1
|
Salari M, Hojjatipour F, Etemadifar M, Soleimani S. Review of the Genetic Spectrum of Hereditary Spastic Paraplegias in the Middle East and North Africa Regions. Neurol Genet 2025; 11:e200250. [PMID: 40041249 PMCID: PMC11876988 DOI: 10.1212/nxg.0000000000200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 03/06/2025]
Abstract
Background and Objectives Hereditary spastic paraplegias (HSPs) are inherited neurodegenerative disorders, and their classification is based on inheritance mode, allelic variants, and clinical presentation. Despite global occurrence, research, especially in the Middle East and North Africa (MENA) regions, is lacking, underscoring the need for further investigation. The objective of this study was to improve the regions' clinical practice and public health, and this study aims to gather data on HSP prevalence, pathogenic variants, and patient characteristics in MENA countries. Methods A systematic literature review encompassing PubMed, MEDLINE, and Google Scholar was conducted. Quality assessment was performed on the included studies. Data extraction and analysis provided insights into HSP's current status in the region. Results Iran had the highest number of patients with HSP, followed by Tunisia. SPG11 (19.8%), FA2H (8.5%), and ZFYVE26 (7.7%) were the most frequently found genes in the cases. Autosomal recessive HSP with thin corpus callosum was common among the affected patients, with SPG11 identified as the primary cause. Discussion Our analysis highlights genetic diversity and regional prevalence variations. Despite limited research in MENA countries, we stress the importance of further investigation to address gaps in understanding and improve patient care and public health initiatives.
Collapse
Affiliation(s)
- Mehri Salari
- Physical Medicine & Rehabilitation Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hojjatipour
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| | | | - Sevim Soleimani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| |
Collapse
|
2
|
Galatolo D, Rocchiccioli S, Di Giorgi N, Dal Canto F, Signore G, Morani F, Ceccherini E, Doccini S, Santorelli FM. Proteomics and lipidomic analysis reveal dysregulated pathways associated with loss of sacsin. Front Neurosci 2024; 18:1375299. [PMID: 38911600 PMCID: PMC11191878 DOI: 10.3389/fnins.2024.1375299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare incurable neurodegenerative disease caused by mutations in the SACS gene, which codes for sacsin, a large protein involved in protein homeostasis, mitochondrial function, cytoskeletal dynamics, autophagy, cell adhesion and vesicle trafficking. However, the pathogenic mechanisms underlying sacsin dysfunction are still largely uncharacterized, and so attempts to develop therapies are still in the early stages. Methods To achieve further understanding of how processes are altered by loss of sacsin, we used untargeted proteomics to compare protein profiles in ARSACS fibroblasts versus controls. Results Our analyses confirmed the involvement of known biological pathways and also implicated calcium and lipid homeostasis in ARSACS skin fibroblasts, a finding further verified in SH-SY5Y SACS -/- cells. Validation through mass spectrometry-based analysis and comparative quantification of lipids by LC-MS in fibroblasts revealed increased levels of ceramides coupled with a reduction of diacylglycerols. Discussion In addition to confirming aberrant Ca2+ homeostasis in ARSACS, this study described abnormal lipid levels associated with loss of sacsin.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federica Morani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | | |
Collapse
|
3
|
Engin Erdal A, Yürek B, Kıreker Köylü O, Ceylan AC, Çıtak Kurt AN, Kasapkara ÇS. Hereditary spastic paraplegia type 35 in a Turkish girl with fatty acid hydroxylase-associated neurodegeneration. J Pediatr Endocrinol Metab 2024; 37:271-275. [PMID: 38353247 DOI: 10.1515/jpem-2023-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The fatty acid 2-hydroxylase gene (FA2H) compound heterozygous or homozygous variants that cause spastic paraplegia type 35 (SPG35) (OMIM # 612319) are autosomal recessive HSPs. FA2H gene variants in humans have been shown to be associated with not only SPG35 but also leukodystrophy and neurodegeneration with brain iron accumulation. CASE PRESENTATION A patient with a spastic gait since age seven was admitted to the paediatric metabolism department. She was born to consanguineous, healthy Turkish parents and had no family history of neurological disease. She had normal developmental milestones and was able to walk at 11 months. At age seven, she developed a progressive gait disorder with increased muscle tone in her lower limbs, bilateral ankle clonus and dysdiadochokinesis. She had frequent falls and deteriorating school performance. Despite physiotherapy, her spastic paraplegia was progressive. Whole exome sequencing (WES) identified a homozygous NM_024306.5:c.460C>T missense variant in the FA2H gene, of which her parents were heterozygous carriers. A brain MRI showed a slight reduction in the cerebellar volume with no iron deposits. CONCLUSIONS Pathogenic variants of the FA2H gene have been linked to neurodegeneration with iron accumulation in the brain, leukodystrophy and SPG35. When patients developed progressive gait deterioration since early childhood even if not exhibited hypointensity in the basal ganglia detected by neuroimaging, FA2H-related neurodegeneration with brain iron accumulation should be ruled out. FA2H/SPG35 disease is characterised by notable clinical and imaging variability, as well as phenotypic diversity.
