1
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Hámor PU, Gobin CM, Schwendt M. The role of glutamate mGlu5 and adenosine A2a receptor interactions in regulating working memory performance and persistent cocaine seeking in rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109979. [PMID: 32470496 DOI: 10.1016/j.pnpbp.2020.109979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
Cocaine use disorder (CUD) is associated with neurobehavioral deficits that are resistant to current treatments. While craving and high rates of relapse are prominent features of CUD, persistent cognitive impairments are common and linked to poorer treatment outcomes. Here we sought to develop an animal model to study post-cocaine changes in drug seeking and working memory, and to evaluate 'therapeutic' effects of combined glutamate mGlu5 and adenosine A2a receptor blockade. As mGlu5 antagonists reduce drug seeking, and A2a blockade ameliorates working memory impairment, we hypothesized that mGlu5 + A2a antagonist cocktail would reduce both cocaine relapse and post-cocaine working memory deficits. Adult male Sprague-Dawley rats were first trained and tested in an operant delayed match-to-sample (DMS) task to establish the working memory baseline, followed by 6 days of limited and 12 days of extended access cocaine self-administration. Chronic cocaine reduced working memory performance (abstinence day 30-40) and produced robust time-dependent cocaine seeking at 45-, but not 120-days of abstinence. Systemic administration of A2a antagonist KW-6002 (0.125 and 1 mg/kg) failed to rescue post-cocaine working memory deficit. It also failed to reverse working memory impairment produced by mGlu5 NAM MTEP (1 mg/kg). Finally, KW-6002 prevented the ability of MTEP to reduce cocaine seeking and increased locomotor behavior. Thus, despite mGlu5 and A2a being exclusively co-localized in the striatum and showing behavioral synergism towards reducing cocaine effects in some studies, our findings advocate against the use of mGlu5 + A2a antagonist cocktail as it may further compromise cognitive deficits and augment drug craving in CUD.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, FL, USA; Center for Addiction Education and Research, University of Florida, FL, USA
| | - Christina M Gobin
- Center for Addiction Education and Research, University of Florida, FL, USA; Department of Pharmacodynamics, University of Florida, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, FL, USA; Center for Addiction Education and Research, University of Florida, FL, USA.
| |
Collapse
|
3
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
4
|
Federico S, Margiotta E, Salmaso V, Pastorin G, Kachler S, Klotz KN, Moro S, Spalluto G. [1,2,4]Triazolo[1,5-c]pyrimidines as adenosine receptor antagonists: Modifications at the 8 position to reach selectivity towards A3 adenosine receptor subtype. Eur J Med Chem 2018; 157:837-851. [DOI: 10.1016/j.ejmech.2018.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
|
5
|
Soliman AM, Fathalla AM, Moustafa AA. Adenosine role in brain functions: Pathophysiological influence on Parkinson's disease and other brain disorders. Pharmacol Rep 2018; 70:661-667. [PMID: 29909246 DOI: 10.1016/j.pharep.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Abstract
Although adenosine plays a key role in multiple motor, affective, and cognitive processes, it has received less attention in the neuroscience field compared to other neurotransmitters (e.g., dopamine). In this review, we highlight the role of adenosine in behavior as well as its interaction with other neurotransmitters, such as dopamine. We also discuss brain disorders impacted by alterations to adenosine, and how targeting adenosine can ameliorate Parkinson's disease motor symptoms. We also discuss the role of caffeine (as an adenosine antagonist) on cognition as well as a neuroprotective agent against Parkinson's disease (PD).
Collapse
Affiliation(s)
- Amira M Soliman
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ahmed M Fathalla
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed A Moustafa
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS One 2016; 11:e0167095. [PMID: 27893846 PMCID: PMC5125674 DOI: 10.1371/journal.pone.0167095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.
