1
|
Li Z, Miao L, Zhang T, Thomas AM, Li S. Causal relationship of inflammatory cytokines and serum metabolites in cerebral small vessel disease: a two-step Mendelian randomization study. Eur J Neurol 2024; 31:e16443. [PMID: 39150083 DOI: 10.1111/ene.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate the causal relationships of inflammatory cytokines and serum metabolites in cerebral small vessel disease (CSVD). METHODS Bidirectional Mendelian randomization was first conducted to screen inflammatory cytokines and serum metabolites that were associated with imaging features of CSVD, including white matter hyperintensities, recent small subcortical infarcts, cortical cerebral microinfarcts, cerebral microbleeds, lacunes and enlarged perivascular spaces. Sensitivity analyses were performed to evaluate the robustness and pleiotropy of these results. Subsequently, inflammatory cytokines and serum metabolites that were associated with CSVD were subjected to functional enrichment. Finally, mediation analysis was employed to investigate whether inflammatory cytokines or serum metabolites acted as an intermediary for the other in their causal relationship with CSVD. RESULTS Of the inflammatory cytokines, five were risk factors (e.g., tumour-necrosis-factor-related apoptosis-inducing ligand) and five (e.g., fibroblast growth factor 19) were protective factors for CSVD. Eleven serum metabolites that increased CSVD risk and 13 metabolites that decreased CSVD risk were also identified. The majority of these markers of CSVD susceptibility were lipid metabolites. Natural killer cell receptor sub-type 2B4 was determined to act as a mediating factor of an unidentified metabolite for the enlargement of perivascular spaces. CONCLUSION Several inflammatory cytokines and serum metabolites had causal relationships with imaging features of CSVD. A natural killer cell receptor mediated in part the promotional effect of a metabolite on perivascular space enlargement.
Collapse
Affiliation(s)
- Zidong Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu Miao
- Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tianyi Zhang
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Aline M Thomas
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Lu WM, Ji HN, Yang RH, Cheng KL, Yang XL, Zeng HL, Tao K, Yin DM, Wu DH. A rat model of cerebral small vascular disease induced by ultrasound and protoporphyrin. Biochem Biophys Res Commun 2024; 735:150451. [PMID: 39094233 DOI: 10.1016/j.bbrc.2024.150451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Cerebral small vascular disease (CSVD) has a high incidence worldwide, but its pathological mechanisms remain poorly understood due to the lack of proper animal models. The current animal models of CSVD have several limitations such as high mortality rates and large-sized lesions, and thus it is urgent to develop new animal models of CSVD. Ultrasound can activate protoporphyrin to produce reactive oxygen species in a liquid environment. Here we delivered protoporphyrin into cerebral small vessels of rat brain through polystyrene microspheres with a diameter of 15 μm, and then performed transcranial ultrasound stimulation (TUS) on the model rats. We found that TUS did not affect the large vessels or cause large infarctions in the brain of model rats. The mortality rates were also comparable between the sham and model rats. Strikingly, TUS induced several CSVD-like phenotypes such as cerebral microinfarction, white matter injuries and impaired integrity of endothelial cells in the model rats. Additionally, these effects could be alleviated by antioxidant treatment with N-acetylcysteine (NAC). As control experiments, TUS did not lead to cerebral microinfarction in the rat brain when injected with the polystyrene microspheres not conjugated with protoporphyrin. In sum, we generated a rat model of CSVD that may be useful for the mechanistic study and drug development for CSVD.
Collapse
Affiliation(s)
- Wen-Mei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China
| | - Hao-Nan Ji
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China
| | - Rui-Hao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Li Cheng
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Li Yang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hu-Lie Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China.
| | - Dan-Hong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Chen JL, Wang R, Ma PQ, Wang YM, Tang QQ. Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease. World J Psychiatry 2024; 14:1661-1670. [DOI: 10.5498/wjp.v14.i11.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease. A clear understanding of the underlying causes of CSVD remains elusive.
AIM To explore the association between intercellular adhesion molecule-1 (ICAM-1) and blood-brain barrier (BBB) penetration in CSVD.
METHODS This study included patients admitted to Fuyang People’s Hospital and Fuyang Community (Anhui, China) between December 2021 and March 2022. The study population comprised 142 patients, including 80 in the CSVD group and 62 in the control group. Depression was present in 53 out of 80 patients with CSVD. Multisequence magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume, cortical thickness, and cortical area of each brain region. Moreover, neuropsychological tests including the Hamilton depression scale, mini-mental state examination, and Montreal cognitive assessment basic scores were performed.
RESULTS The multivariable analysis showed that age [P = 0.011; odds ratio (OR) = 0.930, 95% confidence interval (CI): 0.880-0.983] and ICAM-1 levels (P = 0.023; OR = 1.007, 95%CI: 1.001-1.013) were associated with CSVD. Two regions of interest (ROIs; ROI3 and ROI4) in the white matter showed significant (both P < 0.001; 95%CI: 0.419-0.837 and 0.366-0.878) differences between the two groups, whereas only ROI1 in the gray matter showed significant difference (P = 0.046; 95%CI: 0.007-0.680) between the two groups. ICAM-1 was significantly correlated (all P < 0.05) with cortical thickness in multiple brain regions in the CSVD group.
CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD. ICAM-1 may be associated with cortical thickness in the brain, predominantly in the white matter, and a significant increase in BBB permeability, proposing the involvement of ICAM-1 in BBB destruction.
Collapse
Affiliation(s)
- Ju-Luo Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Rui Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Pei-Qi Ma
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - You-Meng Wang
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Qi-Qiang Tang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
5
|
Zhang Y, Zhang R, Hong H, Wang S, Xie L, Cui L, Li J, Hong L, Li K, Zeng Q, Zhou Y, Zhang M, Sun J, Huang P. An Investigation of Cerebral Vascular Functional Properties in Middle-to-Old Age Community People With High Vascular Risk Profiles. J Magn Reson Imaging 2024; 60:2020-2029. [PMID: 38329184 DOI: 10.1002/jmri.29278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Vascular degeneration is an important cause of brain damage in aging. Assessing the functional properties of the cerebral vascular system may aid early diagnosis and prevention. PURPOSE To investigate the relationships between potential vascular functional markers and vascular risks, brain parenchymal damage, and cognition. STUDY TYPE Retrospective. SUBJECTS Two hundred two general community subjects (42-80 years, males/females: 127/75). FIELD STRENGTH/SEQUENCE 3 T, spin echo T1W/T2W/FLAIR, resting-state functional MRI with an echo-planar sequence (rsfMRI), pseudo-continuous arterial spin labeling (pCASL) with a three-dimensional gradient-spin echo sequence. ASSESSMENT Cerebral blood flow (CBF) in gray matter calculated using pCASL, blood transit times calculated using rsfMRI, and the SD of internal carotid arteries signal (ICAstd) calculated using rsfMRI; visual assessment for lacunes; quantification of white matter hyperintensity volume; permutation test for quality control; collection of demographic and clinical data, Montreal Cognitive Assessment, Mini-Mental State Examination. STATISTICAL TESTS Kolmogorov-Smirnov test; Spearman rank correlation analysis; Multivariable linear regression analysis controlling for covariates; The level of statistical significance was set at P < 0.05. RESULTS Age was negatively associated with ICAstd (β = -0.180). Diabetes was associated with longer blood transit time from large arteries to capillary bed (β = 0.185, adjusted for age, sex, and intracranial volume). Larger ICAstd was associated with less presence of lacunes (odds ratio: 0.418, adjusted for age and sex). Higher gray matter CBF (β = 0.154) and larger ICAstd (β = 0.136) were associated with better MoCA scores (adjusted for age, sex, and education). DATA CONCLUSION Prolonged blood transit time, decreased ICAstd, and diminished CBF were associated with vascular dysfunction and cognitive impairment. They may serve as vascular functional markers in future studies. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wiersinga JHI, Diab HM, Peters MJL, Trappenburg MC, Rhodius-Meester HFM, Muller M. Cerebral small vessel disease and its relationship with all-cause mortality risk: Results from the Amsterdam Ageing cohort. Arch Gerontol Geriatr 2024; 129:105669. [PMID: 39481219 DOI: 10.1016/j.archger.2024.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Cerebral Small-Vessel Disease (CSVD) is a complex condition affecting the brain's vascular network, linked to cognitive and physical decline, cerebrovascular disease, and death. This study assesses the relationship between CSVD (composite and individual features) and all-cause mortality in a large cohort of geriatric outpatients. METHODS Data from 1305 geriatric outpatients (mean age 78 ± 7; 51 % female) in the Amsterdam Ageing cohort were analysed. CSVD presence was based on brain imaging (MRI or CT), defined by a Fazekas score ≥ 2, presence of ≥1 lacunes, or (in MRI) ≥ 3 microbleeds. Mortality data (February 2016 - January 2024) was sourced from the Dutch Municipality Register. The relationship between CSVD and all-cause mortality was evaluated using a Cox proportional-hazards model, adjusting for key confounders. RESULTS At baseline, 835 (64 %) of the 1305 patients had CSVD. During a median follow-up of 3.1 years (IQR 1.6-4.6 years), all-cause mortality was 40 % (333 patients) in the CSVD group and 26 % (121 patients) in the non-CSVD group, corresponding with incidence rates of 137 and 78 per 1000 patient-years, respectively. The age- and sex-adjusted hazard ratio for mortality in the CSVD group was 1.6 (95 % CI: 1.3-2.0). This association remained significant after adjusting for cardiovascular disease and its risk factors, physical function (gait speed), and cognitive function (MMSE). CONCLUSION Radiographic CSVD presence is prevalent and its integration into daily care is important as it is independently linked to increased all-cause mortality in geriatric outpatients.
Collapse
Affiliation(s)
- Julia H I Wiersinga
- Department of Internal Medicine, Geriatric Medicine Section, Amsterdam UMC location Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands.
| | - Hadil M Diab
- Department of Internal Medicine, Geriatric Medicine Section, Amsterdam UMC location Vrije Universiteit Amsterdam, The Netherlands
| | - Mike J L Peters
- UMC Utrecht, University of Utrecht, Department of Internal Medicine section Geriatrics, The Netherlands
| | - Marijke C Trappenburg
- Amstelland Hospital, Department of Internal Medicine section Geriatrics, Amstelveen,The Netherlands
| | - Hanneke F M Rhodius-Meester
- Oslo University Hospital, Department of Geriatric Medicine, Ulleval, Oslo, Norway; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Majon Muller
- Department of Internal Medicine, Geriatric Medicine Section, Amsterdam UMC location Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
| |
Collapse
|
7
|
Aimagambetova B, Ariko T, Merritt S, Rundek T. Arterial stiffness measured by pulse wave velocity correlated with cognitive decline in hypertensive individuals: a systematic review. BMC Neurol 2024; 24:393. [PMID: 39415095 PMCID: PMC11481605 DOI: 10.1186/s12883-024-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Arterial stiffness is a degenerative modification in the arterial wall that significantly affects normal aging. Arterial hypertension is a major risk factor for cerebrovascular impairment. Pulse wave velocity (PWV) is an established gold standard for measuring arterial stiffness. Studies demonstrated that individuals with elevated blood pressure (BP) and PWV are more likely to experience worse cognitive decline compared to those with either condition alone. The aim of this review is to explore the clinical importance of arterial stiffness for cognitive function in older adults with hypertension. METHODS The systematic review was reported following the PRISMA 2020 guidelines and Cochrane protocol and was registered in NIHR PROSPERO. PubMed, Embase, Web of Science, CINAHL, and Cochrane databases were searched for relevant publications up to December 2022. Articles were filtered by age and type of study and only those including a sample size of at least 500 individuals were selected. Screening of abstracts and full-text review of selected articles were carried out through Covidence. RESULTS The full-text review included a total of 434 articles. Twenty-eight prospective studies have met the inclusion criteria. Selected studies used PWV as the main measurement of stiffness: 24 used carotid-femoral, 2 used brachial-ankle, 1 used aortic PWV, and 11 compared different measures. Studies demonstrated a strong association between increased BP and PWV with brain damage and cognitive deterioration among older adults. One study did not find an interaction with hypertension, while another study found that PWV but not BP was associated with cognitive decline. Few studies showed that the association between stiffness and cognitive outcomes was not significant after adjustment for BP. Several authors suggested that cognitive decline induced by stiff vasculature and hypertension benefited from antihypertensive therapy. CONCLUSION The results of this review demonstrated that arterial hypertension is an important factor linking arterial stiffness to cognitive health in older individuals. BP plays a crucial role in brain integrity, whereas PWV was shown to be a strong measure associated with cognitive decline. Together, they can lead to disabling cognitive outcomes. Early screening of stiffness, BP control, and compliance with treatment are essential for cerebrovascular disease prevention. TRIAL REGISTRATION NIHR PROSPERO registry ID: CRD42022379887 .
