1
|
Bailey M, Ilchovska ZG, Hosseini AA, Jung J. Impact of Apolipoprotein E ε4 in Alzheimer's Disease: A Meta-Analysis of Voxel-Based Morphometry Studies. J Clin Neurol 2024; 20:469-477. [PMID: 39227329 PMCID: PMC11372214 DOI: 10.3988/jcn.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is the most-prevalent form of dementia and imposes substantial burdens at the personal and societal levels. The apolipoprotein E (APOE) ε4 allele is a genetic factor known to increase AD risk and exacerbate brain atrophy and its symptoms. We aimed to provide a comprehensive review of the impacts of APOE ε4 on brain atrophy in AD as well as in mild cognitive impairment (MCI) as a transitional stage of AD. METHODS We performed a coordinate-based meta-analysis of voxel-based morphometry studies to compare gray-matter atrophy patterns between carriers and noncarriers of APOE ε4. We obtained coordinate-based structural magnetic resonance imaging data from 1,135 individuals who met our inclusion criteria among 12 studies reported in PubMed and Google Scholar. RESULTS We found that atrophy of the hippocampus and parahippocampus was significantly greater in APOE ε4 carriers than in noncarriers, especially among those with AD and MCI, while there was no significant atrophy in these regions in healthy controls who were also carriers. CONCLUSIONS The present meta-analysis has highlighted the significant link between the APOE ε4 allele and hippocampal atrophy in both AD and MCI, which emphasizes the critical influence of the allele on neurodegeneration, especially in the hippocampus. These findings improve the understanding of AD pathology, potentially facilitating progress in early detection, targeted interventions, and personalized care strategies for individuals at risk of AD who carry the APOE ε4 allele.
Collapse
Affiliation(s)
- Madison Bailey
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Zlatomira G Ilchovska
- School of Psychology, University of Nottingham, Nottingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Akram A Hosseini
- School of Medicine, University of Nottingham, Nottingham, UK
- Department of Academic Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Nottingham, UK
- Centre for Dementia, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
- Centre for Dementia, Institute of Mental Health, University of Nottingham, Nottingham, UK
- Precision Imaging, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Wang M, Wei T, Yu C, Li R, Yin Y, Yang H, Di R, Xia X, Qin Q, Tang Y. Integrative Metabolomics and Whole Transcriptome Sequencing Reveal Role for TREM2 in Metabolism Homeostasis in Alzheimer's Disease. Mol Neurobiol 2024; 61:4188-4202. [PMID: 38066402 DOI: 10.1007/s12035-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide. Dysregulation of various metabolism pathways may mediate the development of AD pathology and cognitive dysfunction. Variants of triggering receptor expressed on myeloid cells-2 (TREM2) are known to increase the risk of developing AD. TREM2 plays a role in AD development by maintaining cellular energy and biosynthesis, but the precise mechanism through which it accomplishes this is unknown. Metabolomic analysis of hippocampal tissue from APP/PS1 and APP/PS1-TREM2 knockout (KO) mice found that TREM2 KO was associated with abnormalities in several metabolism pathways, and the effect was particularly pronounced in lipid metabolism and glucose metabolism pathways. Consistently, transcriptomic analysis of these mice determined that most differentially expressed genes were involved in energy metabolism pathways. We screened seven differentially expressed genes in APP/PS1-TREM2 KO mice that may influence AD development by altering energy metabolism. Integrative analysis of the metabolomic and transcriptomic profiles showed that TREM2 may regulate lipid metabolism and sphingolipid metabolism by affecting lipoprotein lipase (LPL) expression, thereby influencing AD progression. Our results prompt further studies of the interactions among TREM2, LPL, glucolipid metabolism, and sphingolipid metabolism in AD to identify new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Chaoji Yu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Ruiyang Li
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Hanchen Yang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
3
|
Ramos AA, Galiano-Castillo N, Machado L. Cognitive Functioning of Unaffected First-degree Relatives of Individuals With Late-onset Alzheimer's Disease: A Systematic Literature Review and Meta-analysis. Neuropsychol Rev 2023; 33:659-674. [PMID: 36057684 PMCID: PMC10770217 DOI: 10.1007/s11065-022-09555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/10/2022] [Indexed: 10/14/2022]
Abstract
First-degree relatives of individuals with late-onset Alzheimer's disease (LOAD) are at increased risk for developing dementia, yet the associations between family history of LOAD and cognitive dysfunction remain unclear. In this quantitative review, we provide the first meta-analysis on the cognitive profile of unaffected first-degree blood relatives of LOAD-affected individuals compared to controls without a family history of LOAD. A systematic literature search was conducted in PsycINFO, PubMed /MEDLINE, and Scopus. We fitted a three-level structural equation modeling meta-analysis to control for non-independent effect sizes. Heterogeneity and risk of publication bias were also investigated. Thirty-four studies enabled us to estimate 218 effect sizes across several cognitive domains. Overall, first-degree relatives (n = 4,086, mean age = 57.40, SD = 4.71) showed significantly inferior cognitive performance (Hedges' g = -0.16; 95% CI, -0.25 to -0.08; p < .001) compared to controls (n = 2,388, mean age = 58.43, SD = 5.69). Specifically, controls outperformed first-degree relatives in language, visuospatial and verbal long-term memory, executive functions, verbal short-term memory, and verbal IQ. Among the first-degree relatives, APOE ɛ4 carriership was associated with more significant dysfunction in cognition (g = -0.24; 95% CI, -0.38 to -0.11; p < .001) compared to non-carriers (g = -0.14; 95% CI, -0.28 to -0.01; p = .04). Cognitive test type was significantly associated with between-group differences, accounting for 65% (R23 = .6499) of the effect size heterogeneity in the fitted regression model. No evidence of publication bias was found. The current findings provide support for mild but robust cognitive dysfunction in first-degree relatives of LOAD-affected individuals that appears to be moderated by cognitive domain, cognitive test type, and APOE ɛ4.
Collapse
Affiliation(s)
- Ari Alex Ramos
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
- Brain Research New Zealand, Auckland, New Zealand.
- Department of Psychology, Pontifical Catholic University of Paraná, Rua Imaculada Conceição, 1155, Curitiba, CEP 80.215-901, Brazil.
| | - Noelia Galiano-Castillo
- Department of Physical Therapy, Health Sciences Faculty, "Cuidate" from Biomedical Group (BIO277), Instituto de Investigación Biosanitaria (ibs.GRANADA), and Sport and Health Research Center (IMUDs), Granada, Spain, University of Granada, Granada, Spain
| | - Liana Machado
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
4
|
Oh DJ, Bae JB, Lipnicki DM, Han JW, Sachdev PS, Kim TH, Kwak KP, Kim BJ, Kim SG, Kim JL, Moon SW, Park JH, Ryu SH, Youn JC, Lee DY, Lee DW, Lee SB, Lee JJ, Jhoo JH, Skoog I, Najar J, Sterner TR, Guaita A, Vaccaro R, Rolandi E, Scarmeas N, Yannakoulia M, Kosmidis MH, Riedel-Heller SG, Roehr S, Dominguez J, Guzman MFD, Fowler KC, Lobo A, Saz P, Lopez-Anton R, Anstey KJ, Cherbuin N, Mortby ME, Brodaty H, Trollor J, Kochan N, Kim KW. Parental history of dementia and the risk of dementia: A cross-sectional analysis of a global collaborative study. Psychiatry Clin Neurosci 2023; 77:449-456. [PMID: 37165609 PMCID: PMC10524874 DOI: 10.1111/pcn.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Parental history of dementia appears to increase the risk of dementia, but there have been inconsistent results. We aimed to investigate whether the association between parental history of dementia and the risk of dementia are different by dementia subtypes and sex of parent and offspring. METHODS For this cross-sectional study, we harmonized and pooled data for 17,194 older adults from nine population-based cohorts of eight countries. These studies conducted face-to-face diagnostic interviews, physical and neurological examinations, and neuropsychological assessments to diagnose dementia. We investigated the associations of maternal and paternal history of dementia with the risk of dementia and its subtypes in offspring. RESULTS The mean age of the participants was 72.8 ± 7.9 years and 59.2% were female. Parental history of dementia was associated with higher risk of dementia (odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.15-1.86) and Alzheimer's disease (AD) (OR = 1.72, 95% CI = 1.31-2.26), but not with the risk of non-AD. This was largely driven by maternal history of dementia, which was associated with the risk of dementia (OR = 1.51, 95% CI = 1.15-1.97) and AD (OR = 1.80, 95% CI = 1.33-2.43) whereas paternal history of dementia was not. These results remained significant when males and females were analyzed separately (OR = 2.14, 95% CI = 1.28-3.55 in males; OR = 1.68, 95% CI = 1.16-2.44 for females). CONCLUSIONS Maternal history of dementia was associated with the risk of dementia and AD in both males and females. Maternal history of dementia may be a useful marker for identifying individuals at higher risk of AD and stratifying the risk for AD in clinical trials.