Collapse
|
7
|
Vala C, Morley TJ, Zhang X, Papin C, Tavares AAS, Lee HS, Constantinescu C, Barret O, Carroll VM, Baldwin RM, Tamagnan GD, Alagille D. Synthesis and in vivo Evaluation of Fluorine-18 and Iodine-123 Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as PET and SPECT Radiotracers for Mapping A2A Receptors. ChemMedChem 2016; 11:1936-43. [PMID: 27407017 DOI: 10.1002/cmdc.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Indexed: 11/06/2022]
Abstract
Imaging agents that target adenosine type 2A (A2A ) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson's disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A -specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [(123) I]MNI-420 and [(18) F]MNI-444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine-18 or iodine-123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7-(2-(4-(4-(2-[(18) F]fluoroethoxy)phenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine ([(18) F]MNI-444) and 7-(2-(4-(2-fluoro-4-[(123) I]iodophenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-amine ([(123) I]MNI-420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.
Collapse
Affiliation(s)
- Christine Vala
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Thomas J Morley
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA.
| | - Xuechun Zhang
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Caroline Papin
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | | | - H Sharon Lee
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Cristian Constantinescu
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Olivier Barret
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Vincent M Carroll
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Ronald M Baldwin
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Gilles D Tamagnan
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - David Alagille
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| |
Collapse
|
8
|
Wright SR, Zanos P, Georgiou P, Yoo JH, Ledent C, Hourani SM, Kitchen I, Winsky-Sommerer R, Bailey A. A critical role of striatal A2A R-mGlu5 R interactions in modulating the psychomotor and drug-seeking effects of methamphetamine. Addict Biol 2016; 21:811-25. [PMID: 25975203 DOI: 10.1111/adb.12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Addiction to psychostimulants is a major public health problem with no available treatment. Adenosine A2A receptors (A2A R) co-localize with metabotropic glutamate 5 receptors (mGlu5 R) in the striatum and functionally interact to modulate behaviours induced by addictive substances, such as alcohol. Using genetic and pharmacological antagonism of A2A R in mice, we investigated whether A2A R-mGlu5 R interaction can regulate the locomotor, stereotypic and drug-seeking effect of methamphetamine and cocaine, two drugs that exhibit distinct mechanism of action. Genetic deletion of A2A R, as well as combined administration of sub-threshold doses of the selective A2A R antagonist (SCH 58261, 0.01 mg/kg, i.p.) with the mGlu5 R antagonist, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (0.01 mg/kg, i.p.), prevented methamphetamine- but not cocaine-induced hyperactivity and stereotypic rearing behaviour. This drug combination also prevented methamphetamine-rewarding effects in a conditioned-place preference paradigm. Moreover, mGlu5 R binding was reduced in the nucleus accumbens core of A2A R knockout (KO) mice supporting an interaction between these receptors in a brain region crucial in mediating addiction processes. Chronic methamphetamine, but not cocaine administration, resulted in a significant increase in striatal mGlu5 R binding in wild-type mice, which was absent in the A2A R KO mice. These data are in support of a critical role of striatal A2A R-mGlu5 R functional interaction in mediating the ambulatory, stereotypic and reinforcing effects of methamphetamine but not cocaine-induced hyperlocomotion or stereotypy. The present study highlights a distinct and selective mechanistic role for this receptor interaction in regulating methamphetamine-induced behaviours and suggests that combined antagonism of A2A R and mGlu5 R may represent a novel therapy for methamphetamine addiction.
Collapse
Affiliation(s)
- Sherie R. Wright
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Panos Zanos
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Polymnia Georgiou
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Ji-Hoon Yoo
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Catherine Ledent
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire; Université Libre de Bruxelles; Belgium
| | - Susanna M. Hourani
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Ian Kitchen
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Raphaelle Winsky-Sommerer
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Alexis Bailey
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| |
Collapse
|
9
|
Chesworth R, Brown RM, Kim JH, Ledent C, Lawrence AJ. Adenosine 2A receptors modulate reward behaviours for methamphetamine. Addict Biol 2016; 21:407-21. [PMID: 25612195 DOI: 10.1111/adb.12225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards.