Collapse
Affiliation(s)
- Botagoz Aimagambetova
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA.
| | - Taylor Ariko
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| | - Stacy Merritt
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| | - Tatjana Rundek
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| |
Collapse
|
8
|
Yan X, Zhang Y, He R, Chen X, Lin M. A bibliometric analysis of cerebral small vessel disease. Front Aging Neurosci 2024; 16:1400844. [PMID: 39435188 PMCID: PMC11492496 DOI: 10.3389/fnagi.2024.1400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a significant contributor to both stroke and dementia. While numerous studies on CSVD have been published, herein, we have conducted a bibliometric examination of the literature on CSVD, revealing its hot spots and emerging patterns. Methods We used the Web of Science Core Collection as our primary database and conducted a literature search from January 2008 to January 2023. CiteSpace, VOSviewer, online bibliometric platform, and R-bibliometrix were employed to conduct bibliometric analysis and network visualization, including the number of publications, countries, institutions, journals, citations, authors, references, and keywords. Results A total of 4891 publications on CSVD were published in 790 journals by 19,066 authors at 3,862 institutions from 84 countries. The United States produced the most written works and had a significant impact in this field of study. The University of Edinburgh had the highest publication count overall. The journal with the most publications and co-citations was Stroke. Wardlaw, Joanna was the most prolific author and commonly cited in the field. The current areas of research interest revolved around "MRI segmentation" and "Enlarged perivascular spaces in the basal ganglia." Conclusion We conducted a bibliometric analysis to examine the advancements, focal points, and cutting-edge areas in the field of CSVD to reveal potential future research opportunities. Research on CSVD is currently rapidly advancing, with a consistent rise in publications on the topic since 2008. At the same time, we identified leading countries, institutions, and leading scholars in the field and analyzed journals and representative literature. Keyword co-occurrence analysis and burst graph emergence detection identified MRI segmentation and Basal ganglia enlarged perivascular spaces as the most recent areas of research interest.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongyin Zhang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruqian He
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiachan Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mian Lin
- Department of Orthopedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Lu CQ, Liu Y, Huang JR, Li MS, Wang YS, Gu Y, Chang D. Quantitative comparison of CSVD imaging markers between patients with possible amyloid small vessel disease and with non-amyloid small vessel disease. Neuroimage Clin 2024; 44:103681. [PMID: 39368336 PMCID: PMC11489385 DOI: 10.1016/j.nicl.2024.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
The spatial distribution patterns of cerebral microbleeds are associated with different types of cerebral small vessel disease (CSVD). This study aims to examine the disparities in brain imaging markers of CSVD among patients diagnosed with possible amyloid and non-amyloid small vessel disease. The head MR scans including susceptibility-weighted imaging (SWI) sequences from 351 patients at our institute were collected for analysis. CSVD imaging markers were quantified or graded across various CSVD dimensions in the patient images. Patients were categorized into the cerebral amyloid angiopathy group (CAA), hypertensive arteriopathy group (HA), or mixed small vessel disease group (Mixed), based on the spatial distribution of microbleeds. White matter lesions (WML) were segmented using an artificial neural network and assessed via a voxel-wise approach. Significant differences were observed among the three groups in several indices: microbleed count, lacune count at the centrum semiovale and basal ganglia levels, grade of enlarged perivascular space (EPVS) at the basal ganglia, and white matter lesion volume. These indices were substantially higher in the Mixed group compared to the other groups. Additionally, the incidences of cerebral hemorrhages (χ2 = 7.659, P = 0.006) and recent small subcortical infarcts (χ2 = 4.660, P = 0.031) were significantly more frequent in the HA group than in the CAA group. These results indicate that mixed spatial distribution patterns of microbleeds demonstrated the highest burden of cerebral small vessel disease. Microbleeds located in the deep brain regions were associated with a higher incidence of recent small subcortical infarcts and cerebral hemorrhages compared to those in the cortical areas.
Collapse
Affiliation(s)
- Chun-Qiang Lu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215128, China
| | - Ying Liu
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Jia-Rong Huang
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Meng-Shuang Li
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Yan-Shuang Wang
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Yan Gu
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China.
| | - Di Chang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
10
|
Swiatek VM, Schreiber S, Amini A, Hasan D, Rashidi A, Stein KP, Neyazi B, Sandalcioglu IE. Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases? J Clin Med 2024; 13:5864. [PMID: 39407924 PMCID: PMC11476928 DOI: 10.3390/jcm13195864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Intracranial aneurysms (IAs) may be connected to interactions between large and small intracranial vessels. We aimed to investigate the association between IAs and cerebral small-vessel disease (CSVD) and assess CSVD impact on IA patient management. Methods: This retrospective study analyzed clinical data and MRI features of CSVD in 192 subarachnoid hemorrhage (SAH) patients: 136 with incidental IA, 147 with severe CSVD without SAH/IA, and 50 controls without SAH, IA, or severe CSVD. MRI assessments followed the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE), with a total burden of small-vessel disease (TBSVD) score calculated. Statistical analyses included forward selection and binary logistic regression. Results: TBSVD differed significantly across groups (p < 0.001), except between SAH and IA groups (p = 0.8). Controls had the lowest TBSVD (1.00; 1.22 ± 0.996), followed by SAH (2.00; 2.08 ± 1.013) and IA groups (2.00; 2.04 ± 1.141), with the highest in the CSVD group (1.00; 1.22 ± 0.996). White-matter hyperintensity (WMH) patterns varied with IA rupture status (p = 0.044); type A was prevalent in SAH patients and type D in the IA group. Incorporating MRI CSVD features and TBSVD into risk assessments did not enhance IA prediction or outcome models. Conclusions: IA patients exhibit a higher CSVD burden than controls, suggesting a link between small and large intracranial vessels. WMH patterns distinguish between ruptured and unruptured IA patients, offering potential markers for IA rupture risk assessment and signaling a paradigm shift in understanding IAs and CSVD.
Collapse
Affiliation(s)
- Vanessa M. Swiatek
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Amir Amini
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - David Hasan
- Department of Neurosurgery, Duke University, Durham, NC 27707, USA;
| | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| |
Collapse
|
11
|
Li X, Wu X, Zhou G, Mo D, Lin X, Wang P, Zeng Y, Luo M. Estimated bone mineral density and white matter hyperintensities: A bidirectional Mendelian randomization study. Bone 2024; 187:117138. [PMID: 38914213 DOI: 10.1016/j.bone.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Greater white matter hyperintensities (WMH) in older adults have been associated with reduced bone mineral density (BMD) and increased fractures and falls. However, it is unclear whether there is a causal relationship between BMD reduction and WMH. In this study, Mendelian randomization (MR) was used to find the causality between WMH and estimated BMD (eBMD). METHODS We performed a two-sample bidirectional MR analysis using statistical data obtained from publicly available genome-wide association studies (GWAS). The main method of MR analysis is the inverse-variance weighted (IVW) method. To identify and account for the impact of horizontal pleiotropy, we also employed MR-Egger regression, MR pleiotropy residual sum, and outlier (MR-PRESSO). RESULTS MR analysis found a causal relationship between eBMD and WMH (IVW OR = 0.938, 95 % CI: 0.889-0.990, p = 0.020). Our causal estimates are unlikely to be distorted by horizontal pleiotropy according to heterogeneity test (both p > 0.05) and MR-Egger regression (p > 0.05). However, in the reverse MR analysis, there was no evidence that WMH was causally correlated with eBMD (IVW OR = 0.979, 95 % CI: 0.954-1.005, p = 0.109). CONCLUSION Our results suggest that low eBMD increased the risk of WMH; conversely, no evidence that WMH causally affects eBMD was found.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Xiaoju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guoqiu Zhou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dongcan Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaozuo Lin
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Pingkai Wang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Yinan Zeng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China; Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.
| |
Collapse
|
12
|
Sugai Y, Hiraka T, Shibata A, Taketa A, Tanae T, Moriya Y, Komatsu M, Iseki C, Ohta Y, Kanoto M. The time-course augmentation of perivascular space enlargement in the basal ganglia among a community-dwelling elder population. Jpn J Radiol 2024; 42:1110-1121. [PMID: 38896331 PMCID: PMC11442546 DOI: 10.1007/s11604-024-01595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE We examined whether time-course augmentation of perivascular space enlargement in the basal ganglia (BG-PVS) reflected cerebral small vessel disease (CSVD) severity by considering white matter hyperintensity lesion (WMHL) as an indicator for CSVD. MATERIALS AND METHODS This study population included 416 older participants from a community-based cohort. They participated in magnetic resonance imaging (MRI) studies more than once during the study period. The grades for BG-PVS and WMHL were evaluated by visual rating scales; BG-PVS time-course augmentation in 4-9 years was also evaluated. At baseline, the participants were asked about their smoking and drinking history, and medical history. They also underwent a blood examination and their office blood pressure (BP) examination. In addition, 24-h ambulatory BP monitoring was also performed within the study period. RESULTS Of the 416 participants, 48 participants (11.5%) had BG-PVS time-course augmentation. The participants with BG-PVS augmentation had significantly lower LDL levels, hyper-nighttime BP, and lower nighttime BP fall in univariate analysis (p = 0.03, p = 0.03, p = 0.003, respectively). In multivariate analysis, lower nighttime BP fall and male sex showed significance (p = 0.02, 0.03, respectively). Additionally, BG-PVS time-course augmentation was significantly associated with subsequent WMHL severity in univariate analysis (p < 0.001), which remained significant in multivariate analysis adjusted by imaging and demographic factors (p = 0.03). In multivariate analysis, additionally adjusted by the clinical factors, the significance disappeared (p = 0.07). CONCLUSION This study revealed that the lower nighttime BP fall in ambulatory blood pressure monitoring was a factor significantly associated with BG-PVS augmentation. Moreover, the BG-PVS time-course augmentation would be a notable finding that was associated with the subsequent WMHL.
