1
|
Zhao M, Peng D, Li Y, He M, Zhang Y, Zhou Q, Sun S, Ma P, Lv L, Wang X, Zhan L. Hemin regulates platelet clearance in hemolytic disease by binding to GPIbα. Platelets 2024; 35:2383642. [PMID: 39072582 DOI: 10.1080/09537104.2024.2383642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Hemolysis is associated with thrombosis and vascular dysfunction, which are the pathological components of many diseases. Hemolytic products, including hemoglobin and hemin, activate platelets (PLT). Despite its activation, the effect of hemolysis on platelet clearance remains unclear, It is critical to maintain a normal platelet count and ensure that circulating platelets are functionally viable. In this study, we used hemin, a degradation product of hemoglobin, as a potent agonist to treat platelets and simulate changes in vivo in mice. Hemin treatment induced activation and morphological changes in platelets, including an increase in intracellular Ca2+ levels, phosphatidylserine (PS) exposure, and cytoskeletal rearrangement. Fewer hemin-treated platelets were cleared by macrophages in the liver after transfusion than untreated platelets. Hemin bound to glycoprotein Ibα (GPIbα), the surface receptor in hemin-induced platelet activation and aggregation. Furthermore, hemin decreased GPIbα desialylation, as evidenced by reduced Ricinus communis agglutinin I (RCA- I) binding, which likely extended the lifetime of such platelets in vivo. These data provided new insight into the mechanisms of GPIbα-mediated platelet activation and clearance in hemolytic disease.
Collapse
Affiliation(s)
- Man Zhao
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Dongxin Peng
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yuxuan Li
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Minwei He
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yulong Zhang
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Qianqian Zhou
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Sujing Sun
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Ping Ma
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Liping Lv
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiaohui Wang
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Linsheng Zhan
- Field Blood Transfusion, Institute of Health Service and Transfusion Medicine, Beijing, China
| |
Collapse
|
2
|
Berna-Erro A, Granados MP, Teruel-Montoya R, Ferrer-Marin F, Delgado E, Corbacho AJ, Fenández E, Vazquez-Godoy MT, Tapia JA, Redondo PC. SARAF overexpression impairs thrombin-induced Ca 2+ homeostasis in neonatal platelets. Br J Haematol 2024; 204:988-1004. [PMID: 38062782 DOI: 10.1111/bjh.19210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 03/14/2024]
Abstract
Neonatal platelets present a reduced response to the platelet agonist, thrombin (Thr), thus resulting in a deficient Thr-induced aggregation. These alterations are more pronounced in premature newborns. Here, our aim was to uncover the causes underneath the impaired Ca2+ homeostasis described in neonatal platelets. Both Ca2+ mobilization and Ca2+ influx in response to Thr are decreased in neonatal platelets compared to maternal and control woman platelets. In neonatal platelets, we observed impaired Ca2+ mobilization in response to the PAR-1 agonist (SFLLRN) or by blocking SERCA3 function with tert-butylhydroquinone. Regarding SOCE, the STIM1 regulatory protein, SARAF, was found overexpressed in neonatal platelets, promoting an increase in STIM1/SARAF interaction even under resting conditions. Additionally, higher interaction between SARAF and PDCD61/ALG2 was also observed, reducing SARAF ubiquitination and prolonging its half-life. These results were reproduced by overexpressing SARAF in MEG01 and DAMI cells. Finally, we also observed that pannexin 1 permeability is enhanced in response to Thr in control woman and maternal platelets, but not in neonatal platelets, hence, leading to the deregulation of the Ca2+ entry found in neonatal platelets. Summarizing, we show that in neonatal platelets both Ca2+ accumulation in the intracellular stores and Thr-evoked Ca2+ entry through either capacitative channels or non-selective channels are altered in neonatal platelets, contributing to deregulated Ca2+ homeostasis in neonatal platelets and leading to the altered aggregation observed in these subjects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Maria P Granados
- Pharmacy Unit of Health Center, Extremadura County Health Service, Caceres, Spain
| | - Raul Teruel-Montoya
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Francisca Ferrer-Marin
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Elena Delgado
- Blood Donation Center, Extremadura County Health Service, Merida, Spain
| | | | | | | | - Jose A Tapia
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Pedro Cosme Redondo
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
3
|
Nadel J, Jabbour A, Stocker R. Arterial myeloperoxidase in the detection and treatment of vulnerable atherosclerotic plaque: a new dawn for an old light. Cardiovasc Res 2023; 119:112-120. [PMID: 35587708 DOI: 10.1093/cvr/cvac081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracellular myeloperoxidase (MPO) plays a specific role in the innate immune response; however, upon release into the extracellular space in the setting of inflammation, drives oxidative tissue injury. Extracellular MPO has recently been shown to be abundant in unstable atheroma and causally linked to plaque destabilization, erosion, and rupture, identifying it as a potential target for the surveillance and treatment of vulnerable atherosclerosis. Through the compartmentalization of MPO's protective and deleterious effects, extracellular MPO can be selectively detected using non-invasive molecular imaging and targeted by burgeoning pharmacotherapies. Given its causal relationship to plaque destabilization coupled with an ability to preserve its beneficial properties, MPO is potentially a superior translational inflammatory target compared with other immunomodulatory therapies and imaging biomarkers utilized to date. This review explores the role of MPO in plaque destabilization and provides insights into how it can be harnessed in the management of patients with vulnerable atherosclerotic plaque.