Collapse
Affiliation(s)
- Rose Chesworth
- Behavioural Neuroscience Division; Florey Institute of Neuroscience and Mental Health; Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Robyn M. Brown
- Behavioural Neuroscience Division; Florey Institute of Neuroscience and Mental Health; Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Australia
- Department of Neurosciences; Medical University of South Carolina; Charleston SC USA
| | - Jee Hyun Kim
- Behavioural Neuroscience Division; Florey Institute of Neuroscience and Mental Health; Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Catherine Ledent
- Institut de Recherche Interdisciplinaire; Faculté de Médecine; Université de Bruxelles; Belgium
| | - Andrew J. Lawrence
- Behavioural Neuroscience Division; Florey Institute of Neuroscience and Mental Health; Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Australia
| |
Collapse
|
10
|
Cortés A, Gracia E, Moreno E, Mallol J, Lluís C, Canela EI, Casadó V. Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Med Res Rev 2014; 35:85-125. [DOI: 10.1002/med.21324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Eduard Gracia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Estefania Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Enric I. Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| |
Collapse
|
11
|
Jastrzębska J, Nowak E, Smaga I, Bystrowska B, Frankowska M, Bader M, Filip M, Fuxe K. Adenosine (A)2A receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach. Neuropharmacology 2014; 81:318-26. [DOI: 10.1016/j.neuropharm.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 11/26/2022]
|
12
|
Houchi H, Persyn W, Legastelois R, Naassila M. The adenosine A2A receptor agonist CGS 21680 decreases ethanol self-administration in both non-dependent and dependent animals. Addict Biol 2013; 18:812-25. [PMID: 23301633 DOI: 10.1111/adb.12032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is emerging evidence that the adenosinergic system might be involved in drug addiction and alcohol dependence. We have already demonstrated the involvement of A2A receptors (A2AR) in ethanol-related behaviours in mice. Here, we investigated whether the A2AR agonist CGS 21680 can reduce ethanol operant self-administration in both non-dependent and ethanol-dependent Wistar rats. To rule out a potential involvement of the A1R in the effects of CGS 21680, we also tested its effectiveness to reduce ethanol operant self-administration in both heterozygous and homozygous A1R knockout mice. Our results demonstrated that CGS 21680 (0.065, 0.095 and 0.125 mg/kg, i.p.) had a bimodal effect on 10% ethanol operant self-administration in non-dependent rats. The intermediate dose was also effective in reducing 2% sucrose self-administration. Interestingly, the intermediate dose reduced 10% ethanol self-administration in dependent animals more effectively (75% decrease) when compared with non-dependent animals (57% decrease). These results suggest that the A2AR are involved in CGS 21680 effects since the reduction of ethanol self-administration was not dependent upon the presence of A1R in mice. In conclusion, our findings demonstrated the effectiveness of the A2AR agonist CGS 21680 in a preclinical model of alcohol addiction and suggested that the adenosinergic pathway is a promising target to treat alcohol addiction.
Collapse
Affiliation(s)
- Hakim Houchi
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| | | | - Rémi Legastelois
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| | - Mickaël Naassila
- Groupe de Recherche sur l'Alcool & les Pharmacodépendances (GRAP); INSERM ERi 24; UFR de Pharmacie; Université de Picardie Jules Verne; France
| |
Collapse
|
13
|
Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee HM, Sciaky N, Simmons A, Nonneman RJ, Huang XP, Hufeisen SJ, Guettier JM, Moy SS, Wess J, Caron MG, Calakos N, Roth BL. A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 2013; 38:854-62. [PMID: 23303063 PMCID: PMC3671990 DOI: 10.1038/npp.2012.251] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 01/11/2023]
Abstract
Here, we describe a newly generated transgenic mouse in which the Gs DREADD (rM3Ds), an engineered G protein-coupled receptor, is selectively expressed in striatopallidal medium spiny neurons (MSNs). We first show that in vitro, rM3Ds can couple to Gαolf and induce cAMP accumulation in cultured neurons and HEK-T cells. The rM3Ds was then selectively and stably expressed in striatopallidal neurons by creating a transgenic mouse in which an adenosine2A (adora2a) receptor-containing bacterial artificial chromosome was employed to drive rM3Ds expression. In the adora2A-rM3Ds mouse, activation of rM3Ds by clozapine-N-oxide (CNO) induces DARPP-32 phosphorylation, consistent with the known consequence of activation of endogenous striatal Gαs-coupled GPCRs. We then tested whether CNO administration would produce behavioral responses associated with striatopallidal Gs signaling and in this regard CNO dose-dependently decreases spontaneous locomotor activity and inhibits novelty induced locomotor activity. Last, we show that CNO prevented behavioral sensitization to amphetamine and increased AMPAR/NMDAR ratios in transgene-expressing neurons of the nucleus accumbens shell. These studies demonstrate the utility of adora2a-rM3Ds transgenic mice for the selective and noninvasive modulation of Gαs signaling in specific neuronal populations in vivo.This unique tool provides a new resource for elucidating the roles of striatopallidal MSN Gαs signaling in other neurobehavioral contexts.
