1
|
Timmers ER, Klamer MR, Marapin RS, Lammertsma AA, de Jong BM, Dierckx RAJO, Tijssen MAJ. [ 18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia: a systematic review. Eur J Nucl Med Mol Imaging 2023; 50:1954-1973. [PMID: 36702928 PMCID: PMC10199862 DOI: 10.1007/s00259-023-06110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed. METHODS A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021. RESULTS Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea. CONCLUSION In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.
Collapse
Affiliation(s)
- Elze R Timmers
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marrit R Klamer
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Ramesh S Marapin
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands.
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
2
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
4
|
Bečanović K, Asghar M, Gadawska I, Sachdeva S, Walker D, Lazarowski ER, Franciosi S, Park KHJ, Côté HCF, Leavitt BR. Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. NPJ Aging Mech Dis 2021; 7:26. [PMID: 34650085 PMCID: PMC8516942 DOI: 10.1038/s41514-021-00079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial dysfunction and bioenergetics failure are common pathological hallmarks in Huntington's disease (HD) and aging. In the present study, we used the YAC128 murine model of HD to examine the effects of mutant huntingtin on mitochondrial parameters related to aging in brain and skeletal muscle. We have conducted a cross-sectional natural history study of mitochondrial DNA changes in the YAC128 mouse. Here, we first show that the mitochondrial volume fraction appears to increase in the axons and dendrite regions adjacent to the striatal neuron cell bodies in old mice. Mitochondrial DNA copy number (mtDNAcn) was used as a proxy measure for mitochondrial biogenesis and function. We observed that the mtDNAcn changes significantly with age and genotype in a tissue-specific manner. We found a positive correlation between aging and the mtDNAcn in striatum and skeletal muscle but not in cortex. Notably, the YAC128 mice had lower mtDNAcn in cortex and skeletal muscle. We further show that mtDNA deletions are present in striatal and skeletal muscle tissue in both young and aged YAC128 and WT mice. Tracking gene expression levels cross-sectionally in mice allowed us to identify contributions of age and genotype to transcriptional variance in mitochondria-related genes. These findings provide insights into the role of mitochondrial dynamics in HD pathogenesis in both brain and skeletal muscle, and suggest that mtDNAcn in skeletal muscle tissue may be a potential biomarker that should be investigated further in human HD.
Collapse
Affiliation(s)
- Kristina Bečanović
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Asghar
- grid.4714.60000 0004 1937 0626Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Izabella Gadawska
- grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Shiny Sachdeva
- grid.416553.00000 0000 8589 2327The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Disease, St Paul’s Hospital, Vancouver, BC Canada
| | - David Walker
- grid.416553.00000 0000 8589 2327The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Disease, St Paul’s Hospital, Vancouver, BC Canada
| | - Eduardo. R. Lazarowski
- grid.410711.20000 0001 1034 1720Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC USA
| | - Sonia Franciosi
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC Canada
| | - Kevin H. J. Park
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.253856.f0000 0001 2113 4110Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI USA
| | - Hélène C. F. Côté
- grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Blair R. Leavitt
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
5
|
Scholefield M, Church SJ, Xu J, Patassini S, Hooper NM, Unwin RD, Cooper GJS. Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson's Disease Dementia. Metabolites 2021; 11:569. [PMID: 34564384 PMCID: PMC8468190 DOI: 10.3390/metabo11090569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased in multiple brain regions in both Alzheimer's disease (ADD) and Huntington's disease (HD). The current investigation aimed to determine whether similar changes are also present in cases of Parkinson's disease dementia (PDD), another age-related neurodegenerative condition, and whether such perturbations might occur in similar regions in these apparently different diseases. Brain tissue was obtained from nine confirmed cases of PDD and nine controls with a post-mortem delay of 26 h or less. Tissues were acquired from nine regions that show high, moderate, or low levels of neurodegeneration in PDD: the cerebellum, motor cortex, primary visual cortex, hippocampus, substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons. A targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach was used to quantify pantothenic acid in these tissues. Pantothenic acid was significantly decreased in the cerebellum (p = 0.008), substantia nigra (p = 0.02), and medulla (p = 0.008) of PDD cases. These findings mirror the significant decreases in the cerebellum of both ADD and HD cases, as well as the substantia nigra, putamen, middle frontal gyrus, and entorhinal cortex of HD cases, and motor cortex, primary visual cortex, hippocampus, middle temporal gyrus, cingulate gyrus, and entorhinal cortex of ADD cases. Taken together, these observations indicate a common but regionally selective disruption of pantothenic acid levels across PDD, ADD, and HD.
Collapse
Affiliation(s)
- Melissa Scholefield
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
| | - Stephanie J. Church
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
| | - Jingshu Xu
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand;
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand;
| | - Nigel M. Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK;
| | - Richard D. Unwin
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
- Stoller Biomarker Discovery Centre & Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Citylabs 1.0 (Third Floor), Nelson Street, Manchester M13 9NQ, UK
| | - Garth J. S. Cooper
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand;
| |
Collapse
|
6
|
Scholefield M, Unwin RD, Cooper GJ. Shared perturbations in the metallome and metabolome of Alzheimer's, Parkinson's, Huntington's, and dementia with Lewy bodies: A systematic review. Ageing Res Rev 2020; 63:101152. [PMID: 32846222 DOI: 10.1016/j.arr.2020.101152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Despite differences in presentation, age-related dementing diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), and dementia with Lewy bodies (DLB) may share pathogenic processes. This review aims to systematically assemble and compare findings in various biochemical pathways across these four dementias. PubMed and Google Scholar were screened for articles reporting on brain and biofluid measurements of metals and/or metabolites in AD, PD, HD, or DLB. Articles were assessed using specific a priori-defined inclusion and exclusion criteria. Of 284 papers identified, 198 met criteria for inclusion. Although varying coverage levels of metals and metabolites across diseases and tissues made comparison of many analytes impossible, several common findings were identified: elevated glucose in both brain tissue and biofluids of AD, PD, and HD cases; increased iron and decreased copper in AD, PD and HD brain tissue; and decreased uric acid in biofluids of AD and PD cases. Other analytes were found to differ between diseases or were otherwise not covered across all conditions. These findings indicate that disturbances in glucose and purine pathways may be common to AD, PD, and HD. However, standardisation of methodologies and better coverage in some areas - notably of DLB - are necessary to validate and extend these findings.
Collapse
|
7
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Zhao Y, Zurawel AA, Jenkins NP, Duennwald ML, Cheng C, Kettenbach AN, Supattapone S. Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species. Sci Rep 2018; 8:9554. [PMID: 29934597 PMCID: PMC6015068 DOI: 10.1038/s41598-018-27900-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria.