Collapse
Affiliation(s)
- Yasuhiro Sugai
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Toshitada Hiraka
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Akiko Shibata
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ayato Taketa
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Taiyo Tanae
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yosuke Moriya
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masanori Komatsu
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Chifumi Iseki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yasuyuki Ohta
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Masafumi Kanoto
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| |
Collapse
|
13
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Li S, Wang L, Liu B, Zhang P, Zhang J, Chen G, Yang Q, Bian H, Li X, Wu J, Zhao F, Liu S, Bai H, Zhao W, Yue W, Feng K, Tang Y, Lu Z, Li Y, Zhang J, Zhou L, Zhu Y, Ni J, Peng B. Clinical and Prognostic Characteristics of Acute BAD-Related Stroke: A Multicenter MRI-Based Prospective Study. Stroke 2024; 55:2431-2438. [PMID: 39315825 DOI: 10.1161/strokeaha.124.047688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Branch atheromatous disease (BAD)-related stroke has emerged as a meaningful subtype of ischemic stroke yet remained understudied. We aimed to investigate the demographic, clinical, therapeutic, and prognostic characteristics of BAD-related stroke. METHODS The BAD-study was a nationwide, multicenter, prospective, observational cohort study in 20 Chinese hospitals from June 2021 to June 2023, enrolling patients aged 18 to 80 years with BAD-related stroke within 72 hours of onset. Eligible single subcortical infarct in the territory of lenticulostriate artery and paramedian pontine artery was included. Clinical, laboratory, and treatment data were collected at baseline. The primary outcome was a proportion of good outcomes (modified Rankin Scale score, 0-2) at 90 days. Main secondary outcomes included early neurological deterioration (END), cerebrovascular event, major bleeding, and excellent outcome (modified Rankin Scale score, 0-1) during 90-day follow-up. RESULTS We finally enrolled 476 patients, with a median age of 60 (interquartile range, 53-68) years, and 70.2% were male. The median National Institutes of Health Stroke Scale score was 3 (interquartile range, 2-6) at enrollment. Involvement of the lenticulostriate artery was more common than the paramedian pontine artery (60.7% versus 39.3%). END occurred in 14.7% of patients, with a median time from onset of 38 (interquartile range, 22-62) hours. The rates of good and excellent outcomes were 86.5% and 72%, respectively. Its 90-day stroke recurrence rate was 1.9%. Acute-phase therapy (from onset to 7 days of enrollment) showed heterogeneity and was not associated with prognosis. Multivariable logistic regression analysis identified the National Institutes of Health Stroke Scale score ≥4 at admission and END as negative predictors and extracranial artery stenosis as a positive predictor of good outcomes. Age ≥60 years, National Institutes of Health Stroke Scale score ≥4 at admission, and END were negative predictors of excellent outcomes. CONCLUSIONS With distinct demographic, clinical, and prognostic characteristics, along with a high incidence of END and a low risk of stroke recurrence, BAD-related stroke could be categorized as a separate disease entity. Moreover, its acute-phase treatment strategies were undetermined, awaiting further high-quality studies.
Collapse
Affiliation(s)
- Shengde Li
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (S. Li, L.Z., Y.Z., J.N., B.P.)
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China (L.W.)
| | - Bin Liu
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China (B.L.)
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China (P.Z.)
| | - Jiangtao Zhang
- Department of Neurology, Chengde Central Hospital, Hebei, China (Jiangtao Zhang)
| | - Guofang Chen
- Department of Neurology, Xuzhou Central Hospital, Jiangsu, China (G.C.)
| | - Qingsong Yang
- Department of Neurology, The First People's Hospital of Shangqiu, Henan, China (Q.Y.)
| | - Hong Bian
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, China (H. Bian)
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, China (X.L.)
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China (J.W.)
| | - Fengli Zhao
- Department of Neurology, The No.2 Hospital of Baoding, Hebei, China (F.Z.)
| | - Shifu Liu
- Department of Neurology, Yellow River Sanmenxia Affiliated Hospital of Henan University of Science and Technology, China (S. Liu)
| | - Hongying Bai
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (H. Bai)
| | - Weili Zhao
- Department of Neurology, Affiliated Hospital of Chifeng University, Inner Mongolia Autonomous Region, China (W.Z.)
| | - Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, China (W.Y.)
| | - Kai Feng
- Department of Neurology, Beijing Shunyi Hospital, China (K.F.)
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, Sichuan, China (Y.T.)
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China (Z.L.)
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Henan, China (Y.L.)
| | - Jingbo Zhang
- Department of Neurology, Shanghai Blue Cross Brain Hospital, China (Jingbo Zhang)
| | - Lixin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (S. Li, L.Z., Y.Z., J.N., B.P.)
| | - Yicheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (S. Li, L.Z., Y.Z., J.N., B.P.)
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (S. Li, L.Z., Y.Z., J.N., B.P.)
| | - Bin Peng
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (S. Li, L.Z., Y.Z., J.N., B.P.)
| |
Collapse
|
15
|
Lu J, Zuo X, Cai A, Xiao F, Xu Z, Wang R, Miao C, Yang C, Zheng X, Wang J, Ding X, Xiong W. Cerebral small vessel injury in mice with damage to ACE2-expressing cerebral vascular endothelial cells and post COVID-19 patients. Alzheimers Dement 2024. [PMID: 39352003 DOI: 10.1002/alz.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION The angiotensin-converting enzyme 2 (ACE2), which is expressed in cerebral vascular endothelial cells (CVECs), has been currently identified as a functional receptor for SARS-CoV-2. METHODS We specifically induced injury to ACE2-expressing CVECs in mice and evaluated the effects of such targeted damage through magnetic resonance imaging (MRI) and cognitive behavioral tests. In parallel, we recruited a single-center cohort of COVID-19 survivors and further assessed their brain microvascular injury based on cognition and emotional scales, cranial MRI scans, and blood proteomic measurements. RESULTS Here, we show an array of pathological and behavioral alterations characteristic of cerebral small vessel disease (CSVD) in mice that targeted damage to ACE2-expressing CVECs, and COVID-19 survivors. These CSVD-like manifestations persist for at least 7 months post-recovery from COVID-19. DISCUSSION Our findings suggest that SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae, underscoring the imperative for heightened clinical vigilance in mitigating or treating SARS-CoV-2-mediated cerebral endothelial injury throughout infection and convalescence. HIGHLIGHTS Cerebral small vessel disease-associated changes were observed after targeted damage to angiotensin-converting enzyme 2-expressing cerebral vascular endothelial cells. SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae. Clinical vigilance is needed in preventing SARS-CoV-2-induced cerebral endothelial damage during infection and recovery.
Collapse
Affiliation(s)
- Jieping Lu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Zuo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Fang Xiao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenyu Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenjian Miao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Yang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xingxing Zheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Ding
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, Hefei, China
| |
Collapse
|
16
|
Zhao D, Guallar E, Qiao Y, Knopman DS, Palatino M, Gottesman RF, Mosley TH, Wasserman BA. Intracranial Atherosclerotic Disease and Incident Dementia: The ARIC Study (Atherosclerosis Risk in Communities). Circulation 2024; 150:838-847. [PMID: 39087353 PMCID: PMC11513165 DOI: 10.1161/circulationaha.123.067003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Studies of the neurovascular contribution to dementia have largely focused on cerebral small vessel disease (CSVD), but the role of intracranial atherosclerotic disease (ICAD) remains unknown in the general population. The objective of this study was to determine the risk of incident dementia from ICAD after adjusting for CSVD and cardiovascular risk factors in a US community-based cohort. METHODS We acquired brain magnetic resonance imaging examinations from 2011 through 2013 in 1980 Black and White participants in the ARIC study (Atherosclerosis Risk in Communities), a prospective cohort conducted in 4 US communities. Magnetic resonance imaging examinations included high-resolution vessel wall magnetic resonance imaging and magnetic resonance angiography to identify ICAD. Of these participants, 1590 without dementia, without missing covariates, and with adequate magnetic resonance image quality were followed through 2019 for incident dementia. Associations between ICAD and incident dementia were assessed using Cox proportional hazard ratios adjusted for CSVD (characterized by white matter hyperintensities, lacunar infarctions, and microhemorrhages), APOE4 genotype (apolipoprotein E gene ε4), and cardiovascular risk factors. RESULTS The mean age (SD) of study participants was 77.4 (5.2) years. ICAD was detected in 34.6% of participants. After a median follow-up of 5.6 years, 286 participants developed dementia. Compared with participants without ICAD, the fully adjusted hazard ratios (95% CIs) for incident dementia in participants with any ICAD, with ICAD only causing stenosis ≤50%, and with ICAD causing stenosis >50% in ≥1 vessel were 1.57 (1.17-2.11), 1.41 (1.02-1.95), and 1.94 (1.32-2.84), respectively. ICAD was associated with dementia even among participants with low white matter hyperintensities burden, a marker of CSVD. CONCLUSIONS ICAD was associated with an increased risk of incident dementia, independent of CSVD, APOE4 genotype, and cardiovascular risk factors. The increased risk of dementia was evident even among participants with low CSVD burden, a group less likely to be affected by vascular dementia, and in participants with ICAD causing only low-grade stenosis. Our results suggest that ICAD may partially mediate the effect that cardiovascular risk factors have on the brain leading to dementia. Both ICAD and CSVD must be considered to understand the vascular contributions to cognitive decline.
Collapse
Affiliation(s)
- Di Zhao
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Maylin Palatino
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rebecca F. Gottesman
- Stroke Branch, Intramural Research Program, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Thomas H. Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bruce A. Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Yang XZ, Huang MY, Han F, Ni J, Zhou LX, Yao M, Zhang DD, Zhu YC. Genome-Wide Mendelian Randomization Study Reveals Druggable Genes for Cerebral Small Vessel Disease. Stroke 2024; 55:2264-2273. [PMID: 39114924 DOI: 10.1161/strokeaha.124.046544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a group of neurological disorders that affect the small blood vessels within the brain, for which no effective treatments are currently available. We conducted a Mendelian randomization (MR) study to identify candidate therapeutic genes for CSVD. METHODS We retrieved genome-wide association study data from 6 recently conducted, extensive investigations focusing on CSVD magnetic resonance imaging markers and performed a 2-sample MR analysis to assess the potential causal effects of gene expression and protein level within druggable genes on CSVD in blood and brain tissues. Colocalization analyses and repeat studies were undertaken to verify the relationship. Additionally, mediation analysis was conducted to explore the potential mechanisms involving druggable genes and known risk factors for CSVD. Finally, phenome-wide MR analyses were applied to evaluate the potential adverse effects related to the identified druggable genes for CSVD treatment. RESULTS Overall, 5 druggable genes consistently showed associations with CSVD in MR analyses across both the discovery and validation cohorts. Notably, the ALDH2 and KLHL24 genes were identified as associated with CSVD in both blood and brain tissues, whereas the genes ADRB1, BTN3A2, and EFEMP1 were exclusively detected in brain tissue. Moreover, mediation analysis elucidated the proportion of the total effects mediated by CSVD risk factors through candidate druggable genes, which ranged from 5.5% to 18.5%, and offered potential explanations for the observed results. A comprehensive phenome-wide MR analysis further emphasized both the therapeutic benefits and potential side effects of targeting these candidate druggable genes. CONCLUSIONS This study provides genetic evidence supporting the potential therapeutic benefits of targeting druggable genes for treating CSVD, which will be useful for prioritizing CSVD drug development.
Collapse
Affiliation(s)
- Xin-Zhuang Yang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y.)
| | - Mei-Ying Huang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
| | - Li-Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
| | - Ding-Ding Zhang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
- Center for Prevention and Early Intervention, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.-D.Z.)
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China (X.-Z.Y., M.-Y.H., F.H., J.-N., L.-X.Z., M.Y., D.-D.Z., Y.-C.Z.)
| |
Collapse
|
18
|
Weiss F, Brancati GE, Elefante C, Petrucci A, Gemmellaro T, Lattanzi L, Perugi G. Type 2 diabetes mellitus is associated with manic morbidity in elderly patients with mood disorders. Int Clin Psychopharmacol 2024; 39:294-304. [PMID: 37824397 DOI: 10.1097/yic.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The association between mood disorders, especially bipolar disorder (BD), and metabolic disorders, is long known. However, to which extent metabolic disorders affect the course of mood disorders in late life is still open to inquiring. To assess the impact of type 2 diabetes mellitus (T2DM) on late-life mood disorders a retrospective chart review was performed. Elderly depressive patients (≥ 65 years) diagnosed with Major Depressive Disorder (N = 57) or BD (N = 43) and followed up for at least 18 months were included and subdivided according to the presence of T2DM comorbidity. Vascular encephalopathy (39.1% vs. 15.6%, P = 0.021) and neurocognitive disorders (21.7% vs. 5.2%, P = 0.028), were more frequently reported in patients with T2DM than in those without. Patients with T2DM showed a greater percentage of follow-up time in manic episodes (r = -0.23, P = 0.020) and a higher rate of manic episode(s) during follow-up (21.7% vs. 5.2%, P = 0.028) than those without. When restricting longitudinal analyses to patients with bipolar spectrum disorders, results were confirmed. In line with the well-known connection between BD and metabolic disorders, our data support an association between T2DM and unfavorable course of illness in the elderly with BD.