Collapse
Affiliation(s)
- Ayşenur Engin Erdal
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Burak Yürek
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Oya Kıreker Köylü
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Ahmet Cevdet Ceylan
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Ayşegül Neşe Çıtak Kurt
- Department of Pediatric Neurology, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
4
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
5
|
Barnes-Vélez JA, Aksoy Yasar FB, Hu J. Myelin lipid metabolism and its role in myelination and myelin maintenance. Innovation (N Y) 2023; 4:100360. [PMID: 36588745 PMCID: PMC9800635 DOI: 10.1016/j.xinn.2022.100360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin is a specialized cell membrane indispensable for rapid nerve conduction. The high abundance of membrane lipids is one of myelin's salient features that contribute to its unique role as an insulator that electrically isolates nerve fibers across their myelinated surface. The most abundant lipids in myelin include cholesterol, glycosphingolipids, and plasmalogens, each playing critical roles in myelin development as well as function. This review serves to summarize the role of lipid metabolism in myelination and myelin maintenance, as well as the molecular determinants of myelin lipid homeostasis, with an emphasis on findings from genetic models. In addition, the implications of myelin lipid dysmetabolism in human diseases are highlighted in the context of hereditary leukodystrophies and neuropathies as well as acquired disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Joseph A. Barnes-Vélez
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR 00936-5067, USA
| | - Fatma Betul Aksoy Yasar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| |
Collapse
|
6
|
Fink JK. The hereditary spastic paraplegias. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:59-88. [PMID: 37620092 DOI: 10.1016/b978-0-323-98817-9.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.
Collapse
Affiliation(s)
- John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
7
|
Khan A, Tian S, Tariq M, Khan S, Safeer M, Ullah N, Akbar N, Javed I, Asif M, Ahmad I, Ullah S, Satti HS, Khan R, Naeem M, Ali M, Rendu J, Fauré J, Dieterich K, Latypova X, Baig SM, Malik NA, Zhang F, Khan TN, Liu C. NGS-driven molecular diagnosis of heterogeneous hereditary neurological disorders reveals novel and known variants in disease-causing genes. Mol Genet Genomics 2022; 297:1601-1613. [PMID: 36002593 DOI: 10.1007/s00438-022-01945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Hereditary neurological disorders (HNDs) are a clinically and genetically heterogeneous group of disorders. These disorders arise from the impaired function of the central or peripheral nervous system due to aberrant electrical impulses. More than 600 various neurological disorders, exhibiting a wide spectrum of overlapping clinical presentations depending on the organ(s) involved, have been documented. Owing to this clinical heterogeneity, diagnosing these disorders has been a challenge for both clinicians and geneticists and a large number of patients are either misdiagnosed or remain entirely undiagnosed. Contribution of genetics to neurological disorders has been recognized since long; however, the complete picture of the underlying molecular bases are under-explored. The aim of this study was to accurately diagnose 11 unrelated Pakistani families with various HNDs deploying NGS as a first step approach. Using exome sequencing and gene panel sequencing, we successfully identified disease-causing genomic variants these families. We report four novel variants, one each in, ECEL1, NALCN, TBR1 and PIGP in four of the pedigrees. In the rest of the seven families, we found five previously reported pathogenic variants in POGZ, FA2H, PLA2G6 and CYP27A1. Of these, three families segregate a homozygous 18 bp in-frame deletion of FA2H, indicating a likely founder mutation segregating in Pakistani population. Genotyping for this mutation can help low-cost population wide screening in the corresponding regions of the country. Our findings not only expand the existing repertoire of mutational spectrum underlying neurological disorders but will also help in genetic testing of individuals with HNDs in other populations.
Collapse
Affiliation(s)
- Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Safeer
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Naimat Ullah
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Nazia Akbar
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Iram Javed
- Department of Paediatric Neurology, Children Hospital and Institute of Child Health, Faisalabad, Pakistan
| | - Mahnoor Asif
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck, Germany
| | - Shahid Ullah
- Department of General Surgery, Hayatabad Medical Complex, Peshawar, 2500, Pakistan
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Mahwish Ali
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - John Rendu
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Julien Fauré
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Klaus Dieterich
- Inserm, U1209, CHU Grenoble Alpes, Institute of Advanced Biosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Xenia Latypova
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,Pakistan Science Foundation, Constitution Avenue, Islamabad, Pakistan
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, 200438, China
| | - Tahir Naeem Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
8
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
9
|
Sager G, Turkyilmaz A, Ates EA, Kutlubay B. HACE1, GLRX5, and ELP2 gene variant cause spastic paraplegies. Acta Neurol Belg 2022; 122:391-399. [PMID: 33813722 DOI: 10.1007/s13760-021-01649-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of conditions that are characterized by lower limb spasticity and weakness. Considering the clinical overlap between metabolic causes, genetic diseases, and autosomal recessive HSP, differentiation between these types can be difficult based solely on their clinical characteristics. This study aimed to investigate the genetic etiology of patients with clinically suspected HSP. The study group was composed of seven Turkish families who each had two affected children and three families who each had a single affected child (17 total patients). The 17 probands (14 males, 3 females) underwent whole exome sequencing. Five typical HSP genes (FA2H, AP4M1, AP4E1, CYP7B1, and MAG) and three genes not previously related to HSP (HACE1, GLRX5, ad ELP2) were identified in 14 probands. Eight novel variants were identified in seven families: c.653 T > C (p.Leu218Pro) in the FA2H gene, c.347G > A (p.Gly116Asp) in the GLRX5 gene, c.2581G > C (p.Ala861Pro) in the HACE1 gene, c.1580G > A (p.Arg527Gln) and c.1189-1G > A in the ELP2 gene, c.10C > T (p.Gln4*) and c.1025 + 1G > A in the AP4M1 gene, c.1291delG (p.Gly431Alafs*3) and c.3250delA (p.Ile1084*) in the AP4E1 gene, and c.475 T > G (p.Cys159Gly) in the MAG gene. The growing use of next-generation sequencing improved diagnosis but also led to the continual identification of new causal genes for neurogenetic diseases associated with lower limb spasticity. The increasing number of HSP genes identified thus far highlights the extreme genetic heterogeneity of these disorders and their clinical and functional overlap with other neurological conditions. Our findings suggest that the HACE1, GLRX5, and ELP2 genes are genetic causes of HSP.
