1
|
Song X, Hu J. How does the brain emerge from anesthesia and regain consciousness. Chin Med J (Engl) 2024:00029330-990000000-01322. [PMID: 39512228 DOI: 10.1097/cm9.0000000000003378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Xuejun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong 518000, China
| | | |
Collapse
|
2
|
Wu Q, Chen Q, Liang S, Nie J, Wang Y, Fan C, Liu Z, Zhang X. Dexmedetomidine alleviates intestinal ischemia/reperfusion injury by modulating intestinal neuron autophagy and mitochondrial homeostasis via Nupr1 regulation. Mol Med 2024; 30:203. [PMID: 39508252 PMCID: PMC11542338 DOI: 10.1186/s10020-024-00952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Intestinal ischemia/reperfusion injury (I/R) is a common yet challenging-to-treat condition, presenting a significant clinical challenge. This study aims to investigate the protective mechanisms of Dexmedetomidine (Dex) against I/R injury, with a particular focus on its role in regulating autophagy activity in intestinal neurons and maintaining mitochondrial homeostasis. Experimental findings demonstrate that Dex can mitigate intestinal damage induced by I/R through the modulation of autophagy activity and mitochondrial function in intestinal neurons by suppressing the expression of Nupr1. This discovery sheds light on a new molecular mechanism underlying the potential efficacy of Dex in treating intestinal I/R injury, offering valuable insights for clinical therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qiuhong Chen
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Sisi Liang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jinping Nie
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yingjie Wang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chenlu Fan
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhen Liu
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuekang Zhang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Tang Z, Sun S, Lin Z, Wen Y, Li S, Shen J, Sun J. Neonatal anesthesia with remimazolam Reduces the expression of synaptic proteins and increases depressive behavior in adult mice. Neurosci Lett 2024; 842:137971. [PMID: 39251083 DOI: 10.1016/j.neulet.2024.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
The demand for pediatric anesthesia has risen in decades, raising concerns about the neurotoxic potential of anesthetics like remimazolam, which may impact neurodevelopment and later cognitive function. This study utilized a neonatal mouse model to assess remimazolam's neurodevelopmental effects. Results indicate that remimazolam-exposed mice displayed cognitive impairment and depressive behaviors in adulthood. Acute reductions in synaptic protein expression post-anesthesia were observed, along with long-term decreases in hippocampal choline acetyltransferase levels, reduced dendritic spine density in the CA1 region, and microglial proliferation. Collectively, these findings suggest that remimazolam can induce neurotoxicity and neuroinflammation, leading to synaptic dysfunction and associated cognitive and behavioral deficits.
Collapse
Affiliation(s)
- Zili Tang
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyi Sun
- PROYA Cosmetics Co., Ltd, PROYA Building, No. 588 Xixi Road, Xihu District, Hangzhou 310023, China
| | - Zhonglan Lin
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxin Wen
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China
| | - Shuxin Li
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China
| | - Jiahong Shen
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China
| | - Jianliang Sun
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China.
| |
Collapse
|
4
|
Xiang X, Wang F, Chen C, Guan Z, Zhou W. Orexinergic projections to substantia innominata mediate arousal and analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620973. [PMID: 39554139 PMCID: PMC11565723 DOI: 10.1101/2024.10.29.620973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Understanding neural circuits involved in anesthesia is crucial for improving its safety and efficacy. Hypothalamic orexin neurons (LHA OX ), projecting broadly, are essential in regulating arousal and pain. However, the precise targets remain unclear. Here we investigated the orexin projections to the substantia innominata (SI). Combining optogenetics, fiber photometry, and EEG/EMG allowed us to manipulate orexin activities, while simultaneously recording local ligand release and global cortical activities during anesthesia. Brain slice electrophysiology revealed the synaptic connections in the SI, while RNAscope was employed to examine the distribution of orexin receptors and downstream neuronal types. Presynaptic vesicles were identified in the orexin terminals in the SI, where 49.16% of cells expressed OX2R and 6.8% expressed OX1R. Orexin release in the SI was reversibly suppressed by isoflurane. Optogenetic activation of the LHA OX →SI circuit significantly increased orexin release and promoted arousal from various anesthesia stages, including reanimation during 0.75% isoflurane (p < 0.0001), prolongation of 3% isoflurane induction (p = 0.0033), and acceleration of emergence from 2% isoflurane (p < 0.0001). Furthermore, activating this circuit induced analgesia to both thermal (p = 0.0074) and inflammatory (p = 0.0127) pain. Patch-clamp recordings revealed that optogenetic activation of orexin terminals in the SI elicited excitatory postsynaptic currents, which were blocked by the OX2R antagonist. SI contains more GABAergic (28.17%) and glutamatergic (11.96%) neurons than cholinergic neurons (4.13%), all of which expressed OX2R. Thus, LHA OX neurons innervate SI neurons to regulate both arousal and pain predominantly through OX2R.
Collapse
|
5
|
Pardo-Valencia J, Moreno-Gomez M, Mercado N, Pro B, Ammann C, Humanes-Valera D, Foffani G. Local wakefulness-like activity of layer 5 cortex under general anaesthesia. J Physiol 2024; 602:5289-5307. [PMID: 39316039 DOI: 10.1113/jp286417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Consciousness, defined as being aware of and responsive to one's surroundings, is characteristic of normal waking life and typically is lost during sleep and general anaesthesia. The traditional view of consciousness as a global brain state has evolved toward a more sophisticated interplay between global and local states, with the presence of local sleep in the awake brain and local wakefulness in the sleeping brain. However, this interplay is not clear for general anaesthesia, where loss of consciousness was recently suggested to be associated with a global state of brain-wide synchrony that selectively involves layer 5 cortical pyramidal neurons across sensory, motor and associative areas. According to this global view, local wakefulness of layer 5 cortex should be incompatible with deep anaesthesia, a hypothesis that deserves to be scrutinised with causal manipulations. Here, we show that unilateral chemogenetic activation of layer 5 pyramidal neurons in the sensorimotor cortex of isoflurane-anaesthetised mice induces a local state transition from slow-wave activity to tonic firing in the transfected hemisphere. This wakefulness-like activity dramatically disrupts layer 5 interhemispheric synchrony with mirror-image locations in the contralateral hemisphere, but does not reduce the level of unconsciousness under deep anaesthesia, nor in the transitions to/from anaesthesia. Global layer 5 synchrony may thus be a sufficient condition for anaesthesia-induced unconsciousness, but is not a necessary one, at least under isoflurane anaesthesia. Local wakefulness-like activity of layer 5 cortex can be induced and maintained under deep anaesthesia, encouraging further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness. KEY POINTS: The neural correlates of consciousness have evolved from global brain states to a nuanced interplay between global and local states, evident in terms of local sleep in awake brains and local wakefulness in sleeping brains. The concept of local wakefulness remains unclear for general anaesthesia, where the loss of consciousness has been recently suggested to involve brain-wide synchrony of layer 5 cortical neurons. We found that local wakefulness-like activity of layer 5 cortical can be chemogenetically induced in anaesthetised mice without affecting the depth of anaesthesia or the transitions to and from unconsciousness. Global layer 5 synchrony may thus be a sufficient but not necessary feature for the unconsciousness induced by general anaesthesia. Local wakefulness-like activity of layer 5 neurons is compatible with general anaesthesia, thus promoting further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Miryam Moreno-Gomez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Noelia Mercado
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Beatriz Pro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Claudia Ammann
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Desire Humanes-Valera
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Kroll T, Miranda A, Drechsel A, Beer S, Lang M, Drzezga A, Rosa-Neto P, Verhaeghe J, Elmenhorst D, Bauer A. Dynamic neuroreceptor positron emission tomography in non-anesthetized rats using point source based motion correction: A feasibility study with [ 11C]ABP688. J Cereb Blood Flow Metab 2024; 44:1852-1866. [PMID: 38684219 PMCID: PMC11504418 DOI: 10.1177/0271678x241239133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 05/02/2024]
Abstract
To prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry. This study investigates the feasibility of fully awake acquisition and subsequent absolute quantification of dynamic brain PET data via pharmacokinetic modelling in moving rats using the glutamate 5 receptor radioligand [11C]ABP688 and point source based motion correction. Five male rats underwent three dynamic [11C]ABP688 PET scans: two test-retest awake PET scans and one scan under anesthesia for comparison. Specific radioligand binding was determined via the simplified reference tissue model (reference: cerebellum) and outcome parameters BPND and R1 were evaluated in terms of stability and reproducibility. Test-retest measurements in awake animals gave reliable results with high correlations of BPND (y = 1.08 × -0.2, r = 0.99, p < 0.01) and an acceptable variability (mean over all investigated regions 15.7 ± 2.4%). Regional [11C]ABP688 BPNDs under awake and anesthetized conditions were comparable although in awake scans, absolute radioactive peak uptakes were lower and relative blood flow in terms of R1 was higher. Awake small animal PET with absolute quantification of neuroreceptor availability is technically feasible and reproducible thereby providing a suitable alternative whenever effects of anesthesia are undesirable, e.g. in sleep research.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - Alexandra Drechsel
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Simone Beer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Markus Lang
- Institute of Neurosciences and Medicine (INM-5), Forschungszentrum Jülich GmbH, Germany
| | - Alexander Drzezga
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - David Elmenhorst
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Andreas Bauer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| |
Collapse
|
7
|
Zhou Y, Dong W, Qiu YK, Shao KJ, Zhang ZX, Yao JQ, Chen TQ, Li ZY, Zhou CR, Jiao XH, Chen Y, Lu H, Wu YQ. Regulating the activity of GABAergic neurons in the ventral pallidum alters the general anesthesia effect of propofol. Neuropharmacology 2024; 257:110032. [PMID: 38852839 DOI: 10.1016/j.neuropharm.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The full mechanism of action of propofol, a commonly administered intravenous anesthetic drug in clinical practice, remains elusive. The focus of this study was the role of GABAergic neurons which are the main neuron group in the ventral pallidum (VP) closely associated with anesthetic effects in propofol anesthesia. The activity of VP GABAergic neurons following propofol anesthesia in Vgat-Cre mice was observed via detecting c-Fos immunoreactivity by immunofluorescence and western blotting. Subsequently, chemogenetic techniques were employed in Vgat-Cre mice to regulate the activity of VP GABAergic neurons. The role of VP GABAergic neurons in generating the effects of general anesthesia induced by intravenous propofol was further explored through behavioral tests of the righting reflex. The results revealed that c-Fos expression in VP GABAergic neurons in Vgat-Cre mice dramatically decreased after propofol injection. Further studies demonstrated that chemogenetic activation of VP GABAergic neurons during propofol anesthesia shortened the duration of anesthesia and promoted wakefulness. Conversely, the inhibition of VP GABAergic neurons extended the duration of anesthesia and facilitated the effects of anesthesia. The results obtained in this study suggested that regulating the activity of GABAergic neurons in the ventral pallidum altered the effect of propofol on general anesthesia.