Collapse
Affiliation(s)
- James Nadel
- Heart Research Institute, The University of Sydney, 7 Eliza St, Newtown, 2042 Sydney, NSW, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, Australia
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Andrew Jabbour
- Cardiology Department, St Vincent's Hospital, Sydney, Australia
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, 7 Eliza St, Newtown, 2042 Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
5
|
Zhao Z, Pan Z, Zhang S, Ma G, Zhang W, Song J, Wang Y, Kong L, Du G. Neutrophil extracellular traps: A novel target for the treatment of stroke. Pharmacol Ther 2023; 241:108328. [PMID: 36481433 DOI: 10.1016/j.pharmthera.2022.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a threatening cerebrovascular disease caused by thrombus with high morbidity and mortality rates. Neutrophils are the first to be recruited in the brain after stroke, which aggravate brain injury through multiple mechanisms. Neutrophil extracellular traps (NETs), as a novel regulatory mechanism of neutrophils, can trap bacteria and secret antimicrobial molecules, thereby degrading pathogenic factors and killing bacteria. However, NETs also exacerbate certain non-infectious diseases by activating autoimmune or inflammatory responses. NETs have been found to play important roles in the pathological process of stroke in recent years. In this review, the mechanisms of NETs formation, the physiological roles of NETs, and the dynamic changes of NETs after stroke are summarized. NETs participate in stroke through various mechanisms. NETs promote the coagulation cascade and interact with platelets to induce thrombosis. tPA induces the degranulation of neutrophils to form NETs, leading to hemorrhagic transformation and thrombolytic resistance. NETs aggravate stroke by mediating inflammation, atherosclerosis and vascular injury. In addition, the regulation of NETs in stroke, the potential of NETs as biomarker and the treatment of stroke targeting NETs are discussed. The increasing evidences suggest that NETs may be a potential target for stroke treatment. Inhibition of NETs formation or promotion of NETs degradation plays protective effects in stroke. However, how to avoid the adverse effects of NETs-targeted therapy deserves further study. In summary, this review provides a reference for the pathogenesis, drug targets, biomarkers and drug development of NETs in stroke.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Wang Q, #, Zhang Y, #, Du Q, Zhao X, Wang W, Zhai Q, Xiang M. SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:39-48. [PMID: 36575932 PMCID: PMC9806642 DOI: 10.4196/kjpp.2023.27.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022]
Abstract
Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Store-operated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 μg. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.
Collapse
Affiliation(s)
- Qiru Wang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - #
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Yang Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China
| | - #
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Xinjie Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Wei Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| | - Ming Xiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| |
Collapse
|
7
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Lockhart JS, Sumagin R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int J Mol Sci 2022; 23:ijms232012250. [PMID: 36293108 PMCID: PMC9603794 DOI: 10.3390/ijms232012250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.
