1
|
Chew CS, Lee JY, Ng KY, Koh RY, Chye SM. Resilience mechanisms underlying Alzheimer's disease. Metab Brain Dis 2025; 40:86. [PMID: 39760900 DOI: 10.1007/s11011-024-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) consists of two main pathologies, which are the deposition of amyloid plaque as well as tau protein aggregation. Evidence suggests that not everyone who carries the AD-causing genes displays AD-related symptoms; they might never acquire AD as well. These individuals are referred to as non-demented individuals with AD neuropathology (NDAN). Despite the presence of extensive AD pathology in their brain, it was found that NDAN had better cognitive function than was expected, suggesting that they were more resilient (better at coping) to AD due to differences in their brains compared to other demented or cognitively impaired patients. Thus, identification of the mechanisms underlying resilience is crucial since it represents a promising therapeutic strategy for AD. In this review, we will explore the molecular mechanisms underpinning the role of genetic and molecular resilience factors in improving resilience to AD. These include protective genes and proteins such as APOE2, BDNF, RAB10, actin network proteins, scaffolding proteins, and the basal forebrain cholinergic system. A thorough understanding of these resilience mechanisms is crucial for not just comprehending the development of AD but may also open new treatment possibilities for AD by enhancing the neuroprotective pathway and targeting the pathogenic process.
Collapse
Affiliation(s)
- Chu Shi Chew
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Jia Yee Lee
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Chancel R, Lopez-Castroman J, Baca-Garcia E, Mateos Alvarez R, Courtet P, Conejero I. Biomarkers of Bipolar Disorder in Late Life: An Evidence-Based Systematic Review. Curr Psychiatry Rep 2024; 26:78-103. [PMID: 38470559 DOI: 10.1007/s11920-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Review the current evidence on biomarkers for bipolar disorder in the older adults. We conducted a systematic search of PubMed MEDLINE, PsycINFO, and Web of Science databases using the MeSH search terms "Biomarkers", "Bipolar Disorder", "Aged" and and "Aged, 80 and over". Studies were included if they met the following criteria: (1) the mean age of the study population was 50 years old or older, (2) the study included patients with bipolar disorder, and (3) the study examined one type of biomarkers or more including genetic, neuroimaging, and biochemical biomarkers. Reviews, case reports, studies not in English and studies for which no full text was available were excluded. A total of 26 papers were included in the final analysis. RECENT FINDINGS Genomic markers of bipolar disorder in older adults highlighted the implication of serotonin metabolism, while the expression of genes involved in angiogenesis was dysregulated. Peripheral blood markers were mainly related with low grade inflammation, axonal damage, endothelial dysfunction, and the dysregulation of the HPA axis. Neuroanatomical markers reflected a dysfunction of the frontal cortex, a loss of neurones in the anterior cingulate cortex and a reduction of the hippocampal volume (in patients older than 50 years old). While not necessarily limited to older adults, some of them may be useful for differential diagnosis (neurofilaments), disease staging (homocysteine, BDNF) and the monitoring of treatment outcomes (matrix metalloproteinases). Our review provides a comprehensive overview of the current evidence on biomarkers for bipolar disorder in the older adults. The identification of biomarkers may aid in the diagnosis, treatment selection, and monitoring of bipolar disorder in older adults, ultimately leading to improved outcomes for this population. Further research is needed to validate and further explore the potential clinical utility of biomarkers in this population.
Collapse
Affiliation(s)
- R Chancel
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - J Lopez-Castroman
- Department of Psychiatry, Nimes University Hospital, Nimes, France
- Department of Signal Theory and Communications, Carlos III University, Madrid, Spain
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - E Baca-Garcia
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
- Department of Psychiatry, Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Department of Psychiatry, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Department of Psychiatry, Hospital Universitario Central de Villalba, Madrid, Spain
- Department of Psychiatry, Hospital Universitario Infanta Elena, Valdemoro, Madrid, Spain
- Universidad Católica del Maude, Talca, Chile
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - R Mateos Alvarez
- Department of Psychiatry, University of Santiago de Compostela, Santiago de Compostela, Spain
- Psychogeriatric Unit, CHUS University Hospital, Santiago de Compostela, Spain
| | - Ph Courtet
- PSNREC, Univ Montpellier, INSERM, CHU de Montpellier, Montpellier, France
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - I Conejero
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Psychiatry, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
- Department of Psychiatry, CHU Nîmes, PSNREC, INSERM, University of Montpellier, Nîmes, France.
- Pôle de psychiatrie, CHU Nîmes, Rue du Professeur Robert Debré, 30900, Nîmes, France.
| |
Collapse
|
3
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Zouridakis A, Ayala I, Minogue G, Kawles A, Keszycki R, Macomber A, Bigio E, Geula C, Mesulam MM, Gefen T. Shades of gray in human white matter. J Comp Neurol 2023; 531:2109-2120. [PMID: 37376715 PMCID: PMC10751392 DOI: 10.1002/cne.25512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.
Collapse
Affiliation(s)
- Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alyssa Macomber
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M.-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
6
|
Nassif C, Kawles A, Ayala I, Minogue G, Gill NP, Shepard RA, Zouridakis A, Keszycki R, Zhang H, Mao Q, Flanagan ME, Bigio EH, Mesulam MM, Rogalski E, Geula C, Gefen T. Integrity of Neuronal Size in the Entorhinal Cortex Is a Biological Substrate of Exceptional Cognitive Aging. J Neurosci 2022; 42:8587-8594. [PMID: 36180225 PMCID: PMC9665923 DOI: 10.1523/jneurosci.0679-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Average aging is associated with a gradual decline of memory capacity. SuperAgers are humans ≥80 years of age who show exceptional episodic memory at least as good as individuals 20-30 years their junior. This study investigated whether neuronal integrity in the entorhinal cortex (ERC), an area critical for memory and selectively vulnerable to neurofibrillary degeneration, differentiated SuperAgers from cognitively healthy younger individuals, cognitively average peers ("Normal Elderly"), and individuals with amnestic mild cognitive impairment. Postmortem sections of the ERC were stained with cresyl violet to visualize neurons and immunostained with mouse monoclonal antibody PHF-1 to visualize neurofibrillary tangles. The cross-sectional area (i.e., size) of layer II and layer III/V ERC neurons were quantified. Two-thirds of total participants were female. Unbiased stereology was used to quantitate tangles in a subgroup of SuperAgers and Normal Elderly. Linear mixed-effect models were used to determine differences across groups. Quantitative measurements found that the soma size of layer II ERC neurons in postmortem brain specimens were significantly larger in SuperAgers compared with all groups (p < 0.05)-including younger individuals 20-30 years their junior (p < 0.005). SuperAgers had significantly fewer stereologically quantified Alzheimer's disease-related neurofibrillary tangles in layer II ERC than Normal Elderly (p < 0.05). This difference in tangle burden in layer II between SuperAgers and Normal Elderly suggests that tangle-bearing neurons may be prone to shrinkage during aging. The finding that SuperAgers show ERC layer II neurons that are substantially larger even compared with individuals 20-30 years younger is remarkable, suggesting that layer II ERC integrity is a biological substrate of exceptional memory in old age.SIGNIFICANCE STATEMENT Average aging is associated with a gradual decline of memory. Previous research shows that an area critical for memory, the entorhinal cortex (ERC), is susceptible to the early formation of Alzheimer's disease neuropathology, even during average (or typical) trajectories of aging. The Northwestern University SuperAging Research Program studies unique individuals known as SuperAgers, individuals ≥80 years old who show exceptional memory that is at least as good as individuals 20-30 years their junior. In this study, we show that SuperAgers harbor larger, healthier neurons in the ERC compared with their cognitively average same-aged peers, those with amnestic mild cognitive impairment, and - remarkably - even compared with individuals 20-30 years younger. We conclude that larger ERC neurons are a biological signature of the SuperAging trajectory.
