1
|
Manco C, Cortese R, Leoncini M, Plantone D, Gentile G, Luchetti L, Zhang J, Di Donato I, Salvadori E, Poggesi A, Cosottini M, Mascalchi M, Federico A, Dotti MT, Battaglini M, Inzitari D, Pantoni L, De Stefano N. Hippocampal atrophy and white matter lesions characteristics can predict evolution to dementia in patients with vascular mild cognitive impairment. J Neurol Sci 2024; 464:123163. [PMID: 39128160 DOI: 10.1016/j.jns.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Vascular mild cognitive impairment (VMCI) is a transitional condition that may evolve into Vascular Dementia(VaD). Hippocampal volume (HV) is suggested as an early marker for VaD, the role of white matter lesions (WMLs) in neurodegeneration remains debated. OBJECTIVES Evaluate HV and WMLs as predictive markers of VaD in VMCI patients by assessing: (i)baseline differences in HV and WMLs between converters to VaD and non-converters, (ii) predictive power of HV and WMLs for VaD, (iii) associations between HV, WMLs, and cognitive decline, (iv)the role of WMLs on HV. METHODS This longitudinal multicenter study included 110 VMCI subjects (mean age:74.33 ± 6.63 years, 60males/50females) from the VMCI-Tuscany Study database. Subjects underwent brain MRI and cognitive testing, with 2-year follow-up data on VaD progression. HV and WMLs were semi-automatically segmented and measured. ANCOVA assessed group differences, while linear and logistic regression models evaluated predictive power. RESULTS After 2 years, 32/110 VMCI patients progressed to VaD. Converting patients had lower HV(p = 0.015) and higher lesion volumes in the posterior thalamic radiation (p = 0.046), splenium of the corpus callosum (p = 0.016), cingulate gyrus (p = 0.041), and cingulum hippocampus(p = 0.038). HV alone did not fully explain progression (p = 0.059), but combined with WMLs volume, the model was significant (p = 0.035). The best prediction model (p = 0.001) included total HV (p = 0.004) and total WMLs volume of the posterior thalamic radiation (p = 0.005) and cingulate gyrus (p = 0.005), achieving 80% precision, 81% specificity, and 74% sensitivity. Lower HV were linked to poorer performance on the Rey Auditory-Verbal Learning Test delayed recall (RAVLT) and Mini Mental State Examination (MMSE). CONCLUSIONS HV and WMLs are significant predictors of progression from VMCI to VaD. Lower HV correlate with worse cognitive performance on RAVLT and MMSE tests.
Collapse
Affiliation(s)
- Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | | | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | | | | | - Emilia Salvadori
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences -"Mario Serio", University of Florence, Florence, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Domenico Inzitari
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Kim J, Kim J, Park YH, Yoo H, Kim JP, Jang H, Park H, Seo SW. Distinct spatiotemporal patterns of cortical thinning in Alzheimer's disease-type cognitive impairment and subcortical vascular cognitive impairment. Commun Biol 2024; 7:198. [PMID: 38368479 PMCID: PMC10874406 DOI: 10.1038/s42003-024-05787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/03/2024] [Indexed: 02/19/2024] Open
Abstract
Previous studies on Alzheimer's disease-type cognitive impairment (ADCI) and subcortical vascular cognitive impairment (SVCI) has rarely explored spatiotemporal heterogeneity. This study aims to identify distinct spatiotemporal cortical atrophy patterns in ADCI and SVCI. 1,338 participants (713 ADCI, 208 SVCI, and 417 cognitively unimpaired elders) underwent brain magnetic resonance imaging (MRI), amyloid positron emission tomography, and neuropsychological tests. Using MRI, this study measures cortical thickness in five brain regions (medial temporal, inferior temporal, posterior medial parietal, lateral parietal, and frontal areas) and utilizes the Subtype and Stage Inference (SuStaIn) model to predict the most probable subtype and stage for each participant. SuStaIn identifies two distinct cortical thinning patterns in ADCI (medial temporal: 65.8%, diffuse: 34.2%) and SVCI (frontotemporal: 47.1%, parietal: 52.9%) patients. The medial temporal subtype of ADCI shows a faster decline in attention, visuospatial, visual memory, and frontal/executive domains than the diffuse subtype (p-value < 0.01). However, there are no significant differences in longitudinal cognitive outcomes between the two subtypes of SVCI. Our study provides valuable insights into the distinct spatiotemporal patterns of cortical thinning in patients with ADCI and SVCI, suggesting the potential for individualized therapeutic and preventive strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Jinhee Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Departments of Neurology, Severance Hospital, Yonsei University School of Medicine, Seoul, Korea
| | - Jonghoon Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Yu-Hyun Park
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea
- Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea
| | - Heejin Yoo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea
- Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea
| | - Jun Pyo Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea
- Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimers Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Hyemin Jang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea
- Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimers Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Hyunjin Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.
| | - Sang Won Seo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea.
- Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea.
- Samsung Alzheimers Convergence Research Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
3
|
Huang J, Cheng R, Liu X, Chen L, Luo T. Unraveling the link: white matter damage, gray matter atrophy and memory impairment in patients with subcortical ischemic vascular disease. Front Neurosci 2024; 18:1355207. [PMID: 38362024 PMCID: PMC10867202 DOI: 10.3389/fnins.2024.1355207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Prior MRI studies have shown that patients with subcortical ischemic vascular disease (SIVD) exhibited white matter damage, gray matter atrophy and memory impairment, but the specific characteristics and interrelationships of these abnormal changes have not been fully elucidated. Materials and methods We collected the MRI data and memory scores from 29 SIVD patients with cognitive impairment (SIVD-CI), 29 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls (NC). Subsequently, the thicknesses and volumes of the gray matter regions that are closely related to memory function were automatically assessed using FreeSurfer software. Then, the volume, fractional anisotropy (FA), mean diffusivity (MD), amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values of white matter hyperintensity (WMH) region and normal-appearing white matter (NAWM) were obtained using SPM, DPARSF, and FSL software. Finally, the analysis of covariance, spearman correlation and mediation analysis were used to analyze data. Results Compared with NC group, patients in SIVD-CI and SIVD-CU groups showed significantly abnormal volume, FA, MD, ALFF, and ReHo values of WMH region and NAWM, as well as significantly decreased volume and thickness values of gray matter regions, mainly including thalamus, middle temporal gyrus and hippocampal subfields such as cornu ammonis (CA) 1. These abnormal changes were significantly correlated with decreased visual, auditory and working memory scores. Compared with the SIVD-CU group, the significant reductions of the left CA2/3, right amygdala, right parasubiculum and NAWM volumes and the significant increases of the MD values in the WMH region and NAWM were found in the SIVD-CI group. And the increased MD values were significantly related to working memory scores. Moreover, the decreased CA1 and thalamus volumes mediated the correlations between the abnormal microstructure indicators in WMH region and the decreased memory scores in the SIVD-CI group. Conclusion Patients with SIVD had structural and functional damages in both WMH and NAWM, along with specific gray matter atrophy, which were closely related to memory impairment, especially CA1 atrophy and thalamic atrophy. More importantly, the volumes of some temporomesial regions and the MD values of WMH regions and NAWM may be potentially helpful neuroimaging indicators for distinguishing between SIVD-CI and SIVD-CU patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Perosa V, Zanon Zotin MC, Schoemaker D, Sveikata L, Etherton MR, Charidimou A, Greenberg SM, Viswanathan A. Association Between Hippocampal Volumes and Cognition in Cerebral Amyloid Angiopathy. Neurology 2024; 102:e207854. [PMID: 38165326 PMCID: PMC10870737 DOI: 10.1212/wnl.0000000000207854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Accumulating evidence suggests that gray matter atrophy, often considered a marker of Alzheimer disease (AD), can also result from cerebral small vessel disease (CSVD). Cerebral amyloid angiopathy (CAA) is a form of sporadic CSVD, diagnosed through neuroimaging criteria, that often co-occurs with AD pathology and leads to cognitive impairment. We sought to identify the role of hippocampal integrity in the development of cognitive impairment in a cohort of patients with possible and probable CAA. METHODS Patients were recruited from an ongoing CAA study at Massachusetts General Hospital. Composite scores defined performance in the cognitive domains of memory, language, executive function, and processing speed. Hippocampal subfields' volumes were measured from 3T MRI, using an automated method, and multivariate linear regression models were used to estimate their association with each cognitive domain and relationship to CAA-related neuroimaging markers. RESULTS One hundred twenty patients, 36 with possible (age mean [range]: 75.6 [65.6-88.9]), 67 with probable CAA (75.9 [59.0-94.0]), and 17 controls without cognitive impairment and CSVD (72.4 [62.5-82.7]; 76.4% female patients), were included in this study. We found a positive association between all investigated hippocampal subfields and memory and language, whereas specific subfields accounted for executive function (CA4 [Estimate = 5.43; 95% CI 1.26-9.61; p = 0.020], subiculum [Estimate = 2.85; 95% CI 0.67-5.02; p = 0.022]), and processing speed (subiculum [Estimate = 1.99; 95% CI 0.13-3.85; p = 0.036]). These findings were independent of other CAA-related markers, which did not have an influence on cognition in this cohort. Peak width of skeletonized mean diffusivity (PSMD), a measure of white matter integrity, was negatively associated with hippocampal subfields' volumes (CA3 [Estimate = -0.012; 95% CI -0.020 to -0.004; p = 0.034], CA4 [Estimate = -0.010; 95% CI -0.020 to -0.0007; p = 0.037], subiculum [Estimate = -0.019; 95% CI -0.042 to -0.0001; p = 0.003]). DISCUSSION These results suggest that hippocampal integrity is an independent contributor to cognitive impairment in patients with CAA and that it might be related to loss of integrity in the white matter. Further studies exploring potential causes and directionality of the relationship between white matter and hippocampal integrity may be warranted.