Collapse
|
9
|
Gorudko IV, Grigorieva DV, Shamova EV, Gorbunov NP, Kokhan AU, Kostevich VA, Vasilyev VB, Panasenko OM, Khinevich NV, Bandarenka HV, Burko AA, Sokolov AV. Structure-biological activity relationships of myeloperoxidase to effect on platelet activation. Arch Biochem Biophys 2022; 728:109353. [PMID: 35853481 DOI: 10.1016/j.abb.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Myeloperoxidase (MPO), an oxidant-producing enzyme of neutrophils, has been shown to prime platelet activity promoting immunothrombosis. Native MPO is a homodimer, consisting of two identical protomers (monomer) connected by a single disulfide bond. But in inflammatory foci, MPO can be found both in the form of a monomer and in the form of a dimer. Beside MPO can also be in complexes with other molecules and be modified by oxidants, which ultimately affect its physicochemical properties and functions. Here we compared the effects of various forms of MPO as well as MPO in complex with ceruloplasmin (CP), a physiological inhibitor of MPO, on the platelet activity. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. MPO was modified with HOCl in a molar ratio of 1:100 (MPO-HOCl). Using surface-enhanced Raman scattering (SERS) spectroscopy we showed that peaks at about 510 and 526 cm-1 corresponded to disulfide bond was recognizable in the SERS-spectra of dimeric MPO, absent in the spectrum of hemi-MPO and less intense in the spectra of MPO-HOCl, which indicates the partial decomposition of dimeric MPO with a disulfide bond cleavage under the HOCl modification. It was shown hemi-MPO to a lesser extent than dimeric MPO bound to platelets and enhanced their agonist-induced aggregation and platelet-neutrophil aggregate formation. MPO modified by HOCl and MPO in complex with CP did not bind to platelets and have no effect on platelet activity. Thus, the modification of MPO by HOCl, its presence in monomeric form as well as in complex with CP reduces MPO effect on platelet function and consequently decreases the risk of thrombosis in inflammatory foci.
Collapse
Affiliation(s)
- I V Gorudko
- Department of Biophysics, Faculty of Physics, Belarusian State University, 4 Nezavisimosti Avenue, Minsk, 220030, Belarus.
| | - D V Grigorieva
- Department of Biophysics, Faculty of Physics, Belarusian State University, 4 Nezavisimosti Avenue, Minsk, 220030, Belarus
| | - E V Shamova
- Institute of Biophysics and Сell Engineering of National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - N P Gorbunov
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia
| | - A U Kokhan
- Institute of Biophysics and Сell Engineering of National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - V A Kostevich
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia
| | - V B Vasilyev
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia
| | - O M Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova Str., Moscow, 117997, Russia
| | - N V Khinevich
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk, 220013, Belarus; Institute of Materials Science, Kaunas University of Technology, K. Donelaičio g. 73, Kaunas, 44249, Lithuania
| | - H V Bandarenka
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk, 220013, Belarus; Polytechnic School, Arizona State University, Arizona State University Polytechnicm, 7001 East Williams Field Road, Mesa, AZ, 85212, USA
| | - A A Burko
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk, 220013, Belarus; Polytechnic School, Arizona State University, Arizona State University Polytechnicm, 7001 East Williams Field Road, Mesa, AZ, 85212, USA
| | - A V Sokolov
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia
| |
Collapse
|
10
|
Ma H, Liu J, Li Z, Xiong H, Zhang Y, Song Y, Lai J. Expression profile analysis reveals hub genes that are associated with immune system dysregulation in primary myelofibrosis. ACTA ACUST UNITED AC 2021; 26:478-490. [PMID: 34238135 DOI: 10.1080/16078454.2021.1945237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTION Primary myelofibrosis (PMF) is a familiar chronic myeloproliferative disease with an unfavorable prognosis. The effect of infection on the prognosis of patients with PMF is crucial. Immune system dysregulation plays a central role in the pathophysiology of PMF. To date, very little research has been conducted on the molecular mechanism of immune compromise in patients with PMF. METHODS To explore potential candidate genes, microarray datasets GSE61629 and 26049 were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between PMF patients and normal individuals were evaluated, gene function was measured and a series of hub genes were identified. Several significant immune cells were selected via cell type enrichment analysis. The correlation between hub genes and significant immune cells was determined. RESULTS A total of 282 DEGs were found, involving 217 upregulated genes and 65 downregulated genes. Several immune cells were found to be reduced in PMF, such as CD4+ T cells, CD4+ Tems, CD4+ memory T cells. Gene Ontology (GO) enrichment analysis of DEGs reflected that most biological processes were associated with immune processes. Six hub genes, namely, HP, MPO, MMP9, EPB42, SLC4A1, and ALAS2, were identified, and correlation analysis revealed that these hub genes have a negative correlation with immune cell abundance. CONCLUSIONS Taken together, the gene expression profile of whole blood cells in PMF patients indicated a battery of immune events, and the DEGs and hub genes might contribute to immune system dysregulation.