Collapse
Affiliation(s)
- Francesco Weiss
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | | | - Camilla Elefante
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | | | - Teresa Gemmellaro
- Department of Psychiatry, North-Western Tuscany Region, NHS, Local Health Unit, Cecina-LI
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
- Institute of Behavioral Science 'G. De Lisio', Pisa, Italy
| |
Collapse
|
19
|
Karkoska KA, Gollamudi J, Sawyer RP, Woo D, Hyacinth HI. Quantifying dilated perivascular spaces in children with sickle cell disease. Pediatr Blood Cancer 2024; 71:e31150. [PMID: 38953143 PMCID: PMC11327878 DOI: 10.1002/pbc.31150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Sickle cell disease (SCD)-related neurological effects are particularly devastating. Dilated perivascular spaces (dPVS) are a well-described component of cerebral small vessel disease in older adults without SCD. However, the burden and association of dPVS with neurological complications in children with SCD have not been described. In this study, we used the international consensus criteria to quantify dPVS in the centrum semiovale and basal ganglia in T2-weighted magnetic resonance images (MRI) of children with SCD who were randomized as part of the Silent Cerebral Infarct Transfusion (SIT) trial. We examined the relationship between global and/or regional dPVS burden and presence or area of silent cerebral infarctions, hematological measures, demographic variables, and full-scale intelligence quotient (FSIQ) scores. The study included 156 SIT trial participants who had pre-randomization and study exit MRI. Their median age was 9.6 (5-15) years, 39% were female, and 94 (60%) participants had a high dPVS burden. Participants randomized to the blood transfusion arm and who had a high dPVS burden at baseline had a moderate decline in dPVS score over 36 months compared to no change in the observation group. On multivariable logistic regression, intelligence quotient was not associated with dPVS burden. Children with SCD included in the SIT trial have a high burden of dPVS compared to children without SCD. However, dPVS do not appear to have the same pathophysiology of silent cerebral infarcts. Further study is needed to determine both their etiology and clinical relevance.
Collapse
Affiliation(s)
- Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jahnavi Gollamudi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Elmståhl S, Ellström K, Siennicki-Lantz A, Lätt J, Månsson S, Månsson T, Abul-Kasim K. Incidence of cerebral small vessel disease-related MR markers in the Swedish general population 'Good Aging in Skåne'(GÅS) study. J Neurol 2024; 271:5997-6003. [PMID: 39026021 PMCID: PMC11377661 DOI: 10.1007/s00415-024-12562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Cerebral small vessel disease (CSVD) is associated to cognitive decline and dementia. Neuroimaging changes of CSVD are highly prevalent above 80 years. Only few studies report on incidence of CSVD in high age. We have investigated the incidence and prevalence of magnetic resonance imaging (MRI) markers of CSVD and risk factors in the general older population. METHODS As part of the general population Good Aging in Skåne cohort study (GÅS), 241 persons (mean age 76.3 years) underwent two brain MRI, 3-T scanner with a mean interval of 5.9 years. The incidence of white matter hyperintensities (WMH), lacunar infarction, cerebral atrophies and cerebral microbleeds (CMB) were calculated and the relationship to risk factors analysed by a multivariate regression analysis. Medial temporal lobe atrophy (MTA) was graded according to Scheltens'18 scale and CMB were defined as having > 1 small (0.2-0.5 cm) hypointense lesion. RESULTS The 6-year incidence of CMB, WMH and MTA were, 19%, 17% and 13% respectively, corresponding to 170/1,000 py., 172/1,000 py., and respectively 167/1,000 py. The incidence of CSVD according to the modified STRIVE score was 33%, 169/1,000 py and the prevalence at baseline was 73%. Moderate to high intake of alcohol was related to increased incidence of MTA and higher STRIVE score. Exposure to smoking was related to higher incidence of CMB and higher STRIVE score, adjusted for other known risk factors. CONCLUSION CSVD is highly prevalent in the general older population and the 6-year incidence of WMH, CMB and MTA ranges from 13 to 19 percent. The modifiable lifestyle factors: smoking, and moderate alcohol intake are related to incident CSVD.
Collapse
Affiliation(s)
- Sölve Elmståhl
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Skåne University Hospital, Jan Waldenströmsgata 35, 205 02, Malmö, Sweden.
| | - Katarina Ellström
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Skåne University Hospital, Jan Waldenströmsgata 35, 205 02, Malmö, Sweden
| | - Arkadiusz Siennicki-Lantz
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Skåne University Hospital, Jan Waldenströmsgata 35, 205 02, Malmö, Sweden
| | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Tomas Månsson
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Skåne University Hospital, Jan Waldenströmsgata 35, 205 02, Malmö, Sweden
| | - Kasim Abul-Kasim
- Department of Clinical Sciences, Division of Diagnostic Radiology, Lund University, Malmö, Sweden
| |
Collapse
|
21
|
Stoisavljevic S, Zdraljevic M, Radojicic A, Pavlovic A, Mijajlovic M. Carotid artery stenosis is related to cerebral small vessel disease magnetic resonance imaging burden. Heliyon 2024; 10:e36052. [PMID: 39224254 PMCID: PMC11367513 DOI: 10.1016/j.heliyon.2024.e36052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cerebral small vessel disease (CSVD) encompasses conditions that affect small blood vessels of the brain, the most common being atherosclerosis. Magnetic resonance imaging (MRI) CSVD markers include lacunar strokes (LS), white matter hyperintensities (WMH), microbleeds, enlarged perivascular spaces (EPVS), and brain atrophy. Large and small cerebral arteries share an anatomical and functional connection, but the role of large vessel atherosclerosis in atherosclerotic CSVD hasn't been established. The aim of this study was to evaluate the involvement of large vessel pathology in atherosclerotic CSVD. Methods This cross-sectional study included 98 patients treated at the Neurology Clinic of the University Clinical Center of Serbia in Belgrade, from February 2018 to December 2023, who had atherosclerotic CSVD confirmed by neuroimaging and underwent extracranial color duplex sonography. Data on patients' gender, age, cerebrovascular risk factors (dyslipidemia, hypertension, diabetes mellitus, smoking status), ultrasonography findings (intima-media thickness - IMT, carotid and vertebral artery stenosis, and hemodynamics), and CSVD imaging markers were collected, and the CSVD MRI burden score was calculated. Results Age correlated with LS and WMH (p < 0.05 for both). Hypertension correlated with WMH (p = 0.016), and smoking with LS (p = 0.043). Brain atrophy was more common in women (p = 0.016). The majority of patients had low-grade (<50 %) carotid stenosis. There was a strong correlation between all morphological parameters of internal carotid artery stenosis and the CSVD burden score (p < 0.05 for all). The hemodynamic parameters of internal carotid artery stenosis and morphological and hemodynamic parameters of vertebral artery stenosis didn't correlate with the CSVD burden score. Conclusions This study shows a strong correlation between cerebral large and small vessel pathology. We recommend the use of extracranial color duplex sonography in the evaluation of patients with CSVD as a supplementary method for follow-up, as this would allow the identification of patients whose condition might progress.
Collapse
Affiliation(s)
| | - Mirjana Zdraljevic
- Neurology Clinic, University Clinical Center of Serbia, 11000, Belgrade, Serbia
| | - Aleksandra Radojicic
- Faculty of Medicine University of Belgrade, 11000, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, 11000, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, 11000, Belgrade, Serbia
| | - Milija Mijajlovic
- Faculty of Medicine University of Belgrade, 11000, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, 11000, Belgrade, Serbia
| |
Collapse
|
22
|
Wang Y, Li Y, Jiao S, Pan Y, Deng X, Qin Y, Zhao D, Liu Z. Correlation analysis and predictive model construction of metabolic syndrome, complete blood count-derived inflammatory markers, and overall burden of cerebral small vessel disease. Heliyon 2024; 10:e35065. [PMID: 39220940 PMCID: PMC11365336 DOI: 10.1016/j.heliyon.2024.e35065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background The high burden of cerebral small vessel disease (CSVD) on neuroimaging is a significant risk factor for stroke, cognitive dysfunction, and emotional disorders. Currently, there is a lack of studies investigating the correlation between metabolic syndrome (MetS), complete blood count-derived inflammatory markers, and total CSVD burden. This study aims to evaluate the total CSVD imaging load using machine learning (ML) algorithms and to explore further the relationship between MetS, complete blood count-derived inflammatory markers, and CSVD load. Methods We included CSVD patients from Xijing Hospital (2012-2022). Univariate and lasso regression analyses identified variables linked to CSVD neuroimaging burden. Six ML models predicted CSVD burden based on MetS and inflammatory markers. Model performance was evaluated using ROCauc, PRauc, DCA, and calibration curves. The SHAP method validated model interpretability. The best-performing model was selected to develop a web-based calculator using the Shiny package. Results The Logistic regression model outperformed others in predicting CSVD burden. The model incorporated MetS, neutrophil-to-lymphocyte ratio (NLR), homocysteine (Hcy), age, smoking status, cystatin C (CysC), uric acid (UA), and prognostic nutritional index (PNI). Conclusion MetS, NLR, Hcy and CSVD high load were positively correlated, and the Logistic regression model could accurately predict the total CSVD load degree.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shusheng Jiao
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yuanhang Pan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiwei Deng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yunlong Qin
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Di Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhirong Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Li N, Hu YD, Jiang Y, Ling L, Wang CH, Shao JM, Li SB, Di WY. Integrating clinical and biochemical markers: a novel nomogram for predicting lacunes in cerebral small vessel disease. Front Aging Neurosci 2024; 16:1404836. [PMID: 39246593 PMCID: PMC11377284 DOI: 10.3389/fnagi.2024.1404836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Background Lacunes, a characteristic feature of cerebral small vessel disease (CSVD), are critical public health concerns, especially in the aging population. Traditional neuroimaging techniques often fall short in early lacune detection, prompting the need for more precise predictive models. Methods In this retrospective study, 587 patients from the Neurology Department of the Affiliated Hospital of Hebei University who underwent cranial MRI were assessed. A nomogram for predicting lacune incidence was developed using LASSO regression and binary logistic regression analysis for variable selection. The nomogram's performance was quantitatively assessed using AUC-ROC, calibration plots, and decision curve analysis (DCA) in both training (n = 412) and testing (n = 175) cohorts. Results Independent predictors identified included age, gender, history of stroke, carotid atherosclerosis, hypertension, creatinine, and homocysteine levels. The nomogram showed an AUC-ROC of 0.814 (95% CI: 0.791-0.870) for the training set and 0.805 (95% CI: 0.782-0.843) for the testing set. Calibration and DCA corroborated the model's clinical value. Conclusion This study introduces a clinically useful nomogram, derived from binary logistic regression, that significantly enhances the prediction of lacunes in patients undergoing brain MRI for various indications, potentially advancing early diagnosis and intervention. While promising, its retrospective design and single-center context are limitations that warrant further research, including multi-center validation.