Collapse
Affiliation(s)
- Caren Nassif
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nathan P Gill
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert A Shepard
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
7
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Duggan MR, Lu A, Foster TC, Wimmer M, Parikh V. Exosomes in Age-Related Cognitive Decline: Mechanistic Insights and Improving Outcomes. Front Aging Neurosci 2022; 14:834775. [PMID: 35299946 PMCID: PMC8921862 DOI: 10.3389/fnagi.2022.834775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the most prominent risk factor for cognitive decline, yet behavioral symptomology and underlying neurobiology can vary between individuals. Certain individuals exhibit significant age-related cognitive impairments, while others maintain intact cognitive functioning with only minimal decline. Recent developments in genomic, proteomic, and functional imaging approaches have provided insights into the molecular and cellular substrates of cognitive decline in age-related neuropathologies. Despite the emergence of novel tools, accurately and reliably predicting longitudinal cognitive trajectories and improving functional outcomes for the elderly remains a major challenge. One promising approach has been the use of exosomes, a subgroup of extracellular vesicles that regulate intercellular communication and are easily accessible compared to other approaches. In the current review, we highlight recent findings which illustrate how the analysis of exosomes can improve our understanding of the underlying neurobiological mechanisms that contribute to cognitive variation in aging. Specifically, we focus on exosome-mediated regulation of miRNAs, neuroinflammation, and aggregate-prone proteins. In addition, we discuss how exosomes might be used to enhance individual patient outcomes by serving as reliable biomarkers of cognitive decline and as nanocarriers to deliver therapeutic agents to the brain in neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael R. Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Anne Lu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mathieu Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Espay AJ, Sturchio A, Schneider LS, Ezzat K. Soluble Amyloid-β Consumption in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1403-1415. [PMID: 34151810 DOI: 10.3233/jad-210415] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain proteins function in their soluble, native conformation and cease to function when transformed into insoluble aggregates, also known as amyloids. Biophysically, the soluble-to-insoluble phase transformation represents a process of polymerization, similar to crystallization, dependent on such extrinsic factors as concentration, pH, and a nucleation surface. The resulting cross-β conformation of the insoluble amyloid is markedly stable, making it an unlikely source of toxicity. The spread of brain amyloidosis can be fully explained by mechanisms of spontaneous or catalyzed polymerization and phase transformation instead of active replication, which is an enzyme- and energy-requiring process dependent on a specific nucleic acid code for the transfer of biological information with high fidelity. Early neuronal toxicity in Alzheimer's disease may therefore be mediated to a greater extent by a reduction in the pool of soluble, normal-functioning protein than its accumulation in the polymerized state. This alternative loss-of-function hypothesis of pathogenicity can be examined by assessing the clinical and neuroimaging effects of administering non-aggregating peptide analogs to replace soluble amyloid-β levels above the threshold below which neuronal toxicity may occur. Correcting the depletion of soluble amyloid-β, however, would only exemplify 'rescue medicine.' Precision medicine will necessitate identifying the pathogenic factors catalyzing the protein aggregation in each affected individual. Only then can we stratify patients for etiology-specific treatments and launch precision medicine for Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lon S Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Zhang Z, Li XG, Wang ZH, Song M, Ping Yu S, Su Kang S, Liu X, Zhang Z, Xie M, Liu GP, Wang JZ, Ye K. δ-Secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer's disease. Mol Psychiatry 2021; 26:586-603. [PMID: 30382187 PMCID: PMC6684859 DOI: 10.1038/s41380-018-0286-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer's disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586-695) and Tau(1-368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1-368) strongly augments BACE1 expression and Aβ generation in the presence of APP. The Tau(1-368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aβ production. Notably, Aβ-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1-368). Inhibition of these kinases diminishes stimulatory effect of Tau(1-368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aβ in the amyloid hypothesis, but also act as a driving force for Aβ, when cleaved by δ-secretase.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Guang Li
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingke Song
- Department of Aneasthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Aneasthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Manling Xie
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gong-Ping Liu
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jian-Zhi Wang
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
11
|
Vernooij-Dassen M, Moniz-Cook E, Verhey F, Chattat R, Woods B, Meiland F, Franco M, Holmerova I, Orrell M, de Vugt M. Bridging the divide between biomedical and psychosocial approaches in dementia research: the 2019 INTERDEM manifesto. Aging Ment Health 2021; 25:206-212. [PMID: 31771338 DOI: 10.1080/13607863.2019.1693968] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To provide a new perspective on integrated biomedical and psychosocial dementia research. BACKGROUND Dementia is being recognized as a multifactorial syndrome, but there is little interaction between biomedical and psychosocial approaches. A way to improve scientific knowledge is to seek better understanding of the mechanisms underlying the interaction between biomedical and psychosocial paradigms. One rationale for integrating biomedical and psychosocial research is the discordance between neuropathology and cognitive functioning. The concept of social health might bridge the two paradigms. It relates to how social resources influence the dynamic balance between capacities and limitations. HYPOTHESES Social health can act as the driver for accessing cognitive reserve, in people with dementia through active facilitation and utilization of social and environmental resources. Thereby we link lifestyle social and opportunities to the brain reserve hypothesis. MANIFESTO We provide a Manifesto on how to significantly move forward the dementia research agenda.
Collapse
Affiliation(s)
- Myrra Vernooij-Dassen
- Scientific Institute for Quality of Healthcare (IQ Healthcare), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esme Moniz-Cook
- Faculty of Health Sciences, School of Health & Social Work, University of Hull, Hull, UK
| | - Frans Verhey
- Alzheimer Centrum Limburg, School of Mental Health & Neurosciences/Psychiatry and Psychology/MUMC, Maastricht, The Netherlands
| | - Rabih Chattat
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Bob Woods
- Dementia Services Development Centre, DSDC Wales, Bangor University, Ardudwy, Bangor, UK
| | - Franka Meiland
- Department of Psychiatry, Amsterdam University Medical Centers, Location VUmc, APH Research Institute, Amsterdam, the Netherlands
| | - Manuel Franco
- Department Psychiatry, University Rio Hortega Hospital (Valladolid) and Zamora Hospital (Zamora), Spain.,Psychiatric and Mental Health Department, University Rio Hortega Hospital and Zamora Hospital, Zamora, Spain
| | - Iva Holmerova
- Charles University FHS CELLO and Gerontologicke Centrum, Kobylisy, Czechia
| | - Martin Orrell
- The Institute of Mental Health, University of Nottingham Innovation Park, Nottingham, UK
| | - Marjolein de Vugt
- Alzheimer Center Limburg, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
12
|
Pelkmans W, Legdeur N, Ten Kate M, Barkhof F, Yaqub MM, Holstege H, van Berckel BNM, Scheltens P, van der Flier WM, Visser PJ, Tijms BM. Amyloid-β, cortical thickness, and subsequent cognitive decline in cognitively normal oldest-old. Ann Clin Transl Neurol 2021; 8:348-358. [PMID: 33421355 PMCID: PMC7886045 DOI: 10.1002/acn3.51273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the relationship between amyloid‐β (Aβ) deposition and markers of brain structure on cognitive decline in oldest‐old individuals with initial normal cognition. Methods We studied cognitive functioning in four domains at baseline and change over time in fifty‐seven cognitively intact individuals from the EMIF‐AD 90+ study. Predictors were Aβ status determined by [18F]‐flutemetamol PET (normal = Aβ − vs. abnormal = Aβ+), cortical thickness in 34 regions and hippocampal volume. Mediation analyses were performed to test whether effects of Aβ on cognitive decline were mediated by atrophy of specific anatomical brain areas. Results Subjects had a mean age of 92.7 ± 2.9 years, of whom 19 (33%) were Aβ+. Compared to Aβ−, Aβ+ individuals showed steeper decline on memory (β ± SE = −0.26 ± 0.09), and processing speed (β ± SE = −0.18 ± 0.08) performance over 1.5 years (P < 0.05). Furthermore, medial and lateral temporal lobe atrophy was associated with steeper decline in memory and language across individuals. Mediation analyses revealed that part of the memory decline observed in Aβ+ individuals was mediated through parahippocampal atrophy. Interpretation These results show that Aβ abnormality even in the oldest old with initially normal cognition is not part of normal aging, but is associated with a decline in cognitive functioning. Other pathologies may also contribute to decline in the oldest old as cortical thickness predicted cognitive decline similarly in individuals with and without Aβ pathology.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mara Ten Kate
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Queen Square Institute of Neurology and Centre for Medical Image Computing, UCL, London, UK
| | - Maqsood M Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology I Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Beker N, Ganz A, Hulsman M, Klausch T, Schmand BA, Scheltens P, Sikkes SAM, Holstege H. Association of Cognitive Function Trajectories in Centenarians With Postmortem Neuropathology, Physical Health, and Other Risk Factors for Cognitive Decline. JAMA Netw Open 2021; 4:e2031654. [PMID: 33449094 PMCID: PMC7811180 DOI: 10.1001/jamanetworkopen.2020.31654] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Understanding mechanisms associated with prolonged cognitive health in combination with exceptional longevity might lead to approaches to enable successful aging. OBJECTIVE To investigate trajectories of cognitive functioning in centenarians across domains, and to examine the association of these trajectories with factors underlying cognitive reserve, physical health, and postmortem levels of Alzheimer disease (AD)-associated neuropathology. DESIGN, SETTING, AND PARTICIPANTS This cohort study used neuropsychological test data and postmortem neuropathological reports from Dutch centenarians who were drawn from the 100-plus Study between January 2013 and April 2019. Eligible participants self-reported being cognitively healthy, which was confirmed by a proxy. Data analysis was performed between June 2019 and June 2020. EXPOSURES Age, sex, APOE ε genotype, factors of cognitive reserve, physical health, and AD-associated neuropathology (ie, amyloid-β, neurofibrillary tangles, and neuritic plaques). MAIN OUTCOMES AND MEASURES In annual visits (until death or until participation was no longer possible), centenarians underwent an extensive neuropsychological test battery, from which an mean z score of global cognition, memory, executive functions, verbal fluency, visuospatial functions, and attention/processing speed was calculated. Linear mixed models with a random intercept and time as independent variable were used to investigate cognitive trajectories, adjusted for sex, age, education, and vision and hearing capacities. In a second step, linear mixed models were used to associate cognitive trajectories with factors underlying cognitive reserve, physical health at baseline, and AD-associated neuropathology. RESULTS Of the 1023 centenarians approached, 340 were included in the study. We analyzed 330 centenarians for whom cognitive tests were available at baseline (239 [72.4%] women; median [interquartile range] age of 100.5 [100.2-101.7] years), with a mean (SD) follow-up duration of 1.6 (0.8) years. We observed no decline across investigated cognitive domains, with the exception of a slight decline in memory function (β, -0.10 SD per year; 95% CI, -0.14 to -0.05 SD; P < .001). Cognitive performance was associated with factors of physical health (eg, higher Barthel index: β, 0.37 SD per year; 95% CI, 0.24-0.49; P < .001) and cognitive reserve (eg, higher education: β, 0.41 SD per year; 95% CI, 0.29-0.53; P < .001), but none of these factors were associated with the rate of decline. Neuropathological reports were available for 44 participants. While centenarian brains revealed varying loads of postmortem neuropathological hallmarks of AD, this was not associated with cognitive performance or rate of decline. CONCLUSIONS AND RELEVANCE While we observed a slight vulnerability for decline in memory function, centenarians maintained high levels of performance in all other investigated cognitive domains for up to 4 years despite the presence of risk factors of cognitive decline. These findings suggest that mechanisms of resilience may underlie the prolongation of cognitive health until exceptional ages.