Collapse
Affiliation(s)
- Gunes Sager
- Department of Pediatric Neurology, Kartal Dr. Lutfi Kirdar City Hospital, Semsi Denizer Avenue, Cevizli, 34890, Kartal, Istanbul, Turkey.
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Busra Kutlubay
- Department of Pediatric Neurology, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Identification of novel mutations by targeted NGS in Moroccan families clinically diagnosed with a neuromuscular disorder. Clin Chim Acta 2022; 524:51-58. [PMID: 34852264 DOI: 10.1016/j.cca.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The identification of underlying genes of genetic conditions has expanded greatly in the past decades, which has broadened the field of genes responsible for inherited neuromuscular diseases. We aimed to investigate mutations associated with neuromuscular disorders phenotypes in 2 Moroccan families. MATERIAL AND METHODS Next-generation sequencing combined with Sanger sequencing could assist with understanding the hereditary variety and underlying disease mechanisms in these disorders. RESULTS Two novel homozygous mutations were described in this study. The SIL1 mutation is the first identified in the Moroccan population, the mutation was identified as the main cause of Marinesco-Sjogren syndrome in one patient. While the second mutation identified in the fatty acid 2-hydroxylase gene (FA2H) was associated with the Spastic paraplegia 35 in another patient, both transmitted in an autosomal recessive pattern. DISCUSSION AND CONCLUSIONS These conditions are extremely rare in the North African population and may be underdiagnosed due to overlapping clinical characteristics and heterogeneity of these diseases. We have reported in this study mutations associated with the diseases found in the patients. In addition, we have narrowed the phenotypic spectrum, as well as the diagnostic orientation of patients with neuromuscular disorders, who might have very similar symptoms to other disease groups.
Collapse
|
11
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
12
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
13
|
Vinding RK, Rago D, Kelly RS, Gürdeniz G, Rasmussen MA, Stokholm J, Bønnelykke K, Litonjua AA, Weiss ST, Lasky-Su J, Bisgaard H, Chawes BL. Delayed Motor Milestones Achievement in Infancy Associates with Perturbations of Amino Acids and Lipid Metabolic Pathways. Metabolites 2020; 10:E337. [PMID: 32824932 PMCID: PMC7570268 DOI: 10.3390/metabo10090337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022] Open
Abstract
The relationship between developmental milestone achievement in infancy and later cognitive function and mental health is well established, but underlying biochemical mechanisms are poorly described. Our study aims to discover pathways connected to motor milestone achievement during infancy by using untargeted plasma metabolomic profiles from 571 six-month-old children in connection with age of motor milestones achievement (Denver Developmental Index) in the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010) mother-child cohort. We used univariate regression models and multivariate modelling (Partial Least Squares Discriminant Analysis: PLS-DA) to examine the associations and the VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort for validation. The univariate analyses showed 62 metabolites associated with gross-motor milestone achievement (p < 0.05) as well as the PLS-DA significantly differentiated between slow and fast milestone achievers (AUC = 0.87, p = 0.01). Higher levels of tyramine-O-sulfate in the tyrosine pathway were found in the late achievers in COPSAC (p = 0.0002) and in VDAART (p = 0.02). Furthermore, we observed that slow achievers were characterized by higher levels of fatty acids and products of fatty acids metabolism including acyl carnitines. Finally, we also observed changes in the lysine, histidine, glutamate, creatine and tryptophan pathways. Observing these metabolic changes in relation to gross-motor milestones in the first year of life, may be of importance for later cognitive function and mental health.
Collapse
Affiliation(s)
- Rebecca Kofod Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| | - Daniela Rago
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.S.K.); (S.T.W.); (J.L.-S.)
| | - Gözde Gürdeniz
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.S.K.); (S.T.W.); (J.L.-S.)
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.S.K.); (S.T.W.); (J.L.-S.)
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 1017 Copenhagen, Denmark; (R.K.V.); (D.R.); (G.G.); (M.A.R.); (J.S.); (K.B.); (B.L.C.)
| |
Collapse
|
14
|
FA2H Mutations in a Young Adult Presenting as an Isolated Cognitive Impairment Syndrome. Can J Neurol Sci 2020; 47:858-860. [PMID: 32624042 DOI: 10.1017/cjn.2020.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
16
|
Benger M, Mankad K, Proukakis C, Mazarakis ND, Kinali M. The Interaction of Genetic Mutations in PARK2 and FA2H Causes a Novel Phenotype in a Case of Childhood-Onset Movement Disorder. Front Neurol 2019; 10:555. [PMID: 31191442 PMCID: PMC6549119 DOI: 10.3389/fneur.2019.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the PARK2 gene have been implicated in the pathogenesis of early-onset Parkinson's disease. We present a case of movement disorder in a 4-year-old child from consanguineous parents and with a family history of Dopamine responsive dystonia, who was diagnosed with early-onset Parkinson's disease based on initial identification of a pathogenic PARK2 mutation. However, the evolution of the child's clinical picture was unusually rapid, with a preponderance of pyramidal rather than extrapyramidal symptoms, leading to re-investigation of the case with further imaging and genetic sequencing. Interestingly, a second homozygous mutation in the FA2H gene, implicated in Hereditary spastic paraplegia, was revealed, appearing to have contributed to the novel phenotype observed, and highlighting a potential interaction between the two mutated genes.