Collapse
Affiliation(s)
- Valentina Perosa
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria Clara Zanon Zotin
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorothee Schoemaker
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lukas Sveikata
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark R Etherton
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andreas Charidimou
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
5
|
Ortega-Cruz D, Iglesias JE, Rabano A, Strange BA. Hippocampal sclerosis of aging at post-mortem is evident on MRI more than a decade prior. Alzheimers Dement 2023; 19:5307-5315. [PMID: 37366342 PMCID: PMC10751387 DOI: 10.1002/alz.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS We analyzed hippocampal volumes from magnetic resonance imaging (MRI) segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS Significant HS-associated hippocampal volume changes were observed throughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer's disease (AD) neuropathology and were driven specifically by CA1 and subiculum atrophy. AD pathology, but not HS, was associated significantly with the rate of hippocampal atrophy. DISCUSSION HS-associated volume changes are detectable on MRI earlier than 10 years before death. Based on these findings, volumetric cutoffs could be derived for in vivo differentiation between HS and AD. HIGHLIGHTS Hippocampal atrophy was found in HS+ patients earlier than 10 years before death. These early pre-mortem changes were driven by reduced CA1 and subiculum volumes. Rates of hippocampus and subfield volume decline were independent of HS. In contrast, steeper atrophy rates were associated with AD pathology burden. Differentiation between AD and HS could be facilitated based on these MRI findings.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, 28223, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, 28031, Madrid, Spain
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 02129, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 02139, Boston, MA, USA
- Centre for Medical Image Computing, University College London, WC1V 6LJ, London, UK
| | - Alberto Rabano
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, 28031, Madrid, Spain
| | - Bryan A. Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, 28223, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, 28031, Madrid, Spain
| |
Collapse
|
6
|
Mohamed-Mohamed H, García-Morales V, Sánchez Lara EM, González-Acedo A, Pardo-Moreno T, Tovar-Gálvez MI, Melguizo-Rodríguez L, Ramos-Rodríguez JJ. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer's Disease. Neurol Int 2023; 15:1253-1272. [PMID: 37873836 PMCID: PMC10594452 DOI: 10.3390/neurolint15040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.
Collapse
Affiliation(s)
- Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Victoria García-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain
| | - Encarnación María Sánchez Lara
- Department of Personalidad, Evaluación y Tratamiento Psicológico, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Teresa Pardo-Moreno
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - María Isabel Tovar-Gálvez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Lucía Melguizo-Rodríguez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
7
|
Prajjwal P, Marsool MDM, Inban P, Sharma B, Asharaf S, Aleti S, Gadam S, Al Sakini AS, Hadi DD. Vascular dementia subtypes, pathophysiology, genetics, neuroimaging, biomarkers, and treatment updates along with its association with Alzheimer's dementia and diabetes mellitus. Dis Mon 2023; 69:101557. [PMID: 37031059 DOI: 10.1016/j.disamonth.2023.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Dementia is a chronic progressive cognitive decline illness that results in functional impairment. Vascular dementia (VaD), second only to Alzheimer's disease (AD), is one of the most prevalent forms of dementia in the elderly (aged over 65 years), with a varied presentation and unpredictable disease development caused by cerebrovascular or cardiovascular illness. To get a better understanding of the changes occurring in the brain and to drive therapy efforts, new biomarkers for early and precise diagnosis of AD and VaD are required. In this review, Firstly, we describe the subtypes of vascular dementia, their clinical features, pathogenesis, genetics implemented, and their associated neuroimaging and biomarkers, while describing extensively the recent biomarkers discovered in the literature. Secondly, we describe some of the well-documented and other less-defined risk factors and their association and pathophysiology in relation to vascular dementia. Finally, we follow recent updates in the management of vascular dementia along with its association and differentiation from Alzheimer's disease. The aim of this review is to gather the scattered updates and the most recent changes in blood, CSF, and neuroimaging biomarkers related to the multiple subtypes of vascular dementia along with its association with Alzheimer's dementia and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai, India
| | | | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | - Soumya Aleti
- PGY-2, Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | | | - Dalia Dhia Hadi
- University of Baghdad, Al-Kindy College of Medicine, Baghdad, Iraq
| |
Collapse
|
8
|
Liu Q, Zhang X. Multimodality neuroimaging in vascular mild cognitive impairment: A narrative review of current evidence. Front Aging Neurosci 2023; 15:1073039. [PMID: 37009448 PMCID: PMC10050753 DOI: 10.3389/fnagi.2023.1073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The vascular mild cognitive impairment (VaMCI) is generally accepted as the premonition stage of vascular dementia (VaD). However, most studies are focused mainly on VaD as a diagnosis in patients, thus neglecting the VaMCI stage. VaMCI stage, though, is easily diagnosed by vascular injuries and represents a high-risk period for the future decline of patients' cognitive functions. The existing studies in China and abroad have found that magnetic resonance imaging technology can provide imaging markers related to the occurrence and development of VaMCI, which is an important tool for detecting the changes in microstructure and function of VaMCI patients. Nevertheless, most of the existing studies evaluate the information of a single modal image. Due to the different imaging principles, the data provided by a single modal image are limited. In contrast, multi-modal magnetic resonance imaging research can provide multiple comprehensive data such as tissue anatomy and function. Here, a narrative review of published articles on multimodality neuroimaging in VaMCI diagnosis was conducted,and the utilization of certain neuroimaging bio-markers in clinical applications was narrated. These markers include evaluation of vascular dysfunction before tissue damages and quantification of the extent of network connectivity disruption. We further provide recommendations for early detection, progress, prompt treatment response of VaMCI, as well as optimization of the personalized treatment plan.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
9
|
Ortega-Cruz D, Eugenio Iglesias J, Rabano A, Strange B. Hippocampal sclerosis of aging at post-mortem is evident on MRI more than a decade prior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531683. [PMID: 36945448 PMCID: PMC10028863 DOI: 10.1101/2023.03.08.531683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS We analyzed hippocampal volumes from MRI segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS Significant HS-associated hippocampal volume changes were observed thoughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer’s Disease (AD) burden, and specifically driven by CA1 and subiculum. AD burden, but not HS, significantly associated with the rate of hippocampal atrophy. DISCUSSION HS-associated volume changes are detectable on MRI earlier than 10 years before death. These findings could contribute to the derivation of volumetric cut-offs for in vivo differentiation between HS and AD.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, USA
- Centre for Medical Image Computing, University College London, London, UK
| | - Alberto Rabano
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
10
|
Tian R, Zhang Y, Liu F, Xue X, Zhang Y, Tian Z, Fang T, Fan R, Li Y, Zhang N. A neuropsychological profile and its correlation with neuroimaging markers in patients with subcortical ischaemic vascular dementia. Int J Geriatr Psychiatry 2023; 38:e5900. [PMID: 36862560 DOI: 10.1002/gps.5900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES Cognitive and neuroimaging assessments are still the main clinical practice methods for screening and diagnosing vascular dementia (VaD) patients. This study aimed to establish the neuropsychological characteristics of mild-to-moderate subcortical ischaemic vascular dementia (SIVD) patients, find an optimal cognitive marker for differentiating them from Alzheimer's disease (AD) patients, and explore the correlation between cognitive function and total small vessel disease (SVD) burden. METHODS SIVD (n = 60) and AD (n = 30) patients and cognitively unimpaired healthy controls (HCs; n = 30) were recruited from our longitudinal MRI AD and SIVD study (ChiCTR1900027943) and received a comprehensive neuropsychological assessment and a multimodal MRI scan. Cognitive performance and MRI SVD markers were compared between groups. Combined cognitive scores were established for differentiating between SIVD and AD patients. Correlations between cognitive function and total SVD scores were analysed in dementia patients. RESULTS SIVD patients showed poorer performance in information processing speed and better performance in memory, language, and visuospatial function than AD patients, although all cognitive domains were impaired in both groups compared with HCs. Combined cognitive scores showed an area under the curve of 0.727 (95%CI 0.62-0.84, p < 0.001) for differentiating SIVD and AD patients. Auditory Verbal Learning Test recognition scores were negatively correlated with total SVD scores in SIVD patients. CONCLUSIONS Our results suggested that neuropsychological assessments, specifically combined tests including episodic memory, information processing speed, language and visuospatial ability, are useful in the clinical differentiation between SIVD and AD patients. Moreover, cognitive dysfunction was partly correlated with MRI SVD burden in SIVD patients.
Collapse
Affiliation(s)
- Rui Tian
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Yanxin Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinran Xue
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, The Third Central Hospital, Tianjin, China
| | - Yutong Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuo Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tingting Fang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruxue Fan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
A Review on Phyto-Therapeutic Approaches in Alzheimer's Disease. J Funct Biomater 2023; 14:jfb14010050. [PMID: 36662097 PMCID: PMC9861153 DOI: 10.3390/jfb14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases occur due to progressive and sometimes irreversible loss of function and death of nerve cells. A great deal of effort is being made to understand the pathogenesis of neurodegenerative diseases. In particular, the prevalence of Alzheimer's disease (AD) is quite high, and only symptomatic therapy is available due to the absence of radical treatment. The aim of this review is to try to elucidate the general pathogenesis of AD, to provide information about the limit points of symptomatic treatment approaches, and to emphasize the potential neurologic effects of phytocompounds as new tools as therapeutic agents for disease prevention, retardation, and therapy. This survey also covers the notable properties of herbal compounds such as their effects on the inhibition of an enzyme called acetylcholinesterase, which has significant value in the treatment of AD. It has been proven that phytopharmaceuticals have long-term effects that could protect nervous system health, eliminate inflammatory responses, improve cognitive damage, provide anti-aging effects in the natural aging process, and alleviate dementia sequelae. Herbal-based therapeutic agents can afford many advantages and can be used as potentially as new-generation therapeutics or complementary agents with high compliance, fewer adverse effects, and lower cost in comparison to the traditional pharmaceutical agents in the fight against AD.
Collapse
|
12
|
Sallustio F, Mascolo AP, Marrama F, D'Agostino F, Proietti M, Greco L, Di Giuliano F, Alemseged F, Gandini R, Martorana A, Diomedi M, Koch G. Temporal lobe atrophy as a potential predictor of functional outcome in older adults with acute ischemic stroke. Acta Neurol Belg 2023:10.1007/s13760-022-02167-w. [PMID: 36637792 DOI: 10.1007/s13760-022-02167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND To explore whether temporal lobe atrophy predicts 3-month functional outcome in a population of patients with anterior circulation acute ischemic stroke (AIS) treated with mechanical thrombectomy (MT). METHODS We retrospectively selected patients > 65 years from our prospective endovascular stroke registry between June 2013 and August 2018. According to 3-month modified Rankin Scale (mRS), patients were divided in two groups, named good (mRS ≤ 2) and poor (mRS > 2) outcome. Measures of temporal lobe atrophy (i.e., interuncal distance [IUD], medial temporal lobe thickness [mTLT] and radial width of temporal horn [rWTH]) were assessed on pre-treatment CT scan. Cutoff values for good outcome were obtained for IUD, mTLT and rWTH by means of non-parametric ROC curve analysis. Multivariate analysis was performed to identify predictors of outcome. Ordinal shift analysis based on cutoff values was built to evaluate differences in 3-month mRS. RESULTS Among 340 patients, 130 (38.2%) had good and 210 (61.8%) had poor outcome. We found the following cutoff values for good outcome: < 25 mm for IUD, > 15 mm for mTLT and < 4 mm for rWTH. Lower IUD (OR 0.71; 95% CI 0.63-0.80; p < 0.0001) and rWTH (OR 0.73; 95% CI 0.61-0.87; p < 0.0001) and higher mTLT (OR 1.30; 95% CI 1.14-1.49; p < 0.0001) were independently associated with good outcome. Ordinal shift analysis based on cutoff values revealed significant differences in the rate of good outcome for rWTH (49 vs 27%; p < 0.0001), mTLT (52 vs 21%; p < 0.0001) and IUD (57 vs 17%; p < 0.0001). CONCLUSIONS Assessment of temporal lobe atrophy may predict functional outcome in patients with AIS treated with MT.