Collapse
Affiliation(s)
- Haotian Ma
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zilong Li
- College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanping Song
- Institute of Hematology, Central Hospital of Xi'an, Xi'an, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
12
|
Bushueva O, Barysheva E, Markov A, Belykh A, Koroleva I, Churkin E, Polonikov A, Ivanov V, Nazarenko M. DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase. J Mol Neurosci 2021; 71:1914-1932. [PMID: 33864596 DOI: 10.1007/s12031-021-01840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/03/2021] [Indexed: 01/15/2023]
Abstract
Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.
Collapse
Affiliation(s)
- Olga Bushueva
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia. .,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.
| | - Ekaterina Barysheva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Anton Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Andrey Belykh
- Department of Pathophysiology, Kursk State Medical University, Kursk, Russia
| | - Iuliia Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Egor Churkin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexey Polonikov
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Vladimir Ivanov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Maria Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
13
|
Lee DH, Yao C, Bhan A, Schlaeger T, Keefe J, Rodriguez BAT, Hwang SJ, Chen MH, Levy D, Johnson AD. Integrative Genomic Analysis Reveals Four Protein Biomarkers for Platelet Traits. Circ Res 2020; 127:1182-1194. [PMID: 32781905 PMCID: PMC8411925 DOI: 10.1161/circresaha.119.316447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE Mean platelet volume (MPV) and platelet count (PLT) are platelet measures that have been linked to cardiovascular disease (CVD) and mortality risk. Identifying protein biomarkers for these measures may yield insights into CVD mechanisms. OBJECTIVE We aimed to identify causal protein biomarkers for MPV and PLT among 71 CVD-related plasma proteins measured in FHS (Framingham Heart Study) participants. METHODS AND RESULTS We conducted integrative analyses of genetic variants associated with PLT/MPV with protein quantitative trait locus variants associated with plasma proteins followed by Mendelian randomization to infer causal relations of proteins for PLT/MPV. We also tested protein-PLT/MPV association in FHS participants. Using induced pluripotent stem cell-derived megakaryocyte clones that produce functional platelets, we conducted RNA-sequencing and analyzed expression differences between low- and high-platelet producing clones. We then performed small interfering RNA gene knockdown experiments targeting genes encoding proteins with putatively causal platelet effects in megakaryocyte clones to examine effects on platelet production. In protein-trait association analyses, ten proteins were associated with MPV and 31 with PLT. Mendelian randomization identified 4 putatively causal proteins for MPV and 4 for PLT. GP-5 (Glycoprotein V), GRN (granulin), and MCAM (melanoma cell adhesion molecule) were associated with PLT, while MPO (myeloperoxidase) showed significant association with MPV in both analyses. RNA-sequencing analysis results were directionally concordant with observed and Mendelian randomization-inferred associations for GP-5, GRN, and MCAM. In siRNA gene knockdown experiments, silencing GP-5, GRN, and MPO decreased PLTs. Genome-wide association study results suggest several of these may be linked to CVD risk. CONCLUSIONS We identified 4 proteins that are causally linked to PLTs. These proteins may also have roles in the pathogenesis of CVD via a platelet/blood coagulation-based mechanism.