Collapse
Affiliation(s)
- Ning Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ya-Dong Hu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ye Jiang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Li Ling
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Chu-Han Wang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jia-Min Shao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Si-Bo Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Wei-Ying Di
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
24
|
Song Y, Xu J, Geng W, Yin L, Wang J, Zhao J. Association and causal impact of TERT genetic variants on peripheral blood leukocyte telomere length and cerebral small vessel disease risk in a Chinese Han population: a mendelian randomization analysis. Orphanet J Rare Dis 2024; 19:309. [PMID: 39180127 PMCID: PMC11342532 DOI: 10.1186/s13023-024-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Previous observational studies have highlighted potential relationships between the telomerase reverse transcriptase (TERT) gene, short leukocyte telomere length (LTL), and cerebrovascular disease. However, it remains to be established as to whether TERT gene variants are associated with an elevated risk of cerebral small vessel disease (CSVD), and whether there is a causal relationship between LTL and CSVD. METHODS Five TERT single nucleotide polymorphisms (SNPs) were analyzed in 307 CSVD patients and 320 healthy controls in whom LTL values were quantified. Allele models and four genetic models were used to explore the relationship between these SNP genotypes and CSVD risk. A Mendelian randomization analysis of CSVD risk was then performed using LTL-related SNPs and the polygenic risk score (PRS) constructed from these SNPs as genetic instrumental variables to predict the causal relationship between LTL and CSVD risk. RESULTS Model association analyses identified two SNPs that were significantly associated with CSVD risk. LTL was significantly correlated with age (P < 0.001), and the MR analysis revealed an association between short LTL and an elevated risk of CSVD. PRS-based genetic prediction of short LTLs was also significantly related to an elevated CSVD risk. CONCLUSION Multiple genetic models and MR results indicate that TERT gene SNPs may be related to an elevated risk of CSVD, and that shorter LTL may be causally linked to such CSVD risk.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia Autonomous Region, 028000, China
| | - Jialiang Xu
- Department of Cerebrovascular Disease Treatment Center, The People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110002, China
| | - Wanru Geng
- Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia Autonomous Region, 028000, China
| | - Long Yin
- Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia Autonomous Region, 028000, China
| | - Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| | - JiuHan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
25
|
Xie Y, Liu S, Wang X, Huang H, Wang M, Qu W, Yu Z, Wang W, Luo X. Lipids, Apolipoproteins, Lipid-Lowering Drugs, and the Risk of Cerebral Small Vessel Disease: A Mendelian Randomization Study. J Am Heart Assoc 2024; 13:e032409. [PMID: 39158561 DOI: 10.1161/jaha.123.032409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Serum lipids are causally involved in the occurrence of atherosclerosis, but their roles in cerebral small vessel disease remain unclear. This study aimed to investigate the causal roles of lipid or apolipoprotein traits in cerebral small vessel disease and to determine the effects of lipid-lowering interventions on this disease. METHODS AND RESULTS Data on genetic instruments of lipids/apolipoproteins, as well as characteristic cerebral small vessel disease manifestations, including small vessel stroke (SVS) and white matter hyperintensity (WMH), were obtained from publicly genome-wide association studies. Through 2-sample Mendelian randomization analyses, it was found that decreased levels of high-density lipoprotein cholesterol (odds ratio [OR], 0.85, P=0.007) and apolipoprotein A-I (OR, 0.83, P=0.005), as well as increased level of triglycerides (OR, 1.16, P=0.025) were associated with a higher risk of SVS. A low level of high-density lipoprotein cholesterol (OR, 0.93, P=0.032) was associated with larger WMH volume. Specifically, the genetically determined expressions of lipid fractions in various size-defined lipoprotein particles were more closely related to the risk of SVS than WMH. Moreover, it was found that the hypertension trait ranked at the top in mediating the causal effect of hyperlipidemia on SVS and WMH by using Mendelian randomization-based mediation analysis. For drug-target Mendelian randomization, the low-density lipoprotein cholesterol-reducing genetic variation alleles at HMGCR and NL1CL1 genes and the high-density lipoprotein cholesterol-raising genetic variation alleles at the CETP gene were predicted to decrease the risk of SVS. CONCLUSIONS The present Mendelian randomization study indicates that genetically determined hyperlipidemia is closely associated with a higher risk of cerebral small vessel disease, especially SVS. Lipid-lowering drugs could be potentially considered for the therapies and preventions of SVS rather than WMH.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| | - Shuai Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College Huazhong University of Science and Technology Wuhan China
| | - Xinyue Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| | - Wensheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
26
|
Li Y, Lu S, Zhang Z, Li X, Li Y, Li X, Xiong L. Fluorescent Pdots Facilitate High-Resolution Mapping of the Intact Meningeal Vascular Network and Eye-Brain Connections. ACS NANO 2024; 18:22080-22094. [PMID: 39102350 DOI: 10.1021/acsnano.4c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Meningeal vascular network is significant in neurology and neurosurgery. However, high-resolution imaging of intact meningeal vascular network is lacking. In this work, we develop a practical experimental method to ensure that the intact meninges are morphologically unfolded and fixed in an agarose gel. With the help of high-brightness polymer dots (Pdots) as probe, macroscopic and detailed imaging of the vascular network on the intact dorsal meninges can be performed. Meningeal vessels are symmetrically distributed along the superior sagittal sinus, and the distribution of meningeal vessels had a certain degree of hierarchy. The meninges are thicker blood vessels and capillary networks from the outside to the inside. Moreover, the diameter of the capillaries is 3.96 ± 0.89 μm. Interestingly, meningeal primo vessels in the central nervous system of mice is imaged with the diameter of 4.18 ± 1.18 μm, which has not been reported previously. It is worth mentioning that we found that orthotopic xenografts of brain tumors caused the appearance of corneal neovascularization and morphological changes in optic nerve microvessels. In conclusion, our work provides an effective Pdots-based imaging method for follow-up research on meningeal vascular-related diseases, and illustrates that the eye can serve as a window for the prevention and diagnosis of brain diseases.
Collapse
Affiliation(s)
- Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Shuting Lu
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Zhuang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Xiaoyan Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Yankun Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Xiaowei Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| |
Collapse
|
27
|
Baniewicz E, Peterkin N, Luby M, Kern KC, Gottesman RF, Latour LL, Turtzo LC. Age-associated gadolinium leakage into ocular structures in patients with acute traumatic brain injury. J Neurol Sci 2024; 463:123149. [PMID: 39088894 PMCID: PMC11348874 DOI: 10.1016/j.jns.2024.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Gadolinium Leakage into Ocular Structures (GLOS) is common following acute cerebrovascular events. The objective of this study was to investigate the occurrence of GLOS in an acute traumatic brain injury (TBI) cohort without acute cerebrovascular injury and to explore associated factors. METHODS Enrolled acute TBI patients had a baseline MRI ≤48 h of injury (TP1) and follow-up MRI ≤72 h after baseline (TP2). Vitreous chamber enhancement and signal intensity ratios (SIRs) were calculated using pre- and post-contrast Fluid Attenuated Inversion Recovery (FLAIR). White matter hyperintensities (WMHs) were assessed using the Fazekas scale. RESULTS Of the 128 TBI patients included, median age was 47 years, 70% male, and 66% presented with Glasgow Coma Scale of 15. No GLOS was detected at TP1 but was present in 23% of patients at TP2. GLOS+ patients were older (68 years [56-76] vs 39 years [27-53], p < 0.001), more likely to report falls as injury mechanism (62% vs 36%, p = 0.006), report history of hypertension (41% vs 19%, p = 0.025), and had a higher burden of WMHs (59% vs 14% with a total Fazekas ≥2, p < 0.001). Quantitative SIRs confirmed qualitative assessments: GLOS+ patients had higher SIRs at TP2 (0.43 vs 0.22, p < 0.001). Age (OR 3.28, 95%CI [1.88-5.71], p < 0.001) and prior TBI history (OR 4.99, 95%CI [1.46-17.06], p = 0.010) were independent predictors of GLOS. When age was removed, total Fazekas score (OR 2.53, 95%CI [1.60-4.00], p < 0.001) was an independent predictor of GLOS. CONCLUSIONS GLOS is primarily associated with age and may serve as another imaging marker of chronic vascular disease.
Collapse
Affiliation(s)
- Emily Baniewicz
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room B1D733, Bethesda, MD 20892, USA
| | - Nicole Peterkin
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room B1D733, Bethesda, MD 20892, USA
| | - Marie Luby
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room B1D733, Bethesda, MD 20892, USA
| | - Kyle C Kern
- Stroke, Cognition, and Neuroepidemiology Section, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room 4D37A, Bethesda, MD 20892, USA; Department of Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rebecca F Gottesman
- Stroke, Cognition, and Neuroepidemiology Section, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room 4D37A, Bethesda, MD 20892, USA
| | - Lawrence L Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room B1D733, Bethesda, MD 20892, USA
| | - L Christine Turtzo
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Room B1D733, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Lee DH, Lee EC, Park SW, Lee JY, Lee MR, Oh JS. Pathogenesis of Cerebral Small Vessel Disease: Role of the Glymphatic System Dysfunction. Int J Mol Sci 2024; 25:8752. [PMID: 39201439 PMCID: PMC11354389 DOI: 10.3390/ijms25168752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is a group of pathologies that affect the cerebral blood vessels. CSVD accounts for 25% of strokes and contributes to 45% of dementia. However, the pathogenesis of CSVD remains unclear, involving a variety of complex mechanisms. CSVD may result from dysfunction in the glymphatic system (GS). The GS contains aquaporin-4 (AQP-4), which is in the perivascular space, at the endfeet of the astrocyte. The GS contributes to the removal of waste products from the central nervous system, occupying perivascular spaces and regulating the exchange and movement of cerebrospinal fluid and interstitial fluid. The GS involves astrocytes and aquaporin channels, which are components of the blood-brain barrier, and problems with them may constitute the pathogenesis of CSVD. Vascular risk factors, including diabetes, dilate the perivascular space, disrupting the glymphatic system and the active regulation of AQP-4. CSVD exacerbation due to disorders of the GS is associated with multiple vasculopathies. Dysfunction of the glymphatic system and AQP-4 interferes with the functioning of the blood-brain barrier, which exacerbates CSVD. In a long-term follow-up of CSVD patients with microbleeds, lacunar infarcts, and white matter hyperintensity, several vascular risk factors, including hypertension, increased the risk of ischemic stroke. Dysfunction of the GS may be the cause of CSVD; however, the underlying treatment needs to be studied further.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang-Won Park
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, 271 Cheonbo-ro, Uijeongbu 11765, Republic of Korea
| | - Ji Young Lee
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, 271 Cheonbo-ro, Uijeongbu 11765, Republic of Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, 271 Cheonbo-ro, Uijeongbu 11765, Republic of Korea
| |
Collapse
|
29
|
Wang J, Wang Y, Cai X, Xia W, Zhu J. A Review: Visuospatial Dysfunction in Patients with the Cerebral Small Vessel Disease. Neuroscience 2024; 552:47-53. [PMID: 38880241 DOI: 10.1016/j.neuroscience.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cerebral small vessel disease (CSVD) impairs visuospatial function, and this is one of the most obvious areas of cognitive impairment in CSVD. So, recognizing, monitoring, and treating visuospatial dysfunction are all important to the prognosis of CSVD. This review discussed the anatomical and pathological mechanisms, clinical recognition (scales, imaging, and biomarkers), and treatment of cognitive impairment especially visuospatial dysfunction in CSVD.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youmeng Wang
- Department of Neurology, Fuyang People's Hospital, Fuyang, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xia
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
30
|
Song J, Zhou D, Jia L, Wang M, Lan D, Li J, Hamit FZH, Ding Y, Ji X, Meng R. The possible causal relationship between COVID-19 and imaging markers of cerebral small vessel disease: a Mendelian randomization study. Neurol Res 2024; 46:735-742. [PMID: 38695379 DOI: 10.1080/01616412.2024.2349440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Observational studies have suggested that SARS-CoV-2 infection may increase the burden of cerebral small vessel disease (CSVD). This study aims to explore the causal correlation between COVID-19 and the imaging markers of CSVD using Mendelian randomization (MR) methods. METHODS Summary-level genome-wide association study (GWAS) statistics for COVID-19 susceptibility, hospitalization, and severity were utilized as proxies for exposure. Large-scale meta-analysis GWAS data on three neuroimaging markers of white matter hyperintensity, lacunar stroke, and brain microbleeds, were employed as outcomes. Our primary MR analysis employed the inverse variance weighted (IVW) approach, supplemented by MR-Egger, weighted median, and MR-PRESSO methods. We also conducted multivariable MR analysis to address confounding bias and validate the robustness of the established causal estimates. Comprehensive sensitivity analyses included Cochran's Q test, Egger-intercept analysis, MR-PRESSO, and leave-one-out analysis. RESULTS The MR analysis revealed a significant causal correlation between the severity of COVID-19 and an increased risk of lacunar stroke, as demonstrated by the IVW method (ORivw = 1.08, 95% CI: 1.03-1.16, pivw = 0.005, FDR = 0.047). Nevertheless, no causal correlations were observed between COVID-19 susceptibility or hospitalization and any CSVD imaging markers. The robustness and stability of these findings were further confirmed by multivariable MR analysis and comprehensive sensitivity analyses. DISCUSSION This study provides compelling evidence of a potential causal effect of severe COVID-19 on the incidence of lacunar stroke, which may bring fresh insights into the understanding of the comorbidity between COVID-19 and CSVD.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fatime Zara Hassan Hamit
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Zhou L, Wu H, Zhou H. Correlation Between Cognitive Impairment and Lenticulostriate Arteries: A Clinical and Radiomics Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1261-1272. [PMID: 38429561 PMCID: PMC11300411 DOI: 10.1007/s10278-024-01060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Lenticulostriate arteries (LSA) are potentially valuable for studying vascular cognitive impairment. This study aims to investigate correlations between cognitive impairment and LSA through clinical and radiomics features analysis. We retrospectively included 102 patients (mean age 62.5±10.3 years, 60 males), including 58 with mild cognitive impairment (MCI) and 44 with moderate or severe cognitive impairment (MSCI). The MRI images of these patients were subjected to z-score preprocessing, manual regions of interest (ROI) outlining, feature extraction (pyradiomics), feature selection [max-relevance and min-redundancy (mRMR), least absolute shrinkage and selection operator (LASSO), and univariate analysis], model construction (multivariate logistic regression), and evaluation [receiver operating characteristic curve (ROC), decision curve analysis (DCA), and calibration curves (CC)]. In the training dataset (71 patients, 44 MCI) and the test dataset (31 patients, 17 MCI), the area under curve (AUC) of the combined model (training 0.88 [95% CI 0.78, 0.97], test 0.76 [95% CI 0.6, 0.93]) was better than that of the clinical model and the radiomics model. The DCA results demonstrated the highest net yield of the combined model relative to the clinical and radiomics models. In addition, we found that LSA total vessel count (0.79 [95% CI 0.08, 1.59], P = 0.038) and wavelet.HLH_glcm_MCC (-1.2 [95% CI -2.2, -0.4], P = 0.008) were independent predictors of MCI. The model that combines clinical and radiomics features of LSA can predict MCI. Besides, LSA vascular parameters may serve as imaging biomarkers of cognitive impairment.