Collapse
Affiliation(s)
- Matthew Benger
- Department of Neurosciences, King's College Hospital, London, United Kingdom
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital, London, United Kingdom
| | - Christos Proukakis
- Institute of Neurology, University College London, London, United Kingdom
| | - Nicholas D Mazarakis
- Centre for Neuroinflammation & Neurodegeneration, Imperial College, London, United Kingdom
| | - Maria Kinali
- Honorary Senior Lecturer in Paediatric Neurology, Imperial College, London, United Kingdom
| |
Collapse
|
17
|
Incecik F, Besen S, Bozdogan ST. Hereditary Spastic Paraplegia Type 35 with a Novel Mutation in Fatty Acid 2-Hydroxylase Gene and Literature Review of the Clinical Features. Ann Indian Acad Neurol 2018; 21:335-339. [PMID: 30532373 PMCID: PMC6238570 DOI: 10.4103/aian.aian_106_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Faruk Incecik
- Department of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Seyda Besen
- Department of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Sevcan Tug Bozdogan
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
18
|
Mari F, Berti B, Romano A, Baldacci J, Rizzi R, Grazia Alessandrì M, Tessa A, Procopio E, Rubegni A, Lourenḉo CM, Simonati A, Guerrini R, Santorelli FM. Clinical and neuroimaging features of autosomal recessive spastic paraplegia 35 (SPG35): case reports, new mutations, and brief literature review. Neurogenetics 2018; 19:123-130. [DOI: 10.1007/s10048-018-0538-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
|
19
|
A Genome-Wide SNP Linkage Analysis Suggests a Susceptibility Locus on 6p21 for Ankylosing Spondylitis and Inflammatory Back Pain Trait. PLoS One 2016; 11:e0166888. [PMID: 27973620 PMCID: PMC5156442 DOI: 10.1371/journal.pone.0166888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 12/01/2022] Open
Abstract
Objectives To screen susceptibility loci for ankylosing spondylitis (AS) using an affected-only linkage analysis based on high-density single nucleotide polymorphisms (SNPs) in a genome-wide manner. Patients and Methods AS patients from ten families with Cantonese origin of China were enrolled in the study. Blood samples were genotyped using genomic DNA derived from peripheral blood leukocytes by Illumina HumanHap 610-Quad SNP Chip. Genotype data were generated using the Illumina BeadStudio 3.2 software. PLINK package was used to remove non-autosomal SNPs and to further eliminate markers of typing errors. An affected-only linkage analysis was carried out using both non-parametric and parametric linkage analyses, as implemented in MERLIN. Result Seventy-eight AS patients (48 males and 30 females, mean age: 39±16 years) were enrolled in the study. The mean age of onset was 23±10 years and mean duration of disease was 16.7±12.2 years. Iritis (2/76, 2.86%), dactylitis (5/78, 6.41%), hip joint involvement (9/78, 11.54%), peripheral arthritis (22/78, 28.21%), inflammatory back pain (IBP) (69/78, 88.46%) and HLA-B27 positivity (70/78, 89.74%) were observed in these patients. Using non-parameter linkage analysis, we found one susceptibility locus for AS, IBP and HLA-B27 in 6p21 respectively, spanning about 13.5Mb, 20.9Mb and 21.2Mb, respectively No significant results were found in the other clinical trait groups including dactylitis, hip involved and arthritis. The identical susceptibility locus region spanning above 9.44Mb was detected in AS IBP and HLA-B27 by the parametric linkage analysis. Conclusion Our genome-wide SNP linkage analysis in ten families with ankylosing spondylitis suggests a susceptibility locus on 6p21 in AS, which is a risk locus for IBP in AS patients.
Collapse
|
20
|
Magariello A, Russo C, Citrigno L, Züchner S, Patitucci A, Mazzei R, Conforti FL, Ferlazzo E, Aguglia U, Muglia M. Exome sequencing reveals two FA2H mutations in a family with a complicated form of Hereditary Spastic Paraplegia and psychiatric impairments. J Neurol Sci 2016; 372:347-349. [PMID: 28017243 DOI: 10.1016/j.jns.2016.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023]
Affiliation(s)
- A Magariello
- Institute of Neurological Sciences, National Research Council, Mangone, CS, Italy
| | - C Russo
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - L Citrigno
- Institute of Neurological Sciences, National Research Council, Mangone, CS, Italy
| | - S Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - A Patitucci
- Institute of Neurological Sciences, National Research Council, Mangone, CS, Italy
| | - R Mazzei
- Institute of Neurological Sciences, National Research Council, Mangone, CS, Italy
| | - F L Conforti
- Institute of Neurological Sciences, National Research Council, Mangone, CS, Italy
| | - E Ferlazzo
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - U Aguglia
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy; Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - M Muglia
- Institute of Neurological Sciences, National Research Council, Mangone, CS, Italy.