Collapse
Affiliation(s)
- Nina Beker
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Andrea Ganz
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marc Hulsman
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thomas Klausch
- Amsterdam Public Health Research Institute, Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ben A. Schmand
- Brain & Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Psychology, Neuropsychology and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Beker N, Sikkes SAM, Hulsman M, Tesi N, van der Lee SJ, Scheltens P, Holstege H. Longitudinal Maintenance of Cognitive Health in Centenarians in the 100-plus Study. JAMA Netw Open 2020; 3:e200094. [PMID: 32101309 PMCID: PMC7137688 DOI: 10.1001/jamanetworkopen.2020.0094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPORTANCE Some individuals who reach ages beyond 100 years in good cognitive health may be resilient against risk factors associated with cognitive decline. Exploring the processes underlying resilience may contribute to the development of therapeutic strategies that help to maintain cognitive health while aging. OBJECTIVE To identify individuals who escape cognitive decline until extreme ages and to investigate the prevalence of associated risk factors. DESIGN, SETTING, AND PARTICIPANTS The 100-plus Study is a prospective observational cohort study of community-based Dutch centenarians enrolled between 2013 and 2019 who were visited annually until death or until participation was no longer possible. The centenarians self-reported their cognitive health, as confirmed by a proxy. Of the 1023 centenarians approached for study inclusion, 340 fulfilled the study criteria and were included in analyses. Data analysis was performed from April 2019 to December 2019. MAIN OUTCOMES AND MEASURES Cognition was assessed using the Mini-Mental State Examination (MMSE). To identify centenarians who escape cognitive decline, this study investigated the association of baseline cognition with survivorship and cognitive trajectories for at least 2 years of follow-up using linear mixed models, adjusted for sex, age, and education. This study investigated the prevalence of apolipoprotein E (APOE) genotypes and cardiovascular disease as risk factors associated with cognitive decline. RESULTS At baseline, the median age of 340 centenarians was 100.5 years (range, 100.0-108.2 years); 245 participants (72.1%) were female. The maximum survival estimate plateaued at 82% per year (95% CI, 77% to 87%) across centenarians who scored 26 to 30 points on the baseline MMSE (hazard ratio, 0.56; 95% CI, 0.42 to 0.75; P < .001), suggesting that an MMSE score of 26 or higher is representative of both cognitive and physical health. Among the 79 centenarians who were followed up for 2 years or longer, those with baseline MMSE score less than 26 experienced a decline in MMSE score of 1.68 points per year (95% CI, -2.45 to -0.92 points per year; P = .02), whereas centenarians with MMSE scores of 26 or higher at baseline experienced a decline of 0.71 point per year (95% CI, -1.08 to -0.35 points per year). For 73% of the centenarians with baseline MMSE scores of 26 or higher, no cognitive changes were observed, which often extended to ensuing years or until death. It is estimated that this group is representative of less than 10% of Dutch centenarians. In this group, 18.6% carried at least 1 APOE-ε4 allele, compared with 5.6% of the centenarians with lower and/or declining cognitive performance. CONCLUSIONS AND RELEVANCE Most centenarians who scored 26 or higher on the MMSE at baseline maintained high levels of cognitive performance for at least 2 years, in some cases despite the presence of risk factors associated with cognitive decline. Investigation of this group might reveal the processes underlying resilience against risk factors associated with cognitive decline.
Collapse
Affiliation(s)
- Nina Beker
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Psychology, Neuropsychology, and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sven J. van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Espay AJ, Vizcarra JA, Marsili L, Lang AE, Sardi SP, Leverenz JB. Author response: Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 2020; 94:144-145. [DOI: 10.1212/wnl.0000000000008822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
De Vito AN, Ahmed M, Mohlman J. Cognitive Enhancement Strategies to Augment Cognitive-Behavioral Therapy for Anxiety and Related Disorders: Rationale and Recommendations for Use With Cognitively Healthy Older Adults. COGNITIVE AND BEHAVIORAL PRACTICE 2020. [DOI: 10.1016/j.cbpra.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Paul BD, Snyder SH. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front Neurol 2019; 10:1315. [PMID: 31920936 PMCID: PMC6920251 DOI: 10.3389/fneur.2019.01315] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Current medications for neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and Schizophrenia mainly target disease symptoms. Thus, there is an urgent need to develop novel therapeutics that can delay, halt or reverse disease progression. AD, HD, PD, and schizophrenia are characterized by elevated oxidative and nitrosative stress, which play a central role in pathogenesis. Clinical trials utilizing antioxidants to counter disease progression have largely been unsuccessful. Most antioxidants are relatively non-specific and do not adequately target neuroprotective pathways. Accordingly, a search for agents that restore redox balance as well as halt or reverse neuronal loss is underway. The small molecules, cysteamine, the decarboxylated derivative of the amino acid cysteine, and cystamine, the oxidized form of cysteamine, respectively, mitigate oxidative stress and inflammation and upregulate neuroprotective pathways involving brain-derived neurotrophic factor (BDNF) and Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Cysteamine can traverse the blood brain barrier, a desirable characteristic of drugs targeting neurodegeneration. This review addresses recent developments in the use of these aminothiols to counter neurodegeneration and neuropsychiatric deficits.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Espay AJ, Vizcarra JA, Marsili L, Lang AE, Simon DK, Merola A, Josephs KA, Fasano A, Morgante F, Savica R, Greenamyre JT, Cambi F, Yamasaki TR, Tanner CM, Gan-Or Z, Litvan I, Mata IF, Zabetian CP, Brundin P, Fernandez HH, Standaert DG, Kauffman MA, Schwarzschild MA, Sardi SP, Sherer T, Perry G, Leverenz JB. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 2019; 92:329-337. [PMID: 30745444 DOI: 10.1212/wnl.0000000000006926] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts.
Collapse
Affiliation(s)
- Alberto J Espay
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio.
| | - Joaquin A Vizcarra
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Luca Marsili
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Anthony E Lang
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - David K Simon
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Aristide Merola
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Keith A Josephs
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Alfonso Fasano
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Francesca Morgante
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Rodolfo Savica
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - J Timothy Greenamyre
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Franca Cambi
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Tritia R Yamasaki
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Caroline M Tanner
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Ziv Gan-Or
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Irene Litvan
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Ignacio F Mata
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Cyrus P Zabetian
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Patrik Brundin
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Hubert H Fernandez
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - David G Standaert
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Marcelo A Kauffman
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Michael A Schwarzschild
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - S Pablo Sardi
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Todd Sherer
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - George Perry
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - James B Leverenz
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| |
Collapse
|
19
|
The puzzle of preserved cognition in the oldest old. Neurol Sci 2019; 41:441-447. [PMID: 31713754 DOI: 10.1007/s10072-019-04111-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Although epidemiological studies predict an exponential increase in the prevalence of dementia with age, recent studies have demonstrated that the oldest old are actually less frequently affected by dementia than the younger elderly. To explain this, I suggest a parallel between brain ageing and Alzheimer's disease (AD) and assume that theories concerning the brain's vulnerability to AD and its individual variability may also explain why some of the oldest old remain cognitively efficient. Some theories argue that AD is due to the continuing presence of the immature neurones vulnerable to amyloid beta protein (Aß) that are normally involved in brain development and then removed as a result of cell selection by the proteins associated with both brain development and AD. If a dysfunction in cell selection allows these immature neurones to survive, they degenerate early as a result of the neurotoxic action of Aß accumulation, which their mature counterparts can withstand. Consequently, age at the time of onset of AD and its clinical presentations depend on the number and location of such immature cells. I speculate that the same mechanism is responsible for the variability of normal brain ageing: the oldest old with well-preserved cognitive function are people genetically programmed for extreme ageing who have benefited from better cell selection during prenatal and neonatal life and therefore have fewer surviving neurones vulnerable to amyloid-promoted degeneration, whereas the process of early life cell selection was less successful in the oldest old who develop dementia.
Collapse
|
20
|
Munoz E, Filshtein T, Bettcher BM, McLaren D, Hedden T, Tommet D, Mungas D, Therneau T. Cognitive function and neuropathological outcomes: a forward-looking approach. J Neurol 2019; 266:2920-2928. [PMID: 31435771 DOI: 10.1007/s00415-019-09516-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the risk of Alzheimer's disease-related neuropathology burden at autopsy given older adults' current cognitive state. METHOD Participants included 1,303 individuals who enrolled in the Religious Orders Study (ROS) and 1,789 who enrolled in the Rush Memory and Aging Project (MAP). Cognitive status was evaluated via standardized assessments of global cognition and episodic memory. At the time of analyses, about 50% of participants were deceased with the remaining numbers right censored. Using multi-state Cox proportional hazard models, we compared the cognitive status of all subjects alive at a given age and estimated future risk of dying with different AD-related neuropathologies. Endpoints considered were Braak Stages (0-2, 3-4, 5-6), CERAD (0, 1, 2, 3), and TDP-43 (0, 1, 2, 3) level. RESULTS For all three pathological groupings (Braak, CERAD, TDP-43), we found that a cognitive test score one standard deviation below average put individuals at up to three times the risk for being diagnosed with late stage AD at autopsy according to pathological designations. The effect remained significant after adjusting for sex, APOE-e4 status, smoking status, education level, and vascular health scores. CONCLUSION Applying multi-state modeling techniques, we were able to identify those at risk of exhibiting specific levels of neuropathology based on current cognitive test performance. This approach presents new and approachable possibilities in clinical settings for diagnosis and treatment development programs.
Collapse
Affiliation(s)
- Elizabeth Munoz
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, TX, 78712, USA.