Collapse
Affiliation(s)
- Langtao Zhou
- Department of Radiology of the First Affiliated Hospital, University of South China, Hengyang, 421001, China
- School of Cyberspace Security, Guangzhou University, Guangzhou, 510006, China
| | - Huiting Wu
- Department of Radiology of the First Affiliated Hospital, University of South China, Hengyang, 421001, China.
| | - Hong Zhou
- Department of Radiology of the First Affiliated Hospital, University of South China, Hengyang, 421001, China.
| |
Collapse
|
32
|
Pathan N, Kharod MK, Nawab S, Di Scipio M, Paré G, Chong M. Genetic Determinants of Vascular Dementia. Can J Cardiol 2024; 40:1412-1423. [PMID: 38579965 DOI: 10.1016/j.cjca.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Vascular dementia (VaD) is a prevalent form of cognitive impairment with underlying vascular etiology. In this review, we examine recent genetic advancements in our understanding of VaD, encompassing a range of methodologies including genome-wide association studies, polygenic risk scores, heritability estimates, and family studies for monogenic disorders revealing the complex and heterogeneous nature of the disease. We report well known genetic associations and highlight potential pathways and mechanisms implicated in VaD and its pathological risk factors, including stroke, cerebral small vessel disease, and cerebral amyloid angiopathy. Moreover, we discuss important modifiable risk factors such as hypertension, diabetes, and dyslipidemia, emphasizing the importance of a multifactorial approach in prevention, treatment, and understanding the genetic basis of VaD. Last, we outline several areas of scientific advancements to improve clinical care, highlighting that large-scale collaborative efforts, together with an integromics approach can enhance the robustness of genetic discoveries. Indeed, understanding the genetics of VaD and its pathophysiological risk factors hold the potential to redefine VaD on the basis of molecular mechanisms and to generate novel diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Nazia Pathan
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Muskaan Kaur Kharod
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Sajjha Nawab
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Matteo Di Scipio
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
| | - Michael Chong
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada.
| |
Collapse
|
33
|
Yan B, Liao P, Cheng F, Wang C, Zhang J, Han Z, Liu Y, Zhang L, Zhang W, Li M, Li D, Chen F, Lei P. Identification of toll-like receptor 2 as a key regulator of neuronal apoptosis in vascular dementia by bioinformatics analysis and experimental validation. Exp Gerontol 2024; 193:112464. [PMID: 38797288 DOI: 10.1016/j.exger.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Jieying Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Center for Cardiovascular Diseases, Tianjin Medical University, 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Wei Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China..
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
34
|
Ollila H, Pihlajamaa J, Martola J, Hokkanen L, Tiainen M, Hästbacka J. Authors' response: "Brain magnetic resonance imaging findings six months after critical COVID-19: A prospective cohort study". J Crit Care 2024; 82:154800. [PMID: 38555251 DOI: 10.1016/j.jcrc.2024.154800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Henriikka Ollila
- Department of Perioperative, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Janne Pihlajamaa
- HUS Medical Imaging Centre, Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Martola
- HUS Medical Imaging Centre, Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopaedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marjaana Tiainen
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Perioperative, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Anaesthesia and Intensive Care, Tampere University Hospital, Wellbeing District of Pirkanmaa, and Tampere University, Tampere, Finland
| |
Collapse
|
35
|
Tang J, Pahlavian SH, Joe E, Gamez MT, Zhao T, Ma S, Jin J, Cen SY, Chui H, Yan L. Assessment of arterial pulsatility of cerebral perforating arteries using 7T high-resolution dual-VENC phase-contrast MRI. Magn Reson Med 2024; 92:605-617. [PMID: 38440807 PMCID: PMC11186522 DOI: 10.1002/mrm.30073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Soroush Heidari Pahlavian
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Elizabeth Joe
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Maria Tereza Gamez
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Tianrui Zhao
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Samantha Ma
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Siemens Medical Solutions USA, Los Angeles, California, United States
| | - Jin Jin
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Siemens Medical Solutions USA, Los Angeles, California, United States
| | - Steven Yong Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Helena Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Lirong Yan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
36
|
Haidegger M, Klock N, Kneihsl M, Fandler-Höfler S, Eppinger S, Eller K, Seiler S, Enzinger C, Gattringer T. Recurrent cerebrovascular events after recent small subcortical infarction. J Neurol 2024; 271:5055-5063. [PMID: 38802623 PMCID: PMC11319362 DOI: 10.1007/s00415-024-12460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Recent small subcortical infarcts (RSSI) are the neuroimaging hallmark feature of small vessel disease (SVD)-related acute lacunar stroke. Long-term data on recurrent cerebrovascular events including their aetiology after RSSI are scarce. PATIENTS AND METHODS This retrospective study included all consecutive ischaemic stroke patients with an MRI-confirmed RSSI (in the supply area of a small single brain artery) at University Hospital Graz between 2008 and 2013. We investigated associations between clinical and SVD features on MRI (STRIVE criteria) and recurrent cerebrovascular events, using multivariable Cox regression adjusted for age, sex, vascular risk factors and MRI parameters. RESULTS We analysed 332 consecutive patients (mean age 68 years, 36% women; median follow-up time 12 years). A recurrent ischaemic cerebrovascular event occurred in 70 patients (21.1%; 54 ischaemic strokes, 22 transient ischaemic attacks) and was mainly attributed to SVD (68%). 26 patients (7.8%) developed intracranial haemorrhage. In multivariable analysis, diabetes (HR 2.43, 95% CI 1.44-3.88), severe white matter hyperintensities (HR 1.97, 95% CI 1.14-3.41), and cerebral microbleeds (HR 1.89, 95% CI 1.32-3.14) on baseline MRI were related to recurrent ischaemic stroke/TIA, while presence of cerebral microbleeds increased the risk for intracranial haemorrhage (HR 3.25, 95% CI 1.39-7.59). A widely used SVD summary score indicated high risks of recurrent ischaemic (HR 1.22, 95% CI 1.01-1.49) and haemorrhagic cerebrovascular events (HR 1.57, 95% CI 1.11-2.22). CONCLUSION Patients with RSSI have a substantial risk for recurrent cerebrovascular events-particularly those with coexisting chronic SVD features. Recurrent events are mainly related to SVD again.
Collapse
Affiliation(s)
- Melanie Haidegger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Nina Klock
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Simon Fandler-Höfler
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Sebastian Eppinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stephan Seiler
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria.
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
37
|
Yuan Y, Li N, Wang L, Heizhati M, Liu Y, Zhu Q, Hong J, Wu T. Aldosterone is Associated With New-onset Cerebrovascular Events in Patients With Hypertension and White Matter Lesions: A Cohort Study. Endocr Pract 2024; 30:718-725. [PMID: 38734410 DOI: 10.1016/j.eprac.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE White matter lesions (WMLs) increase the risk of stroke, stroke recurrence, and death. Higher plasma aldosterone concentration (PAC) increases the risk of stroke, acute myocardial infarction, and hypertension. The objective is to evaluate the relationship between PAC and cerebrovascular events in patients with hypertension and WMLs. METHODS We conducted a retrospective cohort study that included 1041 participants hospitalized. The outcome was new-onset cerebrovascular events including intracerebral hemorrhage and stroke. A Cox regression model was used to evaluate the relationship between baseline PAC and the risk of cerebrovascular events. RESULTS The mean age of participants was 60.9 ± 10.2 years and 565 (53.4%) were males. The median follow-up duration was 42 months (interquartile range: 25-67), and 92 patients experienced new-onset cerebrovascular events. In a multivariate-adjusted model, with PAC as a continuous variable, higher PAC increased the risk of cerebrovascular events; patient risk increased per 1 (hazard ratio [HR: 1.03], 95% confidence interval [CI]: 1.01-1.06, P < .01), per 5 (HR: 1.17, 95% CI: 1.06-1.31, P < .01), and per 10 ng/dL (HR: 1.41, 95%: 1.14-1.75, P < .01) increase in PAC. When PAC was expressed as a categorical variable (quartile: Q1-Q4), patients in Q4 (HR: 2.12, 95% CI: 1.18-3.79, P < .05) exhibited an increased risk of cerebrovascular events compared to Q1. Restrictive spline regression showed a linear association between PAC and the risk of new-onset cerebrovascular events after adjusting for all possible variables. CONCLUSIONS Our study identified a linear association between PAC and the risk of new-onset cerebrovascular events in patients with hypertension and WMLs.
Collapse
Affiliation(s)
- Yujuan Yuan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China.
| | - Lei Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Yan Liu
- Radiography Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Ting Wu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health, Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
38
|
Hergert DC, Gaasedelen O, Ryman SG, Prestopnik J, Caprihan A, Rosenberg GA. Blood-Brain Barrier Permeability Is Associated With Cognitive Functioning in Normal Aging and Neurodegenerative Diseases. J Am Heart Assoc 2024; 13:e034225. [PMID: 38979810 PMCID: PMC11292768 DOI: 10.1161/jaha.124.034225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The purpose of this study was to investigate the relationship between blood-brain barrier (BBB) permeability and cognitive functioning in healthy older adults and individuals with neurodegenerative diseases. METHODS AND RESULTS A total of 124 participants with Alzheimer disease, cerebrovascular disease, or a mix Alzheimer's and cerebrovascular diseases and 55 controlparticipants underwent magnetic resonance imaging and neuropsychological testing. BBB permeability was measured with dynamic contrast-enhanced magnetic resonance imaging and white matter injury was measured using a quantitative diffusion-tensor imaging marker of white matter injury. Structural equation modeling was used to examine the relationships between BBB permeability, vascular risk burden, white matter injury, and cognitive functioning. Vascular risk burden predicted BBB permeability (r=0.24, P<0.05) and white matter injury (r=0.38, P<0.001). BBB permeability predicted increased white matter injury (r=0.34, P<0.001) and increased white matter injury predicted lower cognitive functioning (r=-0.51, P<0.001). CONCLUSIONS The study provides empirical support for a vascular contribution to white matter injury and cognitive impairment, directly or indirectly via BBB permeability. This highlights the importance of targeting modifiable vascular risk factors to help mitigate future cognitive decline.
