of this molecular scaffold in regulation of IGF-I-stimulated signal transduction and biological actions.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
40
|
Barclay AN. Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function. Curr Opin Immunol 2009; 21:47-52. [PMID: 19223164 PMCID: PMC3128989 DOI: 10.1016/j.coi.2009.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/20/2009] [Indexed: 12/12/2022]
Abstract
SIRPalpha is an inhibitory receptor present on myeloid cells that interacts with a widely distributed membrane protein CD47. The activating member SIRPbeta, despite extensive sequence similarity to SIRPalpha in the extracellular region, shows negligible binding to CD47. The SIRPalpha/CD47 interaction is unusual in that it can lead to bidirectional signalling through both SIRPalpha and CD47. This review concentrates on the interactions of SIRPalpha with CD47 where recent data have shed light on the structure of the proteins including determining why the activating SIRPbeta does not bind CD47, evidence of extensive polymorphisms and implication for the evolution and function of this protein and paired receptors in general. The interaction may be modified by endocytosis of the receptors, cleavage by proteolysis and through interactions of surfactant proteins.
Collapse
Affiliation(s)
- A Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom.
| |
Collapse
|
41
|
Kim CS, Jung SB, Naqvi A, Hoffman TA, DeRicco J, Yamamori T, Cole MP, Jeon BH, Irani K. P53 Impairs Endothelium-Dependent Vasomotor Function Through Transcriptional Upregulation of P66shc. Circ Res 2008; 103:1441-50. [DOI: 10.1161/circresaha.108.181644] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transcription factor, p53, and the adaptor protein, p66shc, both play essential roles in promoting oxidative stress in the vascular system. However, the relationship between the two in the context of endothelium-dependent vascular tone is unknown. Here, we report a novel, evolutionarily conserved, p53-mediated transcriptional mechanism that regulates p66shc expression and identify p53 as an important determinant of endothelium-dependent vasomotor function. We provide evidence of a p53 response element in the promoter of p66shc and show that angiotensin II-induced upregulation of p66shc in endothelial cells is dependent on p53. In addition, we demonstrate that downregulation of p66shc expression, as well as inhibition of p53 function in mice, mitigates angiotensin II-induced impairment of endothelium-dependent vasorelaxation, decrease in bioavailable nitric oxide, and hypertension. These findings reveal a novel p53-dependent transcriptional mechanism for the regulation of p66shc expression that is operative in the vascular endothelium and suggest that this mechanism is important in impairing endothelium-dependent vascular relaxation.
Collapse
Affiliation(s)
- Cuk-Seong Kim
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Saet-Byel Jung
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Asma Naqvi
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Timothy A. Hoffman
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Jeremy DeRicco
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Tohru Yamamori
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Marsha P. Cole
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Byeong-Hwa Jeon
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| | - Kaikobad Irani
- From the Cardiovascular Institute (C.-S.K., S.-B.J., A.N., T.A.H., J.D., T.Y., K.I.), University of Pittsburgh Medical Center, Pa; Infection Signaling Network Research Center (B.-H.J.), Department of Physiology, Chungnum National University, Republic of Korea; and Departments of Pharmacology and Chemical Biology (M.P.C., K.I.), University of Pittsburgh, Pa. Present address for T.Y.: Faculty of Life and Medical Sciences, Doshisha University, Kyoto Japan
| |
Collapse
|