Collapse
Affiliation(s)
- Martilias S Farrell
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Pei
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yehong Wan
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Prem N Yadav
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Tanya L Daigle
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J Urban
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Hyeong-Min Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Arkeen Simmons
- Elizabeth City State University, Elizabeth City, NC, USA
| | - Randal J Nonneman
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandy J Hufeisen
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jean-Marc Guettier
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bethesda, MD, USA
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bethesda, MD, USA
| | - Marc G Caron
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Nicole Calakos
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Program in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Wu M, Sahbaie P, Zheng M, Lobato R, Boison D, Clark JD, Peltz G. Opiate-induced changes in brain adenosine levels and narcotic drug responses. Neuroscience 2012; 228:235-42. [PMID: 23098802 DOI: 10.1016/j.neuroscience.2012.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/10/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10-40 mg/kg) administered over a 4-day period selectively induced a twofold decrease (p<0.00005) in adenosine abundance in the brainstem of C57BL/6 mice, which exhibited symptoms of narcotic drug dependence; but did not decrease adenosine abundance in 129Sv1 mice, which do not exhibit symptoms of dependence. Based on this finding, the effect of adenosine on dependence was investigated in genetically engineered mice with alterations in adenosine tone in the brain and in pharmacologic experiments. Morphine withdrawal behaviors were significantly diminished (p<0.0004) in genetically engineered mice with reduced adenosine tone in the brainstem, and by treatment with an adenosine receptor(1) (A(1)) agonist (2-chloro-N6-cyclopentyladenosine, 0.5mg/kg) or an A(2a) receptor (A(2a)) antagonist (SCH 58261, 1mg/kg). These results indicate that adenosine homeostasis plays a crucial role in narcotic drug responses. Opiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal.
Collapse
Affiliation(s)
- M Wu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol 2012; 100:48-59. [PMID: 23041581 DOI: 10.1016/j.pneurobio.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.
Collapse
|
16
|
Bogenpohl JW, Ritter SL, Hall RA, Smith Y. Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. J Comp Neurol 2012; 520:570-89. [PMID: 21858817 DOI: 10.1002/cne.22751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adenosine A(2A) receptor (A(2A) R) is a potential drug target for the treatment of Parkinson's disease and other neurological disorders. In rodents, the therapeutic efficacy of A(2A) R modulation is improved by concomitant modulation of the metabotropic glutamate receptor 5 (mGluR5). To elucidate the anatomical substrate(s) through which these therapeutic benefits could be mediated, pre-embedding electron microscopy immunohistochemistry was used to conduct a detailed, quantitative ultrastructural analysis of A(2A) R localization in the primate basal ganglia and to assess the degree of A(2A) R/mGluR5 colocalization in the striatum. A(2A) R immunoreactivity was found at the highest levels in the striatum and external globus pallidus (GPe). However, the monkey, but not the rat, substantia nigra pars reticulata (SNr) also harbored a significant level of neuropil A(2A) R immunoreactivity. At the electron microscopic level, striatal A(2A) R labeling was most commonly localized in postsynaptic elements (58% ± 3% of labeled elements), whereas, in the GPe and SNr, the labeling was mainly presynaptic (71% ± 5%) or glial (27% ± 6%). In both striatal and pallidal structures, putative inhibitory and excitatory terminals displayed A(2A) R immunoreactivity. Striatal A(2A) R/mGluR5 colocalization was commonly found; 60-70% of A(2A) R-immunoreactive dendrites or spines in the monkey striatum coexpress mGluR5. These findings provide the first detailed account of the ultrastructural localization of A(2A) R in the primate basal ganglia and demonstrate that A(2A) R and mGluR5 are located to interact functionally in dendrites and spines of striatal neurons. Together, these data foster a deeper understanding of the substrates through which A(2A) R could regulate primate basal ganglia function and potentially mediate its therapeutic effects in parkinsonism.