Collapse
Affiliation(s)
- Danielle C. Hergert
- US Department of Energy (Contractor), Kirtland Air Force BaseAlbuquerqueNMUSA
| | | | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNMUSA
- Department of NeurologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Jillian Prestopnik
- Center for Memory & AgingUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Arvind Caprihan
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNMUSA
| | - Gary A. Rosenberg
- Center for Memory & AgingUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of NeurologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
39
|
Zhao Y, Yu X, Li D, He J, Li Y, Zhang B, Zhang N, Wang Q, Yan C. Intracranial vasculopathy: an important organ damage in young adult patients with late-onset Pompe disease. Orphanet J Rare Dis 2024; 19:267. [PMID: 39010129 PMCID: PMC11250947 DOI: 10.1186/s13023-024-03282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Late-onset Pompe disease (LOPD) is mainly characterized by progressive limb-girdle muscle weakness and respiratory impairment, whereas stroke and cerebrovascular abnormalities have been insufficiently studied in LOPD. This study aimed to evaluate the frequency and pattern of intracranial artery and brain parenchyma abnormalities in LOPD patients. RESULTS Neuroimaging data from 30 Chinese adult LOPD patients were collected from our center. Seven patients (7/30) had acute cerebral infarction or hemorrhage. Brain magnetic resonance angiography (MRA) or computed tomography angiography (CTA) revealed artery abnormalities in 23 patients (23/30). Dilative arteriopathy was found in 19 patients (19/30), with vertebrobasilar dolichoectasia found in 17 patients and dilatation of the anterior circulation arteries found in 8 patients. The maximum diameter of the basilar artery was correlated with disease duration (p < 0.05). In addition, aneurysms (7/30) and fenestrations (3/30) were discovered. There were 14 patients with arterial stenosis (14/30), and both anterior and posterior circulation involvement occurred in 9 patients (9/14). Stenosis and dilative arteriopathy simultaneously occurred in 10 patients (10/30). White matter hyperintensities were present in 13 patients (13/28). Microbleeds, predominantly located in the cerebellum and brainstem, were detected in 7 patients (7/22) via susceptibility-weighted imaging. CONCLUSIONS Intracranial vasculopathy involving both large arteries and small vessels is an important organ damage in LOPD patients. LOPD should be considered a key differential diagnosis in young adults with cryptogenic stroke, and a series of imaging evaluations of the brain and intracranial blood vessels is recommended as a routine workup in adult LOPD patients.
Collapse
Affiliation(s)
- Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaolin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Duoling Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jingzhen He
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuzhi Li
- Department of Neurology, Jining NO.1 People's Hospital, Jining, 272002, China
| | - Bin Zhang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Na Zhang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qian Wang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
40
|
Cheng Z, Nie W, Leng J, Yang L, Wang Y, Li X, Guo L. Amygdala and cognitive impairment in cerebral small vessel disease: structural, functional, and metabolic changes. Front Neurol 2024; 15:1398009. [PMID: 39070051 PMCID: PMC11275956 DOI: 10.3389/fneur.2024.1398009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is a prevalent vascular disorder that has been consistently associated with vascular cognitive impairment (VCI). The diagnosis of CSVD continues to rely on magnetic resonance imaging (MRI). Epidemiological data indicate that the characteristic MRI features of CSVD, including white matter hyperintensity (WMH) and lacunar infarction, are very common among individuals over 40 years of age in community studies. This prevalence poses a significant burden on many low- and middle-income families. The amygdala plays a crucial role in integrating sensory and associative information to regulate emotional cognition. Although many previous studies have linked alterations in the amygdala to various diseases, such as depression, there has been little research on CSVD-associated alterations in the amygdala due to the complexity of CSVD. In this paper, we summarize the various imaging features of CSVD and discuss the correlation between amygdala changes and VCI. We also explore how new neuroimaging methods can assess amygdala changes early, laying a foundation for future comprehensive exploration of the pathogenesis of CSVD.
Collapse
Affiliation(s)
- Zhenyu Cheng
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Wenying Nie
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junhong Leng
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Linfeng Yang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
41
|
Wang S, Yang S, Liang D, Qin W, Yang L, Li X, Hu W. Association between enlarged perivascular spaces in basal ganglia and cerebral perfusion in elderly people. Front Neurol 2024; 15:1428867. [PMID: 39036638 PMCID: PMC11259966 DOI: 10.3389/fneur.2024.1428867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background and objective Enlarged perivascular spaces in basal ganglia (BG-EPVS) are considered an imaging marker of cerebral small vessel disease (CSVD), but its pathogenesis and pathophysiological process remain unclear. While decreased cerebral perfusion is linked to other CSVD markers, the relationship between BG-EPVS and cerebral perfusion remains ambiguous. This study aimed to explore this association. Methods Elderly individuals with severe BG-EPVS (n = 77) and age/sex-matched controls (n = 89) underwent head CT perfusion imaging. The cerebral perfusion parameters including mean transit time (MTT), time to maximum (TMAX), cerebral blood flow (CBF), and cerebral blood volume (CBV) were quantitatively measured by symmetric regions of interest plotted in the basal ganglia region. Point-biserial correlation and logistics regression analysis were performed to investigate the association between BG-EPVS and cerebral perfusion. Results There were no significant differences in MTT, TMAX, or CBF between BG-EPVS group and control group. CBV was significantly lower in the BG-EPVS group (p = 0.035). Point-biserial correlation analysis showed a negative correlation between BG-EPVS and CBV (r = -0.198, p = 0.011). BG-EPVS group and control group as the dependent variable, binary logistics regression analysis showed that CBV was not an independent risk factor for severe BG-EPVS (p = 0.448). All enrolled patients were divided into four groups according to the interquartile interval of CBV. The ordered logistic regression analysis showed severe BG-EPVS was an independent risk factor for decreased CBV after adjusting for confounding factors (OR = 2.142, 95%CI: 1.211-3.788, p = 0.009). Conclusion Severe BG-EPVS is an independent risk factor for decreased CBV in the elderly, however, the formation of BG-EPVS is not solely dependent on changes in CBV in this region. This finding provides information about the pathophysiological consequence caused by severe BG-EPVS.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuna Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dong Liang
- Department of Neurology, Affiliated Hospital of Heze Medical College, Heze, Shandong, China
| | - Wei Qin
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuanting Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Gibbon S, Low A, Hamid C, Reid‐Schachter M, Muniz‐Terrera G, Ritchie CW, Trucco E, Dhillon B, O'Brien JT, MacGillivray TJ. Association of optic disc pallor and RNFL thickness with cerebral small vessel disease in the PREVENT-Dementia study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12633. [PMID: 39119001 PMCID: PMC11307169 DOI: 10.1002/dad2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION We tested associations between two retinal measures (optic disc pallor, peripapillary retinal nerve fiber layer [pRNFL] thickness) and four magnetic resonance imaging markers of cerebral small vessel disease (SVD; lacunes, microbleeds, white matter hyperintensities, and enlarged perivascular spaces [ePVSs]). METHODS We used PallorMetrics to quantify optic disc pallor from fundus photographs, and pRNFL thickness from optical coherence tomography scans. Linear and logistic regression assessed relationships between retinal measures and SVD markers. Participants (N = 108, mean age 51.6) were from the PREVENT Dementia study. RESULTS Global optic disc pallor was linked to ePVSs in the basal ganglia in both left (β = 0.12, standard error [SE] = 0.05, P < 0.05) and right eyes (β = 0.13, SE = 0.05, P < 0.05). Associations were also noted in different disc sectors. No pRNFL associations with SVD markers were found. DISCUSSION Optic disc pallor correlated with ePVSs in the basal ganglia, suggesting retinal examination may be a useful method to study brain health changes related to SVD. Highlights Optic disc pallor is linked to enlarged perivascular spaces in basal ganglia.There is no association between peripapillary retinal nerve fiber layer thickness and cerebral small vessel disease markers.Optic disc examination could provide insights into brain health.The sample included 108 midlife adults from the PREVENT Dementia study.
Collapse
Affiliation(s)
- Samuel Gibbon
- Centre for Clinical Brain SciencesChancellor's BuildingEdinburghUK
- Robert O Curle Ophthalmology SuiteInstitute for Regeneration and RepairEdinburghUK
| | - Audrey Low
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Charlene Hamid
- Centre for Clinical Brain SciencesChancellor's BuildingEdinburghUK
- Robert O Curle Ophthalmology SuiteInstitute for Regeneration and RepairEdinburghUK
| | - Megan Reid‐Schachter
- Centre for Clinical Brain SciencesChancellor's BuildingEdinburghUK
- Robert O Curle Ophthalmology SuiteInstitute for Regeneration and RepairEdinburghUK
| | | | - Craig W. Ritchie
- Centre for Clinical Brain SciencesChancellor's BuildingEdinburghUK
| | - Emanuele Trucco
- VAMPIRE project, Computing (SSEN)University of DundeeQueen Mother BuildingDundeeUK
| | - Baljean Dhillon
- Centre for Clinical Brain SciencesChancellor's BuildingEdinburghUK
- Robert O Curle Ophthalmology SuiteInstitute for Regeneration and RepairEdinburghUK
- Princess Alexandra Eye PavilionEdinburghUK
| | - John T. O'Brien
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Thomas J. MacGillivray
- Centre for Clinical Brain SciencesChancellor's BuildingEdinburghUK
- Robert O Curle Ophthalmology SuiteInstitute for Regeneration and RepairEdinburghUK
- Edinburgh ImagingThe Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
43
|
Zhou LQ, Chu YH, Dong MH, Yang S, Chen M, Tang Y, Pang XW, You YF, Wu LJ, Wang W, Qin C, Tian DS. Ldl-stimulated microglial activation exacerbates ischemic white matter damage. Brain Behav Immun 2024; 119:416-430. [PMID: 38636563 DOI: 10.1016/j.bbi.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.
