1
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
2
|
Ullate-Agote A, Tzika AC. The dynamic behavior of chromatophores marks the transition from bands to spots in leopard geckos. Proc Natl Acad Sci U S A 2024; 121:e2400486121. [PMID: 38976731 PMCID: PMC11260152 DOI: 10.1073/pnas.2400486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the PAX7 transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that PAX7 is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the PAX7 mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.
Collapse
Affiliation(s)
- Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva1211, Switzerland
| | - Athanasia C. Tzika
- Laboratory of Artificial & Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
3
|
Bejaoui M, Oliva Mizushima AK, Ngoc Linh T, Arimura T, Tominaga K, Isoda H. Triethylene Glycol Squalene Improves Hair Regeneration by Maintaining the Inductive Capacity of Human Dermal Papilla Cells and Preventing Premature Aging. ACS Pharmacol Transl Sci 2024; 7:2006-2022. [PMID: 39022356 PMCID: PMC11249624 DOI: 10.1021/acsptsci.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
De novo hair follicle (HF) regeneration, achieved through the replenishment of the dermal papilla (DP), acknowledged as the principal orchestrator of the hair growth cycle, is emerging as a prospective therapeutic intervention for alopecia. Nonetheless, multiple attempts have shown that these cells lose key inductive properties when cultured in a two-dimensional (2D) monolayer, leading to precocious senescence engendered by oxidative stress and inflammatory processes. Consequently, the three-dimensional (3D) spheroid technique is presently widely employed for DP cell culture. Nevertheless, substantiating the regenerative potential of these cells within the hair follicle (HF) milieu remains a challenge. In this current study, we aim to find a new approach to activate the inductive properties of DP cells. This involves the application of hair-growth-stimulating agents that not only exhibit concurrent protective efficacy against the aging process but also induce HF regeneration. To achieve this objective, we initially synthesized a novel highly amphiphilic derivative derived from squalene (SQ), named triethylene glycol squalene (Tri-SQ). Squalene itself is a potent antioxidant and anti-inflammatory compound traditionally employed as a drug carrier for alopecia treatment. However, its application is limited due to its low solubility. Subsequently, we applied this newly synthesized derivative to DP cells. The data obtained demonstrated that the derivative exhibits robust antioxidant and anti-inflammatory activities while concurrently promoting the expression of genes associated with hair growth. Moreover, to further assess the hair regrowth inductive properties of DP cells, we cultured the cells and treated them with Tri-SQ within a 3D spheroid system. Subsequently, these treated cells were injected into the previously depilated dorsal area of six-week-old male C57BL/6 mice. Results revealed that 20 days postinjection, a complete regrowth of hair in the previously hairless area, particularly evident in the case of 3D spheroids treated with the derivative, was observed. Additionally, histological and molecular analyses demonstrated an upregulation of markers associated with hair growth and a concurrent decrease in aging hallmarks, specifically in the 3D spheroids treated with the compound. In summary, our approach, which involves the treatment of Tri-SQ combined with a 3D spheroid system, exhibited a notably robust stimulating effect. This effect was observed in the induction of inductive properties in DP cells, leading to HF regeneration, and concurrently, it demonstrated an inhibitory effect on cellular and follicular aging.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
| | - Aprill Kee Oliva Mizushima
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
| | - Tran Ngoc Linh
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Takashi Arimura
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Kenichi Tominaga
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Hiroko Isoda
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
- Faculty
of Life and Environmental Sciences, University
of Tsukuba, Tsukuba City 305-0006, Japan
| |
Collapse
|
4
|
Kaelin CB, McGowan KA, Hutcherson AD, Delay JM, Li JH, Kiener S, Jagannathan V, Leeb T, Murphy WJ, Barsh GS. Ancestry dynamics and trait selection in a designer cat breed. Curr Biol 2024; 34:1506-1518.e7. [PMID: 38531359 PMCID: PMC11162505 DOI: 10.1016/j.cub.2024.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The Bengal cat breed was developed from intercrosses between the Asian leopard cat, Prionailurus bengalensis, and the domestic cat, Felis catus, with a last common ancestor approximately 6 million years ago. Predicted to derive ∼94% of their genome from domestic cats, regions of the leopard cat genome are thought to account for the unique pelage traits and ornate color patterns of the Bengal breed, which are similar to those of ocelots and jaguars. We explore ancestry distribution and selection signatures in the Bengal breed by using reduced representation and whole-genome sequencing from 947 cats. The mean proportion of leopard cat DNA in the Bengal breed is 3.48%, lower than predicted from breed history, and is broadly distributed, covering 93% of the Bengal genome. Overall, leopard cat introgressions do not show strong signatures of selection across the Bengal breed. However, two popular color traits in Bengal cats, charcoal and pheomelanin intensity, are explained by selection of leopard cat genes whose expression is reduced in a domestic cat background, consistent with genetic incompatibility resulting from hybridization. We characterize several selective sweeps in the Bengal genome that harbor candidate genes for pelage and color pattern and that are associated with domestic, rather than leopard, cat haplotypes. We identify the molecular and phenotypic basis of one selective sweep as reduced expression of the Fgfr2 gene, which underlies glitter, a trait desired by breeders that affects hair texture and light reflectivity.
Collapse
Affiliation(s)
- Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly A McGowan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - John M Delay
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Bejaoui M, Heah WY, Oliva Mizushima AK, Nakajima M, Yamagishi H, Yamamoto Y, Isoda H. Keratin Microspheres as Promising Tool for Targeting Follicular Growth. ACS APPLIED BIO MATERIALS 2024; 7:1513-1525. [PMID: 38354359 DOI: 10.1021/acsabm.3c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Skin is the body barrier that constrains the infiltration of particles and exogenous aggression, in which the hair follicle plays an important role. Recent studies have shown that small particles can penetrate the skin barrier and reach the hair follicle, making them a potential avenue for delivering hair growth-related substances. Interestingly, keratin-based microspheres are widely used as drug delivery carriers in various fields. In this current study, we pursue the effect of newly synthesized 3D spherical keratin particles on inducing hair growth in C57BL/6 male mice and in human hair follicle dermal papilla cells. The microspheres were created from partially sulfonated, water-soluble keratin. The keratin microspheres swelled in water to form spherical gels, which were used for further experiments. Following topical application for a period of 20 days, we observed a regrowth of hair in the previously depleted area on the dorsal part of the mice in the keratin microsphere group. This observation was accompanied by the regulation of hair-growth-related pathways as well as changes in markers associated with epidermal cells, keratin, and collagen. Interestingly, microsphere keratin treatment enhanced the cell proliferation and the expression of hair growth markers in dermal papilla cells. Based on our data, we propose that 3D spherical keratin has the potential to specifically target hair follicle growth and can be employed as a carrier for promoting hair growth-related agents.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba 305-8572, Japan
- Research & Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Wey Yih Heah
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
- MyQtech Inc., Tsukuba 305-8573, Japan
| | - Aprill Kee Oliva Mizushima
- Research & Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- MED R&D Co. Ltd., Tsukuba 305-8572, Japan
| | - Hiroshi Yamagishi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Yohei Yamamoto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
- MyQtech Inc., Tsukuba 305-8573, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba 305-8572, Japan
- Research & Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- MED R&D Co. Ltd., Tsukuba 305-8572, Japan
| |
Collapse
|
6
|
Sun M, Wang Z, Jiang J. Corin protects against acute kidney injury in mice through anti-inflammatory effects. Biomed Pharmacother 2024; 171:116162. [PMID: 38246101 DOI: 10.1016/j.biopha.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Corin is a type II transmembrane serine protease mainly expressed in the heart. Recently, corin was detected in the kidney and was reported to be associated with multiple kidney diseases. To date, its effect on acute kidney injury (AKI) has not been clarified. Here, we found that corin was constitutively expressed in renal tubules, especially in proximal and distal tubular epithelial cells. The expression of corin was dramatically reduced in ischemia/reperfusion injury (IRI)-induced AKI mouse model and oxygen-glucose deprivation (OGD)-induced human proximal tubular epithelial (HK-2) cells injury model, suggesting a potential role of corin in AKI. Corin deficient mice exhibited aggravated renal injury in AKI, as indicated by higher elevation of serum creatinine (SCr) and blood urea nitrogen (BUN), more severe tubular damage, and increased cell death versus wild type mice, demonstrating a protective effect of corin on AKI. In vitro overexpression of corin didn't directly alleviate hypoxia-induced HK-2 cells death, revealing that the protective effect of corin against AKI is not due to direct protection of tubular epithelial cells but may be through indirect protection. Microarray analysis showed enhanced inflammatory chemokines signaling and leukocyte chemotaxis in corin-/- mice after AKI, identifying an important role of corin in halting leukocyte chemotaxis and inflammatory response. Consistently, corin-/- mice after AKI displayed increased tubulointerstitial neutrophils and macrophages infiltration, as well as higher inflammatory mediators in kidneys. Taken together, our study indicates that tubular corin exerts a protective effect against AKI through negative regulation of chemotaxis signaling and inflammation in the kidney.