Collapse
Affiliation(s)
- Yanding Zhao
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Ashley A Zurawel
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Nicole P Jenkins
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Martin L Duennwald
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Chao Cheng
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
- Biomedical Data Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Surachai Supattapone
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
- Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
| |
Collapse
|
9
|
Agosta F, Altomare D, Festari C, Orini S, Gandolfo F, Boccardi M, Arbizu J, Bouwman F, Drzezga A, Nestor P, Nobili F, Walker Z, Pagani M. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington's disease. Eur J Nucl Med Mol Imaging 2018; 45:1546-1556. [PMID: 29717332 DOI: 10.1007/s00259-018-4033-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
AIM To evaluate the incremental value of FDG-PET over clinical tests in: (i) diagnosis of amyotrophic lateral sclerosis (ALS); (ii) picking early signs of neurodegeneration in patients with a genetic risk of Huntington's disease (HD); and detecting metabolic changes related to cognitive impairment in (iii) ALS and (iv) HD patients. METHODS Four comprehensive literature searches were conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on these four diagnostic scenarios. RESULTS The availability of evidence was good for FDG-PET utility to support the diagnosis of ALS, poor for identifying presymptomatic subjects carrying HD mutation who will convert to HD, and lacking for identifying cognitive-related metabolic changes in both ALS and HD. After the Delphi consensual procedure, the panel did not support the clinical use of FDG-PET for any of the four scenarios. CONCLUSION Relative to other neurodegenerative diseases, the clinical use of FDG-PET in ALS and HD is still in its infancy. Once validated by disease-control studies, FDG-PET might represent a potentially useful biomarker for ALS diagnosis. FDG-PET is presently not justified as a routine investigation to predict conversion to HD, nor to detect evidence of brain dysfunction justifying cognitive decline in ALS and HD.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Daniele Altomare
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Orini
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Federica Gandolfo
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Marina Boccardi
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Femke Bouwman
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne and German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Queensland Brain Institute, University of Queensland and at the Mater Hospital Brisbane, Brisbane, Australia
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa and Polyclinic San Martino Hospital, Genoa, Italy
| | - Zuzana Walker
- Division of Psychiatry & Essex Partnership University NHS Foundation Trust, University College London, London, UK
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Department of Nuclear Medicine, Karolinska Hospital Stockholm, Stockholm, Sweden
| |
Collapse
|
10
|
Sako W, Uluğ AM, Eidelberg D. Functional Imaging to Study Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
McClory H, Williams D, Sapp E, Gatune LW, Wang P, DiFiglia M, Li X. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington's disease mice. Acta Neuropathol Commun 2014; 2:179. [PMID: 25526803 PMCID: PMC4297405 DOI: 10.1186/s40478-014-0178-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investigated rab11 involvement in Glut3 trafficking. Glut3 was localized to rab11 positive puncta in primary neurons and immortalized striatal cells by immunofluorescence labeling and detected in rab11-enriched endosomes immuno-isolated from mouse brain by Western blot. Expression of dominant active and negative rab11 mutants in clonal striatal cells altered the levels of cell surface Glut3 suggesting a regulation by rab11. About 4% of total Glut3 occurred at the cell surface of primary WT neurons. HD140Q/140Q neurons had significantly less cell surface Glut3 than did WT neurons. Western blot analysis revealed comparable levels of Glut3 in the striatum and cortex of WT and HD140Q/140Q mice. However, brain slices immunolabeled with an antibody recognizing an extracellular epitope to Glut3 showed reduced surface expression of Glut3 in the striatum and cortex of HD140Q/140Q mice compared to that of WT mice. Surface labeling of GABAα1 receptor, which is not dependent on rab11, was not different between WT and HD140Q/140Q mouse brain slices. These data define Glut3 to be a rab11-dependent trafficking cargo and suggest that impaired Glut3 trafficking arising from rab11 dysfunction underlies the glucose hypometabolism observed in HD.
Collapse
|
12
|
Shin H, Kim MH, Lee SJ, Lee KH, Kim MJ, Kim JS, Cho JW. Decreased Metabolism in the Cerebral Cortex in Early-Stage Huntington's Disease: A Possible Biomarker of Disease Progression? J Clin Neurol 2013; 9:21-5. [PMID: 23346156 PMCID: PMC3543905 DOI: 10.3988/jcn.2013.9.1.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 01/28/2023] Open
Abstract
Background and Purpose Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder. Genetic analysis of abnormal CAG expansion in the IT15 gene allows disease confirmation even in the preclinical stage. However, because there is no treatment to cure or delay the progression of this disease, monitoring of biological markers that predict progression is warranted. Methods FDG-PET was applied to 13 patients with genetically confirmed HD in the early stage of the disease. We recorded the initial and follow-up statuses of patients using the Independence Scale (IS) of the Unified Huntington's Disease Rating Scale. The progression rate (PR) was calculated as the annual change in the IS. The patients were divided into two groups with faster and slower progression, using the median value of the PR as the cut-off. FDG-PET data were analyzed using regions of interest, and compared among the two patient groups and 11 age- and sex-matched controls. Results The mean CAG repeat size in patients was 44.7. The CAG repeat length was inversely correlated with the age at onset as reported previously, but was not correlated with the clinical PR. Compared with normal controls, hypometabolism was observed even at very early stages of the disease in the bilateral frontal, temporal, and parietal cortices on FDG-PET. The decreases in metabolism in the bilateral frontal, parietal, and right temporal cortices were much greater in the faster-progression group than in the slower-progression group. Conclusions A decrease in cortical glucose metabolism is suggested as a predictor for identifying a more rapid form of progression in patients with early-stage HD.
Collapse
Affiliation(s)
- Hyeeun Shin
- Department of Neurology, Eulji General Hospital, Eulji University School of Medicine, Deajeon, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Kaplan A, Stockwell BR. Therapeutic approaches to preventing cell death in Huntington disease. Prog Neurobiol 2012; 99:262-80. [PMID: 22967354 PMCID: PMC3505265 DOI: 10.1016/j.pneurobio.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 12/01/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kaplan
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| | - Brent R. Stockwell
- Howard Hughes Medical Institute, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| |
Collapse
|
14
|
Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s) of alteration of micro RNA expressions in Huntington's disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromolecular Med 2012; 14:221-43. [PMID: 22581158 DOI: 10.1007/s12017-012-8183-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/24/2012] [Indexed: 12/27/2022]
Abstract
To identify the mechanism of deregulation of micro RNAs (miRNAs) altered in Huntington's disease (HD) and their possible contributions to the altered cellular and molecular functions observed in the disease, we analyzed the altered miRNAs in the postmortem brains of HD patients. There are 54 miRNAs differentially expressed in HD brains of which 30 are upregulated and 24 downregulated. Some of these miRNAs were also altered in various models of the disease. Regulation of these miRNAs was attributed to transcription factors and the host genes to which these miRNAs reside. We observed that transcription regulators TP53, E2F1, REST, and GATA4 together could regulate expressions of 26 miRNAs in HD. Altered expressions of 13 intronic miRNAs were correlated with the expressions of their host genes. From literature, we further collected 287 experimentally validated targets of miRNAs upregulated in HD, while 304 validated targets of downregulated miRNAs in HD. Analysis of these validated target genes of altered miRNAs by gene ontology (GO) revealed that these genes are significantly enriched in GO terms belonging to (1) apoptosis, (2) differentiation and development, (3) fatty acid, cholesterol, lipid, glucose, and carbohydrate metabolism, (4) cell cycle and growth, and (5) transcription regulation. Experimental evidences that these processes are altered in HD are provided from published reports. In conclusion, altered miRNAs in HD might target many genes and may contribute to the altered cellular and molecular functions observed in HD.