Collapse
Affiliation(s)
- Fabrizio Sallustio
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy. .,Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 0039, Rome, Italy.
| | - Alfredo Paolo Mascolo
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Federico Marrama
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Federica D'Agostino
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Greco
- Diagnostic Neuroradiology Unit, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Francesca Di Giuliano
- Diagnostic Neuroradiology Unit, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Fana Alemseged
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.,Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Roberto Gandini
- Diagnostic Neuroradiology Unit, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Alessandro Martorana
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Marina Diomedi
- Comprehensive Stroke Center, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Giacomo Koch
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 0039, Rome, Italy.,Department of Psychology, eCampus University, Novedrate, Italy
| |
Collapse
|
13
|
Yamamoto Y, Liao YC, Lee YC, Ihara M, Choi JC. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol 2023; 19:12-27. [PMID: 36606642 PMCID: PMC9833879 DOI: 10.3988/jcn.2023.19.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disorder of the cerebral small blood vessels. It is caused by mutations in the NOTCH3 gene on chromosome 19, and more than 280 distinct pathogenic mutations have been reported to date. CADASIL was once considered a very rare disease with an estimated prevalence of 1.3-4.1 per 100,000 adults. However, recent large-scale genomic studies have revealed a high prevalence of pathogenic NOTCH3 variants among the general population, with the highest risk being among Asians. The disease severity and age at onset vary significantly even among individuals who carry the same NOTCH3 mutations. It is still unclear whether a significant genotype-phenotype correlation is present in CADASIL. The accumulation of granular osmiophilic material in the vasculature is a characteristic feature of CADASIL. However, the exact pathogenesis of CADASIL remains largely unclear despite various laboratory and clinical observations being made. Major hypotheses proposed so far have included aberrant NOTCH3 signaling, toxic aggregation, and abnormal matrisomes. Several characteristic features have been observed in the brain magnetic resonance images of patients with CADASIL, including subcortical lacunar lesions and white matter hyperintensities in the anterior temporal lobe or external capsule, which were useful in differentiating CADASIL from sporadic stroke in patients. The number of lacunes and the degree of brain atrophy were useful in predicting the clinical outcomes of patients with CADASIL. Several promising blood biomarkers have also recently been discovered for CADASIL, which require further research for validation.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, Korea.,Institute for Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|
14
|
Tomadesso C, de Lizarrondo SM, Ali C, Landeau B, Mézenge F, Perrotin A, de La Sayette V, Vivien D, Chételat G. Plasma Levels of Tissue-Type Plasminogen Activator (tPA) in Normal Aging and Alzheimer's Disease: Links With Cognition, Brain Structure, Brain Function and Amyloid Burden. Front Aging Neurosci 2022; 14:871214. [PMID: 35747448 PMCID: PMC9211060 DOI: 10.3389/fnagi.2022.871214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) is a protease known for its fibrinolytic action but is also involved in physiological and pathophysiological aging processes; including amyloid elimination and synaptic plasticity. The aim of the study was to investigate the role of tPA in cognitive and brain aging. Therefore, we assessed the links between tPA plasma concentration and cognition, structural MRI, FDG-PET and Flobetapir-PET neuroimaging in 155 cognitively unimpaired adults (CUA, aged 20-85 years old) and 32 patients with Alzheimer's disease (ALZ). A positive correlation was found between tPA and age in CUA (p < 0.001), with males showing higher tPA than females (p = 0.05). No significant difference was found between ALZ patients and cognitively unimpaired elders (CUE). Plasma tPA in CUA negatively correlated with global brain volume. No correlation was found with brain FDG metabolism or amyloid deposition. Age-related tPA changes were associated to changes in blood pressure, glycemia and body mass index. Within the ALZ patients, tPA didn't correlate with any cognitive or neuroimaging measures, but only with physiological measures. Altogether our study suggests that increased tPA plasma concentration with age is related to neuronal alterations and cardiovascular risk factors.
Collapse
Affiliation(s)
- Clémence Tomadesso
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Audrey Perrotin
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Vincent de La Sayette
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
- *Correspondence: Gaël Chételat
| |
Collapse
|
15
|
Buch S, Chen Y, Jella P, Ge Y, Haacke EM. Vascular mapping of the human hippocampus using Ferumoxytol-enhanced MRI. Neuroimage 2022; 250:118957. [PMID: 35122968 PMCID: PMC9484293 DOI: 10.1016/j.neuroimage.2022.118957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/09/2021] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is a small but complex grey matter structure that plays an important role in spatial and episodic memory and can be affected by a wide range of pathologies including vascular abnormalities. In this work, we introduce the use of Ferumoxytol, an ultra-small superparamagnetic iron oxide (USPIO) agent, to induce susceptibility in the arteries (as well as increase the susceptibility in the veins) to map the hippocampal micro-vasculature and to evaluate the quantitative change in tissue fractional vascular density (FVD), in each of its subfields. A total of 39 healthy subjects (aged 35.4 ± 14.2 years, from 18 to 81 years old) were scanned with a high-resolution (0.22×0.44×1 mm3) dual-echo SWI sequence acquired at four time points during a gradual increase in Ferumoxytol dose (final dose = 4 mg/kg). The volumes of each subfield were obtained automatically from the pre-contrast T1-weighted data. The dynamically acquired SWI data were co-registered and adaptively combined to reduce the blooming artifacts from large vessels, preserving the contrast from smaller vessels. The resultant SWI data were used to segment the hippocampal vasculature and to measure the FVD ((volume occupied by vessels)/(total volume)) for each subfield. The hippocampal fissure, along with the fimbria, granular cell layer of the dentate gyrus and cornu ammonis layers (except for CA1), showed higher micro-vascular FVD than the other parts of hippocampus. The CA1 region exhibited a significant correlation with age (R = -0.37, p < 0.05). demonstrating an overall loss of hippocampal vascularity in the normal aging process. Moreover, the vascular density reduction was more prominent than the age correlation with the volume reduction (R = -0.1, p > 0.05) of the CA1 subfield, which would suggest that vascular degeneration may precede tissue atrophy.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Pavan Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
17
|
Singh I, Edwards I, Rose'meyer R. The Role of Cortisol in the Development of Post-Stroke Dementia: A Narrative Review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_32_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Wu LY, Cheah IK, Chong JR, Chai YL, Tan JY, Hilal S, Vrooman H, Chen CP, Halliwell B, Lai MKP. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic Biol Med 2021; 177:201-211. [PMID: 34673145 DOI: 10.1016/j.freeradbiomed.2021.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022]
Abstract
Ergothioneine (ET) is a dietary amino-thione with strong antioxidant and cytoprotective properties and has possible therapeutic potential for neurodegenerative and vascular diseases. Decreased blood concentrations of ET have been found in patients with mild cognitive impairment, but its status in neurodegenerative and vascular dementias is currently unclear. To address this, a cross-sectional study was conducted on 496 participants, consisting of 88 with no cognitive impairment (NCI), 201 with cognitive impairment, no dementia (CIND) as well as 207 with dementia, of whom 160 have Alzheimer's Disease (AD) and 47 have vascular dementia. All subjects underwent blood-draw, neuropsychological assessments, as well as neuroimaging assessments of cerebrovascular diseases (CeVD) and brain atrophy. Plasma ET as well as its metabolite l-hercynine were measured using high sensitivity liquid chromatography tandem-mass spectrometry (LC-MS/MS). Plasma ET concentrations were lowest in dementia (p < 0.001 vs. NCI and CIND), with intermediate levels in CIND (p < 0.001 vs. NCI). A significant increase in l-hercynine to ET ratio was also observed in dementia (p < 0.01 vs. NCI). In multivariate models adjusted for demographic and vascular risk factors, lower levels of ET were significantly associated with dementia both with or without CeVD, while ET associations with CIND were significant only in the presence of CeVD. Furthermore, lower ET levels were also associated with white matter hyperintensities and brain atrophy markers (reduced global cortical thickness and hippocampal volumes). The incremental decreases in ET levels along the CIND-dementia clinical continuum suggest that low levels of ET are associated with disease severity and could be a potential biomarker for cognitive impairment. Deficiency of ET may contribute towards neurodegeneration- and CeVD-associated cognitive impairments, possibly via the exacerbation of oxidative stress in these conditions.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Joyce Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Jia Yun Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henri Vrooman
- Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| |
Collapse
|
19
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. Tamoxifen offers long-term neuroprotection after hippocampal silent infarct in male rats. Horm Behav 2021; 136:105085. [PMID: 34749277 DOI: 10.1016/j.yhbeh.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.
Collapse
|
20
|
Kong Y, Li X, Chang L, Liu Y, Jia L, Gao L, Ren L. Hypertension With High Homocysteine Is Associated With Default Network Gray Matter Loss. Front Neurol 2021; 12:740819. [PMID: 34650512 PMCID: PMC8505539 DOI: 10.3389/fneur.2021.740819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Hypertension with high homocysteine (Hcy, ≥10 μmol/L) is also known as H-type hypertension (HHT) and proposed as an independent risk factor for stroke and cognitive impairment. Although previous studies have established the relationships among hypertension, Hcy levels, and cognitive impairment, how they affect brain neuroanatomy remains unclear. Thus, we aimed to investigate whether and to what extent hypertension and high Hcy may affect gray matter volume in 52 middle-aged HHT patients and 51 demographically matched normotensive subjects. Voxel-based morphological analysis suggested that HHT patients experienced significant gray matter loss in the default network. The default network atrophy was significantly correlated with Hcy level and global cognitive function. These findings provide, to our knowledge, novel insights into how HHT affects brain gray matter morphology through blood pressure and Hcy.