- University of California, Riverside, CA, 92521, USA.
| | - Teresa Filshtein
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Brianne M Bettcher
- Rocky Mountain Alzheimer's Disease Center, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Trey Hedden
- Department of Neurology, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Doug Tommet
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, USA
| | - Dan Mungas
- Department of Neurology, University of California, Davis, CA, USA
| | - Terry Therneau
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Soldevila-Domenech N, Boronat A, Langohr K, de la Torre R. N-of-1 Clinical Trials in Nutritional Interventions Directed at Improving Cognitive Function. Front Nutr 2019; 6:110. [PMID: 31396517 PMCID: PMC6663977 DOI: 10.3389/fnut.2019.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
Longer life expectancy has led to an increase in the prevalence of age-related cognitive decline and dementia worldwide. Due to the current lack of effective treatment for these conditions, preventive strategies represent a research priority. A large body of evidence suggests that nutrition is involved in the pathogenesis of age-related cognitive decline, but also that it may play a critical role in slowing down its progression. At a population level, healthy dietary patterns interventions, such as the Mediterranean and the MIND diets, have been associated with improved cognitive performance and a decreased risk of neurodegenerative disease development. In the era of evidence-based medicine and patient-centered healthcare, personalized nutritional recommendations would offer a considerable opportunity in preventing cognitive decline progression. N-of-1 clinical trials have emerged as a fundamental design in evidence-based medicine. They consider each individual as the only unit of observation and intervention. The aggregation of series of N-of-1 clinical trials also enables population-level conclusions. This review provides a general view of the current scientific evidence regarding nutrition and cognitive decline, and critically states its limitations when translating results into the clinical practice. Furthermore, we suggest methodological strategies to develop N-of-1 clinical trials focused on nutrition and cognition in an older population. Finally, we evaluate the potential challenges that researchers may face when performing studies in precision nutrition and cognition.
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Barcelona/Barcelonatech, Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Arenaza-Urquijo EM, Przybelski SA, Lesnick TL, Graff-Radford J, Machulda MM, Knopman DS, Schwarz CG, Lowe VJ, Mielke MM, Petersen RC, Jack CR, Vemuri P. The metabolic brain signature of cognitive resilience in the 80+: beyond Alzheimer pathologies. Brain 2019; 142:1134-1147. [PMID: 30851100 PMCID: PMC6439329 DOI: 10.1093/brain/awz037] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 11/14/2022] Open
Abstract
Research into cognitive resilience imaging markers may help determine the clinical significance of Alzheimer's disease pathology among older adults over 80 years (80+). In this study, we aimed to identify a fluorodeoxyglucose (FDG)-PET based imaging marker of cognitive resilience. We identified 457 participants ≥ 80 years old (357 cognitively unimpaired, 118 cognitively impaired at baseline, mean age of 83.5 ± 3.2 years) from the population-based Mayo Clinic Study of Aging (MCSA) with baseline MRI, Pittsburgh compound B-PET and FDG-PET scans and neuropsychological evaluation. We identified a subset of 'resilient' participants (cognitively stable 80+, n = 192) who maintained normal cognition for an average of 5 years (2-10 years). Global PIB ratio, FDG-PET ratio and cortical thickness from Alzheimer's disease signature regions were used as Alzheimer's disease imaging biomarker outcomes and global cognitive z-score was used as a cognitive outcome. First, using voxel-wise multiple regression analysis, we identified the metabolic areas underlying cognitive resilience in cognitively stable 80+ participants, which we call the 'resilience signature'. Second, using multivariate linear regression models, we evaluated the association of risk and protective factors with the resilience signature and its added value for predicting global cognition beyond established Alzheimer's disease imaging biomarkers in the full 80+ sample. Third, we evaluated the utility of the resilience signature in conjunction with amyloidosis in predicting longitudinal cognition using linear mixed effect models. Lastly, we assessed the utility of the resilience signature in an independent cohort using ADNI (n = 358, baseline mean age of 80 ± 3.8). Our main findings were: (i) FDG-PET uptake in the bilateral anterior cingulate cortex and anterior temporal pole was associated with baseline global cognition in cognitively stable 80+ (the resilience signature); (ii) established Alzheimer's disease imaging biomarkers did not predict baseline global cognition in this subset of participants; (iii) in the full MCSA 80+ and ADNI cohorts, amyloid burden and FDG-PET in the resilience signature were the stronger predictors of baseline global cognition; (iv) sex and systemic vascular health predicted FDG-PET in the resilience signature, suggesting vascular health maintenance as a potential pathway to preserve the metabolism of these areas; and (v) the resilience signature provided significant information about global longitudinal cognitive change even when considering amyloid status in both the MCSA and ADNI cohorts. The FDG-PET resilience signature may be able to provide important information in conjunction with other Alzheimer's disease biomarkers for the determination of clinical prognosis. It may also facilitate identification of disease targeting modifiable risk factors such as vascular health maintenance.
Collapse
Affiliation(s)
| | | | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
23
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 734] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
24
|
Wong CG, Thomas KR, Edmonds EC, Weigand AJ, Bangen KJ, Eppig JS, Jak AJ, Devine SA, Delano-Wood L, Libon DJ, Edland SD, Au R, Bondi MW. Neuropsychological Criteria for Mild Cognitive Impairment in the Framingham Heart Study's Old-Old. Dement Geriatr Cogn Disord 2018; 46:253-265. [PMID: 30391953 PMCID: PMC9049857 DOI: 10.1159/000493541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/06/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mild cognitive impairment (MCI) lacks a "gold standard" operational definition. The Jak/Bondi actuarial neuropsychological criteria for MCI are associated with improved diagnostic stability and prediction of progression to dementia compared to conventional MCI diagnostic approaches, although its utility in diagnosing MCI in old-old individuals (age 75+) is unknown. Therefore, we investigated the applicability of neuropsychological MCI criteria among old-old from the Framingham Heart Study. METHODS A total of 347 adults (ages 79-102) were classified as cognitively normal or MCI via Jak/Bondi and conventional Petersen/Winblad criteria, which differ on cutoffs for cognitive impairment and number of impaired scores required for a diagnosis. Cox models examined MCI status in predicting risk of progression to dementia. RESULTS MCI diagnosed by both the Jak/Bondi and Petersen/Winblad criteria was associated with incident dementia; however, when both criteria were included in the regression model together, only the Jak/Bondi criteria remained statistically significant. At follow-up, the Jak/Bondi criteria had a lower MCI-to-normal reversion rate than the Petersen/Winblad criteria. CONCLUSIONS Our findings are consistent with previous research on the Jak/Bondi criteria and support the use of a comprehensive neuropsychological diagnostic approach for MCI among old-old individuals.
Collapse
Affiliation(s)
- Christina G. Wong
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R. Thomas
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Emily C. Edmonds
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joel S. Eppig
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Amy J. Jak
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sherral A. Devine
- The Framingham Heart Study, Framingham, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Lisa Delano-Wood
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David J. Libon
- Department of Geriatrics and Gerontology and the Department of Psychology, School of Osteopathic Medicine, New Jersey Institute for Successful Aging, Rowan University, Glassboro, NJ, USA
| | - Steven D. Edland
- Department of Biostatistics, University of California, San Diego, La Jolla, CA, USA,Department of Family and Preventative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rhoda Au
- The Framingham Heart Study, Framingham, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA,Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Mark W. Bondi
- Veteran Affairs San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Moussa CEH. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer's disease. Expert Opin Investig Drugs 2017; 26:1131-1136. [PMID: 28817311 DOI: 10.1080/13543784.2017.1369527] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION BACE 1 is a protease that cleaves the transmembrane amyloid precursor protein and generates amyloid-β peptides that accumulate in AD brains. No known mutations are identified in the gene encoding BACE1 in AD. However, enzyme levels are elevated in AD and a single residue mutation in amyloid precursor protein protects against protein cleavage by BACE1, suggesting BACE involvement in disease pathogenesis. Drugs that can inhibit BACE1 would theoretically prevent Aβ accumulation and halt AD onset and progression. Areas covered: This review discusses clinical developments of BACE1 inhibitors and focuses on what is learned about these inhibitors as a potential treatment. Expert opinion: BACE1 inhibition as a therapeutic strategy to improve cognition in AD has been challening. Brain-penetrant BACE1 inhibitors have been developed and clinical trials are underway, both safety and efficacy are questionable. Several clinical trials suggest that BACE1 inhibition and other immunotherapies to reduce brain Aβ are insufficient to improve cognition in AD. This may be due to the emphasis on the amyloid hypothesis despite big failures. We may have to seriously consider shifting attention to therapeutic strategies other than BACE1 inhibition or reduction of Aβ alone and pay more attention to simultaneous clearance of tau and Aβ.
Collapse
Affiliation(s)
- Charbel E-H Moussa
- a Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program , Georgetown University Medical Center , Washington , DC , USA
| |
Collapse
|
26
|
Campos-Magdaleno M, Facal D, Lojo-Seoane C, Pereiro AX, Juncos-Rabadán O. Longitudinal Assessment of Verbal Learning and Memory in Amnestic Mild Cognitive Impairment: Practice Effects and Meaningful Changes. Front Psychol 2017; 8:1231. [PMID: 28775700 PMCID: PMC5518168 DOI: 10.3389/fpsyg.2017.01231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/05/2017] [Indexed: 11/18/2022] Open
Abstract
Objectives: To identify learning effects and meaningful changes in amnestic mild cognitive impairment (aMCI) at a follow-up assessment. Method: The Spanish version of the California Verbal Learning Test (CVLT) was administered to a sample of 274 adults of age over 50 years with subjective memory complains (SMC), including single and multiple domain aMCI groups and participants with SMC but without cognitive impairment (SMC group). The Wilcoxon test was used to compare results at baseline and after 18 months in short and long recall, and standardized regression-based (SRB) methods were used to study meaningful changes. Results: Scores were significantly higher at follow-up for short and long-delayed recall in all groups indicating generalized practice effect. SRB scores indicated a significant decline in recall in a higher proportion of participants with aMCI than in SMC group. Discussion: Patients with multiple and single domain aMCI benefit from practice in a verbal learning memory test. The SRB approach revealed a higher incidence of meaningful decline in short and long-delay recall and recognition in the aMCI groups than in the SMC group. Specifically, compared to SMC participants, single-domain aMCI individuals declined in a higher proportion in all measures, and multiple-domain aMCI individuals in long delay free recall.