Collapse
Affiliation(s)
- Mithun Sinha
- Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700 064, India
| | | | | |
Collapse
|
15
|
Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice. Biochem Biophys Res Commun 2012; 421:727-30. [PMID: 22542623 DOI: 10.1016/j.bbrc.2012.04.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD(140Q/140Q)). Primary HD(140Q/140Q) cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD(140Q/140Q) neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD(140Q/140Q) neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.
Collapse
|
16
|
Abstract
In the last 25 years there have been enormous advances in brain imaging. In addition to utility in diagnosis, these have led to novel insights into the pathogenesis of basal ganglia disease and the role of dopamine and the basal ganglia in normal health. The authors review highlights of this work, with a focus on advances in Parkinson's disease, the dystonias, Huntington's disease, and the role of dopamine in cognition and reward signaling. Emerging areas for future development include studies of functional connectivity, the analysis of default mode networks, studies of novel neurochemical pathways, methods to study disease pathogenesis, and the application of imaging techniques to investigate animal models of disease.
Collapse
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
17
|
Abstract
Molecular imaging with PET offers a broad variety of tools supporting the diagnosis of movement disorders. The more widely applied PET imaging techniques have focused on the assessment of neurotransmitter systems, predominantly the pre- and postsynaptic dopaminergic system. Additionally, PET imaging with [(18) F]fluorodeoxyglucose has been extensively used to assess local synaptic activity in the resting state and to highlight local changes in brain metabolism accompanying changes in neural activity in movement disorders. PET imaging has provided us with diagnostic agents as well as tools for evaluation of novel therapeutics, and has served as a powerful means for revealing in vivo changes at different stages of movement disorders and within the course of an individual patient's illness.
Collapse
Affiliation(s)
- Valentina Berti
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy.
| | | | | |
Collapse
|
18
|
Allain P, Gaura V, Fasotti L, Chauviré V, Prundean A, Sherer-Gagou C, Bonneau D, Bachoud-Levi AC, Dubas F, Remy P, Le Gall D, Verny C. The neural substrates of script knowledge deficits as revealed by a PET study in Huntington's disease. Neuropsychologia 2011; 49:2673-84. [PMID: 21651921 DOI: 10.1016/j.neuropsychologia.2011.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/07/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Previous neuropsychological investigations have suggested that both the prefrontal cortex and the basal ganglia are involved in the management of script event knowledge required in planning behavior. METHODS This study was designated to map, the correlations between resting-state brain glucose utilization as measured by FDG-PET (positron emission tomography) and scores obtained by means of a series of script generation and script sorting tasks in 8 patients with early Huntington's disease. RESULTS These patients exhibited a selectively greater impairment for the organizational aspects of scripts compared to the semantic aspects of scripts. We showed significant negative correlations between the number of sequencing, boundary, perseverative and intrusion errors and the metabolism of several cortical regions, not only including frontal, but also posterior regions. CONCLUSION Our findings suggest that, within the fronto-striatal system, the cortical frontal regions are more crucial in script retrieval and script sequencing than the basal ganglia.
Collapse
|
19
|
Jones L, Hughes A. Pathogenic mechanisms in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:373-418. [PMID: 21907095 DOI: 10.1016/b978-0-12-381328-2.00015-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder presenting in midlife. Multiple pathogenic mechanisms which hypothesise how the expanded CAG repeat causes manifest disease have been suggested since the mutation was first detected. These mechanisms include events that operate at both the gene and protein levels. It has been proposed that somatic instability of the CAG repeat could underlie the striatal-specific pathology observed in HD, although how this occurs and what consequences this has in the disease state remain unknown. The form in which the Htt protein exists within the cell has been extensively studied in terms of both its role in aggregate formation and its cellular processing. Protein-protein interactions, post-translational modifications and protein cleavage have all been suggested to contribute to HD pathogenesis. The potential downstream effects of the mutant Htt protein are also noted here. In particular, the adverse effect of the mutant Htt protein on cellular protein degradation, subcellular transport and transcription are explored, and its role in energy metabolism and excitotoxicity investigated. Elucidating the mechanisms at work in HD pathogenesis and determining when they occur in relation to disease is an important step in the pathway to therapeutic interventions.
Collapse
Affiliation(s)
- Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | | |
Collapse
|
20
|
Van Laere K, Casteels C, Dhollander I, Goffin K, Grachev I, Bormans G, Vandenberghe W. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 2010; 51:1413-7. [PMID: 20720046 DOI: 10.2967/jnumed.110.077156] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED The type 1 cannabinoid receptor (CB1) is a crucial modulator of synaptic transmission in the brain. Animal and postmortem human data suggest that mutant huntingtin represses CB1 transcription. Our aim was to measure CB1 levels in the brains of Huntington disease (HD) patients in vivo. METHODS Twenty symptomatic HD patients and 14 healthy controls underwent PET with the novel CB1 ligand N-[2-(3-cyano-phenyl)-3-(4-(2-(18)F-fluorethoxy)phenyl)-1-methylpropyl]-2-(5-methyl-2-pyridyloxy)-2-methylproponamide. RESULTS We observed a profound decrease of CB1 availability throughout the gray matter of the cerebrum, cerebellum, and brain stem in HD patients, even in early disease stages. Disease burden ([number of CAG repeats in the HTT gene - 35.5] x age) was inversely correlated with CB1 availability in the prefrontal and premotor cortex. CONCLUSION The profound early and widespread reduction of CB1 availability in vivo is consistent with the hypothesis that mutant huntingtin represses CB1 transcription. This is the first, to our knowledge, in vivo demonstration of disturbance of the endocannabinoid system in a human neurologic disease.