Collapse
Affiliation(s)
- Dong Heon Lee
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Chen Yao
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | | | | | - Joshua Keefe
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Benjamin A T Rodriguez
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Ming-Huei Chen
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Andrew D Johnson
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| |
Collapse
|
14
|
Schirato SR, El-Dash I, El-Dash V, Bizzarro B, Marroni A, Pieri M, Cialoni D, Chaui-Berlinck JG. Association Between Heart Rate Variability and Decompression-Induced Physiological Stress. Front Physiol 2020; 11:743. [PMID: 32714210 PMCID: PMC7351513 DOI: 10.3389/fphys.2020.00743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to analyze the correlation between decompression-related physiological stress markers, given by inflammatory processes and immune system activation and changes in Heart Rate Variability, evaluating whether Heart Rate Variability can be used to estimate the physiological stress caused by the exposure to hyperbaric environments and subsequent decompression. A total of 28 volunteers participated in the experimental protocol. Electrocardiograms were performed; blood samples were obtained for the quantification of red cells, hemoglobin, hematocrit, neutrophils, lymphocytes, platelets, aspartate transaminase (AST), alanine aminotransferase (ALT), and for immunophenotyping and microparticles (MP) research through Flow Cytometry, before and after each experimental protocol from each volunteer. Also, myeloperoxidase (MPO) expression and microparticles (MPs) deriving from platelets, neutrophils and endothelial cells were quantified. Negative associations between the standard deviation of normal-to-normal intervals (SDNN) in the time domain, the High Frequency in the frequency domain and the total number of circulating microparticles was observed (p-value = 0.03 and p-value = 0.02, respectively). The pre and post exposure ratio of variation in the number of circulating microparticles was negatively correlated with SDNN (p-value = 0.01). Additionally, a model based on the utilization of Radial Basis Function Neural Networks (RBF-NN) was created and was able to predict the SDNN ratio of variation based on the variation of specific inflammatory markers (RMSE = 0.06).
Collapse
Affiliation(s)
- Sergio Rhein Schirato
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ingrid El-Dash
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Vivian El-Dash
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Peter Murányi Experimental Research Center, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Massimo Pieri
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
| | - Danilo Cialoni
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | |
Collapse
|
15
|
Shamova EV, Gorudko IV, Grigorieva DV, Sokolov AV, Kokhan AU, Melnikova GB, Yafremau NA, Gusev SA, Sveshnikova AN, Vasilyev VB, Cherenkevich SN, Panasenko OM. The effect of myeloperoxidase isoforms on biophysical properties of red blood cells. Mol Cell Biochem 2019; 464:119-130. [PMID: 31754972 DOI: 10.1007/s11010-019-03654-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Myeloperoxidase (MPO), an oxidant-producing enzyme, stored in azurophilic granules of neutrophils has been recently shown to influence red blood cell (RBC) deformability leading to abnormalities in blood microcirculation. Native MPO is a homodimer, consisting of two identical protomers (monomeric MPO) connected by a single disulfide bond but in inflammatory foci as a result of disulfide cleavage monomeric MPO (hemi-MPO) can also be produced. This study investigated if two MPO isoforms have distinct effects on biophysical properties of RBCs. We have found that hemi-MPO, as well as the dimeric form, bind to the glycophorins A/B and band 3 protein on RBC's plasma membrane, that lead to reduced cell resistance to osmotic and acidic hemolysis, reduction in cell elasticity, significant changes in cell volume, morphology, and the conductance of RBC plasma membrane ion channels. Furthermore, we have shown for the first time that both dimeric and hemi-MPO lead to phosphatidylserine (PS) exposure on the outer leaflet of RBC membrane. However, the effects of hemi-MPO on the structural and functional properties of RBCs were lower compared to those of dimeric MPO. These findings suggest that the ability of MPO protein to influence RBC's biophysical properties depends on its conformation (dimeric or monomeric isoform). It is intriguing to speculate that hemi-MPO appearance in blood during inflammation can serve as a regulatory mechanism addressed to reduce abnormalities on RBC response, induced by dimeric MPO.
Collapse
Affiliation(s)
| | | | | | - Alexey V Sokolov
- FSBSI "Institute of Experimental Medicine", St. Petersburg, Russia
- Saint-Petersburg State University, St. Petersburg, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Galina B Melnikova
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Nikolai A Yafremau
- State Institution "N.N. Alexandrov Republican Scientific and Practical Center of Oncology and Medical Radiology", Minsk, Belarus
| | - Sergey A Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Vadim B Vasilyev
- FSBSI "Institute of Experimental Medicine", St. Petersburg, Russia
- Saint-Petersburg State University, St. Petersburg, Russia
| | | | - Oleg M Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
16
|
Gorudko IV, Grigorieva DV, Sokolov AV, Shamova EV, Kostevich VA, Kudryavtsev IV, Syromiatnikova ED, Vasilyev VB, Cherenkevich SN, Panasenko OM. Neutrophil activation in response to monomeric myeloperoxidase. Biochem Cell Biol 2018; 96:592-601. [DOI: 10.1139/bcb-2017-0290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also regulate cellular functions via its nonenzymatic effects. Mature active MPO isolated from normal human neutrophils is a 145 kDa homodimer, which consists of 2 identical protomers, connected by a single disulfide bond. By binding to CD11b/CD18 integrin, dimeric MPO induces neutrophil activation and adhesion augmenting leukocyte accumulation at sites of inflammation. This study was performed to compare the potency of dimeric and monomeric MPO to elicit selected neutrophil responses. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. Analysis of the crucial signal transducer, intracellular Ca2+, showed that dimeric MPO induces Ca2+ mobilization from the intracellular calcium stores of neutrophils and influx of extracellular Ca2+ whereas the effect of monomeric MPO on Ca2+ increase in neutrophils was less. It was also shown that monomeric MPO was less efficient than dimeric MPO at inducing actin cytoskeleton reorganization, cell survival, and neutrophil degranulation. Furthermore, we have detected monomeric MPO in the blood plasma of patients with acute inflammation. Our data suggest that the decomposition of dimeric MPO into monomers can serve as a regulatory mechanism that controls MPO-dependent activation of neutrophils and reduces the proinflammatory effects of MPO.