Collapse
Affiliation(s)
- María Campos-Magdaleno
- Department of Developmental and Educational Psychology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - David Facal
- Department of Developmental and Educational Psychology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - Cristina Lojo-Seoane
- Department of Developmental and Educational Psychology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - Arturo X Pereiro
- Department of Developmental and Educational Psychology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - Onésimo Juncos-Rabadán
- Department of Developmental and Educational Psychology, University of Santiago de CompostelaSantiago de Compostela, Spain
| |
Collapse
|
27
|
Bennett IJ, Greenia DE, Maillard P, Sajjadi SA, DeCarli C, Corrada MM, Kawas CH. Age-related white matter integrity differences in oldest-old without dementia. Neurobiol Aging 2017; 56:108-114. [PMID: 28527525 PMCID: PMC5647141 DOI: 10.1016/j.neurobiolaging.2017.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 12/30/2022]
Abstract
Aging is known to have deleterious effects on cerebral white matter, yet little is known about these white matter alterations in advanced age. In this study, 94 oldest-old adults without dementia (90-103 years) underwent diffusion tensor imaging to assess relationships between chronological age and multiple measures of integrity in 18 white matter regions across the brain. Results revealed significant age-related declines in integrity in regions previously identified as being sensitive to aging in younger-old adults (corpus callosum, fornix, cingulum, external capsule). For the corpus callosum, the effect of age on genu fractional anisotropy was significantly weaker than the relationship between age and splenium fractional anisotropy. Importantly, age-related declines in white matter integrity did not differ in cognitively normal and cognitively impaired not demented oldest-old, suggesting that they were not solely driven by cognitive dysfunction or preclinical dementia in this advanced age group. Instead, white matter in these regions appears to remain vulnerable to normal aging processes through the 10th decade of life.
Collapse
Affiliation(s)
- Ilana J Bennett
- Department of Psychology, University of California, Riverside, CA, USA.
| | - Dana E Greenia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, CA, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA; Alzheimer's Disease Center, University of California, Davis, CA, USA
| | - Maria M Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
28
|
Dekhtyar M, Papp KV, Buckley R, Jacobs HIL, Schultz AP, Johnson KA, Sperling RA, Rentz DM. Neuroimaging markers associated with maintenance of optimal memory performance in late-life. Neuropsychologia 2017; 100:164-170. [PMID: 28472627 PMCID: PMC5522601 DOI: 10.1016/j.neuropsychologia.2017.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Age-related memory decline has been well-documented; however, some individuals reach their 8th-10th decade while maintaining strong memory performance. OBJECTIVE To determine which demographic and biomarker factors differentiated top memory performers (aged 75+, top 20% for memory) from their peers and whether top memory performance was maintained over 3 years. METHODS Clinically normal adults (n=125, CDR=0; age: 79.5±3.57 years) from the Harvard Aging Brain Study underwent cognitive testing and neuroimaging (amyloid PET, MRI) at baseline and 3-year follow-up. Participants were grouped into Optimal (n=25) vs. Typical (n=100) performers using performance on 3 challenging memory measures. Non-parametric tests were used to compare groups. RESULTS There were no differences in age, sex, or education between Optimal vs. Typical performers. The Optimal group performed better in Processing Speed (p=0.016) and Executive Functioning (p<0.001). Optimal performers had larger hippocampal volumes at baseline compared with Typical Performers (p=0.027) but no differences in amyloid burden (p=0.442). Twenty-three of the 25 Optimal performers had longitudinal data and16 maintained top memory performance while 7 declined. Non-Maintainers additionally declined in Executive Functioning but not Processing Speed. Longitudinally, there were no hippocampal volume differences between Maintainers and Non-Maintainers, however Non-Maintainers exhibited higher amyloid burden at baseline in contrast with Maintainers (p=0.008). CONCLUSIONS Excellent memory performance in late life does not guarantee protection against cognitive decline. Those who maintain an optimal memory into the 8th and 9th decades may have lower levels of AD pathology.
Collapse
Affiliation(s)
- Maria Dekhtyar
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Kathryn V Papp
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Florey Institutes of Neuroscience and Mental Health, Melbourne, Australia; Melbourne School of Psychological Science, University of Melbourne, Australia
| | - Heidi I L Jacobs
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Dorene M Rentz
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
29
|
Skoog J, Backman K, Ribbe M, Falk H, Gudmundsson P, Thorvaldsson V, Borjesson-Hanson A, Ostling S, Johansson B, Skoog I. A Longitudinal Study of the Mini-Mental State Examination in Late Nonagenarians and Its Relationship with Dementia, Mortality, and Education. J Am Geriatr Soc 2017; 65:1296-1300. [PMID: 28323333 DOI: 10.1111/jgs.14871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To examine level of and change in cognitive status using the Mini-Mental State Examination (MMSE) in relation to dementia, mortality, education, and sex in late nonagenarians. DESIGN Three-year longitudinal study with examinations at ages 97, 99, and 100. SETTING Trained psychiatric research nurses examined participants at their place of living. PARTICIPANTS A representative population-based sample of 97-year-old Swedes (N = 591; 107 men, 484 women) living in Gothenburg, Sweden. MEASUREMENTS A Swedish version of the MMSE was used to measure cognitive status. Geriatric psychiatrists diagnosed dementia according to the Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised. Mixed models were fitted to the data to model the longitudinal relationship between MMSE score and explanatory variables. RESULTS Individuals with dementia between age 97 and 100 had lower mean MMSE scores than those without dementia. Those who died during the 3-year follow-up had lower MMSE scores than those who survived. MMSE scores at baseline did not differ between those without dementia and those who developed dementia during the 3-year follow-up. Participants with more education had higher MMSE scores, but there was no association between education and linear change. CONCLUSION MMSE score is associated with dementia and subsequent mortality even in very old individuals, although the preclinical phase of dementia may be short in older age. Level of education is positively associated with MMSE score but not rate of decline in individuals approaching age 100.
Collapse
Affiliation(s)
- Johan Skoog
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden.,Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Backman
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| | - Mats Ribbe
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| | - Hanna Falk
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| | - Pia Gudmundsson
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| | | | - Anne Borjesson-Hanson
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| | - Svante Ostling
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| | - Boo Johansson
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Section of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, Molndal, Sweden
| |
Collapse
|
30
|
Bangen KJ, Clark AL, Werhane M, Edmonds EC, Nation DA, Evangelista N, Libon DJ, Bondi MW, Delano-Wood L. Cortical Amyloid Burden Differences Across Empirically-Derived Mild Cognitive Impairment Subtypes and Interaction with APOE ɛ4 Genotype. J Alzheimers Dis 2017; 52:849-61. [PMID: 27031472 DOI: 10.3233/jad-150900] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined cortical amyloid-β (Aβ) levels and interactions with apolipoprotein (APOE) ɛ4 genotype status across empirically-derived mild cognitive impairment (MCI) subgroups and cognitively normal older adults. Participants were 583 ADNI participants (444 MCI, 139 normal controls [NC]) with baseline florbetapir positron emission tomography (PET) amyloid imaging and neuropsychological testing. Of those with ADNI-defined MCI, a previous cluster analysis [1] classified 51% (n = 227) of the current sample as amnestic MCI, 8% (n = 37) as dysexecutive/mixed MCI, and 41% (n = 180) as cluster-derived normal (cognitively normal). Results demonstrated that the dysexecutive/mixed and amnestic MCI groups showed significantly greater levels of amyloid relative to the cluster-derived normal and NC groups who did not differ from each other. Additionally, 78% of the dysexecutive/mixed, 63% of the amnestic MCI, 42% of the cluster-derived normal, and 34% of the NC group exceeded the amyloid positivity threshold. Finally, a group by APOE genotype interaction demonstrated that APOE ɛ4 carriers within the amnestic MCI, cluster-derived normal, and NC groups showed significantly greater amyloid accumulation compared to non-carriers of their respective group. Such an interaction was not revealed within the dysexecutive/mixed MCI group which was characterized by both greater cognitive impairment and amyloid accumulation compared to the other participant groups. Our results from the ADNI cohort show considerable heterogeneity in Aβ across all groups studied, even within a group of robust NC participants. Findings suggest that conventional criteria for MCI may be susceptible to false positive diagnostic errors, and that onset of Aβ accumulation may occur earlier in APOE ɛ4 carriers compared to non-carriers.
Collapse
Affiliation(s)
- Katherine J Bangen
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra L Clark
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Madeline Werhane
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C Edmonds
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Nicole Evangelista
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David J Libon
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mark W Bondi
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
31
|
What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer's disease. Neurobiol Aging 2016; 51:148-155. [PMID: 27939698 DOI: 10.1016/j.neurobiolaging.2016.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/12/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
Abstract
As the world population ages, primary prevention of age-related cognitive decline and disability will become increasingly important. Prevention strategies are often developed from an understanding of disease pathobiology, but models of biological success may provide additional useful insights. Here, we studied 224 older adults, some with superior memory performance (n = 41), some with normal memory performance (n = 109), and some with mild cognitive impairment or Alzheimer's disease (AD; n = 74) to understand metabolomic differences which might inform future interventions to promote cognitive health. Plasma metabolomics revealed significant differential abundance of 12 metabolites in those with superior memory relative to controls (receiver operating characteristic area under the curve [AUC] = 0.89) and the inverse abundance pattern in the mild cognitive impairment, AD (AUC = 1.0) and even preclinical AD groups relative to controls (AUC = 0.97). The 12 metabolites are components of key metabolic pathways regulating oxidative stress, inflammation, and nitric oxide bioavailability. These findings from opposite ends of the cognitive continuum highlight the role of these pathways in superior memory abilities and whose failure may contribute to age-related memory impairment. These pathways may be targeted to promote successful cognitive aging.