Collapse
Affiliation(s)
- Dae Jong Oh
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Bin Bae
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
| | - Darren M Lipnicki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia
| | - Ji Won Han
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, Australia
| | - Tae Hui Kim
- Department of Psychiatry, Yonsei University Wonju Severance Christian Hospital, Wonju, South Korea
| | - Kyung Phil Kwak
- Department of Psychiatry, Dongguk University Gyeongju Hospital, Gyeongju, South Korea
| | - Bong Jo Kim
- Department of Psychiatry, Gyeongsang National University, School of Medicine, Jinju, South Korea
| | - Shin Gyeom Kim
- Department of Neuropsychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Jeong Lan Kim
- Department of Psychiatry, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seok Woo Moon
- Department of Psychiatry, School of Medicine, Konkuk University and Konkuk University Chungju Hospital, Chungju, South Korea
| | - Joon Hyuk Park
- Department of Neuropsychiatry, Jeju National University Hospital, Jeju, South Korea
| | - Seung-Ho Ryu
- Department of Psychiatry, School of Medicine, Konkuk University and Konkuk University Medical Center, Seoul, South Korea
| | - Jong Chul Youn
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, South Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Dong Woo Lee
- Department of Neuropsychiatry, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Seok Bum Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, South Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, South Korea
| | - Jin Hyeong Jhoo
- Department of Neuropsychiatry, Kangwon National University Hospital, Chuncheon, South Korea
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), at the University of Gothenburg,Mölndal, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Jenna Najar
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), at the University of Gothenburg,Mölndal, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Therese R Sterner
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), at the University of Gothenburg,Mölndal, Sweden
| | - Antonio Guaita
- Golgi Cenci Foundation, c. San Martino 10, 20081 Abbiategrasso (MI), Italy
| | - Roberta Vaccaro
- Golgi Cenci Foundation, c. San Martino 10, 20081 Abbiategrasso (MI), Italy
| | - Elena Rolandi
- Golgi Cenci Foundation, c. San Martino 10, 20081 Abbiategrasso (MI), Italy
| | - Nikolaos Scarmeas
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Columbia University, New York, NY
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Susanne Roehr
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Jacqueline Dominguez
- Institute for Neurosciences, St. Luke’s Medical Center, Quezon City, Philippines
- Institute for Dementia Care Asia, Quezon City, Philippines
| | | | | | - Antonio Lobo
- Department of Medicine and Psychiatry. Zaragoza University. Aragon, Spain
| | - Pedro Saz
- Department of Medicine and Psychiatry. Zaragoza University. Aragon, Spain
| | - Raul Lopez-Anton
- Departamento de Psicología y Sociología. Universidad de Zaragoza, Aragon, Spain
| | - Kaarin J Anstey
- School of Psychology, University of New South Wales, Sydney, Australia
- Centre for Mental Health Research, Australian National University, Canberra, Australia
- Neuroscience Australia, Sydney, Australia
| | - Nicolas Cherbuin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Moyra E Mortby
- School of Psychology, University of New South Wales, Sydney, Australia
- Neuroscience Australia, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine & Health, University of New South Wales, Sydney, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia
| | - Ki Woong Kim
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | | |
Collapse
|
5
|
López-Cuenca I, Sánchez-Puebla L, Salobrar-García E, Álvarez-Gutierrez M, Elvira-Hurtado L, Barabash A, Ramírez-Toraño F, Fernández-Albarral JA, Matamoros JA, Nebreda A, García-Colomo A, Ramírez AI, Salazar JJ, Gil P, Maestú F, Ramírez JM, de Hoz R. Exploratory Longitudinal Study of Ocular Structural and Visual Functional Changes in Subjects at High Genetic Risk of Developing Alzheimer's Disease. Biomedicines 2023; 11:2024. [PMID: 37509663 PMCID: PMC10377092 DOI: 10.3390/biomedicines11072024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to analyze the evolution of visual changes in cognitively healthy individuals at risk for Alzheimer's disease (AD). Participants with a first-degree family history of AD (FH+) and carrying the Ε4+ allele for the ApoE gene (ApoE ε4+) underwent retinal thickness analysis using optical coherence tomography (OCT) and visual function assessments, including visual acuity (VA), contrast sensitivity (CS), color perception, perception digital tests, and visual field analysis. Structural analysis divided participants into FH+ ApoE ε4+ and FH- ApoE ε4- groups, while functional analysis further categorized them by age (40-60 years and over 60 years). Over the 27-month follow-up, the FH+ ApoE ε4+ group exhibited thickness changes in all inner retinal layers. Comparing this group to the FH- ApoE ε4- group at 27 months revealed progressing changes in the inner nuclear layer. In the FH+ ApoE ε4+ 40-60 years group, no progression of visual function changes was observed, but an increase in VA and CS was maintained at 3 and 12 cycles per degree, respectively, compared to the group without AD risk at 27 months. In conclusion, cognitively healthy individuals at risk for AD demonstrated progressive retinal structural changes over the 27-month follow-up, while functional changes remained stable.
Collapse
Affiliation(s)
- Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - María Álvarez-Gutierrez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Ana Barabash
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
- Centre for Biomedical Research Network on Diabetes and Associated Metabolic Diseases (CIBERMED), 28029 Madrid, Spain
- Department of Medicine II, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Pedro Gil
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Maestú
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| |
Collapse
|
6
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in structural MRI and diffusion tensor imaging underlie visuomotor performance declines in older adults with an increased risk for Alzheimer's disease. Front Aging Neurosci 2023; 14:1054516. [PMID: 36711200 PMCID: PMC9877535 DOI: 10.3389/fnagi.2022.1054516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Visuomotor impairments have been demonstrated in preclinical AD in individuals with a positive family history of dementia and APOE e4 carriers. Previous behavioral findings have also reported sex-differences in performance of visuomotor tasks involving a visual feedback reversal. The current study investigated the relationship between grey and white matter changes and non-standard visuomotor performance, as well as the effects of APOE status, family history of dementia, and sex on these brain-behavior relationships. Methods Older adults (n = 49) with no cognitive impairments completed non-standard visuomotor tasks involving a visual feedback reversal, plane-change, or combination of the two. Participants with a family history of dementia or who were APOE e4 carriers were considered at an increased risk for AD. T1-weighted anatomical scans were used to quantify grey matter volume and thickness, and diffusion tensor imaging measures were used to quantify white matter integrity. Results In APOE e4 carriers, grey and white matter structural measures were associated with visuomotor performance. Regression analyses showed that visuomotor deficits were predicted by lower grey matter thickness and volume in areas of the medial temporal lobe previously implicated in visuomotor control (entorhinal and parahippocampal cortices). This finding was replicated in the diffusion data, where regression analyses revealed that lower white matter integrity (lower FA, higher MD, higher RD, higher AxD) was a significant predictor of worse visuomotor performance in the forceps minor, forceps major, cingulum, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF). Some of these tracts overlap with those important for visuomotor integration, namely the forceps minor, forceps major, SLF, IFOF, and ILF. Conclusion These findings suggest that measuring the dysfunction of brain networks underlying visuomotor control in early-stage AD may provide a novel behavioral target for dementia risk detection that is easily accessible, non-invasive, and cost-effective. The results also provide insight into the structural differences in inferior parietal lobule that may underlie previously reported sex-differences in performance of the visual feedback reversal task.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,*Correspondence: Lauren E. Sergio, ✉
| |
Collapse
|
7
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
8
|
Functional Imaging for Neurodegenerative Diseases. Presse Med 2022; 51:104121. [PMID: 35490910 DOI: 10.1016/j.lpm.2022.104121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Diagnosis and monitoring of neurodegenerative diseases has changed profoundly over the past twenty years. Biomarkers are now included in most diagnostic procedures as well as in clinical trials. Neuroimaging biomarkers provide access to brain structure and function over the course of neurodegenerative diseases. They have brought new insights into a wide range of neurodegenerative diseases and have made it possible to describe some of the imaging challenges in clinical populations. MRI mainly explores brain structure while molecular imaging, functional MRI and electro- and magnetoencephalography examine brain function. In this paper, we describe and analyse the current and potential contribution of MRI and molecular imaging in the field of neurodegenerative diseases.