Collapse
Affiliation(s)
- Koen Van Laere
- Division of Nuclear Medicine, Leuven University Hospital and Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
21
|
Esmaeilzadeh M, Ciarmiello A, Squitieri F. Seeking brain biomarkers for preventive therapy in Huntington disease. CNS Neurosci Ther 2010; 17:368-86. [PMID: 20553306 DOI: 10.1111/j.1755-5949.2010.00157.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Huntington disease (HD) is a severe incurable nervous system disease that generally has an onset age of around 35-50, and is caused by a dominantly transmitted expansion mutation. A genetic test allows persons at risk, i.e., offspring or siblings of affected individuals, to discover their genetic status. Unaffected mutation-positive subjects will manifest HD sometime during life. Despite major advances in research on pathogenic mechanisms, no studies have yet fully validated preventive therapy or biomarkers for use before the symptoms become clinically manifest. Seeking brain and peripheral biomarkers is a requisite to develop a cure for HD. Changes in the brain can be observed in vivo using methods such as structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), and positron emission tomography (PET), detecting volumetric changes, microstructural and connectivity alterations, abnormalities in brain activity in response to specific tasks, and abnormalities in metabolism and receptor distribution. Although all these imaging techniques can detect early markers in asymptomatic HD gene carriers for premanifest screening and pharmacological responses to therapeutic interventions no single modality has yet provided and validated an optimal marker probably because this task requires an integrative multimodal imaging approach. In this article, we review the findings from imaging procedures in the attempt to identify potential brain markers, so-called dry biomarkers, for possible application to further, yet unavailable, neuroprotective preventive therapies for HD manifestations.
Collapse
Affiliation(s)
- Mouna Esmaeilzadeh
- Department of Clinical Neuroscience, Stockholm Brain Institute, Karolinska Institutet, PET Centre, Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
|
23
|
Quintanilla RA, Johnson GVW. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Res Bull 2009; 80:242-7. [PMID: 19622387 DOI: 10.1016/j.brainresbull.2009.07.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that is caused by a pathological expansion of CAG repeats within the gene encoding for a 350 kD protein called huntingtin. This polyglutamine expansion within huntingtin is the causative factor in the pathogenesis of HD, however the underlying mechanisms have not been fully elucidated. Nonetheless, it is becoming increasingly clear that alterations in mitochondrial function play key roles in the pathogenic processes in HD. The net result of these events is compromised energy metabolism and increased oxidative damage, which eventually contribute to neuronal dysfunction and death. Mitochondria from striatal cells of a genetically accurate model of HD take up less calcium and at a slower rate than mitochondria from striatal cells derived from normal mice. Further, respiration in mitochondria from these mutant huntingtin-expressing cells is inhibited at significantly lower calcium concentrations compared to mitochondria from wild-type cells. Considering these and other findings this review explores the evidence suggesting that mutant huntingtin, directly or indirectly impairs mitochondrial function, which compromises cytosolic and mitochondrial calcium homeostasis, and contributes to neuronal dysfunction and death in HD.
Collapse
Affiliation(s)
- Rodrigo A Quintanilla
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642-0002, USA
| | | |
Collapse
|
24
|
Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 2008; 45:667-78. [PMID: 18588971 DOI: 10.1016/j.freeradbiomed.2008.05.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 01/01/2023]
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG repeats in exon 1 of the huntingtin gene, affecting initially the striatum and progressively the cortex. This work reports a proteomic analysis of human brain postmortem samples obtained from striatum and cortex of patients with HD compared to samples of age- and sex-matched controls. Antioxidant defense proteins that were strongly induced in striatum, but also detectable in cortex, were identified as peroxiredoxins 1, 2, and 6, as well as glutathione peroxidases 1 and 6. The activities of other antioxidant enzymes such as mitochondrial superoxide dismutase and catalase were also increased in HD. Aconitase, a protein involved in energy metabolism, showed decreased activities in striatum of HD patients. Protein carbonyls, used as markers of oxidative stress, were increased in HD, and glial fibrillary acidic protein, aconitase, gamma-enolase, and creatine kinase B were identified as the main targets. Taken together, these results indicate that oxidative stress and damage to specific macromolecules would participate in the disease progression. Also, these data support the rationale for therapeutic strategies that either potentiate antioxidant defenses or avoid oxidative stress generation to delay disease progression.
Collapse
Affiliation(s)
- Ma Alba Sorolla
- Departament de Ciencies Mediques Basiques, IRBLLEIDA, Universitat de Lleida, 25008 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Petersen A, Hayden MR. Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 2008; 132:919-32. [DOI: 10.1093/brain/awp006] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Kanamatsu T, Otsuki T, Tokuno H, Nambu A, Takada M, Okamoto K, Watanabe H, Umeda M, Tsukada Y. Changes in the rates of the tricarboxylic acid (TCA) cycle and glutamine synthesis in the monkey brain with hemiparkinsonism induced by intracarotid infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Studies by non-invasive 13C-magnetic resonance spectroscopy. Brain Res 2007; 1181:142-8. [DOI: 10.1016/j.brainres.2007.08.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/21/2007] [Accepted: 08/25/2007] [Indexed: 11/16/2022]
|
27
|
Ma Y, Eidelberg D. Functional imaging of cerebral blood flow and glucose metabolism in Parkinson's disease and Huntington's disease. Mol Imaging Biol 2007; 9:223-33. [PMID: 17334854 PMCID: PMC4455550 DOI: 10.1007/s11307-007-0085-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain imaging of cerebral blood flow and glucose metabolism has been playing key roles in describing pathophysiology of Parkinson's disease (PD) and Huntington's disease (HD), respectively. Many biomarkers have been developed in recent years to investigate the abnormality in molecular substrate, track the time course of disease progression, and evaluate the efficacy of novel experimental therapeutics. A growing body of literature has emerged on neurobiology of these two movement disorders in resting states and in response to brain activation tasks. In this paper, we review the latest applications of these approaches in patients and normal volunteers at rest conditions. The discussions focus on brain mapping studies with univariate and multivariate statistical analyses on a voxel basis. In particular, we present data to validate the reproducibility and reliability of unique spatial covariance patterns related with PD and HD.
Collapse
Affiliation(s)
- Yilong Ma
- Center for Neurosciences, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York University School of Medicine, Manhasset, NY, USA.
| | | |
Collapse
|
28
|
Clark CM, Kremer B, Hayden MR. Regional cerebral glucose metabolism in huntington's disease: A statistical investigation. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460020109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Fennema-Notestine C, Archibald SL, Jacobson MW, Corey-Bloom J, Paulsen JS, Peavy GM, Gamst AC, Hamilton JM, Salmon DP, Jernigan TL. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 2004; 63:989-95. [PMID: 15452288 DOI: 10.1212/01.wnl.0000138434.68093.67] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the regional pattern of white matter and cerebellar changes, as well as subcortical and cortical changes, in Huntington disease (HD) using morphometric analyses of structural MRI. METHODS Fifteen individuals with HD and 22 controls were studied; groups were similar in age and education. Primary analyses defined six subcortical regions, the gray and white matter of primary cortical lobes and cerebellum, and abnormal signal in the cerebral white matter. RESULTS As expected, basal ganglia and cerebral cortical gray matter volumes were significantly smaller in HD. The HD group also demonstrated significant cerebral white matter loss and an increase in the amount of abnormal signal in the white matter; occipital white matter appeared more affected than other cerebral white matter regions. Cortical gray and white matter measures were significantly related to caudate volume. Cerebellar gray and white matter volumes were both smaller in HD. CONCLUSIONS The cerebellum and the integrity of cerebral white matter may play a more significant role in the symptomatology of HD than previously thought. Furthermore, changes in cortical gray and cerebral white matter were related to caudate atrophy, supporting a similar mechanism of degeneration.