Collapse
Affiliation(s)
- Mingcheng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Chong Y, Tu X, Lu Y, Gao Z, He X, Hong J, Wu J, Wu D, Xi D, Deng W. Two High-Quality Cygnus Genome Assemblies Reveal Genomic Variations Associated with Plumage Color. Int J Mol Sci 2023; 24:16953. [PMID: 38069278 PMCID: PMC10707585 DOI: 10.3390/ijms242316953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
As an exemplary model for examining molecular mechanisms responsible for extreme phenotypic variations, plumage color has garnered significant interest. The Cygnus genus features two species, Cygnus olor and Cygnus atratus, that exhibit striking disparities in plumage color. However, the molecular foundation for this differentiation has remained elusive. Herein, we present two high-quality genomes for C. olor and C. atratus, procured using the Illumina and Nanopore technologies. The assembled genome of C. olor was 1.12 Gb in size with a contig N50 of 26.82 Mb, while its counterpart was 1.13 Gb in size with a contig N50 of 21.91 Mb. A comparative analysis unveiled three genes (TYR, SLC45A2, and SLC7A11) with structural variants in the melanogenic pathway. Notably, we also identified a novel gene, PWWP domain containing 2A (PWWP2A), that is related to plumage color, for the first time. Using targeted gene modification analysis, we demonstrated the potential genetic effect of the PWWP2A variant on pigment gene expression and melanin production. Finally, our findings offer insight into the intricate pattern of pigmentation and the role of polygenes in birds. Furthermore, these two high-quality genome references provide a comprehensive resource and perspective for comparative functional and genetic studies of evolution within the Cygnus genus.
Collapse
Affiliation(s)
- Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Xiaoming He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| |
Collapse
|
8
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Wood AW, Szpiech ZA, Lovette IJ, Smith BT, Toews DPL. Genomes of the extinct Bachman's warbler show high divergence and no evidence of admixture with other extant Vermivora warblers. Curr Biol 2023:S0960-9822(23)00690-5. [PMID: 37329885 DOI: 10.1016/j.cub.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Bachman's warbler1 (Vermivora bachmanii)-last sighted in 1988-is one of the only North American passerines to recently go extinct.2,3,4 Given extensive ongoing hybridization of its two extant congeners-the blue-winged warbler (V. cyanoptera) and golden-winged warbler (V. chrysoptera)5,6,7,8-and shared patterns of plumage variation between Bachman's warbler and hybrids between those extant species, it has been suggested that Bachman's warbler might have also had a component of hybrid ancestry. Here, we use historic DNA (hDNA) and whole genomes of Bachman's warblers collected at the turn of the 20th century to address this. We combine these data with the two extant Vermivora species to examine patterns of population differentiation, inbreeding, and gene flow. In contrast to the admixture hypothesis, the genomic evidence is consistent with V. bachmanii having been a highly divergent, reproductively isolated species, with no evidence of introgression. We show that these three species have similar levels of runs of homozygosity (ROH), consistent with effects of a small long-term effective population size or population bottlenecks, with one V. bachmanii outlier showing numerous long ROH and a FROH greater than 5%. We also found-using population branch statistic estimates-previously undocumented evidence of lineage-specific evolution in V. chrysoptera near a pigmentation gene candidate, CORIN, which is a known modifier of ASIP, which is in turn involved in melanic throat and mask coloration in this family of birds. Together, these genomic results also highlight how natural history collections are such invaluable repositories of information about extant and extinct species.
Collapse
Affiliation(s)
- Andrew W Wood
- Department of Biology, Pennsylvania State University, 619 Mueller Laboratory, University Park, State College, PA 16802, USA
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, 619 Mueller Laboratory, University Park, State College, PA 16802, USA; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Irby J Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - David P L Toews
- Department of Biology, Pennsylvania State University, 619 Mueller Laboratory, University Park, State College, PA 16802, USA.
| |
Collapse
|
10
|
MacDonald BT, Elowe NH, Garvie CW, Kaushik VK, Ellinor PT. Identification of a new Corin atrial natriuretic peptide-converting enzyme substrate: Agouti-signaling protein (ASIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538495. [PMID: 37162877 PMCID: PMC10168342 DOI: 10.1101/2023.04.26.538495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Corin is a transmembrane tethered enzyme best known for processing the hormone atrial natriuretic peptide (ANP) in cardiomyocytes to control electrolyte balance and blood pressure. Loss of function mutations in Corin prevent ANP processing and lead to hypertension. Curiously, Corin loss of function variants also result in lighter coat color pigmentation in multiple species. Corin pigmentation effects are dependent on a functional Agouti locus encoding the agouti-signaling protein (ASIP) based on a genetic interaction. However, the nature of this conserved role of Corin has not been defined. Here we report that ASIP is a direct proteolytic substrate of the Corin enzyme.
Collapse
Affiliation(s)
- Bryan T. MacDonald
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nadine H. Elowe
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Colin W. Garvie
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Virendar K. Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
11
|
Shen XR, Zhang HL, Zhao XB, Wang YG, Tan XY, Gao L, Sun R, Liao XH. A Cre knockin mouse reveals specific expression of Agouti gene in mesenchymal lineage cells in multiple organs and provides a unique tool for conditional gene targeting. Transgenic Res 2023; 32:143-152. [PMID: 36637628 DOI: 10.1007/s11248-023-00334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The mouse Agouti gene encodes a paracrine signaling factor which promotes melanocytes to produce yellow instead of black pigment. It has been reported that Agouti mRNA is confined to the dermal papilla after birth in various mammalian species. In this study, we created and characterized a knockin mouse strain in which Cre recombinase was expressed in-frame with endogenous Agouti coding sequence. The Agouti-Cre mice were bred with reporter mice (Rosa26-tdTomato or Rosa26-ZsGreen) to trace the lineage of Agouti-expressing cells during development. In skin, the reporter was detected in some dermal fibroblasts at the embryonic stage and in all dermal fibroblasts postnatally. It was also expressed in all mesenchymal lineage cells in other organs/tissues, including eyes, tongue, muscle, intestine, adipose, prostate and testis. Interestingly, the reporter expression was excluded from epithelial cells in the above organs/tissues. In brain, the reporter was observed in the outermost meningeal fibroblasts. Our work helps to illustrate the Agouti expression pattern during development and provides a valuable mouse strain for conditional gene targeting in mesenchymal lineage cells in multiple organs.