Collapse
|
9
|
Arenaza-Urquijo EM, Salvadó G, Operto G, Minguillón C, Sánchez-Benavides G, Crous-Bou M, Grau-Rivera O, Sala-Vila A, Falcón C, Suárez-Calvet M, Zetterberg H, Blennow K, Gispert JD, Molinuevo JL. Association of years to parent's sporadic onset and risk factors with neural integrity and Alzheimer biomarkers. Neurology 2020; 95:e2065-e2074. [PMID: 32737076 DOI: 10.1212/wnl.0000000000010527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/08/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the hypothesis that proximity to parental age at onset (AAO) in sporadic Alzheimer disease (AD) is associated with greater AD and neural injury biomarker alterations during midlife and to assess the role of nonmodifiable and modifiable factors. METHODS This observational study included 290 cognitively unimpaired (CU) participants with a family history (FH) of clinically diagnosed sporadic AD (age 49-73 years) from the Alzheimer's and Families (ALFA) study. [18F]flutemetamol-PET standardized uptake value ratios, CSF β-amyloid42/40 ratio, and phosphorylated tau were used as AD biomarkers. Hippocampal volumes and CSF total tau were used as neural injury biomarkers. Mental and vascular health proxies were calculated. In multiple regression models, we assessed the effect of proximity to parental AAO and its interaction with age on AD and neural injury biomarkers. Then, we evaluated the effects of FH load (number of parents affected), sex, APOE ε4, education, and vascular and mental health. RESULTS Proximity to parental AAO was associated with β-amyloid, but not with neural injury biomarkers, and interacted with sex and age, showing that women and older participants had increased β-amyloid. FH load and APOE ε4 showed independent contributions to β-amyloid load. Education and vascular and mental health proxies were not associated with AD biomarkers. However, lower mental health proxies were associated with decreased hippocampal volumes with age. CONCLUSION The identification of the earliest biomarker changes and modifiable factors to be targeted in early interventions is crucial for AD prevention. Proximity to parental AAO may offer a timeline for detection of incipient β-amyloid changes in women. In risk-enriched middle-aged cohorts, mental health may be a target for early interventions. CLINICALTRIALSGOV IDENTIFIER NCT02485730. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in CU adults with FH of sporadic AD, proximity to parental AAO was associated with β-amyloid but not with neural injury biomarkers.
Collapse
Affiliation(s)
- Eider M Arenaza-Urquijo
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain.
| | - Gemma Salvadó
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Gregory Operto
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Carolina Minguillón
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Marta Crous-Bou
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Oriol Grau-Rivera
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Aleix Sala-Vila
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Carles Falcón
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Marc Suárez-Calvet
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Henrik Zetterberg
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Kaj Blennow
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - Juan Domingo Gispert
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | - José Luis Molinuevo
- From the Barcelonaβeta Brain Research Center (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., A.S.-V, C.F., M.S.-C., J.D.G., J.L.M.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (E.M.A.-U., G.S., G.O., C.M., G.S.-B., M.C.-B., O.G.-R., M.S.-C., J.L.M.), Madrid, Spain; Department of Epidemiology (M.C.-B.), Harvard TH Chan School of Public Health, Boston, MA; Servei de Neurologia (O.G.-R., M.S.-C.), Hospital del Mar, Barcelona; Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (C.F., J.D.G.), Madrid, Spain; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; and Universitat Pompeu Fabra (J.D.G., J.L.M.), Barcelona, Spain
| | | |
Collapse
|
10
|
Söderbom G, Zeng BY. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:345-391. [PMID: 32739011 DOI: 10.1016/bs.irn.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence increasingly suggests that type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases share many pathological processes, including oxidative stress, local inflammation/neuroinflammation and chronic, low-grade (systemic) inflammation, which are exacerbated by aging, a common risk factor for T2DM and NDDs. Here, we focus on the link between chronic inflammation driven by peripheral metabolic disease and how this may impact neurodegeneration in AD and PD. We review the relationship between these common pathological processes in AD and PD from the perspective of the "pro-inflammatory" signaling of the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat- (LRR)-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complex. Since the need for effective disease-modifying therapies in T2DM, AD and PD is significant, the relationship between these diseases is important as a positive clinical impact on one may benefit the others. We briefly consider how novel strategies may target neuro-inflammation and provide potential therapies for AD and PD.
Collapse
Affiliation(s)
| | - Bai-Yun Zeng
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Sánchez SM, Duarte-Abritta B, Abulafia C, De Pino G, Bocaccio H, Castro MN, Sevlever GE, Fonzo GA, Nemeroff CB, Gustafson DR, Guinjoan SM, Villarreal MF. White matter fiber density abnormalities in cognitively normal adults at risk for late-onset Alzheimer's disease. J Psychiatr Res 2020; 122:79-87. [PMID: 31931231 DOI: 10.1016/j.jpsychires.2019.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Tau accumulation affecting white matter tracts is an early neuropathological feature of late-onset Alzheimer's disease (LOAD). There is a need to ascertain methods for the detection of early LOAD features to help with disease prevention efforts. The microstructure of these tracts and anatomical brain connectivity can be assessed by analyzing diffusion MRI (dMRI) data. Considering that family history increases the risk of developing LOAD, we explored the microstructure of white matter through dMRI in 23 cognitively normal adults who are offspring of patients with Late-Onset Alzheimer's Disease (O-LOAD) and 22 control subjects (CS) without family history of AD. We also evaluated the relation of white matter microstructure metrics with cortical thickness, volumetry, in vivo amyloid deposition (with the help of PiB positron emission tomography -PiB-PET) and regional brain metabolism (as FDG-PET) measures. Finally we studied the association between cognitive performance and white matter microstructure metrics. O-LOAD exhibited lower fiber density and fractional anisotropy in the posterior portion of the corpus callosum and right fornix when compared to CS. Among O-LOAD, reduced fiber density was associated with lower amyloid deposition in the right hippocampus, and greater cortical thickness in the left precuneus, while higher mean diffusivity was related with greater cortical thickness of the right superior temporal gyrus. Additionally, compromised white matter microstructure was associated with poorer semantic fluency. In conclusion, white matter microstructure metrics may reveal early differences in O-LOAD by virtue of parental history of the disorder, when compared to CS without a family history of LOAD. We demonstrate that these differences are associated with lower fiber density in the posterior portion of the corpus callosum and the right fornix.
Collapse
Affiliation(s)
- Stella M Sánchez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Bárbara Duarte-Abritta
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina
| | - Carolina Abulafia
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Institute for Biomedical Research (BIOMED), Pontifical Catholic University of Argentina, Argentina
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fundación FLENI, Argentina
| | - Hernan Bocaccio
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Gustavo E Sevlever
- Departamento de Neuropatología y Biología Molecular, Fundación FLENI, Argentina
| | - Greg A Fonzo
- Institute of Early Life Adversity Research, Department of Psychiatry, University of Texas at Austin, United States
| | - Charles B Nemeroff
- Institute of Early Life Adversity Research, Department of Psychiatry, University of Texas at Austin, United States
| | - Deborah R Gustafson
- Department of Neurology, State University of New York University Downstate Medical Center, United States; Department of Health and Education, University of Skövde, Sweden
| | - Salvador M Guinjoan
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Servicio de Psiquiatría, Fundación FLENI, Argentina; Neurofisiología I, Facultad de Psicología, Universidad de Buenos Aires, Argentina.
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
12
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Axelrud LK, Sato JR, Santoro ML, Talarico F, Pine DS, Rohde LA, Zugman A, Junior EA, Bressan RA, Grassi-Oliveira R, Pan PM, Hoffmann MS, Simioni AR, Guinjoan SM, Hakonarson H, Brietzke E, Gadelha A, Pellegrino da Silva R, Hoexter MQ, Miguel EC, Belangero SI, Salum GA. Genetic risk for Alzheimer's disease and functional brain connectivity in children and adolescents. Neurobiol Aging 2019; 82:10-17. [PMID: 31376729 DOI: 10.1016/j.neurobiolaging.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/22/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
Research suggested accumulation of tau proteins might lead to the degeneration of functional networks. Studies investigating the impact of genetic risk for Alzheimer's disease (AD) on early brain connections might shed light on mechanisms leading to AD development later in life. Here, we aim to investigate whether the polygenic risk score for Alzheimer's disease (AD-PRS) influences the connectivity among regions susceptible to tau pathology during childhood and adolescence. Participants were youth, aged 6-14 years, and recruited in Porto Alegre (discovery sample, n = 332) and São Paulo (replication sample, n = 304), Brazil. Subjects underwent genotyping and 6-min resting state funcional magnetic resonance imaging. Connections between the local maxima of tau pathology networks were used as dependent variables. The AD-PRS was associated with the connectivity between the right precuneus and the right superior temporal gyrus (discovery sample: β = 0.180, padjusted = 0.036; replication sample: β = 0.202, p = 0.031). This connectivity was also associated with inhibitory control (β = 0.157, padjusted = 0.035) and moderated the association between the AD-PRS and both immediate and delayed recall. These findings suggest the AD-PRS may affect brain connectivity in youth, which might impact memory performance and inhibitory control in early life.