| |
Collapse
|
21
|
Khalifa M, Naffaa L. Exome sequencing reveals a novel WDR45 frameshift mutation and inherited POLR3A heterozygous variants in a female with a complex phenotype and mixed brain MRI findings. Eur J Med Genet 2015; 58:381-6. [PMID: 26096995 DOI: 10.1016/j.ejmg.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/26/2015] [Indexed: 11/27/2022]
Abstract
WDR45 and POLR3A are newly recognized genes; each is associated with a distinct neurodegenerative disease. WDR45 is an X-linked gene associated with a dominant form of Neurodegeneration with Brain Iron Accumulation (NBIA), manifested by progressive disabilities, dystonia, cognitive decline, spastic paraplegia, neuropsychiatric abnormalities and iron deposition in the basal ganglia on brain imaging. POLR3A, on the other hand, is an autosomal gene, and its mutations cause a recessive form of a hypomyelination with leukodystrophy disease, also known as 4H syndrome, characterized by congenital Hypomyelination with thinning of the corpus callosum, Hypodontia and Hypogonadotropic Hypogonadism. We report on a female child with severe intellectual disability, aphasia, short stature, ataxia, failure to thrive and structural brain abnormalities. Brain MRI obtained in late infancy showed hypomyelination involving the central periventricular white matter and thinning of the corpus callosum with no evidence of iron accumulation. Brain MRI obtained in childhood showed stable hypomyelination, with progressive iron accumulation in the basal ganglia, in particular in the globus pallidus and substantia nigra. Whole Exome Sequencing (WES) identified a novel WDR45 frameshift deleterious mutation in Exon 9 (c.587-588del) and also revealed three POLR3A missense heterozygous variants. The first is a maternally inherited novel missense variant in exon 4 (c.346A > G). Exon 13 carried two heterozygous missense variants, a maternally inherited variant (c.1724A > T) and a paternally inherited variant (1745G > A). These variants are considered likely damaging. The patient's complex clinical phenotype and mixed brain MRI findings might be attributed to the confounding effects of the expression of these two mutant genes.
Collapse
Affiliation(s)
- Mohamed Khalifa
- Department of Medical Genetics and Genomics, Akron Children's Hospital, Akron, OH, USA.
| | - Lena Naffaa
- Department Radiology, Akron Children's Hospital, Akron, OH, USA
| |
Collapse
|
22
|
Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 2015; 8:1-13. [PMID: 25614780 PMCID: PMC4298713 DOI: 10.14802/jmd.14034] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) encompasses a group of inherited disorders that share the clinical features of an extrapyramidal movement disorder accompanied by varying degrees of intellectual disability and abnormal iron deposition in the basal ganglia. The genetic basis of ten forms of NBIA is now known. The clinical features of NBIA range from rapid global neurodevelopmental regression in infancy to mild parkinsonism with minimal cognitive impairment in adulthood, with wide variation seen between and within the specific NBIA sub-type. This review describes the clinical presentations, imaging findings, pathologic features, and treatment considerations for this heterogeneous group of disorders.
Collapse
Affiliation(s)
- Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Pensato V, Castellotti B, Gellera C, Pareyson D, Ciano C, Nanetti L, Salsano E, Piscosquito G, Sarto E, Eoli M, Moroni I, Soliveri P, Lamperti E, Chiapparini L, Di Bella D, Taroni F, Mariotti C. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. ACTA ACUST UNITED AC 2014; 137:1907-20. [PMID: 24833714 DOI: 10.1093/brain/awu121] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegias are a heterogeneous group of neurodegenerative disorders, clinically classified in pure and complex forms. Genetically, more than 70 different forms of spastic paraplegias have been characterized. A subgroup of complicate recessive forms has been distinguished for the presence of thin corpus callosum and white matter lesions at brain imaging. This group includes several genetic entities, but most of the cases are caused by mutations in the KIAA1840 (SPG11) and ZFYVE26 genes (SPG15). We studied a cohort of 61 consecutive patients with complicated spastic paraplegias, presenting at least one of the following features: mental retardation, thin corpus callosum and/or white matter lesions. DNA samples were screened for mutations in the SPG11/KIAA1840, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG48/AP5Z1 and SPG54/DDHD2 genes by direct sequencing. Sequence variants were found in 30 of 61 cases: 16 patients carried SPG11/KIAA1840 gene variants (26.2%), nine patients carried SPG15/ZFYVE26 variants (14.8%), three patients SPG35/FA2H (5%), and two patients carried SPG48/AP5Z1 gene variants (3%). Mean age at onset was similar in patients with SPG11 and with SPG15 (range 11-36), and the phenotype was mostly indistinguishable. Extrapyramidal signs were observed only in patients with SPG15, and epilepsy in three subjects with SPG11. Motor axonal neuropathy was found in 60% of cases with SPG11 and 70% of cases with SPG15. Subjects with SPG35 had intellectual impairment, spastic paraplegia, thin corpus callosum, white matter hyperintensities, and cerebellar atrophy. Two families had a late-onset presentation, and none had signs of brain iron accumulation. The patients with SPG48 were a 5-year-old child, homozygous for a missense SPG48/AP5Z1 variant, and a 51-year-old female, carrying two different nonsense variants. Both patients had intellectual deficits, thin corpus callosum and white matter lesions. None of the cases in our cohort carried mutations in the SPG21/ACP33 and SPG54/DDH2H genes. Our study confirms that the phenotype of patients with SPG11 and with SPG15 is homogeneous, whereas cases with SPG35 and with SPG48 cases present overlapping features, and a broader clinical spectrum. The large group of non-diagnosed subjects (51%) suggests further genetic heterogeneity. The observation of common clinical features in association with defects in different causative genes, suggest a general vulnerability of the corticospinal tract axons to a wide spectrum of cellular alterations.