Collapse
Affiliation(s)
- Xing-Ru Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - He-Li Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yang-Ge Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao-Yang Tan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, 201318, China.
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
12
|
Ferreira MS, Thurman TJ, Jones MR, Farelo L, Kumar AV, Mortimer SME, Demboski JR, Mills LS, Alves PC, Melo-Ferreira J, Good JM. The evolution of white-tailed jackrabbit camouflage in response to past and future seasonal climates. Science 2023; 379:1238-1242. [PMID: 36952420 DOI: 10.1126/science.ade3984] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The genetic basis of adaptive traits has rarely been used to predict future vulnerability of populations to climate change. We show that light versus dark seasonal pelage in white-tailed jackrabbits (Lepus townsendii) tracks snow cover and is primarily determined by genetic variation at endothelin receptor type B (EDNRB), corin serine peptidase (CORIN), and agouti signaling protein (ASIP). Winter color variation was associated with deeply divergent alleles at these genes, reflecting selection on both ancestral and introgressed variation. Forecasted reductions in snow cover are likely to induce widespread camouflage mismatch. However, simulated populations with variation for darker winter pelage are predicted to adapt rapidly, providing a trait-based genetic framework to facilitate evolutionary rescue. These discoveries demonstrate how the genetic basis of climate change adaptation can inform conservation.
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Timothy J Thurman
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alexander V Kumar
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- US Fish and Wildlife Service, Fort Collins, CO, USA
| | | | - John R Demboski
- Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- Office of Research and Creative Scholarship, University of Montana, Missoula, MT, USA
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| |
Collapse
|
13
|
Wang S, Hu T, He M, Gu Y, Cao X, Yuan Z, Lv X, Getachew T, Quan K, Sun W. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties. Front Vet Sci 2023; 10:1127501. [PMID: 36923053 PMCID: PMC10009177 DOI: 10.3389/fvets.2023.1127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/β-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/β-catenin agonist and antagonist, we demonstrated that Wnt/β-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China.,"Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
14
|
Chen L, Zhang Q, Zhang M, Yu J, Ren L, Li J, Ma S, He Y, Hu W, Peng H. Soluble Corin Predicts the Risk of Cardiovascular Disease. JACC: ASIA 2022; 2:490-501. [PMID: 36339355 PMCID: PMC9627939 DOI: 10.1016/j.jacasi.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/04/2022]
Abstract
Background As a key enzyme of the natriuretic peptides system, corin may participate in the development of cardiovascular disease (CVD). Its level in circulation predicted CVD recurrence in patients with myocardial infarction and heart failure, but no study examined this prediction in general populations. Objectives This study sought to examine the prospective association between corin and CVD in a community-based population of Chinese adults. Methods The Gusu cohort included 2,498 participants (mean age 53 years, 39% men) who were free of CVD at baseline. Serum corin was measured by enzyme-linked immunosorbent assay kits at baseline and CVD events were followed every 2 years for all participants. A competing-risks survival regression model was used to examine the association between serum corin and CVD. Results During 10 years of follow-up, 210 participants developed CVD including 88 stroke events. A higher serum corin (after log-transformation) at baseline was significantly associated with an increased risk of CVD (HR: 1.88; P = 0.019) and stroke (HR: 3.19; P = 0.014). Analysis using categorical serum corin (in quartiles) showed that participants in the highest quartile had a 62% and 179% increased risk for CVD (HR: 1.62; P = 0.024) and stroke (HR: 2.79; P = 0.004), respectively, compared with those in the lowest quartile. We did not find a significant association between serum corin and coronary heart disease. Conclusions A higher serum corin at baseline predicted a higher risk of CVD events and stroke, but not coronary heart disease, in Chinese adults, independent of conventional risk factors. Serum corin may be a predictor for stroke but the underlying mechanism needs further investigation.
Collapse
|
15
|
Zhang X, Li W, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Alters Adipose Tissue Phenotype and Impairs Thermogenesis in Mice. BIOLOGY 2022; 11:biology11081101. [PMID: 35892957 PMCID: PMC9329919 DOI: 10.3390/biology11081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Atrial natriuretic peptide (ANP) is a key regulator in body fluid balance and cardiovascular biology. In addition to its role in enhancing natriuresis and vasodilation, ANP increases lipolysis and thermogenesis in adipose tissue. Corin is a protease responsible for ANP activation. It remains unknown if corin has a role in regulating adipose tissue function. Here, we examined adipose tissue morphology and function in corin knockout (KO) mice. We observed increased weights and cell sizes in white adipose tissue (WAT), decreased levels of uncoupling protein 1 (Ucp1), a brown adipocyte marker in WAT and brown adipose tissue (BAT), and suppressed thermogenic gene expression in BAT from corin KO mice. At regular room temperature, corin KO and wild-type mice had similar metabolic rates. Upon cold exposure at 4 °C, corin KO mice exhibited impaired thermogenic responses and developed hypothermia. In BAT from corin KO mice, the signaling pathway of p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor c coactivator 1a, and Ucp1 was impaired. In cell culture, ANP treatment increased Ucp1 expression in BAT-derived adipocytes from corin KO mice. These data indicate that corin mediated-ANP activation is an important hormonal mechanism in regulating adipose tissue function and body temperature upon cold exposure in mice.
Collapse
Affiliation(s)
- Xianrui Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
| | - Meng Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- Correspondence: (Q.W.); (N.D.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Correspondence: (Q.W.); (N.D.)
| |
Collapse
|
16
|
Sox2 in the dermal papilla regulates hair follicle pigmentation. Cell Rep 2022; 40:111100. [PMID: 35858560 DOI: 10.1016/j.celrep.2022.111100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
Within the hair follicle (HF) niche, dermal papilla (DP) cells are well known for the hair induction capacity; however, DP cell signaling also regulates HF pigmentation. Here we describe how Sox2 in the DP is a key regulator of melanocyte signaling. To study the largely unknown regulatory role the DP has on hair pigmentation, we characterize leptin receptor (Lepr) expression in the skin and as a genetic tool to target the DP. Sox2 ablation in the DP results in a phenotypic switch from eumelanin to pheomelanin. Mechanistically, we describe a temporal upregulation of Agouti and downregulation of Corin, directly by Sox2 in the DP. We also show that bone morphogenic protein (BMP) signaling regulation by Sox2 is responsible for downregulating MC1R, Dct, and Tyr in melanocytes of Sox2 cKO mice. Thus, we demonstrate that Sox2 in the DP regulates not only the choice of hair pigment but also the overall HF pigment production.