Collapse
Affiliation(s)
- Yanliang Kong
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Xin Li
- Department of Ultrasound, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lina Chang
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Yuwei Liu
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lin Jia
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijuan Ren
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China.,Department of Ultrasound, People's Hospital of Tongchuan City, Tongchuan, China
| |
Collapse
|
21
|
Narasimhan M, Schwartz R, Halliday G. Parkinsonism and cerebrovascular disease. J Neurol Sci 2021; 433:120011. [PMID: 34686356 DOI: 10.1016/j.jns.2021.120011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The relationship between cerebrovascular disease and parkinsonism is commonly seen in everyday clinical practice but remains ill-defined and under-recognised with little guidance for the practising neurologist. We attempt to define this association and to illustrate key clinical, radiological and pathological features of the syndrome of Vascular Parkinsonism (VaP). VaP is a major cause of morbidity in the elderly associated with falls, hip fractures and cognitive impairment. Although acute parkinsonism is reported in the context of an acute cerebrovascular event, the vast majority of VaP presents as an insidious syndrome usually in the context of vascular risk factors and radiological evidence of small vessel disease. There may be an anatomic impact on basal ganglia neuronal networks, however the effect of small vessel disease (SVD) on these pathways is not clear. There are now established reporting standards for radiological features of SVD on MRI. White matter hyperintensities and lacunes have been thought to be the representative radiological features of SVD but other features such as the perivascular space are gaining more importance, especially in context of the glymphatic system. It is important to consider VaP in the differential diagnosis of Parkinson disease (PD) and in these situations, neuroimaging may offer diagnostic benefit especially in those patients with atypical presentations or refractoriness to levodopa. Proactive management of vascular risk factors, monitoring of bone density and an exercise program may offer easily attainable therapeutic targets in PD and VaP. Levodopa therapy should be considered in patients with VaP, however the dose and effect may be different from use in PD. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Manisha Narasimhan
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Raymond Schwartz
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Gu XQ, Liu Y, Gu JB, Li LF, Fu LL, Han XM. Correlations between hippocampal functional connectivity, structural changes, and clinical data in patients with relapsing-remitting multiple sclerosis: a case-control study using multimodal magnetic resonance imaging. Neural Regen Res 2021; 17:1115-1124. [PMID: 34558540 PMCID: PMC8552851 DOI: 10.4103/1673-5374.324855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention, memory, and the speed of information processing. The hippocampus, which is a brain important structure involved in memory, undergoes microstructural changes in the early stage of multiple sclerosis. In this study, we analyzed hippocampal function and structure in patients with relapsing-remitting multiple sclerosis and explored correlations between the functional connectivity of the hippocampus to the whole brain, changes in local brain function and microstructure, and cognitive function at rest. We retrospectively analyzed data from 20 relapsing-remitting multiple sclerosis patients admitted to the Department of Neurology at the China-Japan Union Hospital of Jilin University, China, from April 2015 to November 2019. Sixteen healthy volunteers were recruited as the healthy control group. All participants were evaluated using a scale of extended disability status and the Montreal cognitive assessment within 1 week before and after head diffusion tensor imaging and functional magnetic resonance imaging. Compared with the healthy control group, the patients with relapsing-remitting multiple sclerosis had lower Montreal cognitive assessment scores and regions of simultaneously enhanced and attenuated whole-brain functional connectivity and local functional connectivity in the bilateral hippocampus. Hippocampal diffusion tensor imaging data showed that, compared with the healthy control group, patients with relapsing-remitting multiple sclerosis had lower hippocampal fractional anisotropy values and higher mean diffusivity values, suggesting abnormal hippocampal structure. The left hippocampus whole-brain functional connectivity was negatively correlated with the Montreal cognitive assessment score (r = −0.698, P = 0.025), and whole-brain functional connectivity of the right hippocampus was negatively correlated with extended disability status scale score (r = −0.649, P = 0.042). The mean diffusivity value of the left hippocampus was negatively correlated with the Montreal cognitive assessment score (r = −0.729, P = 0.017) and positively correlated with the extended disability status scale score (r = 0.653, P = 0.041). The right hippocampal mean diffusivity value was positively correlated with the extended disability status scale score (r = 0.684, P = 0.029). These data suggest that the functional connectivity and presence of structural abnormalities in the hippocampus in patients with relapse-remission multiple sclerosis are correlated with the degree of cognitive function and extent of disability. This study was approved by the Ethics Committee of China-Japan Union Hospital of Jilin University, China (approval No. 201702202) on February 22, 2017.
Collapse
Affiliation(s)
- Xin-Quan Gu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying Liu
- Cardre's Ward, Changchun Central hospital, Changchun, Jilin Province, China
| | - Jie-Bing Gu
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin-Fang Li
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Ling Fu
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xue-Mei Han
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
23
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. The selective estrogen receptor modulator tamoxifen protects against subtle cognitive decline and early markers of injury 24 h after hippocampal silent infarct in male Sprague-Dawley rats. Horm Behav 2021; 134:105016. [PMID: 34242875 DOI: 10.1016/j.yhbeh.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts occurring in the absence of typical ischemia symptoms and are linked to cognitive decline and dementia development. There are no approved treatments for SI. One potential treatment is tamoxifen, a selective estrogen receptor modulator. It is critical to establish whether treatments effectively target the early consequences of SI to avoid progression to complete injury. We induced SI in the dorsal hippocampal CA1 of rats and assessed whether tamoxifen is protective 24 h later against cognitive deficits and injury responses including gliosis, apoptosis, inflammation and changes in estrogen receptors (ERs). SI led to subtle cognitive impairment on the object place task, an effect ameliorated by tamoxifen administration. SI did not lead to detectable hippocampal cell loss but increased apoptosis, astrogliosis, microgliosis and inflammation. Tamoxifen protected against the effects of SI on all measures except microgliosis. SI increased ERα and decreased ERβ in the hippocampus, which were mitigated by tamoxifen. Exploratory data analyses using scatterplot matrices and principal component analysis indicated that SI rats given tamoxifen were indistinguishable from controls. Further, SI rats were significantly different from all other groups, an effect associated with low levels of ERα and increased apoptosis, gliosis, inflammation, ERβ, and time spent with the unmoved object. The results demonstrate that tamoxifen is protective against the early cellular and cognitive consequences of hippocampal SI 24 h after injury. Tamoxifen mitigates apoptosis, gliosis, and inflammation and normalization of ER levels in the CA1, leading to improved cognitive outcomes after hippocampal SI.
Collapse
|
24
|
Different patterns of functional and structural alterations of hippocampal sub-regions in subcortical vascular mild cognitive impairment with and without depression symptoms. Brain Imaging Behav 2021; 15:1211-1221. [PMID: 32700254 DOI: 10.1007/s11682-020-00321-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In addition to cognitive impairments, depression symptoms were reported in subcortical vascular mild cognitive impairment. Although hippocampal alterations were associated with cognitive decline in subcortical vascular mild cognitive impairment, the neural mechanism underlying depression symptoms remains unclear. Thus, a cohort of 18 patients with depression symptoms, 17 patients without depression symptoms, and 23 normal controls was used. Functionally, significantly altered resting-state functional connectivity between hippocampal emotional sub-region and right posterior cingulate cortex, between hippocampal cognitive sub-region and right inferior parietal gyrus and between hippocampal perceptual sub-region and left inferior temporal gyrus were identified among three groups. Structurally, significantly altered structural associations between hippocampal emotional sub-region and 6 frontal regions/right pole part of superior temporal gyrus/right inferior occipital gyrus, between hippocampal cognitive sub-region and right orbital part of inferior frontal gyrus /right anterior cingulate cortex, and between hippocampal perceptual and right orbital part of inferior frontal gyrus / left inferior temporal gyrus / left thalamus were identified among the three groups. Further analyses also showed correlations between functional connectivity and depression symptoms and/or cognitive impairments of patients. Together, these results showed different patterns of functional and structural alterations of the hippocampal sub-regions in the subcortical vascular mild cognitive impairment with and without depression, which might be specially associated with the depression symptoms and cognitive impairments in these patients.
Collapse
|
25
|
Kang SH, Park YH, Kim JP, Kim JS, Kim CH, Jang H, Kim HJ, Koh SB, Na DL, Chin J, Seo SW. Cortical neuroanatomical changes related to specific neuropsychological deficits in subcortical vascular cognitive impairment. NEUROIMAGE-CLINICAL 2021; 30:102685. [PMID: 34215155 PMCID: PMC8102616 DOI: 10.1016/j.nicl.2021.102685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
Poor performances in neuropsychological tests were associated with cortical atrophy. Neural substrates in Aβ (−) SVCI differed from those in ADCI. Neural substrate of episodic memory was frontal regions in Aβ (−) SVCI. Neural substrates of three neuropsychological tests showed laterality.
Objective Neuropsychological test-specific neural substrates in subcortical vascular cognitive impairment (SVCI) are expected to differ from those in Alzheimer’s disease-related cognitive impairment (ADCI) but the details are unclear. To determine neural substrates related to cerebral small vessel disease, we investigated the correlations between cognitive dysfunctions measured by standardized neuropsychological tests and cortical thickness in a large sample of participants with amyloid negative (Aβ (−)) SVCI. Methods One hundred ninety-eight participants with Aβ (−) SVCI were recruited from the memory clinic between November 2007 to August 2018. To acquire neural substrates, we performed linear regression using the scores of each neuropsychological test as a predictor, cortical thickness as an outcome, and age, sex, education years, intracranial volume and white matter hyperintensity (WMH) as confounders. Results Poor performances in each neuropsychological test were associated with cortical atrophy in certain brain regions regardless of WMH. Especially, not the medial temporal but the frontal and posterior cingulate regions with cortical atrophy were mainly associated with memory impairment. Poor performance in animal fluency was more likely to be associated with cortical atrophy in the left hemisphere, while poor performance in the visuospatial memory test was more likely to be associated with cortical atrophy in the right hemisphere. Conclusions Our findings suggested that cortical atrophy was an important factor of cognitive impairment in Aβ (−) SVCI regardless of WMH. Furthermore, our findings might give clinicians a better understanding of specific neural substrates of neuropsychological deficits in patients with SVCI.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea; Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yu Hyun Park
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Jun Pyo Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Ji-Sun Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Chi Hun Kim
- Department of Neurology, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, South Korea; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Hyemin Jang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Hee Jin Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Duk L Na
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Juhee Chin
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea.
| | - Sang Won Seo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea; Samsung Alzheimer Research Center and Center for Clinical Epidemiology Medical Center, Seoul, South Korea.
| |
Collapse
|
26
|
Mount RA, Sridhar S, Hansen KR, Mohammed AI, Abdulkerim M, Kessel R, Nazer B, Gritton HJ, Han X. Distinct neuronal populations contribute to trace conditioning and extinction learning in the hippocampal CA1. eLife 2021; 10:56491. [PMID: 33843589 PMCID: PMC8064758 DOI: 10.7554/elife.56491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.