Collapse
Affiliation(s)
- Luiza Kvitko Axelrud
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Section on Negative Affect and Social Processes, Porto Alegre, Brazil; National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, Brazil
| | - Marcos Leite Santoro
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernanda Talarico
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Daniel Samuel Pine
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Luis Augusto Rohde
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Section on Negative Affect and Social Processes, Porto Alegre, Brazil; National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | - Andre Zugman
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edson Amaro Junior
- Department of Radiology, University of São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Research Group (GNCD), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maurício Scopel Hoffmann
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Section on Negative Affect and Social Processes, Porto Alegre, Brazil; National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | - Andre Rafael Simioni
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Section on Negative Affect and Social Processes, Porto Alegre, Brazil; National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil
| | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elisa Brietzke
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ary Gadelha
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Psiquiatria, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Sintia Iole Belangero
- National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil; Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovanni Abrahão Salum
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Section on Negative Affect and Social Processes, Porto Alegre, Brazil; National Institute of Developmental Psychiatry (INPD, CNPq), São Paulo, Brazil.
| |
Collapse
|
14
|
Meyer PF, McSweeney M, Gonneaud J, Villeneuve S. AD molecular: PET amyloid imaging across the Alzheimer's disease spectrum: From disease mechanisms to prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:63-106. [PMID: 31481172 DOI: 10.1016/bs.pmbts.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of amyloid-beta (Aβ) positron emission tomography (PET) imaging has transformed the field of Alzheimer's disease (AD) by enabling the quantification of cortical Aβ accumulation and propagation in vivo. This revolutionary tool has made it possible to measure direct associations between Aβ and other AD biomarkers, to identify factors that influence Aβ accumulation and to redefine entry criteria into clinical trials as well as measure drug target engagement. This chapter summarizes the main findings on the associations of Aβ with other biomarkers of disease progression across the AD spectrum. It discusses investigations of the timing at which Aβ pathology starts to accumulate, demonstrates the clinical utility of Aβ PET imaging and discusses some ethical implications. Finally, it presents genetic and potentially modifiable lifestyle factors that might influence Aβ accumulation and therefore be targets for AD prevention.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Melissa McSweeney
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Julie Gonneaud
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada.
| |
Collapse
|
15
|
Molecular Pathophysiology of Insulin Depletion, Mitochondrial Dysfunction, and Oxidative Stress in Alzheimer’s Disease Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:27-44. [DOI: 10.1007/978-981-13-3540-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
17
|
Mosconi L, Rahman A, Diaz I, Wu X, Scheyer O, Hristov HW, Vallabhajosula S, Isaacson RS, de Leon MJ, Brinton RD. Increased Alzheimer's risk during the menopause transition: A 3-year longitudinal brain imaging study. PLoS One 2018; 13:e0207885. [PMID: 30540774 PMCID: PMC6291073 DOI: 10.1371/journal.pone.0207885] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/07/2018] [Indexed: 01/17/2023] Open
Abstract
Two thirds of all persons with late-onset Alzheimer's disease (AD) are women. Identification of sex-based molecular mechanisms underpinning the female-based prevalence of AD would advance development of therapeutic targets during the prodromal AD phase when prevention or delay in progression is most likely to be effective. This 3-year brain imaging study examines the impact of the menopausal transition on Alzheimer's disease (AD) biomarker changes [brain β-amyloid load via 11C-PiB PET, and neurodegeneration via 18F-FDG PET and structural MRI] and cognitive performance in midlife. Fifty-nine 40-60 year-old cognitively normal participants with clinical, neuropsychological, and brain imaging exams at least 2 years apart were examined. These included 41 women [15 premenopausal controls (PRE), 14 perimenopausal (PERI), and 12 postmenopausal women (MENO)] and 18 men. We used targeted minimum loss-based estimation to evaluate AD biomarker and cognitive changes. Older age was associated with baseline Aβ and neurodegeneration markers, but not with rates of change in these biomarkers. APOE4 status influenced change in Aβ load, but not neurodegenerative changes. Longitudinally, MENO and PERI groups showed declines in estrogen-dependent memory tests as compared to men (p < .04). Adjusting for age, APOE4 status, and vascular risk confounds, the MENO and PERI groups exhibited higher rates of CMRglc decline as compared to males (p ≤ .015). The MENO group exhibited the highest rate of hippocampal volume loss (p's ≤ .001), and higher rates of Aβ deposition than males (p < .01). CMRglc decline exceeded Aβ and atrophy changes in all female groups vs. men. These findings indicate emergence and progression of a female-specific hypometabolic AD-endophenotype during the menopausal transition. These findings suggest that the optimal window of opportunity for therapeutic intervention to prevent or delay progression of AD endophenotype in women is early in the endocrine aging process.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Aneela Rahman
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
| | - Ivan Diaz
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, United States of America
| | - Xian Wu
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, United States of America
| | - Olivia Scheyer
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
| | - Hollie Webb Hristov
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
| | - Shankar Vallabhajosula
- Department of Radiology, Weill Cornell Medical College, New York NY, United States of America
| | - Richard S. Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
| | - Mony J. de Leon
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Roberta Diaz Brinton
- Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, United States of America
| |
Collapse
|
18
|
Cortical thickness, brain metabolic activity, and in vivo amyloid deposition in asymptomatic, middle-aged offspring of patients with late-onset Alzheimer's disease. J Psychiatr Res 2018; 107:11-18. [PMID: 30308328 DOI: 10.1016/j.jpsychires.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
The natural history of preclinical late-onset Alzheimer's disease (LOAD) remains obscure and has received less attention than that of early-onset AD (EOAD), in spite of accounting for more than 99% of cases of AD. With the purpose of detecting early structural and functional traits associated with the disorder, we sought to characterize cortical thickness and subcortical grey matter volume, cerebral metabolism, and amyloid deposition in persons at risk for LOAD in comparison with a similar group without family history of AD. We obtained 3T T1 images for gray matter volume, FDG-PET to evaluate regional cerebral metabolism, and PET-PiB to detect fibrillar amyloid deposition in 30 middle-aged, asymptomatic, cognitively normal individuals with one parent diagnosed with LOAD (O-LOAD), and 25 comparable controls (CS) without family history of neurodegenerative disorders (CS). We observed isocortical thinning in AD-relevant areas including posterior cingulate, precuneus, and areas of the prefrontal and temporoparietal cortex in O-LOAD. Unexpectedly, this group displayed increased cerebral metabolism, in some cases overlapping with the areas of cortical thinning, and no differences in bilateral hippocampal volume and hippocampal metabolism. Given the importance of age in this sample of individuals potentially developing early AD-related changes, we controlled results for age and observed that most differences in cortical thickness and metabolism became nonsignificant; however, greater deposition of β-amyloid was observed in the right hemisphere including temporoparietal cortex, postcentral gyrus, fusiform inferior and middle temporal and lingual gyri. If replicated, the present observations of morphological, metabolic, and amyloid changes in cognitively normal persons with family history of LOAD may bear important implications for the definition of very early phenotypes of this disorder.
Collapse
|
19
|
Walters MJ, Sterling J, Quinn C, Ganzer C, Osorio RS, Andrews RD, Matthews DC, Vallabhajosula S, de Leon MJ, Isaacson RS, Mosconi L. Associations of lifestyle and vascular risk factors with Alzheimer's brain biomarker changes during middle age: a 3-year longitudinal study in the broader New York City area. BMJ Open 2018; 8:e023664. [PMID: 30478117 PMCID: PMC6254410 DOI: 10.1136/bmjopen-2018-023664] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To investigate the associations between lifestyle and vascular risk factors and changes in Alzheimer's disease (AD) biomarkers (beta-amyloid load via 11C-PiB PET, glucose metabolism via 18F-FDG PET and neurodegeneration via structural MRI) and global cognition in middle-aged asymptomatic participants at risk for AD. DESIGN Prospective, longitudinal. SETTING The study was conducted at New York University Langone/Weill Cornell Medical Centres in New York City. PARTICIPANTS Seventy cognitively normal participants from multiple community sources, aged 30-60 years with lifestyle measures (diet, intellectual activity and physical activity), vascular risk measures and two imaging biomarkers visits over at least 2 years, were included in the study. OUTCOME MEASURES We examined MRI-based cortical thickness, fluoro-deoxy-glucose (FDG) glucose metabolism and PiB beta-amyloid in AD-vulnerable regions. A global cognitive z-score served as our summary cognition measure. We used regression change models to investigate the associations of clinical, lifestyle and vascular risk measures with changes in AD biomarkers and global cognition. RESULTS Diet influenced changes in glucose metabolism, but not amyloid or cortical thickness changes. With and without accounting for demographic measures, vascular risk and baseline FDG measures, lower adherence to a Mediterranean-style diet was associated with faster rates of FDG decline in the posterior cingulate cortex (p≤0.05) and marginally in the frontal cortex (p=0.07). None of the other lifestyle variables or vascular measures showed associations with AD biomarker changes. Higher baseline plasma homocysteine was associated with faster rates of decline in global cognition, with and without accounting for lifestyle and biomarker measures (p=0.048). None of the lifestyle variables were associated with cognition. CONCLUSIONS Diet influenced brain glucose metabolism in middle-aged participants, while plasma homocysteine explained variability in cognitive performance. These findings suggest that these modifiable risk factors affect AD risk through different pathways and support further investigation of risk reduction strategies in midlife.