Collapse
|
30
|
Abstract
Positron emission tomography (PET) is a powerful imaging technique which enables in vivo examination of brain functions. It allows non-invasive quantification of cerebral blood flow, metabolism, and receptor binding. In the past PET has been employed mainly in the research setting due to the relatively high costs and complexity of the support infrastructure, such as cyclotrons, PET scanners, and radiochemistry laboratories. In recent years, because of advancements in technology and proliferation of PET scanners, PET is being increasingly used in clinical neurology to improve our understanding of disease pathogenesis, to aid with diagnosis, and to monitor disease progression and response to treatment. This article aims to provide an overview of the principles of PET and its applications to clinical neurology.
Collapse
Affiliation(s)
- Y F Tai
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK
| | | |
Collapse
|
31
|
Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A 2003; 100:2911-6. [PMID: 12589027 PMCID: PMC151440 DOI: 10.1073/pnas.0536856100] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Indexed: 11/18/2022] Open
Abstract
In addition to neurological deficits, Huntington's disease (HD) patients and transgenic mice expressing mutant human huntingtin exhibit reduced levels of brain-derived neurotrophic factor, hyperglycemia, and tissue wasting. We show that the progression of neuropathological (formation of huntingtin inclusions and apoptotic protease activation), behavioral (motor dysfunction), and metabolic (glucose intolerance and tissue wasting) abnormalities in huntingtin mutant mice, an animal model of HD, are retarded when the mice are maintained on a dietary restriction (DR) feeding regimen resulting in an extension of their life span. DR increases levels of brain-derived neurotrophic factor and the protein chaperone heat-shock protein-70 in the striatum and cortex, which are depleted in HD mice fed a normal diet. The suppression of the pathogenic processes by DR in HD mice suggests that mutant huntingtin promotes neuronal degeneration by impairing cellular stress resistance, and that the body wasting in HD is driven by the neurodegenerative process. Our findings suggest a dietary intervention that may suppress the disease process and increase the life span of humans that carry the mutant huntingtin gene.
Collapse
Affiliation(s)
- Wenzhen Duan
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Transglutaminases (TGases) are enzymes that are widely used in many biological systems for generic tissue stabilization purposes. Mutations resulting in lost activity underlie several serious disorders. In addition, new evidence documents that they may also be aberrantly activated in tissues and cells and contribute to a variety of diseases, including neurodegenerative diseases such as Alzheimer's and Huntington's diseases. In these cases, the TGases appear to be a factor in the formation of inappropriate proteinaceous aggregates that may be cytotoxic. In other cases such as celiac disease, however, TGases are involved in the generation of autoantibodies. Further, in diseases such as progressive supranuclear palsy, Huntington's, Alzheimer's and Parkinson's diseases, the aberrant activation of TGases may be caused by oxidative stress and inflammation. This review will examine the role and activation of TGases in a variety of diseases.
Collapse
Affiliation(s)
- Soo Youl Kim
- Laboratory of Skin Biology, NIAMS, NIH, MD, USA.
| | | | | |
Collapse
|
33
|
Chapter 5 Mitochondrial Abnormalities in Neurodegenerative Disorders. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-3419(09)70064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Lesort M, Chun W, Tucholski J, Johnson GVW. Does tissue transglutaminase play a role in Huntington's disease? Neurochem Int 2002; 40:37-52. [PMID: 11738471 DOI: 10.1016/s0197-0186(01)00059-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue transglutaminase (tTG) likely plays a role in numerous processes in the nervous system. tTG posttranslationally modifies proteins by transamidation of specific polypeptide bound glutamines (Glns). This reaction results in the incorporation of polyamines into substrate proteins or the formation of protein crosslinks, modifications that likely have significant effects on neural function. Huntington's disease is a genetic disorder caused by an expansion of the polyglutamine domain in the huntingtin protein. Because a polypeptide bound Gln is the determining factor for a tTG substrate, and mutant huntingtin aggregates have been found in Huntington's disease brain, it has been hypothesized that tTG may contribute to the pathogenesis of Huntington's disease. In vitro, polyglutamine constructs and huntingtin are substrates of tTG. Further, the levels of tTG and TG activity are elevated in Huntington's disease brain and immunohistochemical studies have demonstrated that there is an increase in tTG reactivity in affected neurons in Huntington's disease. These findings suggest that tTG may play a role in Huntington's disease. However in situ, neither wild type nor mutant huntingtin is modified by tTG. Further, immunocytochemical analysis revealed that tTG is totally excluded from the huntingtin aggregates, and modulation of the expression level of tTG had no effect on the frequency of the aggregates in the cells. Therefore, tTG is not required for the formation of huntingtin aggregates, and likely does not play a role in this process in Huntington's disease brain. However, tTG interacts with truncated huntingtin, and selectively polyaminates proteins that are associated with mutant truncated huntingtin. Given the fact that the levels of polyamines in cells is in the millimolar range and the crosslinking and polyaminating reactions catalyzed by tTG are competing reactions, intracellularly polyamination is likely to be the predominant reaction. Polyamination of proteins is likely to effect their function, and therefore it can be hypothesized that tTG may play a role in the pathogenesis of Huntington's disease by modifying specific proteins and altering their function and/or localization. Further research is required to define the specific role of tTG in Huntington's disease.
