1
|
Todorov H, Weißbach S, Schlichtholz L, Mueller H, Hartwich D, Gerber S, Winter J. Stage-specific expression patterns and co-targeting relationships among miRNAs in the developing mouse cerebral cortex. Commun Biol 2024; 7:1366. [PMID: 39433948 PMCID: PMC11493953 DOI: 10.1038/s42003-024-07092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
microRNAs are crucial regulators of brain development, however, miRNA regulatory networks are not sufficiently well characterized. By performing small RNA-seq of the mouse embryonic cortex at E14, E17, and P0 as well as in neural progenitor cells and neurons, here we detected clusters of miRNAs that were co-regulated at distinct developmental stages. miRNAs such as miR-92a/b acted as hubs during early, and miR-124 and miR-137 during late neurogenesis. Notably, validated targets of P0 hub miRNAs were enriched for downregulated genes related to stem cell proliferation, negative regulation of neuronal differentiation and RNA splicing, among others, suggesting that miRNAs are particularly important for modulating transcriptional programs of crucial factors that guide the switch to neuronal differentiation. As most genes contain binding sites for more than one miRNA, we furthermore constructed a co-targeting network where numerous miRNAs shared more targets than expected by chance. Using luciferase reporter assays, we demonstrated that simultaneous binding of miRNA pairs to neurodevelopmentally relevant genes exerted an enhanced transcriptional silencing effect compared to single miRNAs. Taken together, we provide a comprehensive resource of miRNA longitudinal expression changes during murine corticogenesis. Furthermore, we highlight several potential mechanisms through which miRNA regulatory networks can shape embryonic brain development.
Collapse
Affiliation(s)
- Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephan Weißbach
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Schlichtholz
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Hanna Mueller
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dewi Hartwich
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Casella R, Miniello A, Buta F, Yacoub MR, Nettis E, Pioggia G, Gangemi S. Atopic Dermatitis and Autism Spectrum Disorders: Common Role of Environmental and Clinical Co-Factors in the Onset and Severity of Their Clinical Course. Int J Mol Sci 2024; 25:8936. [PMID: 39201625 PMCID: PMC11354676 DOI: 10.3390/ijms25168936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Increasing evidence suggests an association between atopic dermatitis, the most chronic inflammatory disease of the skin, and autism spectrum disorders, which are a group of neurodevelopmental diseases. Inflammation and immune dysregulation associated with genetic and environmental factors seem to characterize the pathophysiological mechanisms of both conditions. We conducted a literature review of the PubMed database aimed at identifying the clinical features and alleged risk factors that could be used in clinical practice to predict the onset of ASD and/or AD or worsen their prognosis in the context of comorbidities.
Collapse
Affiliation(s)
- Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Federica Buta
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Hospital San Raffaele, 20132 Milan, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| |
Collapse
|
3
|
Ma L, Huo Y, Tang Q, Wang X, Wang W, Wu D, Li Y, Chen L, Wang S, Zhu Y, Wang W, Liu Y, Xu N, Chen L, Yu G, Chen J. Human Breast Milk Exosomal miRNAs are Influenced by Premature Delivery and Affect Neurodevelopment. Mol Nutr Food Res 2024; 68:e2300113. [PMID: 38644336 DOI: 10.1002/mnfr.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
SCOPE This study investigates the exosomal microRNA (miRNA) profiles of term and preterm breast milk, including the most abundant and differentially expressed (DE) miRNAs, and their impact on neurodevelopment in infants. METHODS AND RESULTS Mature milk is collected from the mothers of term and preterm infants. Using high-throughput sequencing and subsequent data analysis, exosomal miRNA profiles of term and preterm human breast milk (HBM) are acquired and it is found that the let-7 and miR-148 families are the most abundant miRNAs. Additionally, 23 upregulated and 15 downregulated miRNAs are identified. MiR-3168 is the most upregulated miRNA in preterm HBM exosome, exhibiting targeting activity toward multiple genes involved in the SMAD and MAPK signaling pathways and playing a crucial role in early neurodevelopment. Additionally, the effects of miR-3168 on neurodevelopment is confirmed and it is determined that it is an essential factor in the differentiation of neural stem cells (NSCs). CONCLUSION This study demonstrates that miRNA expression in breast milk exosomes can be influenced by preterm delivery, thereby potentially impacting neurodevelopment in preterm infants.