Collapse
Affiliation(s)
- James W Bogenpohl
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
17
|
mGlu5 and adenosine A2A receptor interactions regulate the conditioned effects of cocaine. Int J Neuropsychopharmacol 2012; 15:995-1001. [PMID: 21816123 DOI: 10.1017/s146114571100126x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine A2A receptors and metabotropic glutamate type 5 (mGlu5) receptors are co-localized in the striatum and can functionally interact to regulate drug-seeking. We further explored this interaction using antagonism of mGlu5 receptors with 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) in combination with genetic deletion of A2A receptors. The conditioned rewarding and locomotor-activating properties of cocaine were evaluated via conditioned place preference (CPP). Vehicle-treated mice of both genotypes expressed a CPP to cocaine while MTEP abolished cocaine CPP in wild-type, but not A2A knockout, mice. These results were mirrored when conditioned hyperactivity was assessed. In contrast, MTEP attenuated the acute locomotor-activating properties of cocaine similarly in both genotypes. These data provide evidence for a functional interaction between adenosine A2A and mGlu5 receptors in mediating the conditioned effects of cocaine but not direct cocaine-induced hyperactivity. This functional interaction is supported by modulation of 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolol[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol ([125I]ZM241385) binding to the A2A receptor by MTEP.
Collapse
|
18
|
Time and sex-dependent effects of an adenosine A2A/A1 receptor antagonist on motivation to self-administer cocaine in rats. Pharmacol Biochem Behav 2012; 102:257-63. [PMID: 22579716 DOI: 10.1016/j.pbb.2012.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 02/08/2023]
Abstract
Adenosine is an important neuromodulator, known to interact with both dopaminergic and glutamatergic systems to influence psychostimulant action. In the present study, we examined the effects of ATL444, a novel adenosine receptor antagonist, on motivation for cocaine in male and female rats. Adult male and female Sprague-Dawley rats were trained to self-administer cocaine (1.5mg/kg/infusion) on a fixed-ratio 1 schedule with a daily maximum of 20 infusions. Following 5 consecutive sessions during which all 20 available infusions were obtained, motivation for cocaine (0.5 mg/kg/infusion) was assessed under a progressive ratio (PR) schedule, and once responding stabilized, the effect of treatment with ATL444 (0, 15, and 30 mg/kg, i.p.) was examined. As a control, we also assessed its effects on PR responding for sucrose. Binding studies revealed that ATL 444 was 3-fold, 25-fold, and 400-fold more selective for the A2A receptor as compared to A1, A2B, and A3 receptors, respectively. ATL444 produced a significant increase in motivation for cocaine on the day of treatment in females with a trend for an increase in males. In addition, over the two PR sessions following ATL444 treatment a significant decrease in responding was observed in males but not females. Responding for sucrose was unaffected by ATL444 treatment. Our results reveal that adenosine receptor blockade may mediate both acute increases in the reinforcing effects of cocaine, and longer term inhibitory effects on cocaine reinforcement that differ according to sex.