Collapse
Affiliation(s)
- Rebecca A Mount
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Kyle R Hansen
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Ali I Mohammed
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Moona Abdulkerim
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Robb Kessel
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Bobak Nazer
- Department of Electrical and Computer Engineering, Boston University, Boston, United States
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, United States
| |
Collapse
|
27
|
Pin G, Coupé P, Nadal L, Manjon JV, Helmer C, Amieva H, Mazoyer B, Dartigues JF, Catheline G, Planche V. Distinct Hippocampal Subfields Atrophy in Older People With Vascular Brain Injuries. Stroke 2021; 52:1741-1750. [PMID: 33657856 DOI: 10.1161/strokeaha.120.031743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Many neurological or psychiatric diseases affect the hippocampus during aging. The study of hippocampal regional vulnerability may provide important insights into the pathophysiological mechanisms underlying these processes; however, little is known about the specific impact of vascular brain damage on hippocampal subfields atrophy. METHODS To analyze the effect of vascular injuries independently of other pathological conditions, we studied a population-based cohort of nondemented older adults, after the exclusion of people who were diagnosed with neurodegenerative diseases during the 14-year clinical follow-up period. Using an automated segmentation pipeline, 1.5T-magnetic resonance imaging at inclusion and 4 years later were assessed to measure both white matter hyperintensities and hippocampal subfields volume. Annualized rates of white matter hyperintensity progression and annualized rates of hippocampal subfields atrophy were then estimated in each participant. RESULTS We included 249 participants in our analyses (58% women, mean age 71.8, median Mini-Mental State Evaluation 29). The volume of the subiculum at baseline was the only hippocampal subfield volume associated with total, deep/subcortical, and periventricular white matter hyperintensity volumes, independently of demographic variables and vascular risk factors (β=-0.17, P=0.011; β=-0.25, P=0.020 and β=-0.14, P=0.029, respectively). In longitudinal measures, the annualized rate of subiculum atrophy was significantly higher in people with the highest rate of deep/subcortical white matter hyperintensity progression, independently of confounding factors (β=-0.32, P=0.014). CONCLUSIONS These cross-sectional and longitudinal findings highlight the links between vascular brain injuries and a differential vulnerability of the subiculum within the hippocampal loop, unbiased of the effect of neurodegenerative diseases, and particularly when vascular injuries affect deep/subcortical structures.
Collapse
Affiliation(s)
- Grégoire Pin
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.).,Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.)
| | - Pierrick Coupé
- University of Bordeaux, CNRS, Bordeaux INP, Laboratoire Bordelais de Recherche en Informatique, UMR 5800, PICTURA, Talence, France (P.C.)
| | - Louis Nadal
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.).,Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.)
| | - Jose V Manjon
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Spain (J.V.M.)
| | - Catherine Helmer
- University of Bordeaux, Inserm, UMR 1219, Bordeaux Population Health Research Center, France (C.H., H.A., J.-F.D.)
| | - Hélène Amieva
- University of Bordeaux, Inserm, UMR 1219, Bordeaux Population Health Research Center, France (C.H., H.A., J.-F.D.)
| | - Bernard Mazoyer
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.)
| | - Jean-François Dartigues
- Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.).,University of Bordeaux, Inserm, UMR 1219, Bordeaux Population Health Research Center, France (C.H., H.A., J.-F.D.)
| | - Gwénaëlle Catheline
- EPHE, PSL, Bordeaux, France (G.C.).,University of Bordeaux, CNRS, UMR 5287, Institut de Neurosciences cognitives et intégratives d'Aquitaine, France (G.C.)
| | - Vincent Planche
- University of Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, France (G.P., L.N., B.M., V.P.).,Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, France (G.P., L.N., J.-F.D., V.P.)
| |
Collapse
|
28
|
Sungura R, Onyambu C, Mpolya E, Sauli E, Vianney JM. The extended scope of neuroimaging and prospects in brain atrophy mitigation: A systematic review. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Finney CA, Morris MJ, Westbrook RF, Jones NM. Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model. Behav Brain Res 2020; 401:113089. [PMID: 33358919 DOI: 10.1016/j.bbr.2020.113089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts that occur in the absence of clinical symptoms commonly associated with ischemia and are linked to dementia development. Little is known about the pathophysiology underlying the cognitive dysfunction associated with SI, and few studies have examined the early cellular responses and neurobiological underpinnings. We induced SI in adult male Sprague-Dawley rats using an infusion of endothelin-1 in the CA1 dorsal hippocampus. Twenty-four hours later, we assessed cognition using the hippocampal-dependent object place recognition task. We also examined whether the resulting cognitive effects were associated with common markers of ischemia, specifically cell and synapse loss, gliosis, and inflammation, using histology and immunohistochemistry. Hippocampal SI led to subtle cognitive impairment on the object place recognition task 24 -hs post-injury. This was characterized by a significant difference in exploration proportion relative to a pre-injury baseline and a positive association between time spent with both the moved and unmoved objects. SI did not result in any detectable cell or synaptophysin loss, but did increase apoptosis, gliosis and inflammation in the CA1. Principal component analysis indicated the main variables associated with hippocampal SI included increased time spent with the unmoved object, gliosis, apoptosis and inflammation as well as decreased exploration proportion and CA1 cells. Our data demonstrate that hippocampal SI can lead to cognitive dysfunction 24 -hs after injury. Further, this appears to be driven by early degenerative processes including apoptosis, gliosis and inflammation, suggesting that these may be targets for early interventions treating hippocampal SI and its cognitive consequences.
Collapse
|
30
|
Wang Y, Yang Y, Wang T, Nie S, Yin H, Liu J. Correlation between White Matter Hyperintensities Related Gray Matter Volume and Cognition in Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2020; 29:105275. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
|
31
|
Fontaine JT, Rosehart AC, Joutel A, Dabertrand F. HB-EGF depolarizes hippocampal arterioles to restore myogenic tone in a genetic model of small vessel disease. Mech Ageing Dev 2020; 192:111389. [PMID: 33127441 PMCID: PMC7683376 DOI: 10.1016/j.mad.2020.111389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Vascular cognitive impairment, the second most common cause of dementia, profoundly affects hippocampal-dependent functions. However, while the growing literature covers complex neuronal interactions, little is known about the sustaining hippocampal microcirculation. Here we examined vasoconstriction to physiological pressures of hippocampal arterioles, a fundamental feature of small arteries, in a genetic mouse model of CADASIL, an archetypal cerebral small vessel disease. Using diameter and membrane potential recordings on isolated arterioles, we observed both blunted pressure-induced vasoconstriction and smooth muscle cell depolarization in CADASIL. This impairment was abolished in the presence of voltage-gated potassium (KV1) channel blocker 4-aminopyridine, or by application of heparin-binding EGF-like growth factor (HB-EGF), which promotes KV1 channel down-regulations. Interestingly, we observed that HB-EGF induced a depolarization of the myocyte plasma membrane within the arteriolar wall in CADASIL, but not wild-type, arterioles. Collectively, our results indicate that hippocampal arterioles in CADASIL mice display a blunted contractile response to luminal pressure, similar to the defect we previously reported in cortical arterioles and pial arteries, that is rescued by HB-EGF. Hippocampal vascular dysfunction in CADASIL could then contribute to the decreased vascular reserve associated with decreased cognitive performance, and its correction may provide a therapeutic option for treating vascular cognitive impairment.
Collapse
Affiliation(s)
- Jackson T Fontaine
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda C Rosehart
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne Joutel
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA; Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, University of Paris, GHU Paris Psychiatrie et Neurosciences, France
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
32
|
Wang F, Hua S, Zhang Y, Yu H, Zhang Z, Zhu J, Liu R, Jiang Z. Association Between Small Vessel Disease Markers, Medial Temporal Lobe Atrophy and Cognitive Impairment After Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2020; 30:105460. [PMID: 33227579 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Two-thirds of stroke survivors suffer from cognitive impairment, and up to one-third of them progress to dementia. However, the underlying pathogenesis is complex and controversial. Recent evidence has found that cerebral small vessel disease (SVD) markers and the Alzheimer's disease (AD) neuroimaging marker medial temporal lobe atrophy (MTLA), alone or in combination, contribute to the pathogenesis of poststroke cognitive impairment (PSCI). In the present systematic review and meta-analysis, we synthesized proof for these neuroimaging risk factors among stroke patients. MATERIALS AND METHODS PUBMED, MEDLINE, EMBASE and the Cochrane Library were searched for studies investigating imaging predictors of cognitive impairment or dementia following stroke. Meta-analysis was conducted to compute the odds ratios (ORs). RESULTS Thirteen studies were enrolled in the present study, and only ten of them, comprising 2713 stroke patients, were eligible for inclusion in the meta-analysis. MTLA was significantly correlated with PSCI (OR = 1.97, 95% CI: 1.48-2.62, I2 = 0.0%). In addition, white matter hyperintensities (WMH), as a neuroimaging marker of SVD, were associated with PSCI (OR = 1.17, 95% CI: 1.12-1.22, I2 = 0.0%). However, the presence of lacunar infarcts and enlarged perivascular spaces (EPVS) were not associated with the risk of PSCI. CONCLUSIONS The findings of the present study suggest that MTLA and WMH were associated with an increased risk of PSCI.