Collapse
Affiliation(s)
- Ling Ma
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yanyan Huo
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingyuan Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiulian Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Weiqin Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Dan Wu
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yicheng Li
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Lingyan Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Shasha Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanjie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Guangjun Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinjin Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| |
Collapse
|
4
|
Taylor SR, Kobayashi M, Vilella A, Tiwari D, Zolboot N, Du JX, Spencer KR, Hartzell A, Girgiss C, Abaci YT, Shao Y, De Sanctis C, Bellenchi GC, Darnell RB, Gross C, Zoli M, Berg DK, Lippi G. MicroRNA-218 instructs proper assembly of hippocampal networks. eLife 2023; 12:e82729. [PMID: 37862092 PMCID: PMC10637775 DOI: 10.7554/elife.82729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.
Collapse
Affiliation(s)
- Seth R Taylor
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Durgesh Tiwari
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Norjin Zolboot
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Jessica X Du
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Kathryn R Spencer
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Andrea Hartzell
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Carol Girgiss
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yusuf T Abaci
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yufeng Shao
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | | | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics A Buzzati-TraversoNaplesItaly
- IRCCS Fondazione Santa LuciaRomeItaly
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Christina Gross
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Darwin K Berg
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Giordano Lippi
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
5
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNAs are necessary for the emergence of Purkinje cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560023. [PMID: 37808721 PMCID: PMC10557743 DOI: 10.1101/2023.09.28.560023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.
Collapse
|
6
|
Akdaş EY, Temizci B, Karabay A. miR96- and miR182-driven regulation of cytoskeleton results in inhibition of glioblastoma motility. Cytoskeleton (Hoboken) 2023; 80:367-381. [PMID: 36961307 DOI: 10.1002/cm.21754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common forms of brain tumor. As an excessively invasive tumor type, GBM cannot be fully cured due to its invasion ability into healthy brain tissues. Therefore, molecular mechanisms behind GBM migration and invasion need to be deeply investigated for the development of effective GBM treatments. Cellular motility and invasion are strictly associated with the cytoskeleton, especially with actins and tubulins. Palladin, an actin-binding protein, tightly bundles actins during initial invadopodia and contraction fiber formations, which are essential for cellular motility. Spastin, a microtubule-binding protein, cuts microtubules into small pieces and acts on invadopodia elongation and cellular trafficking of invadopodia-associated proteins. Regulation of proteins such as spastin and palladin involved in dynamic reorganization of the cytoskeleton, are rapidly carried out by microRNAs at the posttranscriptional level. Therefore, determining possible regulatory miRNAs of spastin and palladin is critical to elucidate GBM motility. miR96 and miR182 down-regulate SPAST and PALLD at both transcript and protein levels. Over-expression of miR96 and miR182 resulted in inhibition of the motility. However, over-expression of spastin and palladin induced the motility. Spastin and palladin rescue of miR96- or miR182-transfected U251 MG cells resulted in diminished effects of the miRNAs and rescued the motility. Our results demonstrate that miR96 and miR182 over-expressions inhibit GBM motility by regulating cytoskeleton through spastin and palladin. These findings suggest that miR96 and miR182 should be investigated in more detail for their potential use in GBM therapy.
Collapse
Affiliation(s)
- Enes Yağız Akdaş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Benan Temizci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
7
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Wei C, Benzow K, Koob MD, Gomez CM, Du X. The Transcription Factor, α1ACT, Acts Through a MicroRNA Network to Regulate Neurogenesis and Cell Death During Neonatal Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2023; 22:651-662. [PMID: 35729466 PMCID: PMC10307715 DOI: 10.1007/s12311-022-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
MicroRNAs, a class of small RNA regulators, function throughout neurodevelopment, from neural stem cell neurogenesis to neuronal maturation, synaptic formation, and plasticity. α1ACT, a transcription factor (TF), plays a critical role in neonatal cerebellar development by regulating an ensemble of genes. Of these, ChIP-seq analysis matched near 50% genes directly regulated by α1ACT. Yet, more than half the regulated transcripts lacked direct interaction with α1ACT. To investigate whether α1ACT acts through a microRNA network, we studied α1ACT-associated simultaneous miRNA:mRNA transcriptome profiles, using miRNA-seq paired with RNA-seq. Thirty-one differentially expressed miRNAs (DEMs) associated with α1ACT-regulated differentially expressed genes (DEGs) were profiled in α1ACT-overexpressing PC12 cells and were further validated in neonatal transgenic mouse cerebellum overexpressing α1ACT in a context-dependent manner. Here, we also demonstrated that α1ACT facilitates neurogenesis and development of dendritic synapses and is partially a result of the downregulation of the miR-99 cluster, miR-143, miR-23, miR-146, miR-363, and miR-484. On the other hand, the miR-181, miR-125, and miR-708 clusters were upregulated by α1ACT, which inhibit MAPK signaling and cell death pathways by targeting Ask1, Odc1, Atf4, and Nuf2 for decreased expression. MiR-181a-5p was verified as the most abundant DEM in neonatal cerebellum, which was further induced by α1ACT. Overall, under α1ACT modulation, up-/downregulated miRNA clusters with their paired target genes may form a regulatory network controlling the balance between the neuronal proliferation, differentiation, and cell death in the cerebellum to promote neonatal development. Our findings concerning the α1ACT-related miRNA/mRNA expression profiles in neonatal cerebellum may inform future investigations for cerebellar development.