Collapse
|
19
|
Akula KK, Kulkarni SK. Adenosinergic system: an assorted approach to therapeutics for drug addiction. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine nucleoside and it is extensively present in the brain. It exerts several metabolic and neuromodulatory roles in the body. Adenosine also acts as an important messenger molecule for extracellular signaling and shows a homeostatic neuromodulatory function at the synaptic level. Extracellular adenosine exerts a wide variety of biological actions through four cell surface G-protein-coupled receptor subtypes, namely A1, A2A, A2B and A3 adenosine receptors. The extracellular levels of adenosine have been found to be enhanced in several neuropathological conditions, including drug addiction, and thus a neuroprotective role of adenosine was perceived by various experimental studies. The aversive withdrawal symptoms emanating from drug discontinuation provokes rebound drug intake patterns. In addition, alteration of neurotransmitter(s) release and changes in receptor expression contribute to the behavioral changes of drug withdrawal. Furthermore, the abuse of major drugs such as alcohol and opioids are reported to modulate extracellular adenosine levels. In this context, the neuromodulatory functions of adenosine would be valuable if projected to the clinical applications and thus, an increasing attention is currently given to the functional role of adenosine in human addictive disorders. This review will focus on recent clinical and experimental studies that reveal the actions of adenosine and related ligands in drug addiction and various drug-withdrawal syndromes. The evidence and reports provided in this review highlight the looming therapeutic potential of purinergic drugs, with a hope that new therapeutic interventions based on the adenosinergic concept will emerge in the coming years for the management of drug withdrawal syndrome.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- R.S. Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Avenue, Portland, OR 97232, USA
| | - SK Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
20
|
Micioni Di Bonaventura MV, Cifani C, Lambertucci C, Volpini R, Cristalli G, Froldi R, Massi M. Effects of A₂A adenosine receptor blockade or stimulation on alcohol intake in alcohol-preferring rats. Psychopharmacology (Berl) 2012; 219:945-57. [PMID: 21833502 DOI: 10.1007/s00213-011-2430-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE A(2A) adenosine receptors (A(2A)ARs) have been proposed to be involved in drug addiction; however, preclinical studies about the effects of A(2A)AR ligands on alcohol consumption have provided inconsistent results. OBJECTIVES The present study evaluated the effect of intraperitoneal injections of the A(2A)AR antagonist ANR 94, and the A(2A)AR agonists CGS 21680 and VT 7 on voluntary drinking and operant self-administration of 10% ethanol in Marchigian Sardinian alcohol-preferring (msP) rats. RESULTS Voluntary ethanol drinking was increased by ANR 94 in acute and subchronic experiments, while it was reduced by A(2A)AR agonists. The effect of CGS 21680 was abolished by a low dose of ANR 94, confirming its mediation by A(2A)ARs. Ethanol self-administration was reduced by CGS 21680 and VT 7, while ANR 94 slightly but significantly increased it. Blood alcohol levels were not modified by A(2A)AR agonists, indicating that their effect is not related to ethanol pharmacokinetics. The effect of VT 7 on ethanol drinking was behaviourally selective; ethanol and food intake were reduced, but water intake was increased, and total fluid intake was not different from that of controls. Moreover, VT 7 did not affect locomotor activity. CGS 21680 (0.1 mg/kg) did not modify total fluid intake, but 0.2 and 0.3 mg/kg reduced total fluid intake and locomotor activity. CONCLUSION These results provide evidence that A(2A)AR agonists reduce ethanol consumption in msP rats, which represent an animal model of alcohol abuse related to stress, anxiety and depression. A(2A)ARs may represent a potential target for treatment of alcohol abuse.