Collapse
|
32
|
Lin F, Ren P, Mapstone M, Meyers SP, Porsteinsson A, Baran TM. The cingulate cortex of older adults with excellent memory capacity. Cortex 2016; 86:83-92. [PMID: 27930899 DOI: 10.1016/j.cortex.2016.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/03/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Memory deterioration is the earliest and most devastating cognitive deficit in normal aging and Alzheimer's disease (AD). Some older adults, known as "Supernormals", maintain excellent memory. This study examined relationships between cerebral amyloid deposition and functional connectivity (FC) within the cingulate cortex (CC) and between CC and other regions involved in memory maintenance between Supernormals, healthy controls (HC), and those at risk for AD (amnestic mild cognitive impairment [MCI]). Supernormals had significantly stronger FC between anterior CC and R-hippocampus, middle CC (MCC) and L-superior temporal gyrus, and posterior CC (PCC) and R-precuneus, while weaker FC between MCC and R-middle frontal gyrus and MCC and R-thalamus than other groups. All of these FC were significantly related to memory and global cognition in all participants. Supernormals had less amyloid deposition than other groups. Relationships between global cognition and FC were stronger among amyloid positive participants. Relationships between memory and FC remained regardless of amyloid level. This revealed how CC-related neural function participates in cognitive maintenance in the presence of amyloid deposition, potentially explaining excellent cognitive function among Supernormals.
Collapse
Affiliation(s)
- Feng Lin
- School of Nursing, University of Rochester Medical Center, United States; Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, United States; Department of Brain and Cognitive Science, University of Rochester, United States.
| | - Ping Ren
- School of Nursing, University of Rochester Medical Center, United States
| | - Mark Mapstone
- Department of Neurology, University of California-Irvine, United States
| | - Steven P Meyers
- Department of Imaging Sciences, University of Rochester Medical Center, United States
| | - Anton Porsteinsson
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, United States
| | - Timothy M Baran
- Department of Imaging Sciences, University of Rochester Medical Center, United States
| | | |
Collapse
|
33
|
Patterns of Cortical and Subcortical Amyloid Burden across Stages of Preclinical Alzheimer's Disease. J Int Neuropsychol Soc 2016; 22:978-990. [PMID: 27903335 PMCID: PMC5240733 DOI: 10.1017/s1355617716000928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES We examined florbetapir positron emission tomography (PET) amyloid scans across stages of preclinical Alzheimer's disease (AD) in cortical, allocortical, and subcortical regions. Stages were characterized using empirically defined methods. METHODS A total of 312 cognitively normal Alzheimer's Disease Neuroimaging Initiative participants completed a neuropsychological assessment and florbetapir PET scan. Participants were classified into stages of preclinical AD using (1) a novel approach based on the number of abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on Aging and the Alzheimer's Association (NIA-AA) criteria. Preclinical AD groups were compared to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs). RESULTS Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and thalamus largely did not differ across stages of preclinical AD. CONCLUSIONS Substantial amyloid accumulation in cortical areas has already occurred before one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of results in some allocortical/subcortical ROIs include lack of correspondence between (1) cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive assessment to better characterize preclinical AD, we can advance our understanding of who is at risk for future progression. (JINS, 2016, 22, 978-990).
Collapse
|
34
|
Does type 2 diabetes increase rate of cognitive decline in older Mexican Americans? Alzheimer Dis Assoc Disord 2016; 29:206-12. [PMID: 25650694 DOI: 10.1097/wad.0000000000000083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estimating effects of diabetes on cognitive change among older Mexican Americans is important, yet challenging, because diabetes and cognitive decline both predict mortality, which can induce survival bias. Older Mexican Americans in the Sacramento Area Latino Study on Aging (n=1634) completed Modified Mini-Mental State Exams (3MSE) and diabetes assessments up to 7 times (from 1998 to 2007). We examined baseline and new-onset diabetes and cognitive decline with joint longitudinal-survival models to account for death. At baseline, 32.4% of participants had diabetes and 15.8% developed diabetes during the study. During the study period, 22.8% of participants died. In joint longitudinal-survival models, those with baseline diabetes experienced faster cognitive decline (P=0.003) and higher mortality (hazards ratio=1.88; 95% confidence interval, 1.48-2.38) than those without diabetes. Cognitive decline and mortality were similar for those with new-onset diabetes and those without diabetes. For a typical person, 3MSE scores declined by 2.3 points among those without diabetes and 4.3 points among those with baseline diabetes, during the last 6 years of study. Ignoring the impact of death yielded a 17.0% smaller estimate of the effect of baseline diabetes on cognitive decline. Analyses that overlook the association between cognitive decline and mortality may underestimate the effect of diabetes on cognitive aging.
Collapse
|
35
|
Abstract
Two new sets of criteria for Alzheimer’s disease (AD) are now in play, including one set released in 2014, and a proposal for a “new lexicon” for how to describe the disease spectrum. A 2012 Canadian consensus conference said that to then, none of the new criteria or terminology would change primary care practice; that is still likely to be so. For dementia consultants, however, the new criteria pose challenges and offer opportunities. In general, the new criteria see an expanded role for bio-markers. Even so, the evidence base for this remains incomplete. Our understanding of the neuropathological criteria for dementia changed as the evidence base included more community cases. This is likely to inform the experience with biomarkers. At present, each of the criteria specifies an exclusive research role. Still, wider uptake is likely, especially in the United States. Geriatricians should be aware of the fundamental change in the terminology now being employed: AD diagnosis no longer obliges a diagnosis of dementia. Until more data emerge—something to which geriatricians can contribute—there is reason to be cautious in the adoption of the new criteria, as they are likely to be least applicable to older adults.
Collapse
Affiliation(s)
- Pierre Molin
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS;; Département de médecine, Division de gériatrie, Université Laval, Québec, QC, Canada
| | - Kenneth Rockwood
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS
| |
Collapse
|
36
|
Abstract
Deux nouvelles séries de critères pour le diagnostic de la maladie d’Alzheimer sont maintenant en vigueur, incluant une série publiée en 2014. Un « nouveau lexique » conceptualisant la maladie a également été proposé. En 2012, la Conférence consensuelle canadienne affirmait que, pour l’instant, ni les nouveaux critères ni la nouvelle terminologie ne modifiaient la pratique en première ligne. Néanmoins, pour les consultants spécialisés en démence, l’avènement de ces critères ouvre la porte à de nombreux défis et occasions. En général, les nouveaux critères accordent une place grandissante aux biomarqueurs. Toutefois, les évidences qui sous-tendent leur utilisation demeurent incomplètes. L’étude de sujets provenant de la communauté ayant raffiné notre compréhension des critères neuropathologiques des démences, il est probable que notre expérience avec les biomarqueurs en bénéficierait également. Pour l’instant, ces critères sont réservés à la recherche. Cependant, leur adoption à plus large échelle est pressentie, particulièrement aux États-Unis. Les gériatres canadiens doivent être conscients de la terminologie maintenant utilisée et du changement fondamental qui en découle : un diagnostic de maladie d’Alzheimer ne requiert plus un diagnostic de démence. Dans l’attente de nouvelles données – auxquelles les gériatres peuvent contribuer – il y a lieu de faire preuve de prudence dans l’adoption des nouveaux critères, car ils sont susceptibles de moins bien s’appliquer aux personnes âgées.
Collapse
Affiliation(s)
- Pierre Molin
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS;; Département de médecine, Division de gériatrie, Université Laval, Québec, QC
| | - Kenneth Rockwood
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS
| |
Collapse
|
37
|
Armstrong JJ, Godin J, Launer LJ, White LR, Mitnitski A, Rockwood K, Andrew MK. Changes in Frailty Predict Changes in Cognition in Older Men: The Honolulu-Asia Aging Study. J Alzheimers Dis 2016; 53:1003-13. [PMID: 27314525 PMCID: PMC5469372 DOI: 10.3233/jad-151172] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND As cognitive decline mostly occurs in late life, where typically it co-exists with many other ailments, it is important to consider frailty in understanding cognitive change. OBJECTIVE Here, we examined the association of change in frailty status with cognitive trajectories in a well-studied cohort of older Japanese-American men. METHODS Using the prospective Honolulu-Asia Aging Study (HAAS), 2,817 men of Japanese descent were followed (aged 71-93 at baseline). Starting in 1991 with follow-up health assessments every two to three years, cognition was measured using the Cognitive Abilities Screening Instrument (CASI). For this study, health data was used to construct an accumulation of deficits frailty index (FI). Using six waves of data, multilevel growth curve analyses were constructed to examine simultaneous changes in cognition in relation to changes in FI, controlling for baseline frailty, age, education, and APOE-ɛ4 status. RESULTS On average, CASI scores declined by 2.0 points per year (95% confidence interval 1.9-2.1). Across six waves, each 10% within-person increase in frailty from baseline was associated with a 5.0 point reduction in CASI scores (95% confidence interval 4.7-5.2). Baseline frailty and age were associated both with lower initial CASI scores and with greater decline across the five follow-up assessments (p < 0.01). DISCUSSION Cognition is adversely affected by impaired health status in old age. Using a multidimensional measure of frailty, both baseline status and within-person changes in frailty were predictive of cognitive trajectories.