Collapse
Affiliation(s)
- Viviana Pensato
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Barbara Castellotti
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Cinzia Gellera
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Davide Pareyson
- 2 Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Claudia Ciano
- 3 Clinical Neurophysiology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Lorenzo Nanetti
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Ettore Salsano
- 2 Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Giuseppe Piscosquito
- 2 Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Elisa Sarto
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Marica Eoli
- 4 Molecular Neuro-Oncology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Isabella Moroni
- 5 Paediatric Neurology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Paola Soliveri
- 6 Movement Disorders Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Elena Lamperti
- 7 Neuro-Oncology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Luisa Chiapparini
- 8 Neuroradiology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Daniela Di Bella
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Franco Taroni
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | - Caterina Mariotti
- 1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| |
Collapse
|
24
|
Liao X, Luo Y, Zhan Z, Du J, Hu Z, Wang J, Guo J, Hu Z, Yan X, Pan Q, Xia K, Tang B, Shen L. SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations. Clin Genet 2014; 87:85-9. [PMID: 24359114 DOI: 10.1111/cge.12336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022]
Abstract
Hereditary spastic paraplegias (HSPs) encompass a clinically and genetically heterogeneous group of neurodegenerative disorders. Recently, mutations in fatty acid 2-hydroxylase gene (FA2H) have been identified responsible for HSPs type 35 (SPG35). This study aims to define the contribution of FA2H to Chinese autosomal recessive HSP (AR-HSP) patients and provide insights into the enzymatic functions of the novel mutations. Direct sequencing of FA2H was conducted in 31 AR-HSP families and 55 sporadic cases without SPG11, SPG15, SPG5 and SPG7 gene mutations. Enzymatic activity of the mutated proteins was further examined. Three novel mutations were found in two Chinese families, including two compound heterozygous mutations (c.388C>T/p.L130F and c.506+6C>G) and one homozygous mutation (c.230T>G/p.L77R). The c.506+6C>G splice-site mutation led to the deletion of exon 3. Measurement of enzymatic functions revealed a significant reduction in the enzymatic activity of FA2H associated with p.L130F and p.L77R. Overall, our data widens the spectrum of the mutations on FA2H, and functional analyses indicate that these mutations severely impair the enzymatic activity of FA2H. Furthermore, frequency analysis shows that SPG35 is the second most common subtype of AR-HSP in China.
Collapse
Affiliation(s)
- X Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rupps R, Hukin J, Balicki M, Mercimek-Mahmutoglu S, Rolfs A, Dias C. Novel Mutations in FA2H-Associated Neurodegeneration: An Underrecognized Condition? J Child Neurol 2013; 28:1500-1504. [PMID: 22965561 DOI: 10.1177/0883073812458538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hereditary spastic paraplegias and related genetically heterogeneous disorders may be difficult to distinguish clinically. The FA2H gene has been associated with autosomal recessive neurodegenerative phenotypes encompassing spastic paraplegia with or without dystonia, and demyelinating leukodystrophy. To date, few individuals with mutations in the FA2H gene have been described. We report a 5-year-old girl of mixed Filipino and Vietnamese origin who presented with progressive lower limb spasticity and periventricular leukomalacia. The clinical diagnosis of FA2H-associated neurodegeneration was confirmed on the basis of 2 novel mutations in compound heterozygosity in the FA2H gene (p.S70L/p.P323L). This family highlights that FA2H-associated disorders may be underrecognized in children with neurodegeneration of many different ethnicities. Magnetic resonance imaging features play an important role as diagnostic clues in this and other hereditary spastic paraplegias. The consideration of this diagnosis is essential in providing families with important information on prognosis, as well as accurate genetic counseling.
Collapse
Affiliation(s)
- Rosemarie Rupps
- 1Department of Medical Genetics, University of British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013; 126:307-28. [PMID: 23897027 DOI: 10.1007/s00401-013-1115-8] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), "mutilating sensory neuropathy with spastic paraplegia" owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.
Collapse
|
27
|
Koul R, Al-Murshedi FM, Al-Azri FM, Mani R, Abdelrahim RA, Koul V, Alfutaisi AM. Clinical Spectrum of Hereditary Spastic Paraplegia in Children: A study of 74 cases. Sultan Qaboos Univ Med J 2013; 13:371-9. [PMID: 23984021 PMCID: PMC3749020 DOI: 10.12816/0003258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 01/05/2013] [Accepted: 03/30/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of the study was to explore the spectrum of hereditary spastic paraplegia (HSP) in children in Oman. METHODS This retrospective study was carried out between January 1994 and August 2011 on children with delayed development, gait disorders and motor handicaps, with signs of symmetrical pyramidal tract involvement. A detailed perinatal and family history, including the age of onset of symptoms, was recorded. The children were labelled as having either the pure or complicated form of HSP based on the established diagnostic criteria. In families with more than one affected child, parents and all other siblings were also examined. RESULTS Within the study, 74 children from 31 families were diagnosed with HSP. Parental consanguinity was seen in 91% of cases, with 44 children (59.4%) experiencing onset of the disease under one year of age. Complicated HSP was the most common type, seen in 81.1%. Speech involvement, mental retardation, and epilepsy were the most common associated abnormalities. Nonspecific white matter changes and corpus callosum abnormalities were noted in 24.3% of cases on magnetic resonance imaging. CONCLUSION The study described clinical features of 74 children with HSP. Autosomal recessive complicated HSP was seen in 81.1% of cases.