Collapse
|
17
|
Abitbol M, Dargar T, Gache V. Golden cats: A never-ending story! Anim Genet 2022; 53:715-718. [PMID: 35703390 PMCID: PMC9544971 DOI: 10.1111/age.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
Abstract
In the British feline breed a golden coat modification, called light-gold, akita or copper, was reported by breeders during the 2010s. This modification restricted eumelanin to the tip of the tail and hairs showed a wideband modification. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified using a genome-wide association study. Within that region, we identified CORIN (Corin, serine peptidase) as the strongest candidate gene, since two CORIN variants have previously been identified in Siberian cats with a golden phenotype. A homozygous CORIN:c.2425C>T nonsense variant was identified in copper British cats. Segregation of the variant was consistent with recessive inheritance. This nonsense CORIN:c.2425C>T variant, located in CORIN exon 19, was predicted to produce a truncated CORIN protein - CORIN:p.(Arg809Ter) - that would lack part of the scavenger receptor domain and the trypsine-like serine protease catalytic domain. All 30 copper cats were T/T homozygous for the variant, which was also found in 20 C/T heterozygous British control cats but was absent in 340 cats from the 99 Lives dataset. Finally, genotyping of 218 cats from 12 breeds failed to identify carriers in cats from other breeds. We propose that this third CORIN:c.2425C>T variant represents the wbBSH (British recessive wideband) allele in the domestic cat.
Collapse
Affiliation(s)
- Marie Abitbol
- Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France.,Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Tanushri Dargar
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Gache
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
18
|
Abitbol M, Dargar T, Gache V. Golden cats: The story goes on. Anim Genet 2022; 53:543-545. [PMID: 35574714 DOI: 10.1111/age.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Marie Abitbol
- Univ. Lyon, VetAgro Sup, Marcy-l'Etoile, France.,Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Tanushri Dargar
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Gache
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
19
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
20
|
Jiang N, Jiang B, Zhang X, Yong W, Zhuang S. Evaluation of CORIN in patients with heart failure: A systematic review and meta-analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives: We aim to evaluate the association between CORIN and heart failure. Methods: This study used PubMed, EMBASE, Cochrane database, and China National Knowledge Database (CNKI) to search for CORIN-related full-text articles with heart failure patients. We drew forest plots, performed sensitivity and bias analyses based on the included data. Next, we used Review Manager 5.2 software to assess the heterogeneity among selected articles. Results: Our meta-analysis results showed there was significant relationship between CORIN and heart failure (HF). There was significant difference of CORIN between heart failure group and control group (MD = −293.88, 95% confidence interval [-380.26, −207.49], p < .00001; heterogeneity p < .0001, I2= 97%) and there was significant difference in CORIN between ischemic group and non-ischemic group (MD = 88.79, 95% confidence interval [70.46107.12], heterogeneity p < .000, p = 0.94, l2= 0%). In subgroup analysis, there were significant differences in three different HF levels. Limited publication bias was observed, and this study was robust. Conclusion: In short, the results showed that CORIN was closely related with heart failure and might be helpful in the diagnosis of heart failure.
Collapse
Affiliation(s)
- Nianxin Jiang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Jiang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yong
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Thompson SM, Phan QM, Winuthayanon S, Driskell IM, Driskell RR. Parallel single cell multi-omics analysis of neonatal skin reveals transitional fibroblast states that restricts differentiation into distinct fates. J Invest Dermatol 2021; 142:1812-1823.e3. [PMID: 34922949 DOI: 10.1016/j.jid.2021.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multi-omics analysis by processing neonatal murine skin for single-cell ATAC-sequencing (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages based on transcriptome profiling, as previously published. However, scATAC-seq analysis of neonatal fibroblast lineage markers, such as, Dpp4/CD26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggests that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary, reticular, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our scATAC-seq analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates are regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multi-omics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.
Collapse
Affiliation(s)
- Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Quan M Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA. https://twitter.com/Driskellab
| |
Collapse
|
22
|
Aamar E, Laron EA, Asaad W, Harshuk-Shabso S, Enshell-Seijffers D. Hair-follicle mesenchymal stem-cell activity during homeostasis and wound healing. J Invest Dermatol 2021; 141:2797-2807.e6. [PMID: 34166673 DOI: 10.1016/j.jid.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The mesenchymal components of the hair follicle, the dermal papilla (DP) and dermal sheath (DS), are maintained by hair-follicle dermal stem cells (hfDSCs), but the position of this stem cell population throughout the hair cycle, its contribution to the maintenance of the dermis and the existence of a migratory axis from the DP to the dermis remain unclear. Here we show that during homeostasis DP and DS cells are confined to their compartments, and during the regression phase of the hair cycle, some undergo apoptosis and subsequently are internalized by nearby adipocytes. In contrast, during wound healing, DP/DS cells move towards the wound, but do not directly participate in follicle neogenesis. Furthermore, hfDSCs, driving the cyclic renewal of the DS during the hair cycle, are heterogeneous and housed during the growth phase within the most proximal part of the DS. Our analysis provides insight into the mechanisms of tissue maintenance and unravels a previously-unknown potential function of adipocytes in phagocytosis.
Collapse
Affiliation(s)
- Emil Aamar
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Efrat Avigad Laron
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Wisal Asaad
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sarina Harshuk-Shabso
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Enshell-Seijffers
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
23
|
Beauvois H, Dufaure de Citres C, Gache V, Abitbol M. Siberian cats help in solving part of the mystery surrounding golden cats. Anim Genet 2021; 52:482-491. [PMID: 33970502 DOI: 10.1111/age.13076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/01/2022]
Abstract
Golden cats have been appreciated since the beginning of the cat fancy. Golden is a modification of the tabby coat. In the Siberian breed, a specific golden phenotype, named sunshine, has been described. Sunshine tabby cats exhibit a warm tone of tabby, a pink nose lacking the black lining and a large light cream area around the nose. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study (GWAS) and homozygosity mapping. Within that region, we identified CORIN (Corin, serine peptidase) as a strong candidate gene, since CORIN variants have been identified in mice and tigers with a golden phenotype and CORIN has been described as a modifier of the ASIP (Agouti Signaling Protein) pathway. A homozygous CORIN:c.2383C>T missense variant was identified in sunshine tabby cats. Segregation of the variant was consistent with recessive inheritance. The variant was also found in three Kurilian bobtail cats and in two ToyBob cats from the 99 Lives dataset but genotyping of 106 cats from 13 breeds failed to identify carriers in cats from other breeds. The CORIN:c.2383C>T variant was predicted to change an arginine to a cysteine at position 795 in the protein: CORIN:p.(Arg795Cys). Finally, hair observation in Siberian cats was consistent with elongated ASIP signaling as golden hair showed a large yellow band instead of the short subapical one usually observed in agouti hair. These results support an association of the Siberian sunshine modification with the CORIN:c.2383C>T variant. The Siberian cat has helped us to decipher one of the golden phenotypes observed in cats and we propose that the CORIN:c.2383C>T variant represents the wbSIB (Siberian recessive wideband) allele in the domestic cat.
Collapse
Affiliation(s)
- H Beauvois
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France
| | | | - V Gache
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| | - M Abitbol
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France.,Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| |
Collapse
|
24
|
He M, Zhou T, Niu Y, Feng W, Gu X, Xu W, Zhang S, Wang Z, Zhang Y, Wang C, Dong L, Liu M, Dong N, Wu Q. The protease corin regulates electrolyte homeostasis in eccrine sweat glands. PLoS Biol 2021; 19:e3001090. [PMID: 33591965 PMCID: PMC7909636 DOI: 10.1371/journal.pbio.3001090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/26/2021] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.