Collapse
Affiliation(s)
| | - Joanna Sterling
- Department of Psychology, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Crystal Quinn
- Department of Psychiatry, New York University School of Medicine, New York, USA
- The Graduate Center, City University of New York, New York, USA
| | - Christine Ganzer
- Hunter-Bellevue School of Nursing, Hunter College, New York, USA
| | - Ricardo S Osorio
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | | | | | | | - Mony J de Leon
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | | | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, USA
- Department of Nutrition and Food Studies, New York University Steinhardt School of Culture, Education, and Human Development, New York, USA
| |
Collapse
|
20
|
Synergistic interaction between APOE and family history of Alzheimer's disease on cerebral amyloid deposition and glucose metabolism. ALZHEIMERS RESEARCH & THERAPY 2018; 10:84. [PMID: 30134963 PMCID: PMC6106945 DOI: 10.1186/s13195-018-0411-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Background Recently, the field of gene-gene or gene-environment interaction research appears to have gained growing interest, although it is seldom investigated in Alzheimer’s disease (AD). Hence, the current study aims to investigate interaction effects of the key genetic and environmental risks—the apolipoprotein ε4 allele (APOE4) and family history of late-onset AD (FH)—on AD-related brain changes in cognitively normal (CN) middle-aged and older adults. Methods [11C] Pittsburg compound-B (PiB) positron emission tomography (PET) imaging as well as [18F] fluoro-2-deoxyglucose (FDG) PET that were simultaneously taken with T1-weighted magnetic resonance imaging (MRI) were obtained from 268 CNs from the Korean Brain Aging Study for Early Diagnosis and Prediction of AD (KBASE). Composite standardized uptake value ratios were obtained from PiB-PET and FDG-PET images in the AD signature regions of interests (ROIs) and analyzed. Voxel-wise analyses were also performed to examine detailed regional changes not captured by the ROI analyses. Results A significant synergistic interaction effect was found between the APOE4 and FH on amyloid-beta (Aβ) deposition in the AD signature ROIs as well as other regions. Synergistic interaction effects on cerebral glucose metabolism were observed in the regions not captured by the AD signature ROIs, particularly in the medial temporal regions. Conclusions Strong synergistic effects of APOE4 and FH on Aβ deposition and cerebral glucose metabolism in CN adults indicate possible gene-to-gene or gene-to-environment interactions that are crucial for pathogenesis of AD involving Aβ. Other unspecified risk factors—genes and/or environmental—that are captured by the positive FH status might either coexpress or interact with APOE4 to alter AD-related brain changes in CN. Healthy people with both FH and APOE4 need more attention for AD prevention. Electronic supplementary material The online version of this article (10.1186/s13195-018-0411-x) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
22
|
Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R, Matthews DC, Osorio RS, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ, Mosconi L. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 2018; 90:e1789-e1798. [PMID: 29653991 DOI: 10.1212/wnl.0000000000005527] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To examine in a 3-year brain imaging study the effects of higher vs lower adherence to a Mediterranean-style diet (MeDi) on Alzheimer disease (AD) biomarker changes (brain β-amyloid load via 11C-Pittsburgh compound B [PiB] PET and neurodegeneration via 18F-fluorodeoxyglucose [FDG] PET and structural MRI) in midlife. METHODS Seventy 30- to 60-year-old cognitively normal participants with clinical, neuropsychological, and dietary examinations and imaging biomarkers at least 2 years apart were examined. These included 34 participants with higher (MeDi+) and 36 with lower (MeDi-) MeDi adherence. Statistical parametric mapping and volumes of interest were used to compare AD biomarkers between groups at cross section and longitudinally. RESULTS MeDi groups were comparable for clinical and neuropsychological measures. At baseline, compared to the MeDi+ group, the MeDi- group showed reduced FDG-PET glucose metabolism (CMRglc) and higher PiB-PET deposition in AD-affected regions (p < 0.001). Longitudinally, the MeDi--group showed CMRglc declines and PiB increases in these regions, which were greater than those in the MeDi+ group (pinteraction < 0.001). No effects were observed on MRI. Higher MeDi adherence was estimated to provide 1.5 to 3.5 years of protection against AD. CONCLUSION Lower MeDi adherence was associated with progressive AD biomarker abnormalities in middle-aged adults. These data support further investigation of dietary interventions for protection against brain aging and AD.
Collapse
Affiliation(s)
- Valentina Berti
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Michelle Walters
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Joanna Sterling
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Crystal G Quinn
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Michelle Logue
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Randolph Andrews
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Dawn C Matthews
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Ricardo S Osorio
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Alberto Pupi
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Shankar Vallabhajosula
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Richard S Isaacson
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Mony J de Leon
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY
| | - Lisa Mosconi
- From the Department of Clinical Pathophysiology (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Department of Nutrition and Food Studies (M.W., L.M.), New York University Steinhardt School of Culture, Education, and Human Development, NY; Woodrow Wilson School of Public and International Affairs (J.S.), Department of Psychology, Princeton University, NJ; Department of Psychiatry (C.G.Q., M.L., R.S.O., L.M.), New York University School of Medicine, NY; ADM Diagnostics (R.A., D.C.M., M.J.d.L.), Chicago, IL; and Departments of Radiology (S.V.) and Neurology (R.S.I., L.M.), Weill Cornell Medical Center/NewYork-Presbyterian, NY.
| |
Collapse
|
23
|
Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Osorio RS, Connaughty C, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ, Swerdlow RH, Brinton RD. Perimenopause and emergence of an Alzheimer's bioenergetic phenotype in brain and periphery. PLoS One 2017; 12:e0185926. [PMID: 29016679 PMCID: PMC5634623 DOI: 10.1371/journal.pone.0185926] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/21/2017] [Indexed: 01/07/2023] Open
Abstract
After advanced age, female sex is the major risk factor for Alzheimer’s disease (AD). The biological mechanisms underlying the increased AD risk in women remain largely undetermined. Preclinical studies identified the perimenopause to menopause transition, a neuroendocrine transition state unique to the female, as a sex-specific risk factor for AD. In animals, estrogenic regulation of cerebral glucose metabolism (CMRglc) falters during perimenopause. This is evident in glucose hypometabolism and decline in mitochondrial efficiency which is sustained thereafter. This study bridges basic to clinical science to characterize brain bioenergetics in a cohort of forty-three, 40–60 year-old clinically and cognitively normal women at different endocrine transition stages including premenopause (controls, CNT, n = 15), perimenopause (PERI, n = 14) and postmenopause (MENO, n = 14). All participants received clinical, laboratory and neuropsychological examinations, 18F-fluoro-deoxyglucose (FDG)-Positron Emission Tomography (PET) FDG-PET scans to estimate CMRglc, and platelet mitochondrial cytochrome oxidase (COX) activity measures. Statistical parametric mapping and multiple regression models were used to examine clinical, CMRglc and COX data across groups. As expected, the MENO group was older than PERI and controls. Groups were otherwise comparable for clinical measures and distribution of APOE4 genotype. Both MENO and PERI groups exhibited reduced CMRglc in AD-vulnerable regions which was correlated with decline in mitochondrial COX activity compared to CNT (p’s<0.001). A gradient in biomarker abnormalities was most pronounced in MENO, intermediate in PERI, and lowest in CNT (p<0.001). Biomarkers correlated with immediate and delayed memory scores (Pearson’s 0.26≤r≤0.32, p≤0.05). These findings validate earlier preclinical findings and indicate emergence of bioenergetic deficits in perimenopausal and postmenopausal women, suggesting that the optimal window of opportunity for therapeutic intervention in women is early in the endocrine aging process.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Valentina Berti
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Crystal Quinn
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Pauline McHugh
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Gabriella Petrongolo
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Ricardo S Osorio
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Christopher Connaughty
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Alberto Pupi
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Shankar Vallabhajosula
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States of America
| | - Richard S Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
| | - Mony J de Leon
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, United States of America
| | - Roberta Diaz Brinton
- Departments of Pharmacology and Neurology, University of Arizona College of Medicine, Tucson, AZ, United States of America
| |
Collapse
|
24
|
Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Varsavsky I, Osorio RS, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ, Brinton RD. Sex differences in Alzheimer risk: Brain imaging of endocrine vs chronologic aging. Neurology 2017; 89:1382-1390. [PMID: 28855400 DOI: 10.1212/wnl.0000000000004425] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This observational multimodality brain imaging study investigates emergence of endophenotypes of late-onset Alzheimer disease (AD) risk during endocrine transition states in a cohort of clinically and cognitively normal women and age-matched men. METHODS Forty-two 40- to 60-year-old cognitively normal women (15 asymptomatic perimenopausal by age [CNT], 13 perimenopausal [PERI], and 14 postmenopausal [MENO]) and 18 age- and education-matched men were examined. All patients had volumetric MRI, 18F-fluoro-2-deoxyglucose (FDG)-PET (glucose metabolism), and Pittsburgh compound B-PET scans (β-amyloid [Aβ] deposition, a hallmark of AD pathology). RESULTS As expected, the MENO group was older than the PERI and CNT groups. Otherwise, groups were comparable on clinical and neuropsychological measures and APOE4 distribution. Compared to CNT women and to men, and controlling for age, PERI and MENO groups exhibited increased indicators of AD endophenotype, including hypometabolism, increased Aβ deposition, and reduced gray and white matter volumes in AD-vulnerable regions (p < 0.001). AD biomarker abnormalities were greatest in MENO, intermediate in PERI, and lowest in CNT women (p < 0.001). Aβ deposition was exacerbated in APOE4-positive MENO women relative to the other groups (p < 0.001). CONCLUSIONS Multimodality brain imaging indicates sex differences in development of the AD endophenotype, suggesting that the preclinical AD phase is early in the female aging process and coincides with the endocrine transition of perimenopause. These data indicate that the optimal window of opportunity for therapeutic intervention in women is early in the endocrine aging process.