Collapse
Affiliation(s)
- Roshan Koul
- Departments of Child Health, Sultan Qaboos University Hospital
| | - Fathiya M. Al-Murshedi
- Department of Genetics, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Ranjit Mani
- Departments of Child Health, Sultan Qaboos University Hospital
| | | | - Vivek Koul
- Departments of Child Health, Sultan Qaboos University Hospital
| | | |
Collapse
|
28
|
Cao L, Huang XJ, Chen CJ, Chen SD. A rare family with Hereditary Spastic Paraplegia Type 35 due to novel FA2H mutations: A case report with literature review. J Neurol Sci 2013; 329:1-5. [DOI: 10.1016/j.jns.2013.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/24/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
|
29
|
Denora PS, Santorelli FM, Bertini E. Hereditary spastic paraplegias: one disease for many genes, and still counting. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1899-912. [PMID: 23622413 DOI: 10.1016/b978-0-444-59565-2.00060-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous Mendelian disorders characterized by spastic gait with stiffness and weakness in the legs and an associated plethora of neurological or extraneurological signs in "complicated" forms. Major advances have been made during the past two decades in our understanding of their molecular bases with the identification of a large number of gene loci and the cloning of a set of them. The combined genetic and clinical information obtained has permitted a new, molecularly-driven classification and an improved diagnosis of these conditions. This represents a prerequisite for better counseling in families and more appropriate therapeutic options. However, further heterogeneity is expected and new insight into the possible mechanisms anticipated.
Collapse
Affiliation(s)
- Paola S Denora
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS-Children's Hospital Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
30
|
Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 2012; 318:1-18. [PMID: 22554690 DOI: 10.1016/j.jns.2012.03.025] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (SPG) is a clinically and genetically heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive spasticity and weakness of the lower-limbs (pure SPG) and, majoritorian, additional more extensive neurological or non-neurological manifestations (complex or complicated SPG). Pure SPG is characterised by progressive spasticity and weakness of the lower-limbs, and occasionally sensory disturbances or bladder dysfunction. Complex SPGs additionally include cognitive impairment, dementia, epilepsy, extrapyramidal disturbances, cerebellar involvement, retinopathy, optic atrophy, deafness, polyneuropathy, or skin lesions in the absence of coexisting disorders. Nineteen SPGs follow an autosomal-dominant (AD-SPG), 27 an autosomal-recessive (AR-SPG), 5 X-linked (XL-SPG), and one a maternal trait of inheritance. SPGs are due to mutations in genes encoding for proteins involved in the maintenance of corticospinal tract neurons. Among the AD-SPGs, 40-45% of patients carry mutations in the SPAST-gene (SPG4) and 10% in the ATL1-gene (SPG3), while the other 9 genes are more rarely involved (NIPA1 (SPG6), KIAA0196 (SPG8), KIF5A (SPG10), RNT2 (SPG12), SPGD1 (SPG13), BSCL2 (SPG17), REEP1 (SPG31), ZFYVE27 (SPG33, debated), and SLC33A1 (SPG42, debated)). Among the AR-SPGs, ~20% of the patients carry mutations in the KIAA1840 (SPG11) gene whereas the 15 other genes are rarely mutated and account for SPGs in single families yet (CYP7B1 (SPG5), SPG7 (SPG7), ZFYVE26 (SPG15), ERLIN2 (SPG18), SPG20 (SPG20), ACP33 (SPG21), KIF1A (SPG30), FA2H (SPG35), NTE (SPG39), GJA12/GJC2 (SPG44), KIAA0415 (SPG48) and 4 genes encoding for the AP4-complex (SPG47)). Among the XL-SPGs, 3 causative genes have been identified (L1CAM (SPG1), PLP1 (SPG2), and SLC16A2 (SPG22)). The diagnosis of SPGs is based on clinical, instrumental and genetic investigations. Treatment is exclusively symptomatic.
Collapse
|
31
|
Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet 2011; 20:476-9. [PMID: 22146942 DOI: 10.1038/ejhg.2011.222] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration due to fatty acid 2-hydroxylase deficiency presents with a wide range of phenotypes including spastic paraplegia, leukodystrophy, and/or brain iron deposition. All previously described families with this disorder were consanguineous, with homozygous mutations in the probands. We describe a 10-year-old male, from a non-consanguineous family, with progressive spastic paraplegia, dystonia, ataxia, and cognitive decline associated with a sural axonal neuropathy. The use of high-throughput sequencing techniques combined with SNP array analyses revealed a novel paternally derived missense mutation and an overlapping novel maternally derived ~28-kb genomic deletion in FA2H. This patient provides further insight into the consistent features of this disorder and expands our understanding of its phenotypic presentation. The presence of a sural nerve axonal neuropathy had not been previously associated with this disorder and so may extend the phenotype.
Collapse
|
32
|
Garone C, Pippucci T, Cordelli DM, Zuntini R, Castegnaro G, Marconi C, Graziano C, Marchiani V, Verrotti A, Seri M, Franzoni E. FA2H-related disorders: a novel c.270+3A>T splice-site mutation leads to a complex neurodegenerative phenotype. Dev Med Child Neurol 2011; 53:958-61. [PMID: 21592092 DOI: 10.1111/j.1469-8749.2011.03993.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homozygous mutations in the gene for fatty acid 2-hydroxylase (FA2H) have been associated in humans with three neurodegenerative disorders: complicated spastic paraplegia (SPG35), leukodystrophy with spastic paraparesis and dystonia, and neurodegeneration with brain iron accumulation. Here, we describe a novel homozygous c.270+3A>T mutation in an Italian consanguineous family. In two affected brothers (age at molecular diagnosis 22y and 15y; age at last follow-up 24y and 17y), altered FA2H function led to a severe phenotype, with clinical features overlapping those of the three FA2H-associated disorders. Both patients showed childhood onset progressive spastic paraparesis, mild pyramidal and cerebellar upper limb signs, severe cognitive impairment, white-matter disease, and cerebellar, brainstem, and spinal cord atrophy. However, absence of dystonia, drowsiness episodes, and a subtle globus pallidus involvement suggested that FA2H mutations result in a clinical spectrum, rather than causing distinct disorders. Although clinical heterogeneity is apparent, larger numbers of patients are needed to establish more accurate genotype-phenotype correlations.