Collapse
Affiliation(s)
- Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
45
|
Tessier A, Ruze AJ, Varlet I, Laïb EMH, Royer E, Bernard M, Viola A, Perles-Barbacaru TA. Quantitative MRI of Gd-DOTA Accumulation in the Mouse Brain After Intraperitoneal Administration: Validation by Mass Spectrometry. J Magn Reson Imaging 2024; 60:316-324. [PMID: 37811700 DOI: 10.1002/jmri.29034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND In mice, intraperitoneal (ip) contrast agent (CA) administration is convenient for mapping microvascular parameters over a long-time window. However, continuous quantitative MRI of CA accumulation in brain over hours is still missing. PURPOSE To validate a quantitative time-resolved MRI technique for mapping the CA kinetics in brain upon ip administration. STUDY TYPE Prospective, animal model. SPECIMEN 25 C57Bl/6JRj mice underwent MRI. FIELD STRENGTH/SEQUENCE 7-T, gradient echo sequence. ASSESSMENT Gd-DOTA concentration was monitored by MRI (25 s/repetition) over 135 minutes with (N = 15) and without (N = 10) ip mannitol challenge (5 g/kg). After the final repetition, the brains were sampled to quantify gadolinium by mass spectrometry (MS). Upon manual brain segmentation, the average gadolinium concentration was compared with the MS quantification in transcardially perfused (N = 20) and unperfused (N = 5) mice. Precontrast T1-maps were acquired in 8 of 25 mice. STATISTICAL TESTS One-tailed Spearman and Pearson correlation between gadolinium quantification by MRI and by MS, D'Agostino-Pearson test for normal distribution, Bland-Altman analysis to evaluate the agreement between MRI and MS. Significance was set at P-value <0.05. RESULTS MRI showed that ip administered CA reached the blood compartment (>5 mM) within 10 minutes and accumulated continuously for 2 hours in cerebrospinal fluid (>1 mM) and in brain tissue. The MRI-derived concentration maps showed interindividual differences in CA accumulation (from 0.47 to 0.81 mM at 2 hours) with a consistent distribution resembling the pathways of the glymphatic system. The average in-vivo brain concentration 2 hours post-CA administration correlated significantly (r = 0.8206) with the brain gadolinium quantification by MS for N = 21 paired observations available. DATA CONCLUSION The presented experimental and imaging protocol may be convenient for monitoring the spatiotemporal pattern of CA uptake and clearance in the mouse brain over 2 hours. The quantification of the CA from the MRI signal in brain is corroborated by MS. EVIDENCE LEVEL N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Anthony Tessier
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
- Department of Medical Imaging, Sainte-Anne Military Teaching Hospital (Hôpital d'Instruction des Armées), Toulon, France
| | - Anthony J Ruze
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| | - Isabelle Varlet
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| | - Estelle M H Laïb
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| | - Emilien Royer
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| | - Monique Bernard
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| | - Angèle Viola
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| | - Teodora-Adriana Perles-Barbacaru
- CNRS, Center for Magnetic Resonance Imaging in Biology and Medicine (CRMBM, UMR CNRS 7339), Aix-Marseille University, Marseille, France
| |
Collapse
|
46
|
Petersen M, Chevalier C, Naegele FL, Ingwersen T, Omidvarnia A, Hoffstaedter F, Patil K, Eickhoff SB, Schnabel RB, Kirchhof P, Schlemm E, Cheng B, Thomalla G, Jensen M. Mapping the interplay of atrial fibrillation, brain structure, and cognitive dysfunction. Alzheimers Dement 2024; 20:4512-4526. [PMID: 38837525 PMCID: PMC11247702 DOI: 10.1002/alz.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is associated with an elevated risk of cognitive impairment and dementia. Understanding the cognitive sequelae and brain structural changes associated with AF is vital for addressing ensuing health care needs. METHODS AND RESULTS We examined 1335 stroke-free individuals with AF and 2683 matched controls using neuropsychological assessments and multimodal neuroimaging. The analysis revealed that individuals with AF exhibited deficits in executive function, processing speed, and reasoning, accompanied by reduced cortical thickness, elevated extracellular free-water content, and widespread white matter abnormalities, indicative of small vessel pathology. Notably, brain structural differences statistically mediated the relationship between AF and cognitive performance. DISCUSSION Integrating a comprehensive analysis approach with extensive clinical and magnetic resonance imaging data, our study highlights small vessel pathology as a possible unifying link among AF, cognitive decline, and abnormal brain structure. These insights can inform diagnostic approaches and motivate the ongoing implementation of effective therapeutic strategies. Highlights We investigated neuropsychological and multimodal neuroimaging data of 1335 individuals with atrial fibrillation (AF) and 2683 matched controls. Our analysis revealed AF-associated deficits in cognitive domains of attention, executive function, processing speed, and reasoning. Cognitive deficits in the AF group were accompanied by structural brain alterations including reduced cortical thickness and gray matter volume, alongside increased extracellular free-water content as well as widespread differences of white matter integrity. Structural brain changes statistically mediated the link between AF and cognitive performance, emphasizing the potential of structural imaging markers as a diagnostic tool in AF-related cognitive decline.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Céleste Chevalier
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Felix L Naegele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thies Ingwersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Kaustubh Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Eckhard Schlemm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Märit Jensen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Ma Y, Wang M, Chen X, Yao J, Ding Y, Gao Q, Zhou J, Lian X. Effect of the Blood Pressure and Antihypertensive Drugs on Cerebral Small Vessel Disease: A Mendelian Randomization Study. Stroke 2024; 55:1838-1846. [PMID: 38818733 DOI: 10.1161/strokeaha.123.045664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Previous studies yielded conflicting results about the influence of blood pressure (BP) and antihypertensive treatment on cerebral small vessel disease. Here, we conducted a Mendelian randomization study to investigate the effect of BP and antihypertensive drugs on cerebral small vessel disease. METHODS We extracted single-nucleotide polymorphisms for systolic BP and diastolic BP from a genome-wide association study (N=757 601) and screened single-nucleotide polymorphisms associated with calcium channel blockers, thiazides, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and β-blockers from public resources as instrumental variables. Then, we chose the genome-wide association study of white matter hyperintensity (WMH; N=18 381), cerebral microbleed (3556 cases, 22 306 controls), white matter perivascular space (9317 cases, 29 281 controls), basal ganglia perivascular space (BGPVS; 8950 cases, 29 953 controls), hippocampal perivascular space (HIPPVS; 9163 cases, 29 708 controls), and lacunar stroke (6030 cases, 248 929 controls) as outcome data sets. Subsequently, we conducted a 2-sample Mendelian randomization analysis. RESULTS We found that elevated systolic BP significantly increases the risk of BGPVS (odds ratio [OR], 1.05 [95% CI, 1.04-1.07]; P=1.72×10-12), HIPPVS (OR, 1.04 [95% CI, 1.02-1.05]; P=2.71×10-7), and lacunar stroke (OR, 1.41 [95% CI, 1.30-1.54]; P=4.97×10-15). There was suggestive evidence indicating that elevated systolic BP is associated with higher WMH volume (β=0.061 [95% CI, 0.018-0.105]; P=5.58×10-3) and leads to an increased risk of cerebral microbleed (OR, 1.16 [95% CI, 1.04-1.29]; P=7.17×10-3). Elevated diastolic BP was significantly associated with higher WMH volume (β=0.087 [95% CI, 0.049-0.124]; P=5.23×10-6) and significantly increased the risk of BGPVS (OR, 1.05 [95% CI, 1.04-1.06]; P=1.20×10-16), HIPPVS (OR, 1.03 [95% CI, 1.02-1.04]; P=2.96×10-6), and lacunar stroke (OR, 1.31 [95% CI, 1.21-1.41]; P=2.67×10-12). The use of calcium channel blocker to lower BP was significantly associated with lower WMH volume (β=-0.287 [95% CI, -0.408 to -0.165]; P=4.05×10-6) and significantly reduced the risk of BGPVS (OR, 0.85 [95% CI, 0.81-0.89]; P=8.41×10-19) and HIPPVS (OR, 0.88 [95% CI, 0.85-0.92]; P=6.72×10-9). CONCLUSIONS Our findings contribute to a better understanding of the pathogenesis of cerebral small vessel disease. Additionally, the utilization of calcium channel blockers to decrease BP can effectively reduce the likelihood of WMH, BGPVS, and HIPPVS. These findings offer valuable insights for the management and prevention of cerebral small vessel disease.
Collapse
Affiliation(s)
- Yazhou Ma
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Mengmeng Wang
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Xin Chen
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Jianrong Yao
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Yiping Ding
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Qianqian Gao
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Jiayi Zhou
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Xuegan Lian
- Department of Neurology, Third Affiliated Hospital, Soochow University, Changzhou, China
| |
Collapse
|
48
|
Hu X, Liu L, Xiong M, Lu J. Application of artificial intelligence-based magnetic resonance imaging in diagnosis of cerebral small vessel disease. CNS Neurosci Ther 2024; 30:e14841. [PMID: 39045778 PMCID: PMC11267174 DOI: 10.1111/cns.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is an important cause of stroke, cognitive impairment, and other diseases, and its early quantitative evaluation can significantly improve patient prognosis. Magnetic resonance imaging (MRI) is an important method to evaluate the occurrence, development, and severity of CSVD. However, the diagnostic process lacks quantitative evaluation criteria and is limited by experience, which may easily lead to missed diagnoses and misdiagnoses. With the development of artificial intelligence technology based on deep learning, the extraction of high-dimensional features in imaging can assist doctors in clinical decision-making, and it has been widely used in brain function and mental disorders, and cardiovascular and cerebrovascular diseases. This paper summarizes the global research results in recent years and briefly describes the application of deep learning in evaluating CSVD signs in MRI imaging, including recent small subcortical infarcts, lacunes of presumed vascular origin, vascular white matter hyperintensity, enlarged perivascular spaces, cerebral microbleeds, brain atrophy, cortical superficial siderosis, and cortical cerebral microinfarct.
Collapse
Affiliation(s)
- Xiaofei Hu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Nuclear Medicine, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Li Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Ming Xiong
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Jie Lu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
49
|
Ying Y, Li Y, Yao T, Shao X, Tang W, Montagne A, Chabriat H, Wang DJJ, Wang C, Yang Q, Cheng X. Heterogeneous blood-brain barrier dysfunction in cerebral small vessel diseases. Alzheimers Dement 2024; 20:4527-4539. [PMID: 38787758 PMCID: PMC11247670 DOI: 10.1002/alz.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION We explored how blood-brain barrier (BBB) leakage rate of gadolinium chelates (Ktrans) and BBB water exchange rate (kw) varied in cerebral small vessel disease (cSVD) subtypes. METHODS Thirty sporadic cSVD, 40 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 13 high-temperature requirement factor A serine peptidase 1 (HTRA) -related cSVD subjects were investigated parallel to 40 healthy individuals. Subjects underwent clinical, cognitive, and MRI assessment. RESULTS In CADASIL, no difference in Ktrans, but lower kw was observed in multiple brain regions. In sporadic cSVD, no difference in kw, but higher Ktrans was found in the whole brain and normal-appearing white matter. In HTRA1-related cSVD, both higher Ktrans in the whole brain and lower kw in multiple brain regions were observed. In each patient group, the altered BBB measures were correlated with lesion burden or clinical severity. DISCUSSION In cSVD subtypes, distinct alterations of kw and Ktrans were observed. The combination of Ktrans and kw can depict the heterogeneous BBB dysfunction. HIGHLIGHTS We measured BBB leakage to gadolinium-based contrast agent (Ktrans) and water exchange rate (kw) across BBB in three subtypes of cSVD. CADASIL is characterized by lower kw, HTRA1-related cSVD exhibits both higher Ktrans and lower kw, while sporadic cSVD is distinguished by higher Ktrans. There are distinct alterations in kw and Ktrans among subtypes of cSVD, indicating the heterogeneous nature of BBB dysfunction.
Collapse
Affiliation(s)
- Yunqing Ying
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tingyan Yao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- Centre Neurovasculaire Translationnel, CERVCO, INSERM U1141, FHU NeuroVasc, Université Paris Cité, Paris, France
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Yang D, Tan Y, Zhou Z, Ke Z, Huang L, Mo Y, Tang L, Mao C, Hu Z, Cheng Y, Shao P, Zhang B, Zhu X, Xu Y. Connectome gradient dysfunction contributes to white matter hyperintensity-related cognitive decline. CNS Neurosci Ther 2024; 30:e14843. [PMID: 38997814 PMCID: PMC11245402 DOI: 10.1111/cns.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Although white matter hyperintensity (WMH) is closely associated with cognitive decline, the precise neurobiological mechanisms underlying this relationship are not fully elucidated. Connectome studies have identified a primary-to-transmodal gradient in functional brain networks that support the spectrum from sensation to cognition. However, whether connectome gradient structure is altered as WMH progresses and how this alteration is associated with WMH-related cognitive decline remain unknown. METHODS A total of 758 WMH individuals completed cognitive assessment and resting-state functional MRI (rs-fMRI). The functional connectome gradient was reconstructed based on rs-fMRI by using a gradient decomposition framework. Interrelations among the spatial distribution of WMH, functional gradient measures, and specific cognitive domains were explored. RESULTS As the WMH volume increased, the executive function (r = -0.135, p = 0.001) and information-processing speed (r = -0.224, p = 0.001) became poorer, the gradient range (r = -0.099, p = 0.006), and variance (r = -0.121, p < 0.001) of the primary-to-transmodal gradient reduced. A narrower gradient range (r = 0.131, p = 0.001) and a smaller gradient variance (r = 0.136, p = 0.001) corresponded to a poorer executive function. In particular, the relationship between the frontal/occipital WMH and executive function was partly mediated by gradient range/variance of the primary-to-transmodal gradient. CONCLUSIONS These findings indicated that WMH volume, the primary-to-transmodal gradient, and cognition were interrelated. The detrimental effect of the frontal/occipital WMH on executive function was partly mediated by the decreased differentiation of the connectivity pattern between the primary and transmodal areas.
Collapse
Affiliation(s)
- Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Tan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - ZhiXin Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lili Huang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Limoran Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - ChengLu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Cheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| |
Collapse
|