Collapse
Affiliation(s)
- Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
| | - Kellie Benzow
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael D Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
10
|
Fedorova V, Amruz Cerna K, Oppelt J, Pospisilova V, Barta T, Mraz M, Bohaciakova D. MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro. Stem Cell Rev Rep 2023:10.1007/s12015-023-10524-2. [PMID: 36918496 PMCID: PMC10366325 DOI: 10.1007/s12015-023-10524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
Collapse
Affiliation(s)
- Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
11
|
Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochem Pharmacol 2022; 206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
12
|
Espinós A, Fernández‐Ortuño E, Negri E, Borrell V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev Neurobiol 2022; 82:428-453. [PMID: 35670518 PMCID: PMC9543202 DOI: 10.1002/dneu.22891] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self‐amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene‐regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandre Espinós
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | | | - Enrico Negri
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | - Víctor Borrell
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| |
Collapse
|
13
|
Tomasello U, Klingler E, Niquille M, Mule N, Santinha AJ, de Vevey L, Prados J, Platt RJ, Borrell V, Jabaudon D, Dayer A. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Rep 2022; 38:110381. [PMID: 35172154 PMCID: PMC8864305 DOI: 10.1016/j.celrep.2022.110381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion. oSVZ-expressed microRNAs 137 and 122 promote superficial layer identity of neurons miR-137 promotes basal progenitor proliferation and layer 2/3 neuron generation miR-122 slows down neuronal differentiation pace
Collapse
Affiliation(s)
- Ugo Tomasello
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Mathieu Niquille
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Nandkishor Mule
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Antonio J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Laura de Vevey
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Julien Prados
- Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Clinic of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
14
|
Wu J, Liu P, Mao X, Qiu F, Gong L, Wu J, Wang D, He M, Li A. Ablation of microRNAs in VIP + interneurons impairs olfactory discrimination and decreases neural activity in the olfactory bulb. Acta Physiol (Oxf) 2022; 234:e13767. [PMID: 34981885 DOI: 10.1111/apha.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
AIM MicroRNAs (miRNAs) are abundantly expressed in vasoactive intestinal peptide expressing (VIP+ ) interneurons and are indispensable for their functional maintenance and survival. Here, we blocked miRNA biogenesis in postmitotic VIP+ interneurons in mice by selectively ablating Dicer, an enzyme essential for miRNA maturation, to study whether ablation of VIP+ miRNA affects olfactory function and neural activity in olfactory centres such as the olfactory bulb, which contains a large number of VIP+ interneurons. METHODS A go/no-go odour discrimination task and a food-seeking test were used to assess olfactory discrimination and olfactory detection. In vivo electrophysiological techniques were used to record single units and local field potentials. RESULTS Olfactory detection and olfactory discrimination behaviours were impaired in VIP+ -specific Dicer-knockout mice. In vivo electrophysiological recordings in awake, head-fixed mice showed that both spontaneous and odour-evoked firing rates were decreased in mitral/tufted cells in knockout mice. The power of ongoing and odour-evoked beta local field potentials response of the olfactory bulb and anterior piriform cortex were dramatically decreased. Furthermore, the coherence of theta oscillations between the olfactory bulb and anterior piriform cortex was decreased. Importantly, Dicer knockout restricted to olfactory bulb VIP+ interneurons recapitulated the behavioural and electrophysiological results of the global knockout. CONCLUSIONS VIP+ miRNAs are an important factor in sensory processing, affecting olfactory function and olfactory neural activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
- Department of Anesthesiology Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
15
|