Collapse
Affiliation(s)
- Caterina Garone
- Child Neuropsychiatric Unit, St Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Potter KA, Kern MJ, Fullbright G, Bielawski J, Scherer SS, Yum SW, Li JJ, Cheng H, Han X, Venkata JK, Khan PAA, Rohrer B, Hama H. Central nervous system dysfunction in a mouse model of FA2H deficiency. Glia 2011; 59:1009-21. [PMID: 21491498 PMCID: PMC3094470 DOI: 10.1002/glia.21172] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 03/03/2011] [Indexed: 11/09/2022]
Abstract
Fatty acid 2-hydroxylase (FA2H) is responsible for the synthesis of myelin galactolipids containing hydroxy fatty acid (hFA) as the N-acyl chain. Mutations in the FA2H gene cause leukodystrophy, spastic paraplegia, and neurodegeneration with brain iron accumulation. Using the Cre-lox system, we developed two types of mouse mutants, Fa2h(-/-) mice (Fa2h deleted in all cells by germline deletion) and Fa2h(flox/flox) Cnp1-Cre mice (Fa2h deleted only in oligodendrocytes and Schwann cells). We found significant demyelination, profound axonal loss, and abnormally enlarged axons in the CNS of Fa2h(-/-) mice at 12 months of age, while structure and function of peripheral nerves were largely unaffected. Fa2h(-/-) mice also exhibited histological and functional disruption in the cerebellum at 12 months of age. In a time course study, significant deterioration of cerebellar function was first detected at 7 months of age. Further behavioral assessments in water T-maze and Morris water maze tasks revealed significant deficits in spatial learning and memory at 4 months of age. These data suggest that various regions of the CNS are functionally compromised in young adult Fa2h(-/-) mice. The cerebellar deficits in 12-month-old Fa2h(flox/flox) Cnp1-Cre mice were indistinguishable from Fa2h(-/-) mice, indicating that these phenotypes likely stem from the lack of myelin hFA-galactolipids. In contrast, Fa2h(flox/flox) Cnp1-Cre mice did not show reduced performance in water maze tasks, indicating that oligodendrocytes are not involved in the learning and memory deficits found in Fa2h(-/-) mice. These findings provide the first evidence that FA2H has an important function outside of oligodendrocytes in the CNS.
Collapse
Affiliation(s)
- Kathleen A. Potter
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael J. Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sabrina W. Yum
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jian J. Li
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Hua Cheng
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xianlin Han
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jagadish Kummetha Venkata
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - P. Akbar Ali Khan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Bärbel Rohrer
- Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
34
|
Hama H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:405-14. [PMID: 20026285 DOI: 10.1016/j.bbalip.2009.12.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 02/02/2023]
Abstract
2-Hydroxy fatty acids (hFA) are important components of a subset of mammalian sphingolipids. The presence of hFA in sphingolipids is best described in the nervous system, epidermis, and kidney. However, the literature also indicates that various hFA-sphingolipids are present in additional tissues and cell types, as well as in tumors. Biosynthesis of hFA-sphingolipids requires fatty acid 2-hydroyxlase, and degradation of hFA-sphingolipids depends, at least in part, on lysosomal acid ceramidase and the peroxisomal fatty acid alpha-oxidation pathway. Mutations in the fatty acid 2-hydroxylase gene, FA2H, have been associated with leukodystrophy and spastic paraparesis in humans, underscoring the importance of hFA-sphingolipids in the nervous system. In the epidermis, hFA-ceramides are essential for the permeability barrier function. Physiological function of hFA-sphingolipids in other organs remains largely unknown. Recent evidence indicates that hFA-sphingolipids have specific roles in cell signaling.
Collapse
Affiliation(s)
- Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
35
|
Brugman F, Scheffer H, Schelhaas HJ, Nillesen WM, Wokke JHJ, van de Warrenburg BPC, van den Berg LH. Seipin/BSCL2 mutation screening in sporadic adult-onset upper motor neuron syndromes. J Neurol 2009; 256:824-6. [PMID: 19252810 DOI: 10.1007/s00415-009-5009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/25/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
36
|
Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 2008; 7:1127-38. [DOI: 10.1016/s1474-4422(08)70258-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Edvardson S, Hama H, Shaag A, Gomori JM, Berger I, Soffer D, Korman SH, Taustein I, Saada A, Elpeleg O. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet 2008; 83:643-8. [PMID: 19068277 DOI: 10.1016/j.ajhg.2008.10.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/25/2022] Open
Abstract
Myelination is a complex, developmentally regulated process whereby myelin proteins and lipids are coordinately expressed by myelinating glial cells. Homozygosity mapping in nine patients with childhood onset spasticity, dystonia, cognitive dysfunction, and periventricular white matter disease revealed inactivating mutations in the FA2H gene. FA2H encodes the enzyme fatty acid 2-hydroxylase that catalyzes the 2-hydroxylation of myelin galactolipids, galactosylceramide, and its sulfated form, sulfatide. To our knowledge, this is the first identified deficiency of a lipid component of myelin and the clinical phenotype underscores the importance of the 2-hydroxylation of galactolipids for myelin maturation. In patients with autosomal-recessive unclassified leukodystrophy or complex spastic paraparesis, sequence analysis of the FA2H gene is warranted.
Collapse
|