Collapse
Affiliation(s)
| | | | - Alexey V. Sokolov
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | | | - Valeria A. Kostevich
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Igor V. Kudryavtsev
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Far Eastern Federal University, Vladivostok 690090, Russia
| | | | - Vadim B. Vasilyev
- FSBSI “Institute of Experimental Medicine”, St. Petersburg 197376, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| |
Collapse
|
17
|
Elaskalani O, Abdol Razak NB, Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal 2018; 16:24. [PMID: 29843771 PMCID: PMC5975482 DOI: 10.1186/s12964-018-0235-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Background The release of neutrophil extracellular traps (NETs), a mesh of DNA, histones and neutrophil proteases from neutrophils, was first demonstrated as a host defence against pathogens. Recently it became clear that NETs are also released in pathological conditions. NETs released in the blood can activate thrombosis and initiate a cascade of platelet responses. However, it is not well understood if these responses are mediated through direct or indirect interactions. We investigated whether cell-free NETs can induce aggregation of washed human platelets in vitro and the contribution of NET-derived extracellular DNA and histones to platelet activation response. Methods Isolated human neutrophils were stimulated with PMA to produce robust and consistent NETs. Cell-free NETs were isolated and characterised by examining DNA-histone complexes and quantification of neutrophil elastase with ELISA. NETs were incubated with washed human platelets to assess several platelet activation responses. Using pharmacological inhibitors, we explored the role of different NET components, as well as main platelet receptors, and downstream signalling pathways involved in NET-induced platelet aggregation. Results Cell-free NETs directly induced dose-dependent platelet aggregation, dense granule secretion and procoagulant phosphatidyl serine exposure on platelets. Surprisingly, we found that inhibition of NET-derived DNA and histones did not affect NET-induced platelet aggregation or activation. We further identified the molecular pathways involved in NET-activated platelets. The most potent single modulator of NET-induced platelet responses included NET-bound cathepsin G, platelet Syk kinase, and P2Y12 and αIIbβ3 receptors. Conclusions In vitro-generated NETs can directly induce marked aggregation of washed human platelets. Pre-treatment of NETs with DNase or heparin did not reduce NET-induced activation or aggregation of human washed platelets. We further identified the molecular pathways activated in platelets in response to NETs. Taken together, we conclude that targeting certain platelet activation pathways, rather than the NET scaffold, has a more profound reduction on NET-induced platelet aggregation. Electronic supplementary material The online version of this article (10.1186/s12964-018-0235-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Office 160, Building 305, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Office 160, Building 305, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Office 160, Building 305, Kent Street, Bentley, Perth, WA, 6102, Australia.