Collapse
Affiliation(s)
- Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Department of Nephrology, the People’s Hospital of Suzhou New District, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wansheng Feng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenting Xu
- International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| |
Collapse
|
25
|
Daszczuk P, Mazurek P, Pieczonka TD, Olczak A, Boryń ŁM, Kobielak K. An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities. Front Cell Dev Biol 2020; 8:595178. [PMID: 33363148 PMCID: PMC7758224 DOI: 10.3389/fcell.2020.595178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
This article explores and summarizes recent progress in and the characterization of main players in the regulation and cyclic regeneration of hair follicles. The review discusses current views and discoveries on the molecular mechanisms that allow hair follicle stem cells (hfSCs) to synergistically integrate homeostasis during quiescence and activation. Discussion elaborates on a model that shows how different populations of skin stem cells coalesce intrinsic and extrinsic mechanisms, resulting in the maintenance of stemness and hair regenerative potential during an organism’s lifespan. Primarily, we focus on the question of how the intrinsic oscillation of gene networks in hfSCs sense and respond to the surrounding niche environment. The review also investigates the existence of a cell-autonomous mechanism and the reciprocal interactions between molecular signaling axes in hfSCs and niche components, which demonstrates its critical driving force in either the activation of whole mini-organ regeneration or quiescent homeostasis maintenance. These exciting novel discoveries in skin stem cells and the surrounding niche components propose a model of the intrinsic stem cell oscillator which is potentially instructive for translational regenerative medicine. Further studies, deciphering of the distribution of molecular signals coupled with the nature of their oscillation within the stem cells and niche environments, may impact the speed and efficiency of various approaches that could stimulate the development of self-renewal and cell-based therapies for hair follicle stem cell regeneration.
Collapse
Affiliation(s)
- Patrycja Daszczuk
- Laboratory of Stem Cells, Development and Tissue Regeneration, Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Paula Mazurek
- Laboratory of Stem Cells, Development and Tissue Regeneration, Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Tomasz D Pieczonka
- Laboratory of Stem Cells, Development and Tissue Regeneration, Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Alicja Olczak
- Laboratory of Stem Cells, Development and Tissue Regeneration, Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Łukasz M Boryń
- Laboratory of Stem Cells, Development and Tissue Regeneration, Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Krzysztof Kobielak
- Laboratory of Stem Cells, Development and Tissue Regeneration, Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| |
Collapse
|
26
|
Phan QM, Fine GM, Salz L, Herrera GG, Wildman B, Driskell IM, Driskell RR. Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds. eLife 2020; 9:e60066. [PMID: 32990218 PMCID: PMC7524549 DOI: 10.7554/elife.60066] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Scars are a serious health concern for burn victims and individuals with skin conditions associated with wound healing. Here, we identify regenerative factors in neonatal murine skin that transforms adult skin to regenerate instead of only repairing wounds with a scar, without perturbing development and homeostasis. Using scRNA-seq to probe unsorted cells from regenerating, scarring, homeostatic, and developing skin, we identified neonatal papillary fibroblasts that form a transient regenerative cell type that promotes healthy skin regeneration in young skin. These fibroblasts are defined by the expression of a canonical Wnt transcription factor Lef1 and using gain- and loss of function genetic mouse models, we demonstrate that Lef1 expression in fibroblasts primes the adult skin macroenvironment to enhance skin repair, including regeneration of hair follicles with arrector pili muscles in healed wounds. Finally, we share our genomic data in an interactive, searchable companion website (https://skinregeneration.org/). Together, these data and resources provide a platform to leverage the regenerative abilities of neonatal skin to develop clinically tractable solutions that promote the regeneration of adult tissue.
Collapse
Affiliation(s)
- Quan M Phan
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Gracelyn M Fine
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Lucia Salz
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Gerardo G Herrera
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Ben Wildman
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
- Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| |
Collapse
|
27
|
Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci U S A 2020; 117:19425-19434. [PMID: 32719113 DOI: 10.1073/pnas.2003913117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to the CORIN promoter and enhances the promoter activity. Disruption of the KLF17 gene in the endometrial cells abolishes CORIN expression. In mice, Klf17 is up-regulated in the pregnant uterus. Klf17 deficiency prevents uterine Corin expression in pregnancy. Moreover, Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulating Corin expression and uterine physiology in pregnancy.
Collapse
|
28
|
Betriu N, Jarrosson-Moral C, Semino CE. Culture and Differentiation of Human Hair Follicle Dermal Papilla Cells in a Soft 3D Self-Assembling Peptide Scaffold. Biomolecules 2020; 10:biom10050684. [PMID: 32354097 PMCID: PMC7277435 DOI: 10.3390/biom10050684] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023] Open
Abstract
Hair follicle dermal papilla cells (HFDPC) are a specialized cell population located in the bulge of the hair follicle with unique characteristics such as aggregative behavior and the ability to induce new hair follicle formation. However, when expanded in conventional 2D monolayer culture, their hair inductive potency is rapidly lost. Different 3D culture techniques, including cell spheroid formation, have been described to restore, at least partially, their original phenotype, and therefore, their hair inductive ability once transplanted into a recipient skin. Moreover, hair follicle dermal papilla cells have been shown to differentiate into all mesenchymal lineages, but their differentiation potential has only been tested in 2D cultures. In the present work, we have cultured HFDPC in the 3D self-assembling peptide scaffold RAD16-I to test two different tissue engineering scenarios: restoration of HFDPC original phenotype after cell expansion and osteogenic and adipogenic differentiation. Experimental results showed that the 3D environment provided by RAD16-I allowed the restoration of HFDPC signature markers such as alkaline phosphatase, versican and corin. Moreover, RAD16-I supported, in the presence of chemical inductors, three-dimensional osteogenic and adipogenic differentiation. Altogether, this study suggests a potential 3D culture platform based on RAD16-I suitable for the culture, original phenotype recovery and differentiation of HFDPC.
Collapse
|
29
|
Abstract
Of all the big cats, or perhaps of all the endangered wildlife, the tiger may be both the most charismatic and most well-recognized flagship species in the world. The rapidly changing field of molecular genetics, particularly advances in genome sequencing technologies, has provided new tools to reconstruct what characterizes a tiger. Here we review how applications of molecular genomic tools have been used to depict the tiger's ancestral roots, phylogenetic hierarchy, demographic history, morphological diversity, and genetic patterns of diversification on both temporal and geographical scales. Tiger conservation, stabilization, and management are important areas that benefit from use of these genome resources for developing survival strategies for this charismatic megafauna both in situ and ex situ.
Collapse
Affiliation(s)
- Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
30
|
Joost S, Annusver K, Jacob T, Sun X, Dalessandri T, Sivan U, Sequeira I, Sandberg R, Kasper M. The Molecular Anatomy of Mouse Skin during Hair Growth and Rest. Cell Stem Cell 2020; 26:441-457.e7. [PMID: 32109378 DOI: 10.1016/j.stem.2020.01.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/07/2019] [Accepted: 01/17/2020] [Indexed: 10/24/2022]
Abstract
Skin homeostasis is orchestrated by dozens of cell types that together direct stem cell renewal, lineage commitment, and differentiation. Here, we use single-cell RNA sequencing and single-molecule RNA FISH to provide a systematic molecular atlas of full-thickness skin, determining gene expression profiles and spatial locations that define 56 cell types and states during hair growth and rest. These findings reveal how the outer root sheath (ORS) and inner hair follicle layers coordinate hair production. We found that the ORS is composed of two intermingling but transcriptionally distinct cell types with differing capacities for interactions with stromal cell types. Inner layer cells branch from transcriptionally uncommitted progenitors, and each lineage differentiation passes through an intermediate state. We also provide an online tool to explore this comprehensive skin cell atlas, including epithelial and stromal cells such as fibroblasts, vascular, and immune cells, to spur further discoveries in skin biology.