Collapse
Affiliation(s)
- Joshua J Armstrong
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Judith Godin
- Geriatric Medicine Research Unit, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Lon R White
- Pacific Health Research & Education Institute, Honolulu, Hawaii, USA
| | - Arnold Mitnitski
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Kenneth Rockwood
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Melissa K Andrew
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University, Halifax, NS, Canada
- Geriatric Medicine Research Unit, Nova Scotia Health Authority, Halifax, NS, Canada
| |
Collapse
|
38
|
Miller IN, Himali JJ, Beiser AS, Murabito JM, Seshadri S, Wolf PA, Au R. Normative Data for the Cognitively Intact Oldest-Old: The Framingham Heart Study. Exp Aging Res 2016. [PMID: 26214098 DOI: 10.1080/0361073x.2015.1053755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UNLABELLED BACKGROUND/STUDY CONTEXT: The number of individuals who reach extreme age is quickly increasing. Much of the current literature focuses on impaired cognition in extreme age, and debate continues regarding what constitutes "normal" cognition in extreme age. This study aimed to provide oldest-old normative data and to compare cognitive performances of cognitively intact elderly individuals from the Framingham Heart Study. METHODS A total of 1302 individuals aged 65+ years from the Framingham Heart Study were separated into 5-year age bands and compared on cognitive tests. Multivariate linear regression analyses were conducted, adjusting for gender, the Wide Range Achievement Test-Third Edition (WRAT-III) Reading score, and cohort. Analyses also included comparisons between 418 individuals aged 80+ and 884 individuals aged 65-79, and comparisons within oldest-old age bands. RESULTS Normative data for all participants are presented. Significant differences were found on most tests between age groups in the overall analysis between young-old and oldest-old, and analysis of oldest-old age bands also revealed select significant differences (all ps <.05). CONCLUSION As aging increases, significant cognitive differences and increased variability in performances are evident. These results support the use of age-appropriate normative data for oldest-old individuals.
Collapse
Affiliation(s)
- Ivy N Miller
- a Department of Psychology , Minneapolis VA Healthcare System , Minneapolis , Minnesota , USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol 2016; 15:455-532. [DOI: 10.1016/s1474-4422(16)00062-4] [Citation(s) in RCA: 1001] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/06/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022]
|
40
|
Mufson EJ, Malek-Ahmadi M, Snyder N, Ausdemore J, Chen K, Perez SE. Braak stage and trajectory of cognitive decline in noncognitively impaired elders. Neurobiol Aging 2016; 43:101-10. [PMID: 27255819 DOI: 10.1016/j.neurobiolaging.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
In a previous cross-sectional study, we found that nondemented elderly participants from the Rush Religious Orders Study (RROS) displayed a wide range of Braak neurofibrillary tangle and amyloid plaque pathology similar to that seen in prodromal and frank Alzheimer's disease. Here, we examined longitudinal changes in cognitive domains in subjects from this cohort grouped by Braak stage using linear mixed effects models. We found that the trajectory of episodic memory composite (EMC), executive function composite (EFC), and global cognitive composite scores (GCS: average of EMC and EFC scores) was significantly associated with age at visit over time, but not with Braak stage, apolipoprotein E (APOE) ε4 status or plaque pathology alone. By contrast, the combined effects of Braak stage, APOE status, and age at visit were strongly correlated with the trajectory of EMC, EFC and GCS performance over time. These data suggest that age and APOE ε4 status, rather than Alzheimer's disease-related pathology, play a more prominent role in the trajectory of cognitive decline over time in this elderly nondemented population. However, the findings reported require confirmation in a larger cohort of cases.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | | | | | | | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
41
|
Kuller LH, Lopez OL, Becker JT, Chang Y, Newman AB. Risk of dementia and death in the long-term follow-up of the Pittsburgh Cardiovascular Health Study-Cognition Study. Alzheimers Dement 2016; 12:170-183. [PMID: 26519786 PMCID: PMC4744537 DOI: 10.1016/j.jalz.2015.08.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/30/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Increasing life expectancy has resulted in a larger population of older individuals at risk of dementia. METHODS The Cardiovascular Health Study-Cognition Study followed 532 participants from 1998-99 (mean age 79) to 2013 (mean age 93) for death and dementia. RESULTS Risk of death was determined by extent of coronary artery calcium, high-sensitivity cardiac troponin, brain natriuretic peptide, and white matter grade. Significant predictors of dementia were age, apolipoprotein-E4, vocabulary raw score, hippocampal volume, ventricular size, cognitive performance, and number of blocks walked. By 2013, 160 of 532 were alive, including 19 cognitively normal. Those with normal cognition had higher grade education, better cognition test scores, greater hippocampal volume, faster gait speed, and number of blocks walked as compared with survivors who were demented. DISCUSSION Few survived free of dementia and disability. Prevention and delay of cognitive decline for this older population is an imperative.
Collapse
Affiliation(s)
- Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James T Becker
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuefang Chang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne B Newman
- Department of Epidemiology, Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Bu XL, Jiao SS, Lian Y, Wang YJ. Perspectives on the Tertiary Prevention Strategy for Alzheimer's Disease. Curr Alzheimer Res 2016; 13:307-16. [PMID: 26667888 PMCID: PMC4997925 DOI: 10.2174/1567205013666151215110114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Amyloid-beta (Aβ) plays a pivotal role in Alzheimer's disease (AD) pathogenesis, and is the most promising disease-modifying target for AD. A succession of failures in Aβ-targeting clinical trials, however, has prompted questions on whether Aβ is the true cause of AD and a valid therapeutic target. Therefore, current therapeutic targets and intervention strategies must be reconsidered. In addition to Aβ, multiple pathological events such as tau hyperphosphorylation, oxidative stress and neuroinflammation are involved in the disease pathogenesis and cause cross-talk between these pathological pathways, which synergistically drive disease progression. Increasing evidence also reveals that the pathogenesis varies at different stages of the disease. Therefore, targeting Aβ alone at all stages of the disease would not be sufficient to halt or reverse disease progression. In the light of the pathophysiologic similarities between the development of ischemic stroke and AD, we can formulate management strategies for AD from the successful practice of ischemic stroke management, namely the tertiary prevention strategy. These new perspectives of tertiary prevention target both Aβ and different pathological pathways of AD pathogenesis at different stages of the disease, and may represent a promising avenue for the effective prevention and treatment of AD.
Collapse
Affiliation(s)
| | | | | | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
43
|
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11:457-70. [PMID: 26195256 PMCID: PMC4694579 DOI: 10.1038/nrneurol.2015.119] [Citation(s) in RCA: 1085] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.
Collapse
Affiliation(s)
| | - Roxana O Carare
- University of Southampton, Faculty of Medicine, Institute for Life Sciences, Southampton General Hospital, Southampton Hampshire, SO16 6YD, UK
| | - Ricardo S Osorio
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Lidia Glodzik
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Tracy Butler
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Els Fieremans
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Leon Axel
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Henry Rusinek
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Charles Nicholson
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute at Keck School of Medicine of University of Southern California, 1501 San Pablo Street Los Angeles, CA 90089, USA
| | - Blas Frangione
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Kaj Blennow
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Joël Ménard
- Université Paris-Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Henrik Zetterberg
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Thomas Wisniewski
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Mony J de Leon
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| |
Collapse
|
44
|
Morphometric and histologic substrates of cingulate integrity in elders with exceptional memory capacity. J Neurosci 2015; 35:1781-91. [PMID: 25632151 DOI: 10.1523/jneurosci.2998-14.2015] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This human study is based on an established cohort of "SuperAgers," 80+-year-old individuals with episodic memory function at a level equal to, or better than, individuals 20-30 years younger. A preliminary investigation using structural brain imaging revealed a region of anterior cingulate cortex that was thicker in SuperAgers compared with healthy 50- to 65-year-olds. Here, we investigated the in vivo structural features of cingulate cortex in a larger sample of SuperAgers and conducted a histologic analysis of this region in postmortem specimens. A region-of-interest MRI structural analysis found cingulate cortex to be thinner in cognitively average 80+ year olds (n = 21) than in the healthy middle-aged group (n = 18). A region of the anterior cingulate cortex in the right hemisphere displayed greater thickness in SuperAgers (n = 31) compared with cognitively average 80+ year olds and also to the much younger healthy 50-60 year olds (p < 0.01). Postmortem investigations were conducted in the cingulate cortex in five SuperAgers, five cognitively average elderly individuals, and five individuals with amnestic mild cognitive impairment. Compared with other subject groups, SuperAgers showed a lower frequency of Alzheimer-type neurofibrillary tangles (p < 0.05). There were no differences in total neuronal size or count between subject groups. Interestingly, relative to total neuronal packing density, there was a higher density of von Economo neurons (p < 0.05), particularly in anterior cingulate regions of SuperAgers. These findings suggest that reduced vulnerability to the age-related emergence of Alzheimer pathology and higher von Economo neuron density in anterior cingulate cortex may represent biological correlates of high memory capacity in advanced old age.
Collapse
|
45
|
Alexopoulos P, Kurz A. The New Conceptualization of Alzheimer's Disease under the Microscope of Influential Definitions of Disease. Psychopathology 2015; 48:359-67. [PMID: 26610315 DOI: 10.1159/000441327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND According to its new conceptualization, Alzheimer's disease (AD) has preclinical and symptomatic phases, and biomarker abnormality justifies the diagnosis of the disease. METHODS The conceptual validity of AD is assessed on the basis of the disease definitions of T. Szasz, R.E. Kendell and J.G. Scadding, C. Boorse, K.W.M. Fulford and J.C. Wakefield, as well as of the DSM-5 classification system. RESULTS The new AD conceptualization could fit the Szaszian disease definition, provided that AD biomarkers reflected the pathological hallmarks of a singular disease, but it seems that they do not. Moreover, preclinical AD does not yield a biological disadvantage, being a central criterion for justifying the presence of a disease according to the disease definition of Scadding and Kendell. In addition, it remains unclear whether abnormality of biomarkers in elderly people embodies a statistical deviation from normal ageing and a pathological characteristic. Furthermore, not all stages of AD are related to experiences of failure of intentional doing, which is the criterion of the disease definition of Fulford, whilst the Wakefieldian harmful dysfunction and the DSM-5 mental disorder criteria are fulfilled only in the symptomatic phases of the disease course. DISCUSSION Our analytical endeavours unveiled weak sides and the fuzzy boundaries of the new conceptualization of AD. Future refinements of the criteria should address them so that the validity of the AD concept is increased.