Chinnappa K, Cárdenas A, Prieto-Colomina A, Villalba A, Márquez-Galera Á, Soler R, Nomura Y, Llorens E, Tomasello U, López-Atalaya JP, Borrell V. Secondary loss of miR-3607 reduced cortical progenitor amplification during rodent evolution. SCIENCE ADVANCES 2022; 8:eabj4010. [PMID: 35020425 PMCID: PMC8754304 DOI: 10.1126/sciadv.abj4010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The evolutionary expansion and folding of the mammalian cerebral cortex resulted from amplification of progenitor cells during embryonic development. This process was reversed in the rodent lineage after splitting from primates, leading to smaller and smooth brains. Genetic mechanisms underlying this secondary loss in rodent evolution remain unknown. We show that microRNA miR-3607 is expressed embryonically in the large cortex of primates and ferret, distant from the primate-rodent lineage, but not in mouse. Experimental expression of miR-3607 in embryonic mouse cortex led to increased Wnt/β-catenin signaling, amplification of radial glia cells (RGCs), and expansion of the ventricular zone (VZ), via blocking the β-catenin inhibitor APC (adenomatous polyposis coli). Accordingly, loss of endogenous miR-3607 in ferret reduced RGC proliferation, while overexpression in human cerebral organoids promoted VZ expansion. Our results identify a gene selected for secondary loss during mammalian evolution to limit RGC amplification and, potentially, cortex size in rodents.
Collapse
|
16
|
Alkallas R, Najafabadi HS. Analysis of mRNA Dynamics Using RNA Sequencing Data. Methods Mol Biol 2022; 2515:129-150. [PMID: 35776350 DOI: 10.1007/978-1-0716-2409-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The RNA abundance of each gene is determined by its rates of transcription and RNA decay. Biochemical experiments that measure these rates, including transcription inhibition and metabolic labelling, are challenging to perform and are largely limited to in vitro settings. Most transcriptomic studies have focused on analyzing changes in RNA abundances without attributing those changes to transcriptional or posttranscriptional regulation. Estimating differential transcription and decay rates of RNA molecules would enable the identification of regulatory factors, such as transcription factors, RNA binding proteins, and microRNAs, that govern large-scale shifts in RNA expression. Here, we describe a protocol for estimating differential stability of RNA molecules between conditions using standard RNA-sequencing data, without the need for transcription inhibition or metabolic labeling. We apply this protocol to in vivo RNA-seq data from individuals with Alzheimer's disease and demonstrate how estimates of differential stability can be leveraged to infer the regulatory factors underlying them.
Collapse
Affiliation(s)
- Rached Alkallas
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill Genome Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, QC, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- McGill Genome Centre, Montréal, QC, Canada.
| |
Collapse
|
17
|
Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. J Chem Neuroanat 2022; 120:102072. [DOI: 10.1016/j.jchemneu.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
18
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
19
|
Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron 2021; 110:366-393. [PMID: 34921778 DOI: 10.1016/j.neuron.2021.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Differentiated cells have long been considered fixed in their identity. However, about 20 years ago, the first direct conversion of glial cells into neurons in vitro opened the field of "direct neuronal reprogramming." Since then, neuronal reprogramming has achieved the generation of fully functional, mature neurons with remarkable efficiency, even in diseased brain environments. Beyond their clinical implications, these discoveries provided basic insights into crucial mechanisms underlying conversion of specific cell types into neurons and maintenance of neuronal identity. Here we discuss such principles, including the importance of the starter cell for shaping the outcome of neuronal reprogramming. We further highlight technical concerns for in vivo reprogramming and propose a code of conduct to avoid artifacts and pitfalls. We end by pointing out next challenges for development of less invasive cell replacement therapies for humans.
Collapse
|
20
|
Posttranscriptional modulation of KCNQ2 gene expression by the miR-106b microRNA family. Proc Natl Acad Sci U S A 2021; 118:2110200118. [PMID: 34785595 DOI: 10.1073/pnas.2110200118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K+ channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases. Overexpression of miR-106b mimics resulted in a reduction in KCNQ2 protein levels. Conversely, KCNQ2 levels were up-regulated in neurons transfected with antisense miRNA inhibitors. By constructing more specific and stable forms of miR-106b controlling systems, we further confirmed that overexpression of precursor-miR-106b-5p led to a decrease in KCNQ current density and an increase in firing frequency of hippocampal neurons, while tough decoy miR-106b-5p dramatically increased current density and decreased neuronal excitability. These results unmask a regulatory mechanism of KCNQ2 channel expression in early postnatal development and hint at a role for miR-106b up-regulation in the pathophysiology of epilepsy.