Collapse
Affiliation(s)
- Mathieu Lesort
- Department of Psychiatry and Behavioral Neurobiology, 1720 7th Avenue, South, SC1061, School of Medicine, University of Alabama at Birmingham, 35294-0017, USA
| | | | | | | |
Collapse
|
35
|
Turner C, Schapira AH. Mitochondrial dysfunction in neurodegenerative disorders and ageing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 487:229-51. [PMID: 11403163 DOI: 10.1007/978-1-4615-1249-3_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- C Turner
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, London, UK
| | | |
Collapse
|
36
|
Pinborg LH, Videbaek C, Hasselbalch SG, Sørensen SA, Wagner A, Paulson OB, Knudsen GM. Benzodiazepine receptor quantification in Huntington's disease with [(123)I]omazenil and SPECT. J Neurol Neurosurg Psychiatry 2001; 70:657-61. [PMID: 11309461 PMCID: PMC1737353 DOI: 10.1136/jnnp.70.5.657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Increasing evidence suggests that metabolic changes predate neuronal death in Huntington's disease and emission tomography methods (PET and SPECT) have shown changes in glucose consumption and receptor function in early and possibly even presymptomatic disease. Because the GABA(A)-benzodiazepine receptor complex (BZR) is expressed on virtually all cerebral neurons BZR density images may be used to detect neuronal death. In this study the regional cerebral [(123)I]iomazenil binding to BZR was determined in patients with Huntington's disease and normal controls by a steady state method and SPECT. METHODS Seven patients mildly to moderately affected by Huntington's disease and seven age matched controls were studied. Brain CT was performed on all subjects. In each subject two [(123)I]iomazenil-SPECT measurements were acquired-one with and one without infusion of flumazenil. The affinity constant of flumazenil (Kd) was calculated from the paired distribution volumes (DV) and the free plasma flumazenil concentration. The distribution volume of [(123)I]iomazenil in the unblocked condition (DV(0)) reflects the ratio between BZR density and Kd. RESULTS Flumazenil Kd was similar in the Huntington's disease group and the control group (11.3 v 11.2 mM). For the Huntington's disease group a 31% reduction in striatal DV(0) (p=0.03) was found. In the cortical regions, DV(0) was similar in patients and in controls. In Huntington's disease, DV(0) correlated significantly with functional capacity (p=0.04) and chorea symptoms (p=0.02). The clinically least affected patients displayed DV(0)s within the range of those of the control group (19-35 ml/ml). CONCLUSIONS The finding of an unchanged Kd of flumazenil in patients indicates that the BZR is functionally intact in Huntington's disease. That is, the reduction in DV(0) for BZR represents a selective decrease in the number of striatal BZRs. DV(0) significantly correlated with functional loss and [(123)I]iomazenil-SPECT could be an important tool for validation of the effect of future therapeutic strategies aimed at limiting oxidative stress and free radicals in Huntington's disease.
Collapse
Affiliation(s)
- L H Pinborg
- Neurobiology Research Unit 9201, Rigshospitalet, 9 Blegdamsvej, Copenhagen, DK-2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pal PK, Wszolek ZK, Kishore A, de la Fuente-Fernandez R, Sossi V, Uitti RJ, Dobko T, Stoessl AJ. Positron emission tomography in pallido-ponto-nigral degeneration (PPND) family (frontotemporal dementia with parkinsonism linked to chromosome 17 and point mutation in tau gene). Parkinsonism Relat Disord 2001; 7:81-88. [PMID: 11248587 DOI: 10.1016/s1353-8020(00)00026-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pallido-ponto-nigral degeneration (PPND) is a rapidly progressive disorder characterized by frontotemporal dementia with parkinsonism unresponsive to levodopa therapy. In this study, we have further characterized the regional abnormalities of cerebral function using PET with 6-[18F]fluoro-L-dopa (FD), [11C] raclopride (RAC), and 2-deoxy-2-fluoro-[18F]-D-glucose (FDG). FD and RAC scans were performed in 3 patients-2 new patients and a previously reported asymptomatic at-risk individual who became symptomatic 2years after the first FD scan. Cerebral glucose metabolism was studied by FDG in 2 other patients. In keeping with previous reports, there was a severe reduction of FD uptake, which affected both caudate and putamen to a similar degree in all 3 patients. RAC scans showed normal to elevated striatal D2-receptor binding in all patients. Cerebral glucose metabolism was globally reduced (>2 SD below control mean) in one patient, with maximal involvement of frontal regions, and to a lesser degree in the other patient. Our study showed severe presynaptic dopaminergic dysfunction with intact striatal D2 receptors in PPND patients, implying that the dopa unresponsiveness is probably a result of pathology downstream to the striatum. The pattern of presynaptic dysfunction contrasts with that seen in idiopathic parkinsonism, where the putamen is affected more than the caudate nucleus. The pattern of glucose hypometabolism correlates well with the presence of frontotemporal dementia.
Collapse
Affiliation(s)
- P K. Pal
- Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, V6T 2B5, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
BESRET LAURENT, KENDALL ALISA, DUNNETT STEPHENB. Aspects of PET imaging relevant to the assessment of striatal transplantation in Huntington's disease. J Anat 2000; 196 ( Pt 4):597-607. [PMID: 10923990 PMCID: PMC1468100 DOI: 10.1046/j.1469-7580.2000.19640597.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper assessment of outcome in clinical trials of neural transplantation requires both biochemical and imaging indices of graft survival, and behavioural and physiological indices of graft function. For transplantation in Huntington's disease, a variety of ligands that are selective for striatal degeneration and graft-derived replacement are available, notably ligands of dopaminergic receptors on striatal neurons. However, the validity of such ligands is potentially compromised by adjunctive drug therapies (e.g. neuroleptics) given to patients in the course of normal clinical care. We review the present state of experimental and clinical understanding of the selectivity of available ligands for striatal imaging, their interaction with other drug treatments, and strategies for refining valid assessment protocols in patients.
Collapse
Affiliation(s)
| | | | - STEPHEN B.
DUNNETT
- Centre for Brain Repair, University of Cambridge, UK
- Correspondence to Dr Stephen B. Dunnett, Department of Biosciences, Preclinical Sciences building, Cardiff University, Cardiff, UK. Tel. 01222 875188; fax. 01223 874117; email
| |
Collapse
|
39
|
Abstract
This review proposes that implicit learning processes are the cognitive substrate of social intuition. This hypothesis is supported by (a) the conceptual correspondence between implicit learning and social intuition (nonverbal communication) and (b) a review of relevant neuropsychological (Huntington's and Parkinson's disease), neuroimaging, neurophysiological, and neuroanatomical data. It is concluded that the caudate and putamen, in the basal ganglia, are central components of both intuition and implicit learning, supporting the proposed relationship. Parallel, but distinct, processes of judgment and action are demonstrated at each of the social, cognitive, and neural levels of analysis. Additionally, explicit attempts to learn a sequence can interfere with implicit learning. The possible relevance of the computations of the basal ganglia to emotional appraisal, automatic evaluation, script processing, and decision making are discussed.