Collapse
Affiliation(s)
- Furu Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sunyu Hua
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongchang Yu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
33
|
Ling Y, Gong T, Zhang J, Gu Q, Gao X, Weng X, Liu J, Sun J. Gut Microbiome Signatures Are Biomarkers for Cognitive Impairment in Patients With Ischemic Stroke. Front Aging Neurosci 2020; 12:511562. [PMID: 33192448 PMCID: PMC7645221 DOI: 10.3389/fnagi.2020.511562] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common neuropsychiatric complication of stroke. Mounting evidence has demonstrated a connection between gut microbiota (GM) and neuropsychiatric disease. Our previous study revealed the changes in the GM in a mouse model of vascular dementia. However, the characteristic GM of PSCI remains unclear. This study aimed to characterize the GM of PSCI and explored the potential of GM as PSCI biomarkers. A total of 93 patients with ischemic stroke were enrolled in this study. The patients were divided into two groups according to their MoCA scores 3 months after stroke onset. Clinical data and biological variables were recorded. GM composition was analyzed using 16S ribosomal RNA sequencing, and the characteristic GM was identified by linear discriminant analysis Effect Size (Lefse). Our results showed that Proteobacteria was highly increased in the PSCI group compared with the post-stroke non-cognitive impairment (PSNCI) group, the similar alterations were also observed at the class, order, family, and genus levels of Proteobacteria. After age adjustments, the abundance of Firmicutes, and its members, including Clostridia, Clostridiales, Lachnospiraceae, and Lachnospiraceae_other, were significantly decreased in the age-matched PSCI group compared with the PSNCI group. Besides, the GM was closely associated with MoCA scores and the risk factors for PSCI, including higher baseline National Institute of Health Stroke Scale score, higher homocysteine (Hcy) level, higher prevalence of stroke recurrence, leukoaraiosis, and brain atrophy. The KEGG results showed the enriched module for folding, sorting and degradation (chaperones and folding catalysts) and the decreased modules related to metabolisms of cofactors and vitamins, amino acid, and lipid in PSCI patients. A significant correlation was observed between PSCI and the abundance of Enterobacteriaceae after adjustments (P = 0.035). Moreover, the receiver operating characteristic (ROC) models based on the characteristic GM and Enterobacteriaceae could distinguish PSCI patients from PSNCI patients [area under the curve (AUC) = 0.840, 0.629, respectively]. Our findings demonstrated that the characteristic GM, especially Enterobacteriaceae, might have the ability to predict PSCI in post-stroke patients, which are expected to be used as clinical biomarkers of PSCI.
Collapse
Affiliation(s)
- Yi Ling
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Junmei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qilu Gu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiongpeng Weng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Werden E, Khlif MS, Bird LJ, Cumming T, Bradshaw J, Khan W, Pase M, Restrepo C, Veldsman M, Egorova N, Patel SK, Gottlieb E, Brodtmann A. APOE ɛ4 Carriers Show Delayed Recovery of Verbal Memory and Smaller Entorhinal Volume in the First Year After Ischemic Stroke. J Alzheimers Dis 2020; 71:245-259. [PMID: 31381519 DOI: 10.3233/jad-190566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The apolipoprotein E (APOE) gene ɛ4 allele is a risk factor for Alzheimer's disease and cardiovascular disease. However, its relationship with cognition and brain volume after stroke is not clear. OBJECTIVE We compared cognition and medial temporal lobe volumes in APOEɛ4 carriers and non-carriers in the first year after ischemic stroke. METHODS We sampled 20 APOEɛ4 carriers and 20 non-carriers from a larger cohort of 135 ischemic stroke participants in the longitudinal CANVAS study. Participants were matched on a range of demographic and stroke characteristics. We used linear mixed-effect models to compare cognitive domain z-scores (attention, processing speed, executive function, verbal and visual memory, language, visuospatial function) and regional medial temporal lobe volumes (hippocampal, entorhinal cortex) between groups at each time-point (3, 12-months post-stroke), and within groups across time-points. APOE gene single nucleotide polymorphisms (SNPs; rs7412, rs429358) were genotyped on venous blood. RESULTS APOEɛ4 carriers and non-carriers did not differ on any demographic, clinical, or stroke variable. Carriers performed worse than non-carriers in verbal memory at 3 months post-stroke (p = 0.046), but were better in executive function at 12 months (p = 0.035). Carriers demonstrated a significant improvement in verbal memory (p = 0.012) and executive function (p = 0.015) between time-points. Non-carriers demonstrated a significant improvement in visual memory (p = 0.0005). Carriers had smaller bilateral entorhinal cortex volumes (p < 0.05), and larger right sided and contralesional hippocampal volumes, at both time-points (p < 0.05). CONCLUSION APOE ɛ4 is associated with delayed recovery of verbal memory function and reduced entorhinal cortex volumes in the first year after ischemic stroke.
Collapse
Affiliation(s)
- Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Laura J Bird
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Toby Cumming
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Wasim Khan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Matthew Pase
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Carolina Restrepo
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Natalia Egorova
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Sheila K Patel
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Elie Gottlieb
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.,Austin Health, Heidelberg, Melbourne, VIC, Australia.,Eastern Clinical Research Unit, Box Hill Hospital, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Boomsma JM, Exalto LG, Barkhof F, Chen CL, Hilal S, Leeuwis AE, Prins ND, Saridin FN, Scheltens P, Teunissen CE, Verwer JH, Weinstein HC, van der Flier WM, Biessels GJ. Prediction of poor clinical outcome in vascular cognitive impairment: TRACE-VCI study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12077. [PMID: 32789162 PMCID: PMC7416669 DOI: 10.1002/dad2.12077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Prognostication in memory clinic patients with vascular brain injury (eg possible vascular cognitive impairment [VCI]) is often uncertain. We created a risk score to predict poor clinical outcome. METHODS Using data from two longitudinal cohorts of memory clinic patients with vascular brain injury without advanced dementia, we created (n = 707) and validated (n = 235) the risk score. Poor clinical outcome was defined as substantial cognitive decline (change of Clinical Dementia Rating ≥1 or institutionalization) or major vascular events or death. Twenty-four candidate predictors were evaluated using Cox proportional hazard models. RESULTS Age, clinical syndrome diagnosis, Disability Assessment for Dementia, Neuropsychiatric Inventory, and medial temporal lobe atrophy most strongly predicted poor outcome and constituted the risk score (C-statistic 0.71; validation cohort 0.78). Of note, none of the vascular predictors were retained in this model. The 2-year risk of poor outcome was 6.5% for the lowest (0-5) and 55.4% for the highest sum scores (10-13). DISCUSSION This is the first, validated, prediction score for 2-year clinical outcome of patients with possible VCI.
Collapse
Affiliation(s)
- Jooske M.F. Boomsma
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversiteitUtrechtthe Netherlands
- Department of NeurologyOLVG WestAmsterdamthe Netherlands
| | - Lieza G. Exalto
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversiteitUtrechtthe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Institute of NeurologyUCLLondonUK
- Institute of Healthcare EngineeringUCLLondonUK
| | - Christopher L.H. Chen
- Department of PharmacologyNational University of SingaporeSingapore
- Memory Aging and Cognition CenterNational University Health SystemSingapore
| | - Saima Hilal
- Department of PharmacologyNational University of SingaporeSingapore
- Memory Aging and Cognition CenterNational University Health SystemSingapore
| | - Anna E. Leeuwis
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Niels D. Prins
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Francis N. Saridin
- Department of PharmacologyNational University of SingaporeSingapore
- Memory Aging and Cognition CenterNational University Health SystemSingapore
| | - Philip Scheltens
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Jurre H. Verwer
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversiteitUtrechtthe Netherlands
| | | | - Wiesje M. van der Flier
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of EpidemiologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Geert Jan Biessels
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversiteitUtrechtthe Netherlands
| | - the TRACE‐VCI study group
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversiteitUtrechtthe Netherlands
| |
Collapse
|
36
|
Heinen R, Groeneveld ON, Barkhof F, de Bresser J, Exalto LG, Kuijf HJ, Prins ND, Scheltens P, van der Flier WM, Biessels GJ. Small vessel disease lesion type and brain atrophy: The role of co-occurring amyloid. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12060. [PMID: 32695872 PMCID: PMC7364862 DOI: 10.1002/dad2.12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/05/2022]
Abstract
INTRODUCTION It is unknown whether different types of small vessel disease (SVD), differentially relate to brain atrophy and if co-occurring Alzheimer's disease pathology affects this relation. METHODS In 725 memory clinic patients with SVD (mean age 67 ± 8 years, 48% female) we compared brain volumes of those with moderate/severe white matter hyperintensities (WMHs; n = 326), lacunes (n = 132) and cerebral microbleeds (n = 321) to a reference group with mild WMHs (n = 197), also considering cerebrospinal fluid (CSF) amyloid status in a subset of patients (n = 488). RESULTS WMHs and lacunes, but not cerebral microbleeds, were associated with smaller gray matter (GM) volumes. In analyses stratified by CSF amyloid status, WMHs and lacunes were associated with smaller total brain and GM volumes only in amyloid-negative patients. SVD-related atrophy was most evident in frontal (cortical) GM, again predominantly in amyloid-negative patients. DISCUSSION Amyloid status modifies the differential relation between SVD lesion type and brain atrophy in memory clinic patients.
Collapse
Affiliation(s)
- Rutger Heinen
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Onno N. Groeneveld
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Institutes of Neurology & Healthcare EngineeringUniversity College London (UCL)LondonUK
| | - Jeroen de Bresser
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Lieza G. Exalto
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Hugo J. Kuijf
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Niels D. Prins
- Alzheimer Center & Department of NeurologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Brain Research CenterAmsterdamthe Netherlands
| | - Philip Scheltens
- Alzheimer Center & Department of NeurologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Brain Research CenterAmsterdamthe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center & Department of NeurologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Geert Jan Biessels
- Department of Neurology and NeurosurgeryUMC Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | | |
Collapse
|
37
|
Age-related differences in cerebral blood flow and cortical thickness with an application to age prediction. Neurobiol Aging 2020; 95:131-142. [PMID: 32798960 DOI: 10.1016/j.neurobiolaging.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cerebral cortex thinning and cerebral blood flow (CBF) reduction are typically observed during normal healthy aging. However, imaging-based age prediction models have primarily used morphological features of the brain. Complementary physiological CBF information might result in an improvement in age estimation. In this study, T1-weighted structural magnetic resonance imaging and arterial spin labeling CBF images were acquired in 146 healthy participants across the adult life span. Sixty-eight cerebral cortex regions were segmented, and the cortical thickness and mean CBF were computed for each region. Linear regression with age was computed for each region and data type, and laterality and correlation matrices were computed. Sixteen predictive models were trained with the cortical thickness and CBF data alone as well as a combination of both data types. The age explained more variance in the cortical thickness data (average R2 of 0.21) than in the CBF data (average R2 of 0.09). All 16 models performed significantly better when combining both measurement types and using feature selection, and thus, we conclude that the inclusion of CBF data marginally improves age estimation.