Collapse
Affiliation(s)
- Lisa Mosconi
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles.
| | - Valentina Berti
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Crystal Quinn
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Pauline McHugh
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Gabriella Petrongolo
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Isabella Varsavsky
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Ricardo S Osorio
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Alberto Pupi
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Shankar Vallabhajosula
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Richard S Isaacson
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Mony J de Leon
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| | - Roberta Diaz Brinton
- From the Departments of Neurology (L.M., R.S.I.) and Radiology (S.V.), Weill Cornell Medical College; Department of Psychiatry (L.M., C.Q., P.M., G.P., I.V., R.S.O., M.J.d.L.), New York University School of Medicine, New York; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (V.B., A.P.), Nuclear Medicine Unit, University of Florence, Italy; Departments of Pharmacology and Neurology (R.D.B.), College of Medicine, University of Arizona, Tucson; and Departments of Pharmacology, Biomedical Engineering, and Neurology (R.D.B.), University of South California, Los Angeles
| |
Collapse
|
25
|
Mak E, Gabel S, Mirette H, Su L, Williams GB, Waldman A, Wells K, Ritchie K, Ritchie C, O’Brien J. Structural neuroimaging in preclinical dementia: From microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Res Rev 2017; 35:250-264. [PMID: 27777039 DOI: 10.1016/j.arr.2016.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/26/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
The last decade has witnessed a proliferation of neuroimaging studies characterising brain changes associated with Alzheimer's disease (AD), where both widespread atrophy and 'signature' brain regions have been implicated. In parallel, a prolonged latency period has been established in AD, with abnormal cerebral changes beginning many years before symptom onset. This raises the possibility of early therapeutic intervention, even before symptoms, when treatments could have the greatest effect on disease-course modification. Two important prerequisites of this endeavour are (1) accurate characterisation or risk stratification and (2) monitoring of progression using neuroimaging outcomes as a surrogate biomarker in those without symptoms but who will develop AD, here referred to as preclinical AD. Structural neuroimaging modalities have been used to identify brain changes related to risk factors for AD, such as familial genetic mutations, risk genes (for example apolipoprotein epsilon-4 allele), and/or family history. In this review, we summarise structural imaging findings in preclinical AD. Overall, the literature suggests early vulnerability in characteristic regions, such as the medial temporal lobe structures and the precuneus, as well as white matter tracts in the fornix, cingulum and corpus callosum. We conclude that while structural markers are promising, more research and validation studies are needed before future secondary prevention trials can adopt structural imaging biomarkers as either stratification or surrogate biomarkers.
Collapse
|
26
|
Del Sole A, Malaspina S, Magenta Biasina A. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. FUNCTIONAL NEUROLOGY 2017; 31:205-215. [PMID: 28072381 DOI: 10.11138/fneur/2016.31.4.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuroimaging, both with magnetic resonance imaging (MRI) and positron emission tomography (PET), has gained a pivotal role in the diagnosis of primary neurodegenerative diseases. These two techniques are used as biomarkers of both pathology and progression of Alzheimer's disease (AD) and to differentiate AD from other neurodegenerative diseases. MRI is able to identify structural changes including patterns of atrophy characterizing neurodegenerative diseases, and to distinguish these from other causes of cognitive impairment, e.g. infarcts, space-occupying lesions and hydrocephalus. PET is widely used to identify regional patterns of glucose utilization, since distinct patterns of distribution of cerebral glucose metabolism are related to different subtypes of neurodegenerative dementia. The use of PET in mild cognitive impairment, though controversial, is deemed helpful for predicting conversion to dementia and the dementia clinical subtype. Recently, new radiopharmaceuticals for the in vivo imaging of amyloid burden have been licensed and more tracers are being developed for the assessment of tauopathies and inflammatory processes, which may underlie the onset of the amyloid cascade. At present, the cerebral amyloid burden, imaged with PET, may help to exclude the presence of AD as well as forecast its possible onset. Finally PET imaging may be particularly useful in ongoing clinical trials for the development of dementia treatments. In the near future, the use of the above methods, in accordance with specific guidelines, along with the use of effective treatments will likely lead to more timely and successful treatment of neurodegenerative dementias.
Collapse
|
27
|
Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mech Ageing Dev 2017; 161:95-104. [DOI: 10.1016/j.mad.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023]
|
28
|
Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 2016; 30:73-84. [PMID: 26876244 DOI: 10.1016/j.arr.2016.02.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
The purpose of this article is to present a selective and concise summary of fluorodeoxyglucose (FDG) positron emission tomography (PET) in dementia imaging. FDG PET is used to visualize a downstream topographical marker that indicates the distribution of neural injury or synaptic dysfunction, and can identify distinct phenotypes of dementia due to Alzheimer's disease (AD), Lewy bodies, and frontotemporal lobar degeneration. AD dementia shows hypometabolism in the parietotemporal association area, posterior cingulate, and precuneus. Hypometabolism in the inferior parietal lobe and posterior cingulate/precuneus is a predictor of cognitive decline from mild cognitive impairment (MCI) to AD dementia. FDG PET may also predict conversion of cognitively normal individuals to those with MCI. Age-related hypometabolism is observed mainly in the anterior cingulate and anterior temporal lobe, along with regional atrophy. Voxel-based statistical analyses, such as statistical parametric mapping or three-dimensional stereotactic surface projection, improve the diagnostic performance of imaging of dementias. The potential of FDG PET in future clinical and methodological studies should be exploited further.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan; Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Japan.
| | - Yoshitaka Inui
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan; Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Japan; Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Japan
| |
Collapse
|
29
|
Maye JE, Betensky RA, Gidicsin CM, Locascio J, Becker JA, Pepin L, Carmasin J, Rentz DM, Marshall GA, Blacker D, Sperling RA, Johnson KA. Maternal dementia age at onset in relation to amyloid burden in non-demented elderly offspring. Neurobiol Aging 2016; 40:61-67. [PMID: 26973104 PMCID: PMC4792089 DOI: 10.1016/j.neurobiolaging.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023]
Abstract
Family history (FH) of dementia is a major risk factor for Alzheimer's disease, particularly when the FH is maternal and when the age of dementia onset (AO) is younger. This study tested whether brain amyloid-beta deposition, measured in vivo with (11)C-Pittsburgh compound B (PiB), was associated with parental dementia and/or younger parental AO. Detailed FH and positron emission tomography (PiB) data were acquired in 147 nondemented aging individuals (mean age 75 ± 8). No participant had both positive maternal and paternal FH. A series of analyses revealed that those with maternal, but not paternal, FH had greater levels of PiB retention in a global cortical region than those without FH. PiB retention in maternal FH was not significantly greater than paternal FH. Younger maternal dementia AO was related to greater PiB retention in offspring, whereas younger paternal dementia AO was not. Overall, results suggest that not only is amyloid-beta burden greater in individuals with maternal FH, but also that the burden is greater in association with younger maternal AO.