Collapse
|
40
|
Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 1999; 122 ( Pt 9):1667-78. [PMID: 10468506 DOI: 10.1093/brain/122.9.1667] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to examine basal ganglia volumes and regional cerebral blood flow in asymptomatic subjects at-risk for Huntington's disease who had undergone genetic testing. We determined which measures were the best 'markers' for the presence of the mutation and for the onset of symptoms. Twenty subjects who were Huntington's disease gene mutation-positive and 24 Huntington's disease gene mutation-negative participants, all of whom had a parent with genetically confirmed Huntington's disease, and were therefore 50% at-risk for inheriting the Huntington's disease gene mutation, were included in the study. To evaluate basal ganglia structure and function, MRI and single photon emission computed tomography (SPECT) were used. Quantitative measures of regional volumes and relative measures of regional perfusion were calculated. SPECT and MRI scans were co-registered so that MRI anatomy could be used accurately to place SPECT regions. Estimated years-to-onset in the mutation-positive subjects was calculated based on a regression formula that included gene (CAG)(n) repeat length and parental age of onset. Changes in imaging measures in relation to estimated years-to-onset were assessed. The imaging measure that was most affected in mutation-positive subjects was putamen volume. This was also the measure that correlated most strongly with approaching onset. In subjects >/=7 years from estimated onset age, the putamen volume measures were similar to those of the mutation-negative subjects. However, in subjects =6 years from estimated onset age, there were dramatic reductions in putamen volume, resulting in >90% discrimination from both the far-from-onset and the mutation-negative subjects. Caudate volume and bicaudate ratio also showed a significant decline in the close-to-onset subjects, although to a lesser degree than putamen volume reductions. Furthermore, SPECT basal ganglia perfusion deficits were observed in mutation-positive subjects. Imaging markers of neuropathological decline preceding clinical onset are important for assessing the effects of treatments aimed at slowing the course of Huntington's disease. The current study suggests that quantitative assessment of basal ganglia may provide a means to track early signs of decline in individuals with the Huntington's disease gene mutation prior to clinical onset.
Collapse
Affiliation(s)
- G J Harris
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann Neurol 1999; 45:25-32. [PMID: 9894873 DOI: 10.1002/1531-8249(199901)45:1<25::aid-art6>3.0.co;2-e] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The physiological role of huntingtin and the mechanisms by which the expanded CAG repeat in ITI5 and its polyglutamine stretch in mutant huntingtin induce Huntington's disease (HD) are unknown. Several techniques have now demonstrated abnormal metabolism in HD brain; direct measurement of respiratory chain enzyme activities has shown severe deficiency of complex II/III and a milder defect of complex IV. We confirm that these abnormalities appear to be confined to the striatum within the HD brain. Analysis of complex II/III activity in HD fibroblasts was normal, despite expression of mutant huntingtin. Although glyceraldehyde 3-phosphate dehydrogenase (a huntingtin binding protein) activity was normal in all areas studied, aconitase activity was decreased to 8% in HD caudate, 27% in putamen, and 52% in cerebral cortex, but normal in HD cerebellum and fibroblasts. We have demonstrated that although complexes II and III are those parts of the respiratory chain most vulnerable to inhibition in the presence of a nitric oxide (NO*) generator, aconitase activity was even more sensitive to inhibition. The pattern of these enzyme deficiencies and their parallel to the anatomical distribution of HD pathology support an important role for NO* and excitotoxicity in HD pathogenesis. Furthermore, based on the biochemical defects we have described, we suggest that NO* generation produces a graded response, with aconitase inhibition followed by complex II/III inhibition and the initiation of a self-amplifying cycle of free radical generation and aconitase inhibition, which results in severe ATP depletion. We propose that these events are important in determining neuronal cell death and are critical steps in the pathogenesis of HD.
Collapse
Affiliation(s)
- S J Tabrizi
- University Department of Clinical Neurosciences, Royal Free and UCH School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
42
|
Andrews TC, Brooks DJ. Advances in the understanding of early Huntington's disease using the functional imaging techniques of PET and SPET. MOLECULAR MEDICINE TODAY 1998; 4:532-9. [PMID: 9866823 DOI: 10.1016/s1357-4310(98)01371-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functional imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPET) have been used to study regional brain function in Huntington's disease (HD) in vivo. Reduced striatal glucose metabolism and dopamine receptor binding are evident in all symptomatic HD patients and in approximately 50% of asymptomatic adult mutation carriers. These characteristics correlate with clinical measures of disease severity. Reduced cortical glucose metabolism and dopamine receptor binding, together with reduced striatal and cortical opioid receptor binding, have also been demonstrated in symptomatic patients with HD. Repeat PET measures of striatal function have been used to monitor the progression of this disease objectively. In the future, functional imaging will provide a valuable way of assessing the efficacy of both fetal striatal cell implants and putative neuroprotective agents, such as nerve growth factors.
Collapse
Affiliation(s)
- T C Andrews
- MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
43
|
Abstract
It is estimated that over 120 million Americans suffer from moderate to severe attacks of migraine characterized by headache and other debilitating symptoms, resulting in impaired functional capacity and diminished quality of life. And, it appears, its prevalence is increasing. Since the prevalence peaks during the ages of 25-55, the prime working years, migraine places a tremendous burden on employers, primarily in the form of lost productivity as well as increased health benefits costs. The fact that migraine is underdiagnosed and undertreated suggests the existence of opportunities for interventions that will reduce that toll. This article focuses on the contributions that employee health units may make to such interventions. In addition to first aid for migraine attacks occurring during working hours, these interventions may include educating occupational health staff, managers, and line supervisors about the management of migraine; identifying migraineurs in the workforce; educating them about their problem and ensuring that they are receiving optimal care; controlling exposures to factors in the workplace that may trigger migraine attacks; and managing disability to minimize loss of productivity. Perhaps most important is encouraging migraineurs to be more aggressive in confronting this problem and empowering them to seek out personal physicians who will guide them to effective treatment and preventive regimens.
Collapse
Affiliation(s)
- L J Warshaw
- Department of Environmental Medicine, New York University, NY, USA
| | | |
Collapse
|
44
|
Abstract
We review forms of diaschisis and their relationship with neurobehavioral and neuropsychological findings. The following forms of diaschisis are discussed: (1) cortico-cerebellar diaschisis; (2) cerebello-cortical diaschisis; (3) transhemispheric diaschisis; (4) cortico-thalamic diaschisis; (5) thalamo-cortical diaschisis; and (6) basal ganglia-cortical diaschisis. For each form, the neurobehavioral and neuropsychological findings are discussed. Diaschisis can be classified from the behavioral point of view as follows: (1) forms in which the metabolic effect at distance is not followed by neurobehavioral impairment; (2) forms in which the remote metabolic impairment could induce neurobehavioral and neuropsychological disorders; and (3) forms in which the role of the lesion itself and its remote metabolic effects on the production of neurobehavioral and neuropsychological abnormalities cannot be disentangled.