Collapse
|
38
|
Hagberg G, Ihle-Hansen H, Fure B, Thommessen B, Ihle-Hansen H, Øksengård AR, Beyer MK, Wyller TB, Müller EG, Pendlebury ST, Selnes P. No evidence for amyloid pathology as a key mediator of neurodegeneration post-stroke - a seven-year follow-up study. BMC Neurol 2020; 20:174. [PMID: 32384876 PMCID: PMC7206753 DOI: 10.1186/s12883-020-01753-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cognitive impairment (CI) with mixed vascular and neurodegenerative pathologies after stroke is common. The role of amyloid pathology in post-stroke CI is unclear. We hypothesize that amyloid deposition, measured with Flutemetamol (18F-Flut) positron emission tomography (PET), is common in seven-year stroke survivors diagnosed with CI and, further, that quantitatively assessed 18F-Flut-PET uptake after 7 years correlates with amyloid-β peptide (Aβ42) levels in cerebrospinal fluid (CSF) at 1 year, and with measures of neurodegeneration and cognition at 7 years post-stroke. Methods 208 patients with first-ever stroke or transient Ischemic Attack (TIA) without pre-existing CI were included during 2007 and 2008. At one- and seven-years post-stroke, cognitive status was assessed, and categorized into dementia, mild cognitive impairment or normal. Etiologic sub-classification was based on magnetic resonance imaging (MRI) findings, CSF biomarkers and clinical cognitive profile. At 7 years, patients were offered 18F-Flut-PET, and amyloid-positivity was assessed visually and semi-quantitatively. The associations between 18F-Flut-PET standardized uptake value ratios (SUVr) and measures of neurodegeneration (medial temporal lobe atrophy (MTLA), global cortical atrophy (GCA)) and cognition (Mini-Mental State Exam (MMSE), Trail-making test A (TMT-A)) and CSF Aβ42 levels were assessed using linear regression. Results In total, 111 patients completed 7-year follow-up, and 26 patients agreed to PET imaging, of whom 13 had CSF biomarkers from 1 year. Thirteen out of 26 patients were diagnosed with CI 7 years post-stroke, but only one had visually assessed amyloid positivity. CSF Aβ42 levels at 1 year, MTA grade, GCA scale, MMSE score or TMT-A at 7 years did not correlate with 18F-Flut-PET SUVr in this cohort. Conclusions Amyloid binding was not common in 7-year stroke survivors diagnosed with CI. Quantitatively assessed, cortical amyloid deposition did not correlate with other measures related to neurodegeneration or cognition. Therefore, amyloid pathology may not be a key mediator of neurodegeneration 7 years post-stroke. Trial registration Clinicaltrials.gov (NCT00506818). July 23, 2007. Inclusion from February 2007, randomization and intervention from May 2007 and trial registration in July 2007.
Collapse
Affiliation(s)
- Guri Hagberg
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege Ihle-Hansen
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Brynjar Fure
- Department of Neurology, Department of Internal Medicine, Central Hospital Karlstad and Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Bente Thommessen
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - Håkon Ihle-Hansen
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Mona K Beyer
- Division of Radiology, Nuclear Medicine Oslo University Hospital, Oslo, Norway
| | - Torgeir B Wyller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Ebba Gløersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Sarah T Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Per Selnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Oslo, Norway
| |
Collapse
|
39
|
A Comparison of Motor Functional Recovery and Brain Damage between Striatal Lesions Induced by Ischemia and Hemorrhage in Rats. J Stroke Cerebrovasc Dis 2020; 29:104668. [PMID: 32184024 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the natural recovery process and tissue injury associated with cerebral hemorrhage and cerebral infarction, which were induced to the same degree, in the striatum of rats. METHODS Male Wistar rats were divided into intracerebral hemorrhagic (ICH) and ischemia (ISC) groups, with the ICH group injected with a collagenase solution and the ISC group injected with an endothelin-1 solution. In the SHAM group, physiological saline was injected. Motor function was evaluated by the ladder and forelimb placing tests on the first day before surgery and the first, seventh, and 14th day after surgery. On day 15 after surgery, brain tissue was harvested and frozen sections were prepared. Nissl staining was performed, and the tissue loss, ventricular, and hemispheric volumes were analyzed. RESULTS On the first day of surgery, the ICH group had significantly decreased motor function compared with the ISC group. However, subsequent recovery of motor function was faster in the ICH group than that in the ISC group. In addition, tissue loss and hemispheric volumes were significantly higher in the ISC group than those in the ICH group, whereas the ventricular volume was significantly higher in the ICH group than that in the ISC group. CONCLUSIONS Collectively, our findings indicate that, in ICH and ISC where the brain damage involves the same site and is approximately the same size, motor function is recovered faster in ICH than that in ISC. As such, differences in secondary degeneration are likely affected.
Collapse
|
40
|
Cognitive dysfunction and brain atrophy in Susac syndrome. J Neurol 2019; 267:994-1003. [DOI: 10.1007/s00415-019-09664-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
41
|
Gyanwali B, Shaik MA, Tan CS, Vrooman H, Venketasubramanian N, Chen C, Hilal S. Mixed-location cerebral microbleeds as a biomarker of neurodegeneration in a memory clinic population. Aging (Albany NY) 2019; 11:10581-10596. [PMID: 31767809 PMCID: PMC6914397 DOI: 10.18632/aging.102478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
Abstract
Cerebral microbleeds (CMBs) in the lobar and deep locations are associated with two distinct pathologies: cerebral amyloid angiopathy and hypertensive arteriopathy. However, the role of mixed-location CMBs in neurodegeneration remains unexplored. We investigated the associations between strictly lobar, strictly deep and mixed-location CMBs with markers of neurodegeneration. This study recruited 477 patients from a memory clinic who underwent 3T MRI scans. CMBs were categorized into strictly lobar, strictly deep and mixed-location. Cortical thickness, white matter volume and subcortical structural volumes were quantified using Free-Surfer. Linear regression models were performed to assess the association between CMBs and cerebral atrophy, and the mean difference (β) and 95% confidence intervals (CIs) were reported. In the regression analyses, mixed-location CMBs were associated with smaller cortical thickness of limbic region [β= -0.01; 95% CI= -0.02, -0.00, p=0.007) as well as with smaller accumbens volume [β= -0.01; 95% CI= -0.02, -0.00, p=0.004) and presubiculum region of hippocampus [β= -0.01; 95% CI= -0.02, -0.00, p=0.002). Strictly lobar CMBs were associated with smaller total white matter volume [β= -0.03; 95% CI= -0.04, -0.01, p<0.001] and with region specific white matter volumes. The underlying mechanism requires further research and may involve shared mechanisms of vascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Muhammad Amin Shaik
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Henri Vrooman
- Departments of Radiology and Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Khlif MS, Werden E, Egorova N, Boccardi M, Redolfi A, Bird L, Brodtmann A. Assessment of longitudinal hippocampal atrophy in the first year after ischemic stroke using automatic segmentation techniques. NEUROIMAGE-CLINICAL 2019; 24:102008. [PMID: 31711030 PMCID: PMC6849411 DOI: 10.1016/j.nicl.2019.102008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
First-year hippocampal atrophy in stroke is more accelerated ipsi-lesionally. Volume estimation is not impacted by hemisphere side, study group, or scan timepoint. Segmentation method-hippocampal size interaction determines volume estimation. FreeSurfer/Subfields and fsl/FIRST segmentations agreed best with manual tracing.
We assessed first-year hippocampal atrophy in stroke patients and healthy controls using manual and automated segmentations: AdaBoost, FIRST (fsl/v5.0.8), FreeSurfer/v5.3 and v6.0, and Subfields (in FreeSurfer/v6.0). We estimated hippocampal volumes in 39 healthy controls and 124 stroke participants at three months, and 38 controls and 113 stroke participants at one year. We used intra-class correlation, concordance, and reduced major axis regression to assess agreement between automated and ‘Manual’ estimations. A linear mixed-effect model was used to characterize hippocampal atrophy. Overall, hippocampal volumes were reduced by 3.9% in first-ever stroke and 9.2% in recurrent stroke at three months post-stroke, with comparable ipsi-and contra-lesional reductions in first-ever stroke. Mean atrophy rates between time points were 0.5% for controls and 1.0% for stroke patients (0.6% contra-lesionally, 1.4% ipsi-lesionally). Atrophy rates in left and right-hemisphere strokes were comparable. All methods revealed significant volume change in first-ever and ipsi-lesional stroke (p < 0.001). Hippocampal volume estimation was not impacted by hemisphere, study group, or scan time point, but rather, by the interaction between the automated segmentation method and hippocampal size. Compared to Manual, Subfields and FIRST recorded the lowest bias. FreeSurfer/v5.3 overestimated volumes the most for large hippocampi, while FIRST was the most accurate in estimating small volumes. AdaBoost performance was average. Our findings suggest that first-year ipsi-lesional hippocampal atrophy rate especially in first-ever stroke, is greater than atrophy rates in healthy controls and contra-lesional stroke. Subfields and FIRST can complementarily be effective in characterizing the hippocampal atrophy in healthy and stroke cohorts.
Collapse
Affiliation(s)
- Mohamed Salah Khlif
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Emilio Werden
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Natalia Egorova
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Marina Boccardi
- LANVIE-Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland; Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alberto Redolfi
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Laura Bird
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
43
|
Lyu H, Wang J, Xu J, Zheng H, Yang X, Lin S, Chen J, Zhou L, Hu Y, Guo Z. Structural and Functional Disruptions in Subcortical Vascular Mild Cognitive Impairment With and Without Depressive Symptoms. Front Aging Neurosci 2019; 11:241. [PMID: 31572164 PMCID: PMC6753164 DOI: 10.3389/fnagi.2019.00241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023] Open
Abstract
Many previous studies have revealed structural and functional abnormalities in patients with the subcortical vascular mild cognitive impairment (svMCI). Although depression symptoms were suggested to serve as a potential marker of conversion to dementia in patients with svMCI, whether these disruptions or other new findings will be identified in the svMCI comorbid with depression symptoms has not been established. In the current study, we combined voxel-based morphometry (VBM) and the resting-state functional magnetic resonance imaging (fMRI) to investigate the structural and functional disruptions in the svMCI with and without depression symptoms using a cohort of 18 svMCI with depression symptoms (svMCI+D), 17 svMCI without depression symptoms (svMCI−D), and 23 normal controls (NC). As a result, we identified significantly decreased gray matter density in the left parahippocampus (ParaHIPP.L), the right hippocampus (HIPP.R), and the right middle cingulate cortex (MCC.R) in both svMCI+D and svMCI−D compared to NC. Most importantly, we also identified increased gray matter density in the MCC.R accompanied by increased resting-state functional connectivity (RSFC) with right parahippocampus (ParaHIPP.R) in the svMCI+D compared to svMCI−D. Moreover, the gray matter density of MCC.R and ParaHIPP.L was correlated with cognitive impairments and depression symptoms in the svMCI, respectively. In conclusion, these results extended previous studies and added weight to considerations of depression symptoms in the svMCI. Moreover, we suggested that a processing loop associated with HIPP, ParaHIPP, and MCC might underlie the mechanism of depression symptoms in the svMCI.