| |
Collapse
|
18
|
Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med Sci (Basel) 2018; 6:medsci6020033. [PMID: 29669993 PMCID: PMC6024665 DOI: 10.3390/medsci6020033] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) belongs to the family of heme-containing peroxidases, produced mostly from polymorphonuclear neutrophils. The active enzyme (150 kDa) is the product of the MPO gene located on long arm of chromosome 17. The primary gene product undergoes several modifications, such as the removal of introns and signal peptides, and leads to the formation of enzymatically inactive glycosylated apoproMPO which complexes with chaperons, producing inactive proMPO by the insertion of a heme moiety. The active enzyme is a homodimer of heavy and light chain protomers. This enzyme is released into the extracellular fluid after oxidative stress and different inflammatory responses. Myeloperoxidase is the only type of peroxidase that uses H₂O₂ to oxidize several halides and pseudohalides to form different hypohalous acids. So, the antibacterial activities of MPO involve the production of reactive oxygen and reactive nitrogen species. Controlled MPO release at the site of infection is of prime importance for its efficient activities. Any uncontrolled degranulation exaggerates the inflammation and can also lead to tissue damage even in absence of inflammation. Several types of tissue injuries and the pathogenesis of several other major chronic diseases such as rheumatoid arthritis, cardiovascular diseases, liver diseases, diabetes, and cancer have been reported to be linked with MPO-derived oxidants. Thus, the enhanced level of MPO activity is one of the best diagnostic tools of inflammatory and oxidative stress biomarkers among these commonly-occurring diseases.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| |
Collapse
|
19
|
Grigorieva DV, Gorudko IV, Kostevich VA, Vasilyev VB, Cherenkevich SN, Panasenko OM, Sokolov AV. [Exocytosis of myeloperoxidase from activated neutrophils in the presence of heparin]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:16-22. [PMID: 29460830 DOI: 10.18097/pbmc20186401016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exocytosis of myeloperoxidase (MPO) from activated neutrophils in the presence of the anionic polysaccharide heparin was studied. It was determined that the optimal concentration of heparin (0.1 u/ml), at which there is no additional activation of cells (absence of amplification of exocytosis of lysozyme contained in specific and azurophilic granules). It was found that after preincubation of cells with heparin (0.1 u/ml) the exocytosis of MPO from neutrophils activated by various stimulants (fMLP, PMA, plant lectins CABA and PHA-L) increased compared to that under the action of activators alone. In addition, it was shown that heparin in the range of concentrations 0.1-50 u/ml did not affect on the peroxidase activity of the MPO isolated from leukocytes. Thus, the use of heparin at a concentration of 0.1 u/ml avoids the artifact caused by the "loss" of MPO in a result of its binding to neutrophils, and increases the accuracy of the method of registration the degranulation of azurophilic granules of neutrophils based on determination of the concentration or peroxidase activity of MPO in cell supernatants.
Collapse
Affiliation(s)
| | | | - V A Kostevich
- Institute for Experimental Medicine, Saint-Petersburg, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - V B Vasilyev
- Institute for Experimental Medicine, Saint-Petersburg, Russia; Saint Petersburg University, Saint-Petersburg, Russia
| | | | - O M Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Sokolov
- Institute for Experimental Medicine, Saint-Petersburg, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia; Saint Petersburg University, Saint-Petersburg, Russia; Centre of Preclinical Translational Research, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| |
Collapse
|
20
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
21
|
Gorudko IV, Mikhalchik EV, Sokolov AV, Grigorieva DV, Kostevich VA, Vasilyev VB, Cherenkevich SN, Panasenko OM. The Production of Reactive Oxygen and Halogen Species by Neutrophils in Response to Monomeric Forms of Myeloperoxidase. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917060069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
22
|
Banerjee A, Shukla S, Pandey AD, Goswami S, Bandyopadhyay B, Ramachandran V, Das S, Malhotra A, Agarwal A, Adhikari S, Rahman M, Chatterjee S, Bhattacharya N, Basu N, Pandey P, Sood V, Vrati S. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res 2017; 186:62-78.e9. [PMID: 28683259 DOI: 10.1016/j.trsl.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Patients infected with Dengue virus usually present a mild, self-limiting febrile dengue infection (DI) that occasionally leads to a potentially lethal complication, called the severe dengue (DS). The ability to identify the prognostic markers of DS could allow an improved disease intervention and management. To identify the transcriptional signatures associated with the dengue disease progression, we carried out the high-throughput sequencing of the RNA isolated from the peripheral blood mononuclear cells (PBMCs) of the dengue patients of varying severity and compared with that in the patients with other febrile illnesses (OFIs) or the healthy controls. The transcriptional signatures that discriminated the DS patients from OFI and DI patients were broadly related to the pathways involving glycine, serine, and threonine metabolisms, extracellular matrix organization, ubiquitination, and cytokines and inflammatory response. Several upregulated genes in the inflammatory process (MPO, DEFA4, ELANE, AUZ1, CTSG, OLFM4, SLC16A14, and CRISP3) that were associated with the dengue disease progression are known to facilitate leukocyte-mediated migration, and neutrophil activation and degranulation process. High activity of MPO and ELANE in the plasma samples of the follow-up and recovered dengue patients, as well as and the presence of a larger amount of cell-free dsDNA in the DS patients, suggested an association of neutrophil-mediated immunity with dengue disease progression. Careful monitoring of some of these gene transcripts, and control of the activity of proteins encoded by them, may have a great translational significance for the prognosis and management of the dengue patients.