Collapse
Affiliation(s)
- Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ke-Jie Shao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zi-Xin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jia-Qi Yao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Tian-Qi Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Chen
- Department of Anesthesiology, Liyang People's Hospital, Jiangsu Province, Liyang, China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Wang D, Bao C, Wu H, Li J, Zhang X, Wang S, Zhou F, Li H, Dong H. A hypothalamus-lateral periaqueductal gray GABAergic neural projection facilitates arousal following sevoflurane anesthesia in mice. CNS Neurosci Ther 2024; 30:e70047. [PMID: 39317457 PMCID: PMC11421888 DOI: 10.1111/cns.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The lateral hypothalamus (LHA) is an evolutionarily conserved structure that regulates basic functions of an organism, particularly wakefulness. To clarify the function of LHAGABA neurons and their projections on regulating general anesthesia is crucial for understanding the excitatory and inhibitory effects of anesthetics on the brain. The aim of the present study is to investigate whether LHAGABA neurons play either an inhibitory or a facilitatory role in sevoflurane-induced anesthetic arousal regulation. METHODS We used fiber photometry and immunofluorescence staining to monitor changes in neuronal activity during sevoflurane anesthesia. Opto-/chemogenetic modulations were employed to study the effect of neurocircuit modulations during the anesthesia. Anterograde tracing was used to identify a GABAergic projection from the LHA to a periaqueductal gray (PAG) subregion. RESULTS c-Fos staining showed that LHAGABA activity was inhibited by induction of sevoflurane anesthesia. Anterograde tracing revealed that LHAGABA neurons project to multiple arousal-associated brain areas, with the lateral periaqueductal gray (LPAG) being one of the dense projection areas. Optogenetic experiments showed that activation of LHAGABA neurons and their downstream target LPAG reduced the burst suppression ratio (BSR) during continuous sevoflurane anesthesia. Chemogenetic experiments showed that activation of LHAGABA and its projection to LPAG neurons prolonged the anesthetic induction time and promoted wakefulness. CONCLUSIONS In summary, we show that an inhibitory projection from LHAGABA to LPAGGABA neurons promotes arousal from sevoflurane-induced loss of consciousness, suggesting a complex control of wakefulness through intimate interactions between long-range connections.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Chang Bao
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Huimin Wu
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Fang Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| |
Collapse
|
9
|
Zhang Z, Huang Y, Chen X, Li J, Yang Y, Lv L, Wang J, Wang M, Wang Y, Wang Z. State-specific Regulation of Electrical Stimulation in the Intralaminar Thalamus of Macaque Monkeys: Network and Transcriptional Insights into Arousal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402718. [PMID: 38938001 PMCID: PMC11434125 DOI: 10.1002/advs.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Long-range thalamocortical communication is central to anesthesia-induced loss of consciousness and its reversal. However, isolating the specific neural networks connecting thalamic nuclei with various cortical regions for state-specific anesthesia regulation is challenging, with the biological underpinnings still largely unknown. Here, simultaneous electroencephalogram-fuctional magnetic resonance imaging (EEG-fMRI) and deep brain stimulation are applied to the intralaminar thalamus in macaques under finely-tuned propofol anesthesia. This approach led to the identification of an intralaminar-driven network responsible for rapid arousal during slow-wave oscillations. A network-based RNA-sequencing analysis is conducted of region-, layer-, and cell-specific gene expression data from independent transcriptomic atlases and identifies 2489 genes preferentially expressed within this arousal network, notably enriched in potassium channels and excitatory, parvalbumin-expressing neurons, and oligodendrocytes. Comparison with human RNA-sequencing data highlights conserved molecular and cellular architectures that enable the matching of homologous genes, protein interactions, and cell types across primates, providing novel insight into network-focused transcriptional signatures of arousal.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Yichun Huang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Xiaoyu Chen
- Institute of Natural Sciences and School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Jiahui Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Yi Yang
- Department of Neurosurgery, Brain Computer Interface Transition Research Center, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Rd West, Fengtai District, Beijing, 100070, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
- School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, Haikou, Hainan, 570228, China
| |
Collapse
|
10
|
Misirocchi F, Mutti C, Hirsch LJ, Parrino L, Florindo I. Cyclic Alternating EEG Patterns: From Sleep to Encephalopathy. J Clin Neurophysiol 2024; 41:485-494. [PMID: 39186585 DOI: 10.1097/wnp.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
SUMMARY In the 2021 version of the Standardized Critical Care EEG Terminology, the American Clinical Neurophysiology Society introduced new definitions, including for the cyclic alternating pattern of encephalopathy (CAPE). CAPE refers to changes in background EEG activity, with two patterns alternating spontaneously in a regular manner. CAPE shares remarkable similarities with the cyclic alternating pattern, a natural EEG phenomenon occurring in normal non-rapid eye movement sleep, considered the main electrophysiological biomarker of sleep instability. This review explores similarities and differences between cyclic alternating pattern and CAPE and, leveraging the existing expertise on cyclic alternating pattern, aims to extend knowledge on CAPE. A standardized assessment of CAPE features is key to ascertain its prevalence and clinical significance among critically ill patients and to encompass the impact of confounding factors such as anesthetic and sedative agents. Although the preservation of non-rapid eye movement sleep-related elements has a well-known prognostic value in the critical care setting, the clinical importance of cyclic oscillating patterns and the prognostic significance of CAPE remain to be elucidated.
Collapse
Affiliation(s)
- Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - Liborio Parrino
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| | - Irene Florindo
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| |
Collapse
|
11
|
Zhao Y, Ou M, Liu J, Jiang J, Zhang D, Ke B, Wu Y, Chen Y, Jiang R, Hemmings HC, Zhu T, Zhou C. Astrocytes Modulate a Specific Paraventricular Thalamus→Prefrontal Cortex Projection to Enhance Consciousness Recovery from Anesthesia. J Neurosci 2024; 44:e1808232024. [PMID: 38926088 PMCID: PMC11340278 DOI: 10.1523/jneurosci.1808-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/30/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of the paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of the PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on the PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT→prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which is mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bowen Ke
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruotian Jiang
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hugh C Hemmings
- Departments of Anesthesiology and Pharmacology, Weill Cornell Medicine, New York, New York 10065
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cheng Zhou
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Zhong CC, Xu Z, Gan J, Yu YM, Tang HM, Zhu Y, Yang JX, Ding HL, Cao JL. Acute Ongoing Nociception Delays Recovery of Consciousness from Sevoflurane Anesthesia via a Midbrain Circuit. J Neurosci 2024; 44:e0740242024. [PMID: 39019613 PMCID: PMC11340287 DOI: 10.1523/jneurosci.0740-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pretreatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray. Specific reactivation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine (DA) release and activation of DA D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception, and it is important to provide new insights for guiding the management of the anesthesia recovery period.