Collapse
Affiliation(s)
- Jacqueline E Maye
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christopher M Gidicsin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Locascio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J Alex Becker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lesley Pepin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremy Carmasin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gad A Marshall
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Self-awareness in Mild Cognitive Impairment: Quantitative evidence from systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 61:90-107. [DOI: 10.1016/j.neubiorev.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022]
|
31
|
Willette AA, Bendlin BB, Starks EJ, Birdsill AC, Johnson SC, Christian BT, Okonkwo OC, La Rue A, Hermann BP, Koscik RL, Jonaitis EM, Sager MA, Asthana S. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease. JAMA Neurol 2015. [PMID: 26214150 DOI: 10.1001/jamaneurol.2015.0613] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE Converging evidence suggests that Alzheimer disease (AD) involves insulin signaling impairment. Patients with AD and individuals at risk for AD show reduced glucose metabolism, as indexed by fludeoxyglucose F 18-labeled positron emission tomography (FDG-PET). OBJECTIVES To determine whether insulin resistance predicts AD-like global and regional glucose metabolism deficits in late middle-aged participants at risk for AD and to examine whether insulin resistance-predicted variation in regional glucose metabolism is associated with worse cognitive performance. DESIGN, SETTING, AND PARTICIPANTS This population-based, cross-sectional study included 150 cognitively normal, late middle-aged (mean [SD] age, 60.7 [5.8] years) adults from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study, a general community sample enriched for AD parental history. Participants underwent cognitive testing, fasting blood draw, and FDG-PET at baseline. We used the homeostatic model assessment of peripheral insulin resistance (HOMA-IR). Regression analysis tested the statistical effect of HOMA-IR on global glucose metabolism. We used a voxelwise analysis to determine whether HOMA-IR predicted regional glucose metabolism. Finally, predicted variation in regional glucose metabolism was regressed against cognitive factors. Covariates included age, sex, body mass index, apolipoprotein E ε4 genotype, AD parental history status, and a reference region used to normalize regional uptake. MAIN OUTCOMES AND MEASURES Regional glucose uptake determined using FDG-PET and neuropsychological factors. RESULTS Higher HOMA-IR was associated with lower global glucose metabolism (β = -0.29; P < .01) and lower regional glucose metabolism across large portions of the frontal, lateral parietal, lateral temporal, and medial temporal lobes (P < .05, familywise error corrected). The association was especially robust in the left medial temporal lobe (R2 = 0.178). Lower glucose metabolism in the left medial temporal lobe predicted by HOMA-IR was significantly related to worse performance on the immediate memory (β = 0.317; t148 = 4.08; P < .001) and delayed memory (β = 0.305; t148 = 3.895; P < .001) factor scores. CONCLUSIONS AND RELEVANCE Our results show that insulin resistance, a prevalent and increasingly common condition in developed countries, is associated with significantly lower regional cerebral glucose metabolism, which in turn may predict worse memory performance. Midlife may be a critical period for initiating treatments to lower peripheral insulin resistance to maintain neural metabolism and cognitive function.
Collapse
Affiliation(s)
- Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames2Neuroscience Interdepartmental Program, Iowa State University, Ames
| | - Barbara B Bendlin
- Clinical Science Center, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison4Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Erika J Starks
- Clinical Science Center, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison
| | - Alex C Birdsill
- Clinical Science Center, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison
| | - Sterling C Johnson
- Clinical Science Center, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison4Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison5Geriatric
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Ozioma C Okonkwo
- Clinical Science Center, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison4Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Asenath La Rue
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Bruce P Hermann
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Mark A Sager
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Sanjay Asthana
- Clinical Science Center, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison5Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisco
| |
Collapse
|
32
|
Ten Kate M, Sanz-Arigita EJ, Tijms BM, Wink AM, Clerigue M, Garcia-Sebastian M, Izagirre A, Ecay-Torres M, Estanga A, Villanua J, Vrenken H, Visser PJ, Martinez-Lage P, Barkhof F. Impact of APOE-ɛ4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. Neurobiol Aging 2015; 38:14-20. [PMID: 26827639 DOI: 10.1016/j.neurobiolaging.2015.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
The apolipoprotein E ε4 allele (APOE4) and family history of dementia (FH) are well-known risk factors for the development of sporadic Alzheimer's disease. We assessed the effects of these risk factors on gray matter (GM) volume in 295 cognitively healthy middle-aged community-dwelling subjects. Voxel-based morphometry was used to study GM volume differences between high- and low-risk subjects, based on APOE4 carriership (n = 74), first-degree FH (n = 228), or both (n = 62). No significant results were found using a corrected p value. Using a more lenient threshold (p < 0.001 and minimum cluster size of 100 voxels), APOE4 carriers had reduced GM in the striatum compared to noncarriers. Subjects with FH had reduced GM in right precuneus compared to subjects without FH. Maternal and paternal FH provided similar atrophy patterns. APOE4 carriers with FH had GM reductions in bilateral insula compared to subjects with neither APOE4 nor FH. We conclude that a family history of dementia and APOE4 carriership are both associated with regional GM decreases in cognitively healthy middle-aged subjects, with differential effects on brain regions typically affected in Alzheimer's disease.
Collapse
Affiliation(s)
- Mara Ten Kate
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | | | - Betty M Tijms
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | - Andrea Izagirre
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Miriam Ecay-Torres
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Ainara Estanga
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Jorge Villanua
- Neuroimaging Department, CITA-Alzheimer Foundation, San Sebastian, Spain; Donostia Unit, Osatek SA, Donostia Univeristy Hospital, San Sebastian, Spain
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Abstract
Perimenopause is a midlife transition state experienced by women that occurs in the context of a fully functioning neurological system and results in reproductive senescence. Although primarily viewed as a reproductive transition, the symptoms of perimenopause are largely neurological in nature. Neurological symptoms that emerge during perimenopause are indicative of disruption in multiple estrogen-regulated systems (including thermoregulation, sleep, circadian rhythms and sensory processing) and affect multiple domains of cognitive function. Estrogen is a master regulator that functions through a network of estrogen receptors to ensure that the brain effectively responds at rapid, intermediate and long timescales to regulate energy metabolism in the brain via coordinated signalling and transcriptional pathways. The estrogen receptor network becomes uncoupled from the bioenergetic system during the perimenopausal transition and, as a corollary, a hypometabolic state associated with neurological dysfunction can develop. For some women, this hypometabolic state might increase the risk of developing neurodegenerative diseases later in life. The perimenopausal transition might also represent a window of opportunity to prevent age-related neurological diseases. This Review considers the importance of neurological symptoms in perimenopause in the context of their relationship to the network of estrogen receptors that control metabolism in the brain.
Collapse
Affiliation(s)
- Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Fei Yin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
34
|
Kim WH, Adluru N, Chung MK, Okonkwo OC, Johnson SC, B Bendlin B, Singh V. Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease. Neuroimage 2015; 118:103-17. [PMID: 26025289 DOI: 10.1016/j.neuroimage.2015.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 11/28/2022] Open
Abstract
There is significant interest, both from basic and applied research perspectives, in understanding how structural/functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity information as a graph; then, one may perform statistical inference on various 'global' graph theoretic summary measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls) have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs derived from neuroimaging data. At the high level, the method occupies the middle ground between the two contrasts - that is, to analyze global graph summary measures (global) or connectivity strengths or correlations for individual edges similar to voxel based analysis (local). Instead, our strategy derives a Wavelet representation at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a tractography routine. We first present results showing significant connectivity differences between AD patients and controls that were not evident using standard approaches. Later, we show results on populations that are not diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying potentially subtle differences between patient groups. We also give an easy to deploy open source implementation of the algorithm for use within studies of connectivity in AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Won Hwa Kim
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA.
| | | | - Moo K Chung
- Department of Biostatistics & Med. Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ozioma C Okonkwo
- William S. Middleton Veteran's Affairs Hospital, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA
| | - Sterling C Johnson
- William S. Middleton Veteran's Affairs Hospital, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA
| | - Barbara B Bendlin
- William S. Middleton Veteran's Affairs Hospital, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA
| | - Vikas Singh
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics & Med. Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA; Wisconsin Alzheimer's Disease Research Center, Madison, WI 53792, USA.
| |
Collapse
|
35
|
Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134:7-20. [PMID: 25832906 DOI: 10.1111/jnc.13107] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate. Alzheimer's disease is a panglial-neuronal disorder with long-standing brain hypometabolism, aberrations in both neuronal and astrocytic glucose metabolism, inflammation, hyperexcitability, and dementia. Relatively low doses of β-hydroxybutyrate can have an ameliorating effect on cognitive function. This could be because of metabolic supplementation or inhibition of Aβ-induced release of glutamate as gliotransmitter, which is likely to reduce hyperexcitability and inflammation. The therapeutic β-hydroxybutyrate doses are too low to reduce neuronally released glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Abstract
Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase.
Collapse
Affiliation(s)
- Theodore B VanItallie
- Department of Medicine, St. Luke's Hospital, Columbia University College of Physicians & Surgeons, New York, NY 10025.
| |
Collapse
|
37
|
Regional cerebral blood flow estimated by early PiB uptake is reduced in mild cognitive impairment and associated with age in an amyloid-dependent manner. Neurobiol Aging 2015; 36:1619-1628. [PMID: 25702957 DOI: 10.1016/j.neurobiolaging.2014.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022]
Abstract
Early uptake of [(11)C]-Pittsburgh Compound B (ePiB, 0-6 minutes) estimates cerebral blood flow. We studied ePiB in 13 PiB-negative and 10 PiB-positive subjects with mild cognitive impairment (MCI, n = 23) and 11 PiB-positive and 74 PiB-negative cognitively healthy elderly control subjects (HCS, n = 85) in 6 bilateral volumes of interest: posterior cingulate cortex (PCC), hippocampus (hipp), temporoparietal region, superior parietal gyrus, parahippocampal gyrus (parahipp), and inferior frontal gyrus (IFG) for the associations with cognitive status, age, amyloid deposition, and apolipoprotein E ε4-allele. We observed no difference in ePiB between PiB-positive and -negative subjects and carriers and noncarriers. EPiB decreased with age in PiB-positive subjects in bilateral superior parietal gyrus, bilateral temporoparietal region, right IFG, right PCC, and left parahippocampal gyrus but not in PiB-negative subjects. MCI had lower ePiB than HCS (left PCC, left IFG, and left and right hipp). Lowest ePiB values were found in MCI of 70 years and older, who also displayed high cortical PiB binding. This suggests that lowered regional cerebral blood flow indicated by ePiB is associated with age in the presence but not in the absence of amyloid pathology.