Collapse
|
21
|
Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D, Becker JAJ, Kieffer BL. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol 2012; 17:1-12. [PMID: 21955143 DOI: 10.1111/j.1369-1600.2011.00365.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM and CNRS, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Martini C, Daniele S, Picchetti M, Panighini A, Carlini M, Trincavelli ML, Cesari D, Da Pozzo E, Golia F, Dell'Osso L. A(2A) adenosine receptor binding parameters in platelets from patients affected by pathological gambling. Neuropsychobiology 2011; 63:154-9. [PMID: 21228607 DOI: 10.1159/000321592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS A structural and functional interaction between A(2A) adenosine receptors and D(2) dopamine receptors has been implicated in the pathophysiology of impulse control disorders. The aim of this study was to use platelet membranes to assess A(2A) adenosine receptor affinity and density in patients affected by pathological gambling (PG; which is classified as a specific impulse control disorder) with respect to those of control subjects. METHODS Twelve drug-free PG patients and 12 age- and sex-matched healthy controls were enrolled in the study. PG was diagnosed according to the Structured Clinical Interview for DSM-IV - Patient Version 2.0 and the South Oaks Gambling Screen. A(2A) adenosine receptor binding parameters were evaluated using a [(3)H]ZM(241385) binding assay; affinity and density (B(max)) were determined by means of saturation binding studies with platelet membranes. RESULTS The A(2A) adenosine receptor binding affinity was found to be significantly higher in patients affected by PG than in healthy subjects; in contrast, no significant differences in B(max) were observed between the 2 groups. CONCLUSIONS The elevated A(2A) adenosine receptor binding affinity in platelets from PG patients with respect to control subjects demonstrates for the first time a change in adenosine receptor parameters, and it suggests the involvement of the adenosine system in this pathology. The previously demonstrated hyperactivity of the dopamine system in PG may modulate the A(2A) adenosine receptor, supporting a role for this receptor as a peripheral marker of dopamine dysfunction. Because it is not possible to directly measure the D(2) dopamine receptor in human platelets, these data are particularly relevant to the detection of dopamine dysfunction.
Collapse
Affiliation(s)
- Claudia Martini
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ruiz-Medina J, Ledent C, Carretón O, Valverde O. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. J Psychopharmacol 2011; 25:550-64. [PMID: 21262860 DOI: 10.1177/0269881110389210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.
Collapse
Affiliation(s)
- Jessica Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament (GRNC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Adams CL, Short JL, Lawrence AJ. Cue-conditioned alcohol seeking in rats following abstinence: involvement of metabotropic glutamate 5 receptors. Br J Pharmacol 2010; 159:534-42. [PMID: 20067474 DOI: 10.1111/j.1476-5381.2009.00562.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The current study was designed to: (i) examine whether functional interactions occur between receptors known to regulate alcohol self-administration; and (ii) characterize relapse to alcohol seeking following abstinence. EXPERIMENTAL APPROACH The selective cannabinoid CB(1) receptor antagonist SR141716A (0.03-1.0 mg.kg(-1) i.p.) resulted in a dose-dependent reduction in ethanol self-administration in ethanol-preferring Indiana-preferring rats. SR141716A was then co-administered with either the selective glutamate metabotropic glutamate 5 (mGlu(5)) receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) or the selective adenosine A(2A) receptor antagonist SCH58261. KEY RESULTS When administered at individually sub-threshold doses, a combination of SR141716A (0.1 mg.kg(-1)) and SCH58261 (0.5 mg.kg(-1) i.p.) produced a reduction (28%) in ethanol self-administration. Combinations of threshold doses of SR141716A (0.3 mg.kg(-1)) and SCH58261 (2.0 mg.kg(-1), i.p.) caused an essentially additive reduction (68%) in alcohol self-administration. A combination of individually sub-threshold doses of CB(1) and mGlu(5) receptor antagonists did not affect alcohol self-administration; however, combined threshold doses of SR141716A (0.3 mg.kg(-1)) and MTEP (1.0 mg.kg(-1) i.p.) did reduce ethanol self-administration markedly (80%). Cue-conditioned alcohol seeking was attenuated by pretreatment with MTEP (1.0 mg.kg(-1)) co-administered with SR141716A (0.3 mg.kg(-1) i.p.). In contrast, SCH58261 (2.0 mg.kg(-1)) co-administered with SR141716A (0.3 mg.kg(-1) i.p.) did not reduce cue-conditioned alcohol seeking. CONCLUSIONS AND IMPLICATIONS Adenosine A(2A) and cannabinoid CB(1) receptors regulated alcohol self-administration additively, but combined low-dose antagonism of these receptors did not prevent cue-conditioned alcohol seeking after abstinence. In contrast, combined low-dose antagonism of mGlu(5) and CB(1) receptors did prevent relapse-like alcohol seeking after abstinence, suggesting a prominent role for mGlu(5) receptors in this paradigm.