Collapse
Affiliation(s)
- Chao-Chao Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun Gan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yangzi Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| |
Collapse
|
13
|
Peng B, Wu XB, Zhang ZJ, Cao DL, Zhao LX, Wu H, Gao YJ. Anterior Cingulate Cortex Contributes to the Hyperlocomotion under Nitrogen Narcosis. Neurosci Bull 2024:10.1007/s12264-024-01278-z. [PMID: 39158823 DOI: 10.1007/s12264-024-01278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood. Here we report that exposure to hyperbaric nitrogen notably increased the locomotor activity of mice in a pressure-dependent manner. Concurrently, this exposure induced heightened activation among neurons in both the ACC and dorsal medial striatum (DMS). Notably, chemogenetic inhibition of ACC neurons effectively suppressed hyperlocomotion. Conversely, chemogenetic excitation lowered the hyperbaric pressure threshold required to induce hyperlocomotion. Moreover, both chemogenetic inhibition and genetic ablation of activity-dependent neurons within the ACC reduced the hyperlocomotion. Further investigation revealed that ACC neurons project to the DMS, and chemogenetic inhibition of ACC-DMS projections resulted in a reduction in hyperlocomotion. Finally, nitrogen narcosis led to an increase in local field potentials in the theta frequency band and a decrease in the alpha frequency band in both the ACC and DMS. These results collectively suggest that excitatory neurons within the ACC, along with their projections to the DMS, play a pivotal role in regulating the hyperlocomotion induced by exposure to hyperbaric nitrogen.
Collapse
Affiliation(s)
- Bin Peng
- Medical School, Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, 226019, China
| | - Xiao-Bo Wu
- Medical School, Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, 226019, China
| | - Zhi-Jun Zhang
- Medical School, Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, 226019, China
| | - De-Li Cao
- Medical School, Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, 226019, China
| | - Lin-Xia Zhao
- Medical School, Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, 226019, China
| | - Hao Wu
- Department of Otolaryngology-Head Neck Surgery, the Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yong-Jing Gao
- Medical School, Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, 226019, China.
| |
Collapse
|
14
|
Jia L, Yin J, Liu T, Qi W, Du T, Li Q, Ma K, Si J, Yin J, Li Y. Activation of Ventral Tegmental Area Dopaminergic Neurons Projecting to the Parabrachial Nucleus Promotes Emergence from Propofol Anesthesia in Male Rats. Neurochem Res 2024; 49:2060-2074. [PMID: 38814359 DOI: 10.1007/s11064-024-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.
Collapse
Affiliation(s)
- Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tongyu Du
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Quntao Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
15
|
Wang X, Yi R, Liang X, Zhang N, Zhong F, Lu Y, Chen W, Yu T, Zhang L, Wang H, Zhou L. Myelin modulates the process of isoflurane anesthesia through the regulation of neural activity. CNS Neurosci Ther 2024; 30:e14922. [PMID: 39138640 PMCID: PMC11322027 DOI: 10.1111/cns.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
AIMS The mechanism underlying the reversible unconsciousness induced by general anesthetics (GA) remains unclear. Recent studies revealed the critical roles of myelin and oligodendrocytes (OLs) in higher functions of the brain. However, it is unknown whether myelin actively participates in the regulation of GA. The aim of this study is to investigate the roles and possible mechanisms of myelin in the regulation of consciousness alterations induced by isoflurane anesthesia. METHODS First, demyelination models for the entire brain and specific neural nuclei were established to investigate the potential role of myelination in the regulation of GA, as well as its possible regional specificity. c-Fos staining was then performed on the demyelinated nuclei to verify the impact of myelin loss on neuronal activity. Finally, the activity of neurons during isoflurane anesthesia in demyelinated mice was recorded by optical fiber photometric calcium signal. The related behavioral indicators and EEG were recorded and analyzed. RESULTS A prolonged emergence time was observed from isoflurane anesthesia in demyelinated mice, which suggested the involvement of myelin in regulating GA. The demyelination in distinct nuclei by LPC further clarified the region-specific roles of isoflurane anesthesia regulation by myelin. The effect of demyelination on isoflurane anesthesia in the certain nucleus was consistent with that in neurons towards isoflurane anesthesia. Finally, we found that the mechanism of myelin in the modulation of isoflurane anesthesia is possibly through the regulation of neuronal activity. CONCLUSIONS In brief, myelin in the distinct neural nucleus plays an essential role in regulating the process of isoflurane anesthesia. The possible mechanism of myelin in the regulation of isoflurane anesthesia is neuronal activity modification by myelin integrity during GA. Our findings enhanced the comprehension of myelin function, and offered a fresh perspective for investigating the neural mechanisms of GA.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Rulan Yi
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiaoling Liang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Ning Zhang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Fuwang Zhong
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Yali Lu
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Wenjia Chen
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Linyong Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Haiying Wang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Liang Zhou
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
16
|
Yang L, Fang F, Wang WX, Xie Y, Cang J, Li SB. Substantia Innominata Glutamatergic Neurons Modulate Sevoflurane Anesthesia in Male Mice. Anesth Analg 2024:00000539-990000000-00862. [PMID: 39008422 DOI: 10.1213/ane.0000000000007092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Accumulated evidence suggests that brain regions that promote wakefulness also facilitate emergence from general anesthesia (GA). Glutamatergic neurons in the substantia innominata (SI) regulate motivation-related aversive, depressive, and aggressive behaviors relying on heightened arousal. Here, we hypothesize that glutamatergic neurons in the SI are also involved in the regulation of the effects of sevoflurane anesthesia. METHODS With a combination of fiber photometry, chemogenetic and optogenetic tools, behavioral tests, and cortical electroencephalogram recordings, we investigated whether and how SI glutamatergic neurons and their projections to the lateral hypothalamus (LH) regulate sevoflurane anesthesia in adult male mice. RESULTS Population activity of glutamatergic neurons in the SI gradually decreased upon sevoflurane-induced loss of consciousness (LOC) and slowly returned as soon as inhalation of sevoflurane discontinued before recovery of consciousness (ROC). Chemogenetic activation of SI glutamatergic neurons dampened the animals' sensitivity to sevoflurane exposure, prolonged induction time (mean ± standard deviation [SD]; 389 ± 67 seconds vs 458 ± 53 seconds; P = .047), and shortened emergence time (305 seconds, 95% confidence interval [CI], 242-369 seconds vs 207 seconds, 95% CI, 135-279 seconds; P = .004), whereas chemogenetic inhibition of these neurons facilitated sevoflurane anesthesia. Furthermore, optogenetic activation of SI glutamatergic neurons and their terminals in LH induced cortical activation and behavioral emergence from different depths of sevoflurane anesthesia. CONCLUSIONS Our study shows that SI glutamatergic neuronal activity facilitates emergence from sevoflurane anesthesia and provides evidence for the involvement of the SI-LH glutamatergic pathway in the regulation of consciousness during GA.
Collapse
Affiliation(s)
- Li Yang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Fang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Xu Wang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Frontiers Center for Brain Science of the Ministry of Education (MOE), Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesiology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China and
| | - Jing Cang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Bin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Li X, Yan L, Wang L, Chen H, Yang B. Study on the preventive effect of dexmedetomidine on anesthetic associated sleep disturbance in young to middle-aged female patients undergoing hysteroscopy: a study protocol for a crossover randomized controlled trial. Trials 2024; 25:480. [PMID: 39010171 PMCID: PMC11251345 DOI: 10.1186/s13063-024-08311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Postoperative sleep disturbance has a potentially detrimental effect on postoperative recovery. Perioperative patients are affected by several factors. General anesthesia induces a non-physiological state that does not resemble natural sleep. Exposure to propofol/sevoflurane can lead to desynchronization of the circadian rhythm, which may result in postoperative sleep disturbance characterized by mid-cycle advancement of sleep and daytime sleepiness. Dexmedetomidine is a highly selective α2-adrenoceptor agonist with a unique sedative effect that facilitates the transition from sleep to wakefulness. Basic research has shown that dexmedetomidine induces deep sedation, similar to physical sleep, and helps maintain forebrain connectivity, which is likely to reduce delirium after surgery. The aim of this study is to evaluate the influence of exposure to the mono-anesthetic propofol on the development of postoperative sleep disturbance in young and middle-aged female patients undergoing hysteroscopy and whether prophylactic administration of dexmedetomidine influences reducing postoperative sleep disturbance. METHODS This prospective randomized controlled trial (RCT) will include 150 patients undergoing hysteroscopy at the First Affiliated Hospital of Xiamen University. Participants will be randomly assigned to three groups in a 1:1:1 ratio. The dexmedetomidine group will have two subgroups and will receive a nasal spray of 0.2 µg/kg or 0.5 µg/kg 25 min before surgery, while the control group will receive a saline nasal spray. Three groups will undergo hysteroscopy with propofol-based TIVA according to the same scheme. Sleep quality will be measured using a wearable device and double-blind sleep assessments will be performed before surgery and 1, 3, and 7 days after surgery. SPSS 2.0 is used for statistical analysis. A χ2 test is used to compare groups, and t-test is used to determine statistical the significance of continuous variables. DISCUSSION The purpose of this study is to investigate the incidence of propofol-associated sleep disorders and to test a combination of dexmedetomidine anesthesia regimen for the prevention of postoperative sleep disorders. This study will help to improve patients' postoperative satisfaction and provide a new strategy for comfortable perioperative medical treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT06281561. Registered on February 24, 2024.