Collapse
|
38
|
Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia. NEUROIMAGE-CLINICAL 2014; 7:187-94. [PMID: 25610780 PMCID: PMC4300010 DOI: 10.1016/j.nicl.2014.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/27/2014] [Accepted: 12/01/2014] [Indexed: 12/04/2022]
Abstract
[18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI), supporting the presence or the exclusion of Alzheimer's Disease (AD) pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM) in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months) assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1) normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2) the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3) brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD) subtypes in 7 and dementia with Lewy bodies (DLB) in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up); and 4) 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition. We used an optimized voxel-based single-subject [18F]FDG-PET analysis We showed different hypometabolic patterns (AD and non-AD) underlying MCI condition Heterogeneous PET profiles predicted progression into specific dementia subtypes. Statistical analyses showed high positive and negative post-test probability values. CSF findings agreed with [18F]FDG-PET imaging in single cases.
Collapse
|
39
|
Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, Panzacchi A, Nobili F, Pappatà S, Marcone A, Garibotto V, Castiglioni I, Magnani G, Cappa SF, Gianolli L. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NEUROIMAGE-CLINICAL 2014; 6:445-54. [PMID: 25389519 PMCID: PMC4225527 DOI: 10.1016/j.nicl.2014.10.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/25/2014] [Accepted: 10/18/2014] [Indexed: 01/11/2023]
Abstract
Diagnostic accuracy in FDG-PET imaging highly depends on the operating procedures. In this clinical study on dementia, we compared the diagnostic accuracy at a single-subject level of a) Clinical Scenarios, b) Standard FDG Images and c) Statistical Parametrical (SPM) Maps generated via a new optimized SPM procedure. We evaluated the added value of FDG-PET, either Standard FDG Images or SPM Maps, to Clinical Scenarios. In 88 patients with neurodegenerative diseases (Alzheimer's Disease—AD, Frontotemporal Lobar Degeneration—FTLD, Dementia with Lewy bodies—DLB and Mild Cognitive Impairment—MCI), 9 neuroimaging experts made a forced diagnostic decision on the basis of the evaluation of the three types of information. There was also the possibility of a decision of normality on the FDG-PET images. The clinical diagnosis confirmed at a long-term follow-up was used as the gold standard. SPM Maps showed higher sensitivity and specificity (96% and 84%), and better diagnostic positive (6.8) and negative (0.05) likelihood ratios compared to Clinical Scenarios and Standard FDG Images. SPM Maps increased diagnostic accuracy for differential diagnosis (AD vs. FTD; beta 1.414, p = 0.019). The AUC of the ROC curve was 0.67 for SPM Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images. In the MCI group, SPM Maps showed the highest predictive prognostic value (mean LOC = 2.46), by identifying either normal brain metabolism (exclusionary role) or hypometabolic patterns typical of different neurodegenerative conditions. Brain FDG-PET was evaluated with a new optimized SPM procedure in dementias. We compared the diagnostic accuracy of clinical information, visual and SPM FDG-PET. SPM had the best sensitivity (96%), specificity (84%) and positive and negative LR. In an MCI subgroup, SPM had the highest predictive prognostic value.
Collapse
Affiliation(s)
- Daniela Perani
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
- Istituto di Bioimmagini e Fisiologia Molecolare, CNR, Segrate, Italy
- Corresponding author: Vita-Salute San Raffaele University, Nuclear Medicine Department, San Raffaele Hospital, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy. Tel: +39 02 26432224 or 26432223; fax: +39 02 26415202.
| | | | - Chiara Cerami
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Clinical Neurosciences Department, San Raffaele Hospital, Milan, Italy
| | | | | | | | | | - Flavio Nobili
- Dept of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy
| | | | | | | | | | - Stefano F. Cappa
- Clinical Neurosciences Department, San Raffaele Hospital, Milan, Italy
- Istituto Universitario degli Studi Superiori, Pavia, Italy
| | - Luigi Gianolli
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
40
|
|
41
|
Cohen AD, Klunk WE. Early detection of Alzheimer's disease using PiB and FDG PET. Neurobiol Dis 2014; 72 Pt A:117-22. [PMID: 24825318 DOI: 10.1016/j.nbd.2014.05.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/16/2022] Open
Abstract
Use of biomarkers in the detection of early and preclinical Alzheimer's disease (AD) has become of central importance following publication of the NIA-Alzheimer's Association revised criteria for the diagnosis of AD, mild cognitive impairment (MCI) and preclinical AD. The use of in vivo amyloid imaging agents, such a Pittsburgh Compound-B and markers of neurodegeneration, such as fluoro-2-deoxy-D-glucose (FDG) is able to detect early AD pathological processes and subsequent neurodegeneration. Imaging with PiB and FDG thus has many potential clinical benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from dementias of other etiologies in patients presenting with mild or atypical symptoms or confounding comorbidities in which the diagnostic distinction is difficult to make clinically. From a research perspective, this allows us to study relationships between amyloid pathology and changes in cognition, brain structure, and function across the continuum from normal aging to MCI to AD. The present review focuses on use of PiB and FDG-PET and their relationship to one another.
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA.
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Neurology, University of Pittsburgh School of Medicine, USA
| |
Collapse
|
42
|
Matthews DC, Davies M, Murray J, Williams S, Tsui WH, Li Y, Andrews RD, Lukic A, McHugh P, Vallabhajosula S, de Leon MJ, Mosconi L. Physical Activity, Mediterranean Diet and Biomarkers-Assessed Risk of Alzheimer's: A Multi-Modality Brain Imaging Study. ACTA ACUST UNITED AC 2014; 4:43-57. [PMID: 25599008 PMCID: PMC4294269 DOI: 10.4236/ami.2014.44006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased physical activity and higher adherence to a Mediterranean-type diet (MeDi) have been independently associated with reduced risk of Alzheimer's disease (AD). Their association has not been investigated with the use of biomarkers. This study examines whether, among cognitively normal (NL) individuals, those who are less physically active and show lower MeDi adherence have brain biomarker abnormalities consistent with AD. METHODS Forty-five NL individuals (age 54 ± 11, 71% women) with complete leisure time physical activity (LTA), dietary information, and cross-sectional 3D T1-weigthed MRI, 11C-Pittsburgh Compound B (PiB) and 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) scans were examined. Voxel-wise multivariate partial least square (PLS) regression was used to examine the effects of LTA, MeDi and their interaction on brain biomarkers. Age, gender, ethnicity, education, caloric intake, BMI, family history of AD, Apolipoprotein E (APOE) genotype, presence of hypertension and insulin resistance were examined as confounds. Subjects were dichotomized into more and less physically active (LTA+ vs. LTA-; n = 21 vs. 24), and into higher vs. lower MeDi adherence groups (n = 18 vs. 27) using published scoring methods. Spatial patterns of brain biomarkers that represented the optimal association between the images and the groups were generated for all modalities using voxel-wise multivariate Partial Least Squares (PLS) regression. RESULTS Groups were comparable for clinical and neuropsychological measures. Independent effects of LTA and MeDi factors were observed in AD-vulnerable brain regions for all modalities (p < 0.001). Increased AD-burden (in particular higher Aβ load and lower glucose metabolism) were observed in LTA- compared to LTA+ subjects, and in MeDi- as compared to MeDi+ subjects. A gradient effect was observed for all modalities so that LTA-/MeDi- subjects had the highest and LTA+/MeDi+ subjects had the lowest AD-burden (p < 0.001), although the LTA × MeDi interaction was significant only for FDG measures (p < 0.03). Adjusting for covariates did not attenuate these relationships. CONCLUSION Lower physical activity and MeDi adherence were associated with increased brain AD-burden among NL individuals, indicating that lifestyle factors may modulate AD risk. Studies with larger samples and longitudinal evaluations are needed to determine the predictive power of the observed associations.
Collapse
Affiliation(s)
| | - Michelle Davies
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - John Murray
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Schantel Williams
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Wai H Tsui
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Yi Li
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | | | | | - Pauline McHugh
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | | | - Mony J de Leon
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Lisa Mosconi
- Department of Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|