Collapse
Affiliation(s)
- Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Jacob
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tim Dalessandri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Unnikrishnan Sivan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inês Sequeira
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
31
|
Qiu W, Chuong CM, Lei M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp Dermatol 2019; 28:395-405. [PMID: 30537004 DOI: 10.1111/exd.13856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Zhang H, Mo X, Zhou Z, Zhu Z, HuangFu X, Xu T, Wang A, Guo Z, Zhang Y. Smoking modifies the effect of two independent SNPs rs5063 and rs198358 of NPPA on central obesity in the Chinese Han population. J Genet 2018. [DOI: 10.1007/s12041-018-0992-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Jiang J, Zhou Q, Sun M, Zuo F, Jiang J. Corin is highly expressed in atherosclerosis models. Biochem Biophys Res Commun 2018; 504:440-446. [PMID: 30195494 DOI: 10.1016/j.bbrc.2018.08.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Corin is a serine protease mainly expressed in the heart, where it regulates blood pressure and cardiac function through activating pro-atrial natriuretic peptide (pro-ANP) to ANP. Its expression has also been detected in non-cardiac tissues. However, there is no report so far about the distribution and function of corin in aorta and in related diseases such as atherosclerosis. This study was the first to explore corin expression in aorta both under normal conditions and in atherosclerosis models. In vivo, we found corin had a basal level of expression in aortas, mainly in intimal endothelial cells and was significantly elevated in mouse atherosclerosis model. Moreover, we observed pro-ANP, the specific substrate of corin, was also expressed in mice aortas and increased in mouse atherosclerosis model. In vitro, we further demonstrated corin expression in cultured vascular endothelial cells and its induced expression after ox-LDL stimulation. Our results suggested that corin may play important roles in aorta physiology and in the pathophysiological process of atherosclerosis in an autocrine manner and has potential clinical value for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, Shandong, PR China
| | - Quan Zhou
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, Shandong, PR China
| | - Mingcheng Sun
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, Shandong, PR China
| | - Fuwen Zuo
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, Shandong, PR China
| | - Jingjing Jiang
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
34
|
Zhang H, Mo X, Zhou Z, Zhu Z, Huangfu X, Xu T, Wang A, Guo Z, Zhang Y. Smoking modifies the effect of two independent SNPs rs5063 and rs198358 of NPPA on central obesity in the Chinese Han population. J Genet 2018; 97:987-994. [PMID: 30262711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Obesity is the third most risk factors of death in the middle-income and high-income countries. Whether DNA polymorphisms in CORIN and NPPA genes were associated with obesity, and if these associations could be modified by smoking in the Chinese Han population were unknown, hence a group of 1507 participants were recruited and genotyped for 12 tag single-nucleotide polymorphisms (SNPs) of CORIN and NPPA genes. Regression models were used to test the associations of SNPs with obesity. The potential SNP-smoking interactions were detected in regression models. NPPA SNPs rs5063 and rs198358 were associated with the body mass index (BMI) (P = 0.0053 and 0.0037, respectively). Rs198358 was associated with obesity in both univariate- and multivariable-adjusted analyses (P = 0.0138 and 0.0173, respectively). Rs5063 was associated with central obesity in both univariate- and multivariable-adjusted analyses (P = 0.0454 and 0.0361, respectively). Significant interactions between cigarette smoking and rs5063 and rs198358 were detected (P = 0.0019 and 0.0006, respectively). In subgroup analyses, rs5063 and rs198358 were associated with central obesity in smokers (P = 0.0081 and 0.0037, respectively). The results of our study demonstrated that the effect of NPPA SNPs rs5063 and rs198358 on central obesity might be modified by smoking in the Chinese Han population. Further studies are needed to confirm the associations and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Avigad Laron E, Aamar E, Enshell-Seijffers D. The Serine Protease Activity of Corin Is Required for Normal Pigment Type Switching. J Invest Dermatol 2018; 139:257-259. [PMID: 30120938 DOI: 10.1016/j.jid.2018.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Efrat Avigad Laron
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Emil Aamar
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - David Enshell-Seijffers
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
36
|
Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J Invest Dermatol 2018; 138:811-825. [PMID: 29391249 PMCID: PMC5869055 DOI: 10.1016/j.jid.2018.01.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis.
Collapse
Affiliation(s)
- Christina Philippeos
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Stephanie B Telerman
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Bénédicte Oulès
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Angela O Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Tanya J Shaw
- King's College London Centre for Molecular and Cellular Biology of Inflammation, London, UK
| | - Raul Elgueta
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Giovanna Lombardi
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; School of Molecular Medicine, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mark Soldin
- Department of Plastic and Reconstructive Surgery, St. George's National Health Service Trust, London, UK
| | - Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; St. John's Institute of Dermatology, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
37
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
38
|
Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest 2018; 128:26-35. [PMID: 29293096 DOI: 10.1172/jci93555] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblasts synthesize the extracellular matrix of connective tissue and play an essential role in maintaining the structural integrity of most tissues. Researchers have long suspected that fibroblasts exhibit functional specialization according to their organ of origin, body site, and spatial location. In recent years, a number of approaches have revealed the existence of fibroblast subtypes in mice. Here, we discuss fibroblast heterogeneity with a focus on the mammalian dermis, which has proven an accessible and tractable system for the dissection of these relationships. We begin by considering differences in fibroblast identity according to anatomical site of origin. Subsequently, we discuss new results relating to the existence of multiple fibroblast subtypes within the mouse dermis. We consider the developmental origin of fibroblasts and how this influences heterogeneity and lineage restriction. We discuss the mechanisms by which fibroblast heterogeneity arises, including intrinsic specification by transcriptional regulatory networks and epigenetic factors in combination with extrinsic effects of the spatial context within tissue. Finally, we discuss how fibroblast heterogeneity may provide insights into pathological states including wound healing, fibrotic diseases, and aging. Our evolving understanding suggests that ex vivo expansion or in vivo inhibition of specific fibroblast subtypes may have important therapeutic applications.
Collapse
Affiliation(s)
- Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, United Kingdom.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, United Kingdom
| |
Collapse
|
39
|
Sun C, Shen L, Sha W, Zhou L, Xu D, Dong N. IL-1β increases urinary corin in patients with primary proteinuric kidney diseases and in 293 cells. Exp Ther Med 2017; 15:487-493. [PMID: 29387201 DOI: 10.3892/etm.2017.5398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022] Open
Abstract
Corin is a serine protease that is important for the regulation of blood pressure and water balance. Corin was initially discovered in the heart, however, it has also been detected in kidney cells, though its function in the kidneys is unclear. To further investigate the function of corin in the kidney, the present study analyzed the levels of corin in urine and blood samples collected from normal individuals and patients with primary proteinuric diseases. The associations between the levels of corin, and the cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were then assessed. The results demonstrated that corin was detectable in the urine and plasma following an enzyme-linked immunosorbent assay; the level of corin in the urine was associated with the level of urinary β2-microglobulin (P=0.01), which was indicative of renal tubular injury. When compared with normal individuals, the levels of urinary corin in proteinuric patients were markedly increased (P=0.02), and were also associated with IL-1β (P=0.03). This correlation between corin and IL-1β was confirmed in vitro using 293 cells. As the IL-1β concentrations increased (0, 0.1, 1, 10 ng/ml), an elevation in the level of corin was observed in the culture medium (P<0.01); however, the amount of corin was not markedly altered in the cell lysate (P>0.05). In addition, when TNF-α reached 10 ng/ml, the level of corin in the medium increased significantly when compared with the control group (0 ng/ml; P=0.02), however, no significant difference in corin levels was detected in the cell lysate. The results suggest that the cytokines IL-1β and TNF-α may increase urinary corin in patients with primary proteinuric kidney diseases. Cytokines may accelerate corin shedding from the cell membrane of renal tubule epithelial cells. These findings indicate that corin may be associated with kidney inflammation and injury.