Collapse
Affiliation(s)
- Xueru Li
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Fujian, 361000, China
- School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China
| | - Lijuan Yan
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Fujian, 361000, China
| | - Linhong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Fujian, 361000, China
- School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China
| | - Hanshen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fujian, 350005, China.
| | - Bin Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Fujian, 361000, China.
- School of Clinical Medicine, Fujian Medical University, Fujian, 350000, China.
| |
Collapse
|
18
|
Yu Q, Wang Y, Gu L, Shao W, Gu J, Liu L, Lian X, Xu Q, Zhang Y, Yang Y, Zhang Z, Wu Y, Ma H, Shen Y, Ye W, Wu Y, Yang H, Chen L, Nagayasu K, Zhang H. Dorsal raphe nucleus to basolateral amygdala 5-HTergic neural circuit modulates restoration of consciousness during sevoflurane anesthesia. Biomed Pharmacother 2024; 176:116937. [PMID: 38870632 DOI: 10.1016/j.biopha.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - XiTing Lian
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - HaiXiang Ma
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Wen Ye
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - YanHui Wu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - HuiFang Yang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - LiHai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501, Japan
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
19
|
Chen S, Li B, Hu Y, Zhang Y, Dai W, Zhang X, Zhou Y, Su D. Common functional mechanisms underlying dynamic brain network changes across five general anesthetics: A rat fMRI study. CNS Neurosci Ther 2024; 30:e14866. [PMID: 39014472 PMCID: PMC11251872 DOI: 10.1111/cns.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Reversible loss of consciousness is the primary therapeutic endpoint of general anesthesia; however, the drug-invariant mechanisms underlying anesthetic-induced unconsciousness are still unclear. This study aimed to investigate the static, dynamic, topological and organizational changes in functional brain network induced by five clinically-used general anesthetics in the rat brain. METHOD Male Sprague-Dawley rats (n = 57) were randomly allocated to received propofol, isoflurane, ketamine, dexmedetomidine, or combined isoflurane plus dexmedetomidine anesthesia. Resting-state functional magnetic resonance images were acquired under general anesthesia and analyzed for changes in dynamic functional brain networks compared to the awake state. RESULTS Different general anesthetics induced distinct patterns of functional connectivity inhibition within brain-wide networks, resulting in multi-level network reorganization primarily by impairing the functional connectivity of cortico-subcortical networks as well as by reducing information transmission capacity, intrinsic connectivity, and network architecture stability of subcortical regions. Conversely, functional connectivity and topological properties were preserved within cortico-cortical networks, albeit with fewer dynamic fluctuations under general anesthesia. CONCLUSIONS Our findings highlighted the effects of different general anesthetics on functional brain network reorganization, which might shed light on the drug-invariant mechanism of anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- Sifan Chen
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
- Department of RadiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bo Li
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ying Hu
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yizhe Zhang
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Wanbing Dai
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Xiao Zhang
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Yan Zhou
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Diansan Su
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| |
Collapse
|
20
|
Zhang D, Wei Y. Distinct Neural Mechanisms Between Anesthesia Induction and Emergence: A Narrative Review. Anesth Analg 2024:00000539-990000000-00840. [PMID: 38861419 DOI: 10.1213/ane.0000000000007114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Anesthesia induction and emergence are critical periods for perioperative safety in the clinic. Traditionally, the emergence from general anesthesia has been recognized as a simple inverse process of induction resulting from the elimination of general anesthetics from the central nervous system. However, accumulated evidence has indicated that anesthesia induction and emergence are not mirror-image processes because of the occurrence of hysteresis/neural inertia in both animals and humans. An increasing number of studies have highlighted the critical role of orexinergic neurons and their involved circuits in the selective regulation of emergence but not the induction of general anesthesia. Moreover, additional brain regions have also been implicated in distinct neural mechanisms for anesthesia induction and emergence, which extends the concept that anesthetic induction and emergence are not antiparallel processes. Here, we reviewed the current literature and summarized the evidence regarding the differential mechanism of neural modulation in anesthesia induction and emergence, which will facilitate the understanding of the underlying neural mechanism for emergence from general anesthesia.
Collapse
Affiliation(s)
- Donghang Zhang
- From the Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| |
Collapse
|
21
|
Yi R, Cheng S, Zhong F, Luo D, You Y, Yu T, Wang H, Zhou L, Zhang Y. GABAergic neurons of anterior thalamic reticular nucleus regulate states of consciousness in propofol- and isoflurane-mediated general anesthesia. CNS Neurosci Ther 2024; 30:e14782. [PMID: 38828651 PMCID: PMC11145368 DOI: 10.1111/cns.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.
Collapse
Affiliation(s)
- Rulan Yi
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Shiyu Cheng
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Fuwang Zhong
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Dan Luo
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Ying You
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Haiying Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Liang Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Yu Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| |
Collapse
|
22
|
Obert DP, Killing D, Happe T, Tamas P, Altunkaya A, Dragovic SZ, Kreuzer M, Schneider G, Fenzl T. Substance specific EEG patterns in mice undergoing slow anesthesia induction. BMC Anesthesiol 2024; 24:167. [PMID: 38702608 PMCID: PMC11067159 DOI: 10.1186/s12871-024-02552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.
Collapse
Affiliation(s)
- David P Obert
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts's General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - David Killing
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Tom Happe
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Philipp Tamas
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Alp Altunkaya
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Srdjan Z Dragovic
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Matthias Kreuzer
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Gerhard Schneider
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Thomas Fenzl
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
23
|
Vincent KF, Zhang ER, Cho AJ, Kato-Miyabe R, Mallari OG, Moody OA, Obert DP, Park GH, Solt K. Electrical stimulation of the ventral tegmental area restores consciousness from sevoflurane-, dexmedetomidine-, and fentanyl-induced unconsciousness in rats. Brain Stimul 2024; 17:687-697. [PMID: 38821397 PMCID: PMC11212499 DOI: 10.1016/j.brs.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Dopaminergic neurons in the ventral tegmental area (VTA) are crucially involved in regulating arousal, making them a potential target for reversing general anesthesia. Electrical deep brain stimulation (DBS) of the VTA restores consciousness in animals anesthetized with drugs that primarily enhance GABAA receptors. However, it is unknown if VTA DBS restores consciousness in animals anesthetized with drugs that target other receptors. OBJECTIVE To evaluate the efficacy of VTA DBS in restoring consciousness after exposure to four anesthetics with distinct receptor targets. METHODS Sixteen adult Sprague-Dawley rats (8 female, 8 male) with bipolar electrodes implanted in the VTA were exposed to dexmedetomidine, fentanyl, ketamine, or sevoflurane to produce loss of righting, a proxy for unconsciousness. After receiving the dopamine D1 receptor antagonist, SCH-23390, or saline (vehicle), DBS was initiated at 30 μA and increased by 10 μA until reaching a maximum of 100 μA. The current that evoked behavioral arousal and restored righting was recorded for each anesthetic and compared across drug (saline/SCH-23390) condition. Electroencephalogram, heart rate and pulse oximetry were recorded continuously. RESULTS VTA DBS restored righting after sevoflurane, dexmedetomidine, and fentanyl-induced unconsciousness, but not ketamine-induced unconsciousness. D1 receptor antagonism diminished the efficacy of VTA stimulation following sevoflurane and fentanyl, but not dexmedetomidine. CONCLUSIONS Electrical DBS of the VTA restores consciousness in animals anesthetized with mechanistically distinct drugs, excluding ketamine. The involvement of the D1 receptor in mediating this effect is anesthetic-specific.