Collapse
Affiliation(s)
- D K Nguyen
- Neurobiology and Neuropsychology Research Unit, Hôtel-Dieu Hospital, Montreal, Québec, Canada
| | | |
Collapse
|
45
|
Harms L, Meierkord H, Timm G, Pfeiffer L, Ludolph AC. Decreased N-acetyl-aspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington's disease: a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiatry 1997; 62:27-30. [PMID: 9010396 PMCID: PMC486691 DOI: 10.1136/jnnp.62.1.27] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Both the effect of the mutation and the pathogenesis of Huntington's disease are unknown and a lack of biological markers for the natural history of the disease impedes the evaluation of novel therapeutic approaches. METHODS Proton magnetic resonance spectroscopy was carried out on a frontal region of the cortex in 17 patients with clinically overt Huntington's disease and four asymptomatic gene carriers. RESULTS Eight of 17 (47%) clinically affected patients with Huntington's disease and each of the asymptomatic carriers had lactate peaks in the frontal cortex which were not present in controls. The N-acetyl-aspartate/choline (NAA/Ch) ratio was significantly reduced in the symptomatic patients indicating the presence of neuronal loss. The reduction was related to the clinical severity of the disease and was absent in the asymptomatic carriers. CONCLUSION The finding of lactate peaks supports the hypothesis that disturbed cerebral energy metabolism contributes to the pathogenesis of Huntington's disease.
Collapse
Affiliation(s)
- L Harms
- Department of Neurology, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
46
|
Sax DS, Powsner R, Kim A, Tilak S, Bhatia R, Cupples LA, Myers RH. Evidence of cortical metabolic dysfunction in early Huntington's disease by single-photon-emission computed tomography. Mov Disord 1996; 11:671-7. [PMID: 8914093 DOI: 10.1002/mds.870110612] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We compared perfusion of prefrontal, motor, and sensory cortices and basal ganglia in 29 Huntington's disease (HD) patients and nine controls. We found a significant reduction in perfusion in patients with HD of short (< 6 years, n = 10), medium (6-10 years, n = 8), and long duration (> 10 years, n = 11) compared with controls. Among short-duration patients, we observed decreases in cortical perfusion before evidence of atrophy on magnetic resonance imaging, suggesting that decreases in neuronal activity, as reflected by perfusion levels, precede gross structural changes. As expected, decreased perfusion was marked in basal ganglia. The extent of cortical perfusion correlated with clinical assessments of functional capabilities as well as with the duration of disease. Prefrontal perfusion correlated with cognitive measures, and motor cortical perfusion correlated with physical disability and activities of daily living scores. We found no significant clinical correlations with sensory cortical perfusion. Single-photon-emission computed tomography may be a sensitive method for assessing disease progression in clinical trials and pharmacologic intervention.
Collapse
Affiliation(s)
- D S Sax
- Department of Neurology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington's disease. J Neurosci 1996. [PMID: 8622131 DOI: 10.1523/jneurosci.16-09-03019.1996] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We showed recently that chronic administration of the mitochondrial inhibitor 3-nitropropionic acid (3NP) in primates produces various dyskinetic movements and dystonic postures associated with selective striatal lesions displaying many similarities with the pathological features of Huntington's disease (HD). In the present study, we examined whether such a toxic treatment could also induce frontal-type deficits similar to those observed in HD patients. Cognitive performances of 3NP-treated and control baboons were compared using the object retrieval detour task (ORDT), a test designed to assess the functional integrity of the frontostriatal pathway in human and nonhuman primates. During the same time, the motor function of each animal was assessed under spontaneous "no drug" conditions, and time-sampled neurological observations were used after apomorphine administration. A significant impairment in the ORDT was observed in the 3NP animals after 3-6 weeks of treatment, occurring in the absence of spontaneous abnormal movements by in the presence of apomorphine-inducible dyskinesias. Prolonged 3NP treatment resulted in the progressive appearance of spontaneous abnormal movements. Histological evaluation of these animals showed selective bilateral caudate-putamen lesions with sparing of the cerebral cortex, notably the prefrontal cortex. The present study demonstrates that chronic 3NP treatment replicates in primates the basic pathophysiological triad of HD, including spontaneous abnormal movements, progressive striatal degeneration, and a frontostriatal syndrome of cognitive impairment.
Collapse
|
48
|
Weintraub S, Daffner KR, Ahern GL, Price BH, Mesulam MM. Right sided hemispatial neglect and bilateral cerebral lesions. J Neurol Neurosurg Psychiatry 1996; 60:342-4. [PMID: 8609518 PMCID: PMC1073864 DOI: 10.1136/jnnp.60.3.342] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study compared the frequency with which unilateral and bilateral cerebral disease gives rise to right sided visual hemispatial inattention. A retrospective survey identified brain injured patients for whom target omissions on visual target cancellation tasks significantly exceeded control values. Subjects consisted of 40 right handed patients referred for clinical evaluation or research study of hemispatial inattention. Right sided visual hemispatial inattention occurred with greater frequency and severity in patients with bilateral lesions than in patients with unilateral left sided or right sided lesions. All eight patients with bilateral lesions manifested right sided hemispatial inattention and failed to detect more targets overall than patients in the other two groups. Of the 13 patients with left sided lesion, seven ignored more targets on the right and six ignored more targets on the left. All but one of the 19 patients with right sided lesions ignored more targets on the left. The association of severe right sided visual hemispatial inattention with bilateral cerebral disease extends previous findings and showed that, in this sample, the most common setting for right sided hemispatial neglect occurred in patients with bilateral cerebral lesions.
Collapse
Affiliation(s)
- S Weintraub
- Center for Behavioral and Cognitive Neurology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
49
|
Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 1996; 39:385-9. [PMID: 8602759 DOI: 10.1002/ana.410390317] [Citation(s) in RCA: 524] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the Huntington's disease (HD) gene defect has been identified, the structure and function of the abnormal gene product and the pathogenetic mechanisms involved in producing death of selective neuronal populations are not understood. Indirect evidence from several sources indicates that a defect of energy metabolism and consequent excitotoxicity are involved in HD. Toxin models of HD may be induced by 3-nitropropionic acid or malonate, both inhibitors of succinate dehydrogenase, complex II of the mitochondrial respiratory chain. We analyzed mitochondrial respiratory chain function in the caudate nucleus (n = 10) and platelets (n = 11) from patients with HD. In the caudate nucleus, severe defects of complexes II and III (53-59%, p < 0.0005) and a 32-38% (p < 0.01) deficiency of complex IV activity were demonstrated. No deficiencies were found in platelet mitochondrial function. The mitochondrial defect identified in HD caudate parallels that induced by HD neurotoxin models and further supports the role of abnormal energy metabolism in HD. The relationship of the mitochondrial defect to the role of huntingtin is not known.
Collapse
Affiliation(s)
- M Gu
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The diagnosis of movement disorders is essentially clinical. Work-up depends on patient age, part of the body affected, drug response, and presence of other systemic or neurologic symptoms and signs. Typical Parkinson's disease, essential tremor, and tics need only minimal work-up if any. Brain magnetic resonance imaging/computed tomography, positron emission tomography and single photon emission computed tomography, and DNA studies are promising diagnostic tools. Exclusion of Wilson's disease and neuroacanthocytosis is emphasized in children and young adults with movement disorders.
Collapse
Affiliation(s)
- A Anouti
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
| | | |
Collapse
|