Collapse
Affiliation(s)
- Ci Sun
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wengang Sha
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ningzheng Dong
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
40
|
Michel L, Reygagne P, Benech P, Jean-Louis F, Scalvino S, Ly Ka So S, Hamidou Z, Bianovici S, Pouch J, Ducos B, Bonnet M, Bensussan A, Patatian A, Lati E, Wdzieczak-Bakala J, Choulot JC, Loing E, Hocquaux M. Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways. Br J Dermatol 2017; 177:1322-1336. [PMID: 28403520 DOI: 10.1111/bjd.15577] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Male androgenetic alopecia (AGA) is the most common form of hair loss in men. It is characterized by a distinct pattern of progressive hair loss starting from the frontal area and the vertex of the scalp. Although several genetic risk loci have been identified, relevant genes for AGA remain to be defined. OBJECTIVES To identify biomarkers associated with AGA. METHODS Molecular biomarkers associated with premature AGA were identified through gene expression analysis using cDNA generated from scalp vertex biopsies of hairless or bald men with premature AGA, and healthy volunteers. RESULTS This monocentric study reveals that genes encoding mast cell granule enzymes, inflammatory mediators and immunoglobulin-associated immune mediators were significantly overexpressed in AGA. In contrast, underexpressed genes appear to be associated with the Wnt/β-catenin and bone morphogenic protein/transforming growth factor-β signalling pathways. Although involvement of these pathways in hair follicle regeneration is well described, functional interpretation of the transcriptomic data highlights different events that account for their inhibition. In particular, one of these events depends on the dysregulated expression of proopiomelanocortin, as confirmed by polymerase chain reaction and immunohistochemistry. In addition, lower expression of CYP27B1 in patients with AGA supports the notion that changes in vitamin D metabolism contributes to hair loss. CONCLUSIONS This study provides compelling evidence for distinct molecular events contributing to alopecia that may pave the way for new therapeutic approaches.
Collapse
Affiliation(s)
- L Michel
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | - P Reygagne
- Centre Sabouraud, F-75475, Paris, France
| | - P Benech
- NICN UMR 7259 CNRS Faculté de Médecine, 13344, Marseille, France.,GENEX, 91160, Longjumeau, France
| | - F Jean-Louis
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | - S Scalvino
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | - S Ly Ka So
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France
| | - Z Hamidou
- Centre Sabouraud, F-75475, Paris, France
| | | | - J Pouch
- Plateforme de qPCR à Haut Débit Genomic Paris Centre, IBENS, 75005, Paris, France
| | - B Ducos
- Plateforme de qPCR à Haut Débit Genomic Paris Centre, IBENS, 75005, Paris, France.,Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, University Paris Diderot, Sorbonne Paris-Cité, CNRS, 75005, Paris, France
| | - M Bonnet
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France
| | - A Bensussan
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | | | - E Lati
- GENEX, 91160, Longjumeau, France.,Laboratoire BIO-EC, 91160, Longjumeau, France
| | | | | | - E Loing
- IEB-Lucas Meyer Cosmetics, 31520, Ramonville, France
| | - M Hocquaux
- IEB-Lucas Meyer Cosmetics, 31520, Ramonville, France
| |
Collapse
|
41
|
|
42
|
Gluckman TL, Mundy NI. The differential expression of MC1R regulators in dorsal and ventral quail plumages during embryogenesis: Implications for plumage pattern formation. PLoS One 2017; 12:e0174714. [PMID: 28355309 PMCID: PMC5371383 DOI: 10.1371/journal.pone.0174714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/14/2017] [Indexed: 12/03/2022] Open
Abstract
Melanin pigmentation patterns are ubiquitous in animals and function in crypsis, physical protection, thermoregulation and signalling. In vertebrates, pigmentation patterns formed over large body regions as well as within appendages (hair/feathers) may be due to the differential distribution of pigment producing cells (melanocytes) and/or regulation of the melanin synthesis pathway. We took advantage of the pigmentation patterns of Japanese quail embryos (pale ventrum and patterned feathers dorsally) to explore the role of genes and their transcripts in regulating the function of the melanocortin-1-receptor (MC1R) via 1. activation: pro-opiomelanocortin (POMC), endoproteases prohormone convertase 1 (PC1) and 2 (PC2), and 2. inhibition—agouti signaling and agouti-related protein (ASIP and AGRP, respectively). Melanocytes are present in all feather follicles at both 8 and 12 days post-fertilisation (E8/E12), so differential deposition of melanocytes is not responsible for pigmentation patterns in embryonic quail. POMC transcripts expressed were a subset of those found in chicken and POMC expression within feather follicles was strong. PC1 was not expressed in feather follicles. PC2 was strongly expressed in all feather follicles at E12. ASIP transcript expression was variable and we report four novel ASIP transcripts. ASIP is strongly expressed in ventral feather follicles, but not dorsally. AGRP expression within feather follicles was weak. These results demonstrate that the pale-bellied quail phenotype probably involves inhibition of MC1R, as found previously. However, quail may require MC1R activation for eumelanogenesis in dorsal feathers which may have important implications for an understanding of colour pattern formation in vertebrates.
Collapse
Affiliation(s)
- Thanh-Lan Gluckman
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
- * E-mail:
| | - Nicholas I. Mundy
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom
| |
Collapse
|
43
|
The Transmembrane Serine Protease HAT-like 4 Is Important for Epidermal Barrier Function to Prevent Body Fluid Loss. Sci Rep 2017; 7:45262. [PMID: 28338078 PMCID: PMC5364460 DOI: 10.1038/srep45262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
Membrane-bound proteases are essential for epidermal integrity. Human airway trypsin-like protease 4 (HAT-L4) is a type II transmembrane serine protease. Currently, its biochemical property, cellular distribution and physiological function remain unknown. Here we examined HAT-L4 expression and function in vitro and in vivo. In Western analysis, HAT-L4 expressed in transfected CHO cells appeared as a 48-kDa protein. Flow cytometry confirmed HAT-L4 expression on the cell surface with the expected membrane topology. RT-PCR and immunostaining experiments indicated that HAT-L4 was expressed in epithelial cells and exocrine glands in tissues including skin, esophagus, trachea, tongue, eye, bladder, testis and uterus. In the skin, HAT-L4 expression was abundant in keratinocytes and sebaceous glands. We generated HAT-L4 knockout mice by disrupting the Tmprss11f gene encoding HAT-L4. HAT-L4 knockout mice were viable and fertile. No defects were found in HAT-L4 knockout mice in hair growth, wound healing, water repulsion and body temperature regulation. Compared with wild-type controls, HAT-L4-deficient newborn mice had greater body fluid loss and higher mortality in a trans-epidermal body fluid loss test. In metabolic studies, HAT-L4-deficient adult mice drank water more frequently than wild-type controls did. These results indicate that HAT-L4 is important in epidermal barrier function to prevent body fluid loss.