Collapse
Affiliation(s)
- Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Angel J Cho
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Risako Kato-Miyabe
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Olivia G Mallari
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - David P Obert
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Gwi H Park
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
25
|
Gao H, Wang J, Zhang R, Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: insights from optogenetics and chemogenetics. Front Pharmacol 2024; 15:1360864. [PMID: 38655183 PMCID: PMC11035785 DOI: 10.3389/fphar.2024.1360864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
For over 170 years, general anesthesia has played a crucial role in clinical practice, yet a comprehensive understanding of the neural mechanisms underlying the induction of unconsciousness by general anesthetics remains elusive. Ongoing research into these mechanisms primarily centers around the brain nuclei and neural circuits associated with sleep-wake. In this context, two sophisticated methodologies, optogenetics and chemogenetics, have emerged as vital tools for recording and modulating the activity of specific neuronal populations or circuits within distinct brain regions. Recent advancements have successfully employed these techniques to investigate the impact of general anesthesia on various brain nuclei and neural pathways. This paper provides an in-depth examination of the use of optogenetic and chemogenetic methodologies in studying the effects of general anesthesia on specific brain nuclei and pathways. Additionally, it discusses in depth the advantages and limitations of these two methodologies, as well as the issues that must be considered for scientific research applications. By shedding light on these facets, this paper serves as a valuable reference for furthering the accurate exploration of the neural mechanisms underlying general anesthesia. It aids researchers and clinicians in effectively evaluating the applicability of these techniques in advancing scientific research and clinical practice.
Collapse
Affiliation(s)
- Hui Gao
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
26
|
Lu B, Wei L, Shi G, Du J. Nanotherapeutics for Alleviating Anesthesia-Associated Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308241. [PMID: 38342603 PMCID: PMC11022745 DOI: 10.1002/advs.202308241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
Current management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity. Initially, general, regional, and local anesthesia along with the commonly used anesthetics and related prevalent side effects are introduced. Furthermore, employing nanotechnology to prevent and alleviate the complications of anesthetics is systematically demonstrated from three aspects, that is, developing 1) safe nano-formulization for anesthetics; 2) nano-antidotes to sequester overdosed anesthetics and alter their pharmacokinetics; 3) nanomedicines with pharmacodynamic activities to treat anesthetics toxicity. Finally, the prospects and challenges facing the clinical translation of nanotherapeutics for anesthesia-related complications are discussed. This work provides a comprehensive roadmap for developing effective nanotherapeutics to prevent and mitigate anesthesia-associated toxicity, which can potentially revolutionize the management of anesthesia complications.
Collapse
Affiliation(s)
- Bin Lu
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
| | - Ling Wei
- Shanxi Bethune Hospital Center Surgery DepartmentShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Gaoxiang Shi
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
| | - Jiangfeng Du
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxi Province030001China
| |
Collapse
|
27
|
Cui Y, Li Y, Li Q, Huang J, Tan X, Zhan CA. Alpha anteriorization and theta posteriorization during deep sleep. J Neurosci Res 2024; 102:e25325. [PMID: 38562056 DOI: 10.1002/jnr.25325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.
Collapse
Affiliation(s)
- Yue Cui
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yu Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qiqi Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Li M, Li W, Liang S, Liao X, Gu M, Li H, Chen X, Liu H, Qin H, Xiao J. BNST GABAergic neurons modulate wakefulness over sleep and anesthesia. Commun Biol 2024; 7:339. [PMID: 38503808 PMCID: PMC10950862 DOI: 10.1038/s42003-024-06028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
The neural circuits underlying sleep-wakefulness and general anesthesia have not been fully investigated. The GABAergic neurons in the bed nucleus of the stria terminalis (BNST) play a critical role in stress and fear that relied on heightened arousal. Nevertheless, it remains unclear whether BNST GABAergic neurons are involved in the regulation of sleep-wakefulness and anesthesia. Here, using in vivo fiber photometry combined with electroencephalography, electromyography, and video recordings, we found that BNST GABAergic neurons exhibited arousal-state-dependent alterations, with high activities in both wakefulness and rapid-eye movement sleep, but suppressed during anesthesia. Optogenetic activation of these neurons could initiate and maintain wakefulness, and even induce arousal from anesthesia. However, chronic lesion of BNST GABAergic neurons altered spontaneous sleep-wakefulness architecture during the dark phase, but not induction and emergence from anesthesia. Furthermore, we also discovered that the BNST-ventral tegmental area pathway might participate in promoting wakefulness and reanimation from steady-state anesthesia. Collectively, our study explores new elements in neural circuit mechanisms underlying sleep-wakefulness and anesthesia, which may contribute to a more comprehensive understanding of consciousness and the development of innovative anesthetics.
Collapse
Affiliation(s)
- Mengyao Li
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Wen Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Miaoqing Gu
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaowei Chen
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
29
|
McKinstry-Wu AR, Kelz MB. One node among many: sevoflurane-induced hypnosis and the challenge of an integrative network-level view of anaesthetic action. Br J Anaesth 2024; 132:220-223. [PMID: 38000931 DOI: 10.1016/j.bja.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Building on their known ability to influence sleep and arousal, Li and colleagues show that modulating the activity of glutamatergic pedunculopontine tegmental neurones also alters sevoflurane-induced hypnosis. This finding adds support for the shared sleep-anaesthesia circuit hypothesis. However, the expanding recognition of many neuronal clusters capable of modulating anaesthetic hypnosis raises the question of how disparate and anatomically distant sites ultimately interact to coordinate global changes in the state of the brain. Understanding how these individual sites work in concert to disrupt cognition and behaviour is the next challenge for anaesthetic mechanisms research.
Collapse
Affiliation(s)
- Andrew R McKinstry-Wu
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Max B Kelz
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Mahoney Institute of Neuroscience, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Tauber JM, Brincat SL, Stephen EP, Donoghue JA, Kozachkov L, Brown EN, Miller EK. Propofol-mediated Unconsciousness Disrupts Progression of Sensory Signals through the Cortical Hierarchy. J Cogn Neurosci 2024; 36:394-413. [PMID: 37902596 PMCID: PMC11161138 DOI: 10.1162/jocn_a_02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.
Collapse
Affiliation(s)
- John M Tauber
- Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | - Leo Kozachkov
- Massachusetts Institute of Technology, Cambridge, MA
| | - Emery N Brown
- Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital, Boston
- Harvard University, Cambridge, MA
| | - Earl K Miller
- Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
31
|
Ward-Flanagan R, Pagliardini S, Dickson CT. Urethane provides an unparalleled anaesthetic model for natural sleep: Commentary on Mondino et al., 2022. Eur J Neurosci 2024; 59:478-480. [PMID: 37041120 DOI: 10.1111/ejn.15985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Affiliation(s)
- Rachel Ward-Flanagan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Departments of Physiology, & Anesthesiology and Pain Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Clayton T Dickson
- Departments of Psychology, Physiology, & Anesthesiology and Pain Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
He J, Zhang X, Li C, Fu B, Huang Y, Li H. Dexmedetomidine nasal administration improves perioperative sleep quality and neurocognitive deficits in elderly patients undergoing general anesthesia. BMC Anesthesiol 2024; 24:42. [PMID: 38291398 PMCID: PMC10826024 DOI: 10.1186/s12871-024-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE To investigate the improvement of perioperative sleep quality and neurocognitive impairment in elderly patients under general anesthesia by nasal administration of dexmedetomidine. METHODS One hundred and twenty patients admitted to our hospital for various laparoscopic elective gynecological surgeries lasting more than 1 h under general anesthesia from July 2021 to March 2023 were selected. All subjects were divided into 3 groups according to the random number table method. From 21:00 to 21:30 every night from one day before to 5 days after surgery, group A was given alprazolam 0.4 mg orally; group B was given dexmedetomidine 1.5ug/kg nasal drip; group C was given saline nasal drip. All subjects were observed for general information, sleep quality, postoperative cognitive function, anxiety status, sleep quality, adverse effects and complication occurrence. RESULTS The difference in general information between the three groups was not statistically significant, P > 0.05; the sleep quality scores of the three groups on admission were not statistically significant, P > 0.05. At the Preoperative 1d, postoperative 1d, 3d and 5d, the RCSQ scores of the subjects in group A and group B were higher than those in groups C, and with the postoperative RCSQ scores of subjects in group B were higher as the time increased; the assessment of anxiety status in the three groups 1d before surgery was not statistically significant, P > 0.05. The cognitive function scores of subjects in the three groups were not statistically significant in the preoperative 1d, P > 0.05. The postoperative 1d (24.63 ± 2.23), 3d (25.83 ± 2.53), and 5d (26.15 ± 2.01) scores of the subjects in group B were higher than those in groups A and C (P < 0.05), and the subjects in group B had better recovery of postoperative cognitive function with increasing time; the occurrence of postoperative delirium (POD) in group B (12.5%) were lower on postoperative 5d than those in groups A (37.5%) and C (32.5%) (P < 0.05). There was no statistical significance in the evaluation of anxiety state of the three groups on the first day before operation (P > 0.05). The scores in group B were lower than those in group C on the postoperative 1d, 3d, 5 d (P < 0.05). The overall incidence of adverse reactions and complications in subjects in group B was 17.5% significantly lower than that in groups A and C (P < 0.05). CONCLUSION Dexmedetomidine can effectively improve the sleep disorder of elderly general anesthesia patients, reduce the damage to their neurocognitive function and the occurrence of POD, effectively reduce the anxiety of patients and the occurrence of adverse reactions and complications, and has better sedative, improve postoperative cognitive function and anti-anxiety effects, with a high drug safety, worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Jiang He
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xinning Zhang
- Department of Gynaecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Cuicui Li
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Baojun Fu
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yizhou Huang
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Heng Li
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.