Collapse
Affiliation(s)
- Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universitx00E4;t Mx00FC;nchen, Munich, Germany
| | | |
Collapse
|
46
|
Landry GJ, Liu-Ambrose T. Buying time: a rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to Alzheimer's disease. Front Aging Neurosci 2014; 6:325. [PMID: 25538616 PMCID: PMC4259166 DOI: 10.3389/fnagi.2014.00325] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023] Open
Abstract
As of 2010, the worldwide economic impact of dementia was estimated at $604 billion USD; and without discovery of a cure or effective interventions to delay disease progression, dementia's annual global economic impact is expected to surpass $1 trillion USD as early as 2030. Alzheimer's disease (AD) is the leading cause of dementia accounting for over 75% of all cases. Toxic accumulation of amyloid beta (Aβ), either by overproduction or some clearance failure, is thought to be an underlying mechanism of the neuronal cell death characteristic of AD-though this amyloid hypothesis has been increasingly challenged in recent years. A compelling alternative hypothesis points to chronic neuroinflammation as a common root in late-life degenerative diseases including AD. Apolipoprotein-E (APOE) genotype is the strongest genetic risk factor for AD: APOE-ε4 is proinflammatory and individuals with this genotype accumulate more Aβ, are at high risk of developing AD, and almost half of all AD patients have at least one ε4 allele. Recent studies suggest a bidirectional relationship exists between sleep and AD pathology. Sleep may play an important role in Aβ clearance, and getting good quality sleep vs. poor quality sleep might reduce the AD risk associated with neuroinflammation and the ε4 allele. Taken together, these findings are particularly important given the sleep disruptions commonly associated with AD and the increased burden disrupted sleep poses for AD caregivers. The current review aims to: (1) identify individuals at high risk for dementia who may benefit most from sleep interventions; (2) explore the role poor sleep quality plays in exacerbating AD type dementia; (3) examine the science of sleep interventions to date; and (4) provide a road map in pursuit of comprehensive sleep interventions, specifically targeted to promote cognitive function and delay progression of dementia.
Collapse
Affiliation(s)
- Glenn J. Landry
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British ColumbiaVancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British ColumbiaVancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
47
|
Ganguli M, Lee CW, Snitz BE, Hughes TF, McDade E, Chang CCH. Rates and risk factors for progression to incident dementia vary by age in a population cohort. Neurology 2014; 84:72-80. [PMID: 25471390 PMCID: PMC4336092 DOI: 10.1212/wnl.0000000000001113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To estimate rate of progression from normal cognition or mild impairment to dementia, and to identify potential risk and protective factors for incident dementia, based on age at dementia onset in a prospective study of a population-based cohort (n = 1,982) aged 65 years and older. METHODS Following the cohort annually for up to 5 years, we estimated incidence of dementia (Clinical Dementia Rating ≥1) among individuals previously normal or mildly impaired (Clinical Dementia Rating 0 or 0.5). In the whole cohort, and also stratified by median onset age, we examined several vascular, metabolic, and inflammatory variables as potential risk factors for developing dementia, using interval-censored survival models. RESULTS Based on 67 incident cases of dementia, incidence rate (per 1,000 person-years) was 10.0 overall, 5.8 in those with median onset age of 87 years or younger, and 31.5 in those with onset age after 87 years. Adjusting for demographics, the risk of incident dementia with onset age of 87 years or younger (n = 33) was significantly increased by baseline smoking, stroke, low systolic blood pressure, and APOE*4 genotype, and reduced by current alcohol use. Among those with dementia with onset after 87 years (n = 34), no risk or protective factor was significant. CONCLUSION Risk and protective factors were only found for incident dementia with onset before the median onset age of 87 years, and not for those with later onset. Either unexplored risk factors explain the continued increase in incidence with age, or unknown protective factors are allowing some individuals to delay onset into very old age.
Collapse
Affiliation(s)
- Mary Ganguli
- From the Departments of Psychiatry (M.G., C.-W.L., T.F.H.), Neurology (M.G., B.E.S., E.M.), and Medicine (C.-C.H.C.), School of Medicine, and Departments of Epidemiology (M.G.) and Biostatistics (C.-C.H.C.), Graduate School of Public Health, University of Pittsburgh, PA.
| | - Ching-Wen Lee
- From the Departments of Psychiatry (M.G., C.-W.L., T.F.H.), Neurology (M.G., B.E.S., E.M.), and Medicine (C.-C.H.C.), School of Medicine, and Departments of Epidemiology (M.G.) and Biostatistics (C.-C.H.C.), Graduate School of Public Health, University of Pittsburgh, PA
| | - Beth E Snitz
- From the Departments of Psychiatry (M.G., C.-W.L., T.F.H.), Neurology (M.G., B.E.S., E.M.), and Medicine (C.-C.H.C.), School of Medicine, and Departments of Epidemiology (M.G.) and Biostatistics (C.-C.H.C.), Graduate School of Public Health, University of Pittsburgh, PA
| | - Tiffany F Hughes
- From the Departments of Psychiatry (M.G., C.-W.L., T.F.H.), Neurology (M.G., B.E.S., E.M.), and Medicine (C.-C.H.C.), School of Medicine, and Departments of Epidemiology (M.G.) and Biostatistics (C.-C.H.C.), Graduate School of Public Health, University of Pittsburgh, PA
| | - Eric McDade
- From the Departments of Psychiatry (M.G., C.-W.L., T.F.H.), Neurology (M.G., B.E.S., E.M.), and Medicine (C.-C.H.C.), School of Medicine, and Departments of Epidemiology (M.G.) and Biostatistics (C.-C.H.C.), Graduate School of Public Health, University of Pittsburgh, PA
| | - Chung-Chou H Chang
- From the Departments of Psychiatry (M.G., C.-W.L., T.F.H.), Neurology (M.G., B.E.S., E.M.), and Medicine (C.-C.H.C.), School of Medicine, and Departments of Epidemiology (M.G.) and Biostatistics (C.-C.H.C.), Graduate School of Public Health, University of Pittsburgh, PA
| |
Collapse
|
48
|
Argento O, Pisani V, Incerti CC, Magistrale G, Caltagirone C, Nocentini U. The California Verbal Learning Test- II: Normative Data for Two Italian Alternative Forms. Clin Neuropsychol 2014; 28 Suppl 1:S42-54. [DOI: 10.1080/13854046.2014.978381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ornella Argento
- Neurology and Neurorehabilitation Unit, IRCCS “Santa Lucia” Foundation , Rome, Italy
| | - Valerio Pisani
- Neurology and Neurorehabilitation Unit, IRCCS “Santa Lucia” Foundation , Rome, Italy
| | - Chiara C. Incerti
- Neurology and Neurorehabilitation Unit, IRCCS “Santa Lucia” Foundation , Rome, Italy
| | - Giuseppe Magistrale
- Neurology and Neurorehabilitation Unit, IRCCS “Santa Lucia” Foundation , Rome, Italy
| | - Carlo Caltagirone
- Neurology and Neurorehabilitation Unit, IRCCS “Santa Lucia” Foundation , Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata” , Rome, Italy
| | - Ugo Nocentini
- Neurology and Neurorehabilitation Unit, IRCCS “Santa Lucia” Foundation , Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata” , Rome, Italy
| |
Collapse
|
49
|
Lonskaya I, Hebron M, Chen W, Schachter J, Moussa C. Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener 2014; 9:46. [PMID: 25384392 PMCID: PMC4247762 DOI: 10.1186/1750-1326-9-46] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/21/2014] [Indexed: 01/02/2023] Open
Abstract
Background Tau is an axonal protein that binds to and regulates microtubule function. Hyper-phosphorylation of Tau reduces its binding to microtubules and it is associated with β-amyloid deposition in Alzheimer’s disease. Paradoxically, Tau reduction may prevent β-amyloid pathology, raising the possibility that Tau mediates intracellular Aβ clearance. The current studies investigated the role of Tau in autophagic and proteasomal intracellular Aβ1-42 clearance and the subsequent effect on plaque deposition. Results Tau deletion impaired Aβ clearance via autophagy, but not the proteasome, while introduction of wild type human Tau into Tau−/− mice partially restored autophagic clearance of Aβ1-42, suggesting that exogenous Tau expression can support autophagic Aβ1-42 clearance. Tau deletion impaired autophagic flux and resulted in Aβ1-42 accumulation in pre-lysosomal autophagic vacuoles, affecting Aβ1-42 deposition into the lysosome. This autophagic defect was associated with decreased intracellular Aβ1-42 and increased plaque load in Tau−/− mice, which displayed less cell death. Nilotinib, an Abl tyrosine kinase inhibitor that promotes autophagic clearance mechanisms, reduced Aβ1-42 only when exogenous human Tau was expressed in Tau−/− mice. Conclusions These studies demonstrate that Tau deletion affects intracellular Aβ1-42 clearance, leading to extracellular plaque. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-46) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Charbel Moussa
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, 3970 Reservoir RD, Washington, DC 20057, USA.
| |
Collapse
|
50
|
Zhou X, Yang C, Liu Y, Li P, Yang H, Dai J, Qu R, Yuan L. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer's disease. Neural Regen Res 2014; 9:92-100. [PMID: 25206748 PMCID: PMC4146310 DOI: 10.4103/1673-5374.125335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 11/04/2022] Open
Abstract
Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzheimer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer's disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant degradative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer's disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Chun Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Yufeng Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Peng Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Huiying Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Jingxing Dai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Rongmei Qu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| | - Lin Yuan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guang-dong Province, China
| |
Collapse
|