Collapse
|
44
|
Zhu Z, Zhang Q, Peng H, Zhong C, Liu Y, Huangfu X, Tian Y, Chao X, Wang A, Jin J, Zhang Y. Plasma proANP 1-98 levels are positively associated with central obesity: A cross-sectional study in a general population of China. Clin Chim Acta 2017; 469:26-30. [PMID: 28327369 DOI: 10.1016/j.cca.2017.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Atrial natriuretic peptide (ANP) and its prohormone activating enzyme are associated with central obesity, suggesting there may be a potential relationship between proANP1-98 and central obesity. However, the association is still lack of population-based evidence. We explored the association in a general population of China. METHODS We measured plasma proANP1-98, waist circumference and other traditional biomarkers in 2203 participants aged≥30y. Multivariate logistic regression models were used to determine the association between plasma proANP1-98 and central obesity, and odds ratio (OR) and 95% confidence interval (CI) were calculated. RESULTS High proANP1-98 was significantly associated with increased risk of central obesity in participants, and the multivariate adjusted OR (95% CI) of central obesity associated with the second, third and fourth quartiles of proANP1-98 were 1.33 (1.03-1.72), 1.69 (1.31-2.19) and 1.76 (1.35-2.29), respectively, compared with the lowest quartile of proANP1-98. There was a dose-response relationship between proANP1-98 and risk of central obesity among the participants (Ptrend<0.001). Sensitivity analyses further confirmed these associations. Adding proANP1-98 to a model containing conventional risk factors improved discriminatory power of central obesity (as shown by significant improvement in continuous NRI and IDI). CONCLUSIONS Contrary to known reduced ANP levels in central obesity, we found that plasma proANP1-98 was positively associated with central obesity, suggesting that elevated plasma proANP1-98 may be a marker or a risk factor for central obesity.
Collapse
Affiliation(s)
- Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Qiu Zhang
- Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yan Liu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xinfeng Huangfu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yunfan Tian
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xiangqin Chao
- Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jianhua Jin
- Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China..
| |
Collapse
|
45
|
|
46
|
Abstract
PURPOSE OF REVIEW Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), an important hormone in regulating salt-water balance and blood pressure. This review focuses on the regulation of corin function and potential roles of corin defects in hypertensive, heart, and renal diseases. RECENT FINDINGS Proprotein convertase subtilisin/kexin-6 has been identified as a primary enzyme that converts zymogen corin to an active protease. Genetic variants that impair corin intracellular trafficking, cell surface expression, and zymogen activation have been found in patients with hypertension, cardiac hypertrophy, and pre-eclampsia. Reduced corin expression has been detected in animal models of cardiomyopathies and in human failing hearts. Low levels of circulating soluble corin have been reported in patients with heart disease and stroke. Corin, ANP and natriuretic peptide receptor-A mRNAs, and proteins have been colocalized in human renal segments, suggesting a corin-ANP autocrine function in the kidney. SUMMARY Corin is a key enzyme in the natriuretic peptide system. The latest findings indicate that corin-mediated ANP production may act in a tissue-specific manner to regulate cardiovascular and renal function. Corin defects may contribute to major diseases such as hypertension, heart failure, pre-eclampsia, and kidney disease.
Collapse
Affiliation(s)
- Hui Li
- Cyrus Tang Hematology Center, MOE Engineering Center of Hematological Disease, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, MOE Engineering Center of Hematological Disease, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, MOE Engineering Center of Hematological Disease, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Sari ARP, Rufaut NW, Jones LN, Sinclair RD. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology 2016; 8:121-9. [PMID: 27625564 PMCID: PMC5007918 DOI: 10.4103/0974-7753.188966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells.
Collapse
Affiliation(s)
| | - Nicholas Wolfgang Rufaut
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Dermatology, Epworth Hospital, Melbourne, Victoria, Australia
| | - Leslie Norman Jones
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Dermatology, Epworth Hospital, Melbourne, Victoria, Australia
| | - Rodney Daniel Sinclair
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Dermatology, Epworth Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Zhou L, Yang K, Xu M, Andl T, Millar SE, Boyce S, Zhang Y. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity. FEBS J 2016; 283:2823-35. [PMID: 27312243 DOI: 10.1111/febs.13784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022]
Abstract
Bioengineering hair follicles using cells isolated from human tissue remains a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of growth factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and integrin α8. After a 2-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin compared to control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was up-regulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells.
Collapse
Affiliation(s)
- Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, OH, USA
| | - Kun Yang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, OH, USA
| | - Mingang Xu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Steven Boyce
- Department of Surgery, College of Medicine, University of Cincinnati, OH, USA.,Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, OH, USA
| |
Collapse
|
49
|
Huang CF, Chang YJ, Hsueh YY, Huang CW, Wang DH, Huang TC, Wu YT, Su FC, Hughes M, Chuong CM, Wu CC. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction. Sci Rep 2016; 6:26436. [PMID: 27210831 PMCID: PMC4876394 DOI: 10.1038/srep26436] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types.
Collapse
Affiliation(s)
- Chin-Fu Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Ju Chang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic Surgery, National Cheng Kung University Hospital, Tainan, 701, Taiwan
| | - Chia-Wei Huang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Duo-Hsiang Wang
- Division of Plastic Surgery, National Cheng Kung University Hospital, Tainan, 701, Taiwan
| | - Tzu-Chieh Huang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Ting Wu
- Division of Plastic Surgery, National Cheng Kung University Hospital, Tainan, 701, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Michael Hughes
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Ming Chuong
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Pathology, University of Southern California, California 90033, USA
| | - Chia-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan.,International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
50
|
Yin T, Li H, Zhang Y, Yang N, Sun L, Cao Y, Xiang Y. Sensitive and low-background electrochemical assay of corin activity via supramolecular recognition and rolling circle amplification. Anal Chim Acta 2016; 919:28-33. [PMID: 27086096 DOI: 10.1016/j.aca.2016.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Corin is an important member of type II transmembrane serine proteases that is involved in a variety of cardiovascular and pregnancy-related diseases. Herein, a sensitive and low-background electrochemical method is proposed to assay the activity of corin. In principle, a peptide comprising both the substrate motif of corin and binding site of cucurbit[8]uril (CB[8]) is first designed and immobilized on the electrode surface. Thereafter, via CB[8]-mediated supramolecular recognition, a DNA-primer is recruited, subsequently triggering the rolling circle amplification (RCA) reaction. In this way, a succeeding propagation of DNA strands is achieved on the electrode surface, which would produce remarkable repelling effect against the electrochemical species [Fe(CN)6](3-/4-), and thereby yield a highly minimized background signal. However, in the presence of activated corin, the peptide is specifically recognized and cleaved, breaching the recruitment of DNA primer as well as the RCA reaction, which decreases the repulsion to [Fe(CN)6](3-/4-), leading to a remarkable electrochemical response. As a result, the proposed assay method can sensitively determine the activity of corin with a detection limit of 0.92 pM, and can further be directly used in maternal plasma samples. Therefore, this method may provide a promising tool for pathological research and clinical diagnosis of corin-related diseases.
Collapse
Affiliation(s)
- Tingting Yin
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Zhang
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Nana Yang
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Lizhou Sun
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China.
| | - Ya Cao
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|