| |
Collapse
|
33
|
Wasilczuk AZ, Rinehart C, Aggarwal A, Stone ME, Mashour GA, Avidan MS, Kelz MB, Proekt A. Hormonal basis of sex differences in anesthetic sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2312913120. [PMID: 38190526 PMCID: PMC10801881 DOI: 10.1073/pnas.2312913120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Collapse
Affiliation(s)
- Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Cole Rinehart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Adeeti Aggarwal
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - Martha E. Stone
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Michael S. Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - ReCCognition Study Group
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
34
|
Montupil J, Cardone P, Staquet C, Bonhomme A, Defresne A, Martial C, Alnagger NL, Gosseries O, Bonhomme V. The nature of consciousness in anaesthesia. BJA OPEN 2023; 8:100224. [PMID: 37780201 PMCID: PMC10539891 DOI: 10.1016/j.bjao.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Neuroscientists agree on the value of locating the source of consciousness within the brain. Anaesthesiologists are no exception, and have their own operational definition of consciousness based on phenomenological observations during anaesthesia. The full functional correlates of consciousness are yet to be precisely identified, however rapidly evolving progress in this scientific domain has yielded several theories that attempt to model the generation of consciousness. They have received variable support from experimental observations, including those involving anaesthesia and its ability to reversibly modulate different aspects of consciousness. Aside from the interest in a better understanding of the mechanisms of consciousness, exploring the functional tenets of the phenomenological consciousness states of general anaesthesia has the potential to ultimately improve patient management. It could facilitate the design of specific monitoring devices and approaches, aiming at reliably detecting each of the possible states of consciousness during an anaesthetic procedure, including total absence of mental content (unconsciousness), and internal awareness (sensation of self and internal thoughts) with or without conscious perception of the environment (connected or disconnected consciousness, respectively). Indeed, it must be noted that unresponsiveness is not sufficient to infer absence of connectedness or even absence of consciousness. This narrative review presents the current knowledge in this field from a system-level, underlining the contribution of anaesthesia studies in supporting theories of consciousness, and proposing directions for future research.
Collapse
Affiliation(s)
- Javier Montupil
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| | - Arthur Bonhomme
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Aline Defresne
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Naji L.N. Alnagger
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| |
Collapse
|
35
|
Sancak T. The effects of repeated doses of xylazine-ketamine and medetomidineketamine anesthesia on DNA damage in the liver and kidney. Acta Cir Bras 2023; 38:e385723. [PMID: 37909595 PMCID: PMC10617755 DOI: 10.1590/acb385723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE This study evaluated the DNA damage caused by repeated doses of xylazine-ketamine and medetomidine-ketamine anesthesia in the liver and kidneys. METHODS In this study, 60 rats were used. The rats were divided into group 1 (xylazine-ketamine), and group 2 (medetomidine-ketamine), and these anesthetic combinations were administered to the rats at repeated doses with 30-min intervals. The effects of these anesthetic agents on the tumor necrosis factor-alpha gene for DNA damage were investigated. RESULTS According to the gene expression results, it was observed that a single dose of xylazine-ketamine was 2.9-fold expressed, while first and second repeat doses did not show significant changes in expression levels. However, in the case of the third repetition, it was observed to be 3.8-fold overexpressed. In the case of medetomidine-ketamine administration, it was observed that a single-dose application resulted in a 1.04-fold expression, while the first and the third repeat doses showed a significant down expression. The samples from the second repeat dose administration group were found to have insignificant levels of expression. CONCLUSIONS This study can contribute to understanding the safe anesthetic combination in research and operations in which xylazine-ketamine and medetomidine-ketamine combinations are used.
Collapse
Affiliation(s)
- Tunahan Sancak
- Sivas Cumhuriyet University – Veterinary Faculty – Department of Surgery – Sivas – Turkey
| |
Collapse
|
36
|
Zhang XW, Chen L, Chen CF, Cheng J, Zhang PP, Wang LC. Dexmedetomidine modulates neuronal activity of horizontal limbs of diagonal band via α2 adrenergic receptor in mice. BMC Anesthesiol 2023; 23:327. [PMID: 37784079 PMCID: PMC10544551 DOI: 10.1186/s12871-023-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Dexmedetomidine (DEX) is widely used in clinical sedation which has little effect on cardiopulmonary inhibition, however the mechanism remains to be elucidated. The basal forebrain (BF) is a key nucleus that controls sleep-wake cycle. The horizontal limbs of diagonal bundle (HDB) is one subregions of the BF. The purpose of this study was to examine whether the possible mechanism of DEX is through the α2 adrenergic receptor of BF (HDB). METHODS In this study, we investigated the effects of DEX on the BF (HDB) by using whole cell patch clamp recordings. The threshold stimulus intensity, the inter-spike-intervals (ISIs) and the frequency of action potential firing in the BF (HDB) neurons were recorded by application of DEX (2 µM) and co-application of a α2 adrenergic receptor antagonist phentolamine (PHEN) (10 µM). RESULTS DEX (2 µM) increased the threshold stimulus intensity, inhibited the frequency of action potential firing and enlarged the inter-spike-interval (ISI) in the BF (HDB) neurons. These effects were reversed by co-application of PHEN (10 µM). CONCLUSION Taken together, our findings revealed DEX decreased the discharge activity of BF (HDB) neuron via α2 adrenergic receptors.
Collapse
Affiliation(s)
- Xia-Wei Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Lei Chen
- Departments of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, China
| | - Chang-Feng Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Ping-Ping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Lie-Cheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
37
|
Vincent KF, Solt K. Modulating anesthetic emergence with pathway-selective dopamine signaling. Curr Opin Anaesthesiol 2023; 36:468-475. [PMID: 37552017 PMCID: PMC10528732 DOI: 10.1097/aco.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
PURPOSE OF REVIEW To summarize the recent preclinical findings investigating dopaminergic circuits for their involvement in reversing anesthetic-induced unconsciousness. RECENT FINDINGS The release of dopamine from the ventral tegmental area onto dopamine D1 receptor-expressing neurons in the nucleus accumbens promotes emergence following general anesthesia. Two relevant targets of dopamine D1 receptor-expressing neurons in the nucleus accumbens include the lateral hypothalamus and ventral pallidum. Activating mesocortical dopaminergic projections from the ventral tegmental area to the prelimbic cortex has also been shown to hasten emergence from general anesthesia. In contrast, the nigrostriatal dopamine pathway is not involved in regulating anesthetic emergence. The role of the tuberoinfundibular endocrine dopamine pathway remains to be tested; however, recent studies have identified an important function of neuroendocrine signaling on modulating general anesthesia. SUMMARY Potential avenues for accelerating anesthetic emergence may be found through targeting specific arousal-promoting pathways in the brain. Accumulating evidence from rodent studies manipulating cell type- and circuit-specific signaling pathways have identified dopamine as a potent modulator of general anesthesia. Specifically, dopamine signaling along the mesolimbic and mesocortical pathways plays a fundamental role in regulating consciousness.
Collapse
Affiliation(s)
- Kathleen F. Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Yan J, Hang BN, Ma LH, Lin JT, Zhou Y, Jiao XH, Yuan YX, Shao KJ, Zhang LM, Xue Q, Li ZY, Zhang HX, Cao JL, Li S, Zheng H, Wu YQ. GABAergic Neurons in the Nucleus Accumbens are Involved in the General Anesthesia Effect of Propofol. Mol Neurobiol 2023; 60:5789-5804. [PMID: 37349621 DOI: 10.1007/s12035-023-03445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023]
Abstract
The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.
Collapse
Affiliation(s)
- Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bei-Ning Hang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying-Xuan Yuan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ke-Jie Shao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Le-Meng Zhang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi Xue
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong-Xing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
39
|
Eschbach E, Wang J. Sleep and critical illness: a review. Front Med (Lausanne) 2023; 10:1199685. [PMID: 37828946 PMCID: PMC10566646 DOI: 10.3389/fmed.2023.1199685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Critical illness and stays in the Intensive Care Unit (ICU) have significant impact on sleep. Poor sleep is common in this setting, can persist beyond acute critical illness, and is associated with increased morbidity and mortality. In the past 5 years, intensive care clinical practice guidelines have directed more focus on sleep and circadian disruption, spurring new initiatives to study and improve sleep complications in the critically ill. The global SARS-COV-2 (COVID-19) pandemic and dramatic spikes in patients requiring ICU level care also brought augmented levels of sleep disruption, the understanding of which continues to evolve. This review aims to summarize existing literature on sleep and critical illness and briefly discuss future directions in the field.