Collapse
Affiliation(s)
- Arup Banerjee
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| | - Shweta Shukla
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Abhay Deep Pandey
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Saptamita Goswami
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Bhaswati Bandyopadhyay
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Shukla Das
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Arjun Malhotra
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Amitesh Agarwal
- University College of Medical Sciences (UCMS) & Guru Teg Bahadur (GTB) Hospital, Delhi, Delhi, India
| | - Srima Adhikari
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Mehebubar Rahman
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | | | - Nemai Bhattacharya
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Nandita Basu
- Virology Unit, Department of Microbiology, Calcutta School of Tropical Medicine (STM), Kolkata, West Bengal, India
| | - Priyanka Pandey
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - Vikas Sood
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Regional Center for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
23
|
Grigorieva DV, Gorudko IV, Sokolov AV, Kostevich VA, Vasilyev VB, Cherenkevich SN, Panasenko OM. Myeloperoxidase Stimulates Neutrophil Degranulation. Bull Exp Biol Med 2016; 161:495-500. [PMID: 27597056 DOI: 10.1007/s10517-016-3446-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/26/2022]
Abstract
Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation.
Collapse
Affiliation(s)
- D V Grigorieva
- Physics Faculty, Belarusian State University, Minsk, Belarus
| | - I V Gorudko
- Physics Faculty, Belarusian State University, Minsk, Belarus
| | - A V Sokolov
- Institute of Experimental Medicine, St. Petersburg, Russia
- Scientific Research Institute of Physical-Chemical Medicine, Russian Federal Medical-Biological Agency, Moscow, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, St. Petersburg, Russia
- Scientific Research Institute of Physical-Chemical Medicine, Russian Federal Medical-Biological Agency, Moscow, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - O M Panasenko
- Scientific Research Institute of Physical-Chemical Medicine, Russian Federal Medical-Biological Agency, Moscow, Russia.
| |
Collapse
|
24
|
Cevik O, Baykal AT, Sener A. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients. PLoS One 2016; 11:e0158287. [PMID: 27336623 PMCID: PMC4919045 DOI: 10.1371/journal.pone.0158287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into the proteins that are involved in the platelets' activation response during ischemic stroke. It could be argued that this study lays the foundation for future mechanistic studies.
Collapse
Affiliation(s)
- Ozge Cevik
- Cumhuriyet University, Faculty of Pharmacy, Department of Biochemistry, Sivas, Turkey
- Marmara University, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
- * E-mail:
| | - Ahmet Tarik Baykal
- Acibadem University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Azize Sener
- Marmara University, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| |
Collapse
|
25
|
Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level. Arch Biochem Biophys 2015; 591:87-97. [PMID: 26714302 DOI: 10.1016/j.abb.2015.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
Abstract
Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also bind to cellular surface proteins. We found that band 3 protein and glycophorins A and B were the key MPO-binding targets of human red blood cells (RBCs). The interaction of MPO with RBC proteins was mostly electrostatic in nature because it was inhibited by desialation, exogenic sialic acid, high ionic strength, and extreme pH. In addition, MPO failed to interfere with the lectin-induced agglutination of RBCs, suggesting a minor role of glycan-recognizing mechanisms in MPO binding. Multiple biophysical properties of RBCs were altered in the presence of native (i.e., not hypochlorous acid-damaged) MPO. These changes included transmembrane potential, availability of intracellular Ca(2+), and lipid organization in the plasma membrane. MPO-treated erythrocytes became larger in size, structurally more rigid, and hypersensitive to acidic and osmotic hemolysis. Furthermore, we found a significant correlation between the plasma MPO concentration and RBC rigidity index in type-2 diabetes patients with coronary heart disease. These findings suggest that MPO functions as a mediator of novel regulatory mechanism in microcirculation, indicating the influence of MPO-induced abnormalities on RBC deformability under pathological stress conditions.
Collapse
|