Collapse
Affiliation(s)
- C L Adams
- Howard Florey Institute, Parkville, Vic., Australia
| | | | | |
Collapse
|
25
|
Bird MK, Lawrence AJ. The promiscuous mGlu5 receptor--a range of partners for therapeutic possibilities? Trends Pharmacol Sci 2009; 30:617-23. [PMID: 19892412 DOI: 10.1016/j.tips.2009.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 01/20/2023]
Abstract
The issue of non-specific effects for potential therapeutics is particularly salient in neurological/psychiatric disorders, where adverse drug reactions could impair critical brain functions. The issue of specificity is not limited to candidate molecules, as receptor targets themselves often influence physiological as well as pathological outcomes. Metabotropic glutamate receptor 5 (mGlu5) is an example of a "promiscuous" receptor target that has been implicated in addiction, but also many other processes. However, if receptor modulation could be restricted to specific pathways/brain regions, mGlu5 may still prove to be a viable therapeutic target for various indications. Using this premise, a number of possible methods to refine drug development strategy are discussed, including exploiting specific interactions of mGlu5 with other receptors to narrow the influence of pharmacological agents, and also the use of RNA interference targeted to specific cells/regions of the brain.
Collapse
Affiliation(s)
- Michael K Bird
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | |
Collapse
|
26
|
Kaya Roessler K. „Sport macht mich high”. ZEITSCHRIFT FUR SPORTPSYCHOLOGIE 2009. [DOI: 10.1026/1612-5010.16.4.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Die Bedeutung körperlicher Bewegung bei der Behandlung von Drogenmissbrauch wird anhand eines Interventionsprojekts diskutiert. Hierbei liegt besondere Aufmerksamkeit auf der Veränderung des Verhaltens, der Körperwahrnehmung und des Selbstvertrauens der Teilnehmer. Patienten einer dänischen Tagesklinik nahmen mindestens zwei Monate drei Mal wöchentlich an einem physischen Training teil. Interviewdaten wurden zu Beginn, am Ende und ein Jahr nach der Intervention erhoben und beinhalteten Informationen zur Art und zum Umfang des Missbrauchs, zum Körpergefühl und zur Motivation für eine Verhaltensänderung. Die Resultate dokumentieren neben einer erhöhten körperlichen Fitness ein verbessertes Körpergefühl, eine erhöhte Schmerzempfindlichkeit und eine reduzierte Drogeneinnahme. Die Langzeituntersuchung nach einem Jahr zeigt, dass körperliche Aktivität die sozialen Fähigkeiten und die subjektiv erlebte Körper- und Verhaltenskontrolle stärkt. Es zeigt sich aber auch, dass ein anhaltender Effekt dieser Veränderungen stark von einer positiven sozialen Umgebung abhängig ist.
Collapse
Affiliation(s)
- Kirsten Kaya Roessler
- Institute of Sport Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| |
Collapse
|
27
|
Brown RM, Lawrence AJ. Neurochemistry underlying relapse to opiate seeking behaviour. Neurochem Res 2009; 34:1876-87. [PMID: 19418222 DOI: 10.1007/s11064-009-9967-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/27/2009] [Indexed: 11/24/2022]
Abstract
Relapse is a major clinical problem and remains a major challenge in the treatment of addictions. A goal of current research is to gain a greater understanding of the neurochemistry underlying relapse to opiate use. Factors which trigger relapse in humans such as stress, exposure to opiates and/or drug-associated cues, can also trigger opiate-seeking in animals. This review will overview preclinical studies relating to the neurochemistry of opiate-seeking with a focus on studies published from 2005 to present.
Collapse
Affiliation(s)
- Robyn M Brown
- Howard Florey Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | |
Collapse
|