Collapse
Affiliation(s)
- Erin Eschbach
- Division of Pulmonary, Critical Care, and Sleep, Mount Sinai Hospital, New York, NY, United States
| | | |
Collapse
|
40
|
Guo Y, Song Y, Cao F, Li A, Hao X, Shi W, Zhou Z, Cao J, Liu Y, Mi W, Tong L. Ventrolateral periaqueductal gray GABAergic neurons promote arousal of sevoflurane anesthesia through cortico-midbrain circuit. iScience 2023; 26:107486. [PMID: 37744409 PMCID: PMC10517397 DOI: 10.1016/j.isci.2023.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
The mechanism of general anesthesia remains elusive. The ventrolateral periaqueductal gray (vlPAG) in the midbrain regulates sleep and awake states. However, the role of vlPAG and its circuits in anesthesia is unclear. We utilized opto/chemogenetics, righting reflex, and electroencephalographic recording to assess consciousness changes. We employed fiber photometry to measure the activity of neurons and neurotransmitters. As a result, photometry recording showed that the activity of GABA neurons in vlPAG decreased during sevoflurane anesthesia and was reactivated after anesthesia. Activating GABAergic neurons in vlPAG promoted arousal during anesthesia, while inhibiting them delayed this process. Furthermore, medial prefrontal cortex (mPFC) to vlPAG pyramidal neurons projections and vlPAG to ventral tegmental area (VTA) GABAergic projections played a prominent role in the anesthesia-awake transition. GABA neurotransmitter activity of VTA synchronized with mPFC-vlPAG pyramidal neuron projections. Therefore, the cortico-midbrain circuits centered on vlPAG GABAergic neurons exert an arousal-promoting effect during sevoflurane anesthesia.
Collapse
Affiliation(s)
- Yongxin Guo
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Yanping Song
- Department of Anaesthesiology, 922th Hospital of Joint Logistics Support Force, PLA, Hengyang, Hunan, China
| | - Fuyang Cao
- Department of Anaesthesiology, The Sixth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Ao Li
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Xinyu Hao
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Wenzhu Shi
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Zhikang Zhou
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Weidong Mi
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Li Tong
- Department of Anaesthesiology, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Valli K, Radek L, Kallionpää RE, Scheinin A, Långsjö J, Kaisti K, Kantonen O, Korhonen J, Vahlberg T, Revonsuo A, Scheinin H. Subjective experiences during dexmedetomidine- or propofol-induced unresponsiveness and non-rapid eye movement sleep in healthy male subjects. Br J Anaesth 2023; 131:348-359. [PMID: 37268445 PMCID: PMC10375502 DOI: 10.1016/j.bja.2023.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Anaesthetic-induced unresponsiveness and non-rapid eye movement (NREM) sleep share common neural pathways and neurophysiological features. We hypothesised that these states bear resemblance also at the experiential level. METHODS We compared, in a within-subject design, the prevalence and content of experiences in reports obtained after anaesthetic-induced unresponsiveness and NREM sleep. Healthy males (N=39) received dexmedetomidine (n=20) or propofol (n=19) in stepwise doses to induce unresponsiveness. Those rousable were interviewed and left unstimulated, and the procedure was repeated. Finally, the anaesthetic dose was increased 50%, and the participants were interviewed after recovery. The same participants (N=37) were also later interviewed after NREM sleep awakenings. RESULTS Most subjects were rousable, with no difference between anaesthetic agents (P=0.480). Lower drug plasma concentrations were associated with being rousable for both dexmedetomidine (P=0.007) and propofol (P=0.002) but not with recall of experiences in either drug group (dexmedetomidine: P=0.543; propofol: P=0.460). Of the 76 and 73 interviews performed after anaesthetic-induced unresponsiveness and NREM sleep, 69.7% and 64.4% included experiences, respectively. Recall did not differ between anaesthetic-induced unresponsiveness and NREM sleep (P=0.581), or between dexmedetomidine and propofol in any of the three awakening rounds (P>0.05). Disconnected dream-like experiences (62.3% vs 51.1%; P=0.418) and memory incorporation of the research setting (88.7% vs 78.7%; P=0.204) were equally often present in anaesthesia and sleep interviews, respectively, whereas awareness, signifying connected consciousness, was rarely reported in either state. CONCLUSIONS Anaesthetic-induced unresponsiveness and NREM sleep are characterised by disconnected conscious experiences with corresponding recall frequencies and content. CLINICAL TRIAL REGISTRATION Clinical trial registration. This study was part of a larger study registered at ClinicalTrials.gov (NCT01889004).
Collapse
Affiliation(s)
- Katja Valli
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden.
| | - Linda Radek
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Roosa E Kallionpää
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Annalotta Scheinin
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaakko Långsjö
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Kaike Kaisti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Anesthesiology and Intensive Care, Oulu University Hospital, Oulu, Finland
| | - Oskari Kantonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarno Korhonen
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Tero Vahlberg
- Institute of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Revonsuo
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Harry Scheinin
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Institute of Biomedicine and Unit of Clinical Pharmacology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
42
|
Soplata AE, Adam E, Brown EN, Purdon PL, McCarthy MM, Kopell N. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J Neurophysiol 2023; 130:86-103. [PMID: 37314079 PMCID: PMC10312318 DOI: 10.1152/jn.00068.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Collapse
Affiliation(s)
- Austin E Soplata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Elie Adam
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
43
|
Bao W, Ding J, Jiang S, Yao Z, Qu W, Li W, Huang Z, Han Y. Selective Activation of NAc D1R-VP/LH Circuits Promotes Reanimation From Sevoflurane Anesthesia in Mice. Anesth Analg 2023; 137:87-97. [PMID: 36944111 DOI: 10.1213/ane.0000000000006436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Emerging evidence has uncovered a vital role of nucleus accumbens (NAc) neurons that express the dopamine D1 receptor (D1R) and its upstream neural circuit in general anesthesia (GA) regulation. However, the underlying downstream neural basis of the modulation of GA emergence by NAc D1R neurons remains unknown. In the present study, we explored the downstream neural mechanism of NAc D1R neurons in the modulation of emergence from sevoflurane GA. METHODS We traced the axonal projections of NAc D1R neurons using a cell type-specific anterograde tracing method and immunohistochemical techniques in D1R-Cre mice. Optogenetic stimulations combined with electroencephalogram/electromyogram recordings and behavioral tests were used to determine the effects of optogenetic activation of the axonal terminals of NAc D1R neurons on sevoflurane emergence during sevoflurane-induced continuous, steady-state general anesthesia (CSSGA) or burst-suppression oscillations. RESULTS Labeled efferent fibers of NAc D1R neurons were highly distributed in the ventral pallidum (VP), lateral hypothalamus (LH), and substantia nigra pars compacta. Optogenetic activation of the NAc D1R -VP circuit during CSSGA with sevoflurane induced cortical activation (mean ± standard deviation [SD]; delta power: prestimulation versus during stimulation, 48.7% ± 5.7% vs 35.1% ± 3.3%, P < .0001; beta power: 7.1% ± 2.7% vs 14.2% ± 3.3%, P = .0264) and behavioral emergence, and restored the righting reflex in 66.7% of ChR2 mice. Optogenetic stimulation of the NAc D1R -LH circuit also produced cortical activation (delta power: prestimulation versus during stimulation, 45.0% ± 6.5% vs 36.1% ± 4.6%, P = .0016) and behavioral emergence, and restored the righting reflex in 100% of the ChR2 mice during CSSGA with sevoflurane. Under a sevoflurane-induced burst-suppression state, NAc D1R -VP/LH circuit activation produced evidence of cortical activation (burst-suppression ratio [BSR]: NAc D1R -VP circuit, prestimulation versus during stimulation, 42.4% ± 4.0% vs 26.3% ± 6.0%, P = .0120; prestimulation versus poststimulation, 42.4% ± 4.0% vs 5.9% ± 5.6%, P = .0002; BSR: NAc D1R -LH circuit, prestimulation versus during stimulation, 33.3% ± 13.4% vs 5.1% ± 4.9%, P = .0177; prestimulation vs poststimulation, 33.3% ± 13.4% vs 3.2% ± 4.0%, P = .0105) and behavioral emergence. CONCLUSIONS Both NAc D1R -VP and NAc D1R -LH circuits are sufficient to promote reanimation from sevoflurane GA by simultaneously inducing cortical and behavioral emergence.