Collapse
Affiliation(s)
- Hanqing Lyu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianjun Wang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haotao Zheng
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoyan Yang
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Songjun Lin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianxiang Chen
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Liuchang Zhou
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanming Hu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhouke Guo
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
44
|
Perri R, Monaco M, Fadda L, Caltagirone C, Carlesimo GA. Influence of controlled encoding and retrieval facilitation on memory performance of patients with subcortical ischemic vascular dementia and Alzheimer's disease. J Neurol 2019; 266:2447-2456. [PMID: 31214768 DOI: 10.1007/s00415-019-09411-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 05/30/2019] [Indexed: 11/25/2022]
Abstract
Patients with subcortical ischemic vascular dementia (SIVD) perform better than Alzheimer's disease patients (AD) on the Free and Cued Recall Selective Reminding test (FCSRT). In this test, SIVD are able to overcome their strategic retrieval deficit, whereas AD patients, whose memory impairment is due to a hippocampal storage deficit, are not. However, the FCSRT does not assess the advantage passing from free to assisted learning, which is expected to be different in frontal and hippocampal damage. We compared SIVD, AD and healthy subjects on the free recall of a 15-word list not assisted at encoding and on the free and cued recall of the FCRST. Indexes of Encoding, Cueing and Total (measuring the advantage passing from the 15-word list free recall to the free and cued recall of the FCRST) were computed. The two groups performed comparably poorly on the free recall of the 15-word list, but SIVD outperformed AD patients in the free and cued recall of the FCSRT and took greater advantage than AD patients on both learning and recall when passing from the unassisted to the assisted paradigms. All indexes significantly predicted diagnostic group membership, but the Total Index showed the larger classification accuracy with 80% of AD and 71% of SIVD correctly classified. These results confirm that the FCRST is able to differentiate AD and SIVD patients with a good level of accuracy. However, the evaluation of memory performance variation as a function of support to encoding provides additional data able to increase diagnostic reliability.
Collapse
Affiliation(s)
- Roberta Perri
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy.
| | - Marco Monaco
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy
| | - Lucia Fadda
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Giovanni A Carlesimo
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
45
|
Burke SL, Hu T, Fava NM, Li T, Rodriguez MJ, Schuldiner KL, Burgess A, Laird A. Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging 2019; 31:140-164. [PMID: 29319430 PMCID: PMC6039284 DOI: 10.1080/08952841.2018.1419476] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study examined biological sex differences in the development of mild cognitive impairment (MCI) and probable Alzheimer's disease (AD) development as predicted by changes in the hippocampus or white matter hyperintensities. A secondary data analysis of the National Alzheimer's Coordinating Center Uniform Data Set was conducted. We selected samples of participants with normal cognition at baseline who progressed to MCI (n = 483) and those who progressed to probable AD (n = 211) to determine if hippocampal volume or white matter hyperintensities (WMH) at baseline predicted progression to probable AD or MCI and whether the rate of progression differed between men and women. The survival analyses indicated that changes in hippocampal volumes affected the progression to probable AD (HR = 0.535, 95% CI [0.300-0.953]) only among women. White men had an increased rate of progression to AD (HR = 4.396, CI [1.012-19.08]; HR = 4.665, 95% CI [1.072-20.29]) compared to men in other race and ethnic groups. Among women, increases in hippocampal volume ratio led to decreased rates of progressing to MCI (HR = 0.386, 95% CI [0.166-0.901]). Increased WMH among men led to faster progression to MCI (HR = 1.048. 95% CI [1.011-1.086]). Women and men who were older at baseline were more likely to progress to MCI. In addition, results from longitudinal analyses showed that women with a higher CDR global score, older age at baseline, or more disinhibition symptoms experienced higher odds of MCI development. Changes in hippocampal volumes affect the progression to or odds of probable AD (and MCI) more so among women than men, while changes in WMH affected the progression to MCI only among men.
Collapse
Affiliation(s)
- Shanna L. Burke
- Robert Stempel College of Public Health & Social Work, School of Social Work, Florida International University, Miami, Florida, USA
| | - Tianyan Hu
- Department of Health Policy and Management, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Nicole M. Fava
- Robert Stempel College of Public Health & Social Work, School of Social Work, Florida International University, Miami, Florida, USA
| | - Tan Li
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Miriam J. Rodriguez
- Psychology Doctoral Program, Albizu University-Miami Campus, Miami, Florida, USA
| | - Katie L. Schuldiner
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Aaron Burgess
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Angela Laird
- Department of Physics, Center for Imaging Science, Florida International University, Miami, Florida, USA
| |
Collapse
|
46
|
Livny A, Schnaider Beeri M, Heymann A, Schmeidler J, Moshier E, Tzukran R, Tsarfaty G, Leroith D, Preiss R, Soleimani L, Guerrero-Berroa E, Silverman JM, Bendlin B, Levy A, Ravona-Springer R. The Association of Depressive Symptoms With Brain Volume Is Stronger Among Diabetic Elderly Carriers of the Haptoglobin 1-1 Genotype Compared to Non-carriers. Front Endocrinol (Lausanne) 2019; 10:68. [PMID: 30809196 PMCID: PMC6379325 DOI: 10.3389/fendo.2019.00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Aim: Depression is highly prevalent in type 2 diabetes and is associated with lower adherence to medical treatments, worse glycemic control, and increased risk for diabetes-related complications. The mechanisms underlying depression in type 2 diabetes are unclear. The haptoglobin (Hp) genotype is associated with type 2 diabetes related complications including increased risk for cerebrovascular pathology and worse cognitive performance. Its relationship with depression is unknown. We investigated the role of Hp genotype on the association of depression with brain and white matter hyperintensities (WMH) volumes. Methods: Depressive symptoms (measured with the 15-item Geriatric Depression Scale), brain MRI, and Hp genotypes, were examined in elderly subjects with type 2 diabetes [29 (13.8%) Hp 1-1 carriers and 181 (86.2%) non-carriers]. The interaction of Hp genotype with number of depressive symptoms on regional brain measures was assessed using regression analyses. Results: The significant interactions were such that in Hp 1-1 carriers but not in non-carriers, number of depressive symptoms was associated with overall frontal cortex (p = 0.01) and WMH (p = 0.04) volumes but not with middle temporal gyrus volume (p = 0.43). Conclusions: These results suggest that subjects with type 2 diabetes carrying the Hp 1-1 genotype may have higher susceptibility to depression in the context of white matter damage and frontal lobe atrophy. The mechanisms underlying depression in diabetes may differ by Hp genotype.
Collapse
Affiliation(s)
- Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- Department of Diagnostic Imaging, Sheba Medical Center affiliated to Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Interdisciplinary Center, Baruch Ivcher School of Psychology, Herzliya, Israel
| | - Anthony Heymann
- Department of Family Medicine, Tel Aviv University, Tel Aviv, Israel
- Maccabi Health Services, Tel Aviv, Israel
| | - James Schmeidler
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erin Moshier
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ruth Tzukran
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center affiliated to Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek Leroith
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Laili Soleimani
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jeremy M. Silverman
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Barbara Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Andrew Levy
- Rambam Medical Center, Technion Institute of Technology, Haifa, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Psychiatric Division, Sheba Medical Center, Ramat Gan, Israel
- *Correspondence: Ramit Ravona-Springer
| |
Collapse
|
47
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
48
|
Hosseini SM, Gholami Pourbadie H, Naderi N, Sayyah M, Zibaii MI. Photothrombotically induced unilateral selective hippocampal ischemia in rat. J Pharmacol Toxicol Methods 2018; 94:77-86. [DOI: 10.1016/j.vascn.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
|
49
|
A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants. NEUROIMAGE-CLINICAL 2018; 21:101581. [PMID: 30606656 PMCID: PMC6411582 DOI: 10.1016/j.nicl.2018.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022]
Abstract
Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope 'a' of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control-stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke.
Collapse
|
50
|
Lao PJ, Brickman AM. Multimodal neuroimaging study of cerebrovascular disease, amyloid deposition, and neurodegeneration in Alzheimer's disease progression. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:638-646. [PMID: 30417071 PMCID: PMC6215981 DOI: 10.1016/j.dadm.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction Cerebrovascular disease (CVD) is not currently considered a core pathological feature of Alzheimer's disease (AD), but mounting evidence suggests that concurrent CVD may exacerbate AD progression. The purpose of this study was first to examine the relationship among amyloid, CVD, and neurodegeneration and second to examine the extent to which amyloid and CVD pathology drive subsequent neurodegeneration over time. Methods Six hundred eight (224 normal controls, 291 mild cognitive impairment, 93 AD) subjects from the Alzheimer's Disease Neuroimaging Initiative with longitudinal AV45 positron emission tomography imaging and MR imaging were investigated. Results Amyloid and white matter hyperintensity (WMH) burden increased across clinical diagnosis groups (normal control < mild cognitive impairment < AD). Amyloid pathology and WMH volume were related to lower cortical thickness, while WMH burden was associated with neurodegenerative/atrophic changes over time in key AD-related brain regions. Discussion CVD and AD may be etiologically independent, but our findings suggest that CVD should be considered explicitly for its effect on AD progression. There is a pathological overlap between small vessel cerebrovascular disease, as measured by white matter hyperintensities, and Alzheimer's disease, as measured by amyloid positron emission tomography, even in a cohort with low-to-moderate vascular risk. Amyloid deposition and white matter hyperintensities additively contribute to the cortical thickness in key Alzheimer's disease–associated brain regions, and high white matter hyperintensity burden may promote cortical thinning over time.
Collapse
Affiliation(s)
- Patrick J. Lao
- Corresponding author. Tel.: +1 212-342-1399; Fax: +1 212-342-1838.
| | | |
Collapse
|