Collapse
Affiliation(s)
- Weiwei Bao
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahui Ding
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shan Jiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Yao
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weimin Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxian Li
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Han
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Rajan S, Alchoubassi J, Bharadwaj MS, Kofke WA. Evolving horizon of global neuroanesthesia education, pathway to standardization, and accreditation. Int Anesthesiol Clin 2023; 61:1-7. [PMID: 37232674 DOI: 10.1097/aia.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Shobana Rajan
- Department of Anesthesiology, Critical Care and Pain Medicine, UT McGovern Medical School, Houston, TX
| | | | | | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
45
|
Vincent KF. Emerging Circuits in Anesthesia: Following the Mesolimbic Pathway. Anesth Analg 2023; 137:83-86. [PMID: 37326867 PMCID: PMC10287032 DOI: 10.1213/ane.0000000000006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Kathleen F. Vincent
- Department of Anesthesia, Critical Care and Pain Medicine,
Massachusetts General Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston,
USA
| |
Collapse
|
46
|
Lin J, Cheng X, Wang H, Du L, Li X, Zhao G, Xie C. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol 2023; 23:213. [PMID: 37340348 DOI: 10.1186/s12871-023-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES General anesthesia results in a state of unconsciousness that is similar to sleep. In recent years, increasing evidence has reported that astrocytes play a crucial role in regulating sleep. However, whether astrocytes are involved in general anesthesia is unknown. METHODS In the present study, the designer receptors exclusively activated by designer drugs (DREADDs) approach was utilized to specifically activate astrocytes in the basal forebrain (BF) and observed its effect on isoflurane anesthesia. One the other side, L-α-aminoadipic acid was used to selectively inhibit astrocytes in the BF and investigated its influence on isoflurane-induced hypnotic effect. During the anesthesia experiment, cortical electroencephalography (EEG) signals were recorded as well. RESULTS The chemogenetic activation group had a significantly shorter isoflurane induction time, longer recovery time, and higher delta power of EEG during anesthesia maintenance and recovery periods than the control group. Inhibition of astrocytes in the BF delayed isoflurane-induced loss of consciousness, promoted recovery, decreased delta power and increased beta and gamma power during maintenance and recovery periods. CONCLUSIONS The present study suggests that astrocytes in the BF region are involved in isoflurane anesthesia and may be a potential target for regulating the consciousness state of anesthesia.
Collapse
Affiliation(s)
- Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xuefeng Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Haoyuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Lin Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| | - Chuangbo Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| |
Collapse
|
47
|
Zhang B, Zhang P, L T, Cao Y, Chen T, Chen C, Zhang Z, Zhong Q. P2X7 Receptor in microglia contributes to propofol-induced unconsciousness by regulating synaptic plasticity in mice. Neuroscience 2023:S0306-4522(23)00223-3. [PMID: 37211083 DOI: 10.1016/j.neuroscience.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/16/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Propofol infusion is processed through the wake-sleep cycle in neural connections, and the ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and synaptic plasticity through its regulation of electric activity in the brain. Here, we explored the potential roles of P2X7R of microglia in propofol-induced unconsciousness. Propofol induced loss of the righting reflex in male C57BL/6 wild-type mice and increased spectral power of the slow wave and delta wave of the medial prefrontal cortex (mPFC), all of which were reversed with P2X7R antagonist A-740003 and strengthened with P2X7R agonist Bz-ATP. Propofol increased the P2X7R expression level and P2X7R immunoreactivity with microglia in the mPFC, induced mild synaptic injury and increased GABA release in the mPFC, and these changes were less severe when treated with A-740003 and were more obvious when treated with Bz-ATP. Electrophysiological approaches showed that propofol induced a decreased frequency of sEPSCs and an increased frequency of sIPSCs, A-740003 decrease frequency of sEPSCs and sIPSCs and Bz-ATP increase frequency of sEPSCs and sIPSCs under propofol anesthesia. These findings indicated that P2X7R in microglia regulates synaptic plasticity and may contribute to propofol-mediated unconsciousness.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Panpan Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071; Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Tingting L
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| |
Collapse
|
48
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
49
|
Touchard C, Guimard P, Guessous K, Aubin OS, Levé C, Joachim J, Elayeb K, Mebazaa A, Gayat É, Mateo J, Vallée F, Cartailler J. Association of sleep and anaesthesia EEG biomarkers with preoperative MoCA score: A pilot study. Acta Anaesthesiol Scand 2023. [PMID: 37096645 DOI: 10.1111/aas.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Preoperative cognitive impairments increase the risk of postoperative complications. The electroencephalogram (EEG) could provide information on cognitive vulnerability. The feasibility and clinical relevance of sleep EEG (EEGsleep ) compared to intraoperative EEG (EEGintraop ) in cognitive risk stratification remains to be explored. We investigated similarities between EEGsleep and EEGintraop vis-a-vis preoperative cognitive impairments. METHODS Pilot study including 27 patients (63 year old [53.5, 70.0]) to whom Montreal cognitive assessment (MoCA) and EEGsleep were administered 1 day before a propofol-based general anaesthesia, in addition to EEGintraop acquisition from depth-of-anaesthesia monitors. Sleep spindles on EEGsleep and intraoperative alpha-band power on EEGintraop were particularly explored. RESULTS In total, 11 (41%) patients had a MoCA <25 points. These patients had a significantly lower sleep spindle power on EEGsleep (25 vs. 40 μv2 /Hz, p = .035) and had a weaker intraoperative alpha-band power on EEGintraop (85 vs. 150 μv2 /Hz, p = .001) compared to patients with normal MoCA. Correlation between sleep spindle and intraoperative alpha-band power was positive and significant (r = 0.544, p = .003). CONCLUSION Preoperative cognitive impairment appears to be detectable by both EEGsleep and EEGintraop . Preoperative sleep EEG to assess perioperative cognitive risk is feasible but more data are needed to demonstrate its benefit compared to intraoperative EEG.
Collapse
Affiliation(s)
- Cyril Touchard
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Pauline Guimard
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Karim Guessous
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Sorbonne Université, Paris, France
| | - Oriane Saint Aubin
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Charlotte Levé
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Jona Joachim
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Kenza Elayeb
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Étienne Gayat
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Joaquim Mateo
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - Fabrice Vallée
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Université Paris Cité, Boulogne-Billancourt, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
- Université Paris-Saclay, Palaiseau, France
| | - Jérôme Cartailler
- Department of Anesthesiology and Intensive Care, Lariboisière - Saint Louis Hospitals, Paris, France
- Inserm, UMRS-942, Paris Diderot University, Paris, France
| |
Collapse
|
50
|
Ayuse T, Kurata S, Mishima G, Tachi M, Suzue E, Kiriishi K, Ozaki-Honda Y, Ayuse T. Influence of general anesthesia on the postoperative sleep cycle in patients undergoing surgery and dental treatment: a scoping review on the incidence of postoperative sleep disturbance. J Dent Anesth Pain Med 2023; 23:59-67. [PMID: 37034841 PMCID: PMC10079771 DOI: 10.17245/jdapm.2023.23.2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
General anesthesia may influence the postoperative sleep cycle; however, no clinical studies have fully evaluated whether anesthesia causes sleep disturbances during the postoperative period. In this scoping review, we explored the changes in postoperative sleep cycles during surgical procedures or dental treatment under general anesthesia. We compared and evaluated the influence of general anesthesia on sleep cycles and sleep disturbances during the postoperative period in adult and pediatric patients undergoing surgery and/or dental treatment. Literature was retrieved by searching eight public databases. Randomized clinical trials, observational studies, observational case-control studies, and cohort studies were included. Primary outcomes included the incidence of sleep, circadian cycle alterations, and/or sleep disturbances. The search strategy yielded six studies after duplicates were removed. Finally, six clinical trials with 1,044 patients were included. In conclusion, general anesthesia may cause sleep disturbances based on alterations in sleep or the circadian cycle in the postoperative period in patients scheduled for elective surgery.
Collapse
Affiliation(s)
- Terumi Ayuse
- Nagasaki University Hospital, Department of Special Care Dentistry, Nagasaki, Japan
| | - Shinji Kurata
- Nagasaki University Graduate School of Biomedical Science, Department of Clinical Physiology, Nagasaki, Japan
| | - Gaku Mishima
- Nagasaki University Hospital, Department of Dental Anesthesia, Nagasaki, Japan
| | - Mizuki Tachi
- Nagasaki University Hospital, Department of Dental Anesthesia, Nagasaki, Japan
| | - Erika Suzue
- Nagasaki University Hospital, Department of Dental Anesthesia, Nagasaki, Japan
| | - Kensuke Kiriishi
- Nagasaki University Hospital, Department of Special Care Dentistry, Nagasaki, Japan
| | - Yu Ozaki-Honda
- Nagasaki University Hospital, Department of Special Care Dentistry, Nagasaki, Japan
| | - Takao Ayuse
- Nagasaki University Hospital, Department of Special Care Dentistry, Nagasaki, Japan
- Nagasaki University Graduate School of Biomedical Science, Department of Clinical Physiology, Nagasaki, Japan
- Nagasaki University Hospital, Department of Dental Anesthesia, Nagasaki, Japan
| |
Collapse
|