Collapse
|
21
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
22
|
Reséndiz-Castillo LJ, Minjarez B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:781-793. [PMID: 34810139 DOI: 10.1016/j.nrleng.2019.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/08/2019] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.
Collapse
Affiliation(s)
- L J Reséndiz-Castillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - B Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - M A Hernández-Sapiéns
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
23
|
The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021; 10:cells10113097. [PMID: 34831320 PMCID: PMC8619171 DOI: 10.3390/cells10113097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRs) are emerging as attractive therapeutic targets because of their small size, specific targetability, and critical role in disease pathogenesis. However, <20 miR targeting molecules have entered clinical trials, and none progressed to phase III. The difficulties in miR target identification, the moderate efficacy of miR inhibitors, cell type-specific delivery, and adverse outcomes have impeded the development of miR therapeutics. These hurdles are rooted in the functional complexity of miR's role in disease and sequence complementarity-dependent/-independent effects in nontarget tissues. The advances in understanding miR's role in disease, the development of efficient miR inhibitors, and innovative delivery approaches have helped resolve some of these hurdles. In this review, we provide a multidisciplinary viewpoint on the challenges and opportunities in the development of miR therapeutics.
Collapse
|
24
|
Zhou J, Liu G, Zhang X, Wu C, Ma M, Wu J, Hou L, Yin B, Qiang B, Shu P, Peng X. Comparison of the Spatiotemporal Expression Patterns of Three Cre Lines, Emx1IRES-Cre, D6-Cre and hGFAP-Cre, Commonly Used in Neocortical Development Research. Cereb Cortex 2021; 32:1668-1681. [PMID: 34550336 DOI: 10.1093/cercor/bhab305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Emx1IRES-Cre, D6-Cre and hGFAP-Cre are commonly used to conditionally manipulate gene expression or lineage tracing because of their specificity in the dorsal telencephalon during early neurogenesis as previously described. However, the spatiotemporal differences in Cre recombinase activity would lead to divergent phenotypes. Here, we compared the patterns of Cre activity in the early embryos among the three lines by mating with reporter mice. The activities of Emx1IRES-Cre, D6-Cre and hGFAP-Cre were observed in the dorsal telencephalon, starting from approximately embryonic day 9.5, 11.5 and 12.5, respectively. Although all the three lines have activity in radial glial cells, Emx1IRES-Cre fully covers the dorsal and medial telencephalon, including the archicortex and cortical hem. D6-Cre is highly restricted to the dorsal telencephalon with anterior-low to posterior-high gradients, partially covers the hippocampus, and absent in the cortical hem. Moreover, both Emx1IRES-Cre and hGFAP-Cre exhibit Cre activity outside the dorsal neocortex. Meanwhile, we used the three Cre lines to mediate Dicer knockout and observed inconsistent phenotypes, including discrepancies in radial glial cell number, survival and neurogenesis in the neocortex and hippocampus. Together we proved differences in Cre activity can perturb the resultant phenotypes, which aid researchers in appropriate experimental design.
Collapse
Affiliation(s)
- Jiafeng Zhou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Gaoao Liu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaoling Zhang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chao Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Mengjie Ma
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiarui Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Institute of Medical Biology of the Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| |
Collapse
|
25
|
Dong X, Cong S. MicroRNAs in Huntington's Disease: Diagnostic Biomarkers or Therapeutic Agents? Front Cell Neurosci 2021; 15:705348. [PMID: 34421543 PMCID: PMC8377808 DOI: 10.3389/fncel.2021.705348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
MicroRNA (miRNA) is a non-coding single-stranded small molecule of approximately 21 nucleotides. It degrades or inhibits the translation of RNA by targeting the 3′-UTR. The miRNA plays an important role in the growth, development, differentiation, and functional execution of the nervous system. Dysregulated miRNA expression has been associated with several pathological processes of neurodegenerative disorders, including Huntington’s disease (HD). Recent studies have suggested promising roles of miRNAs as biomarkers and potential therapeutic targets for HD. Here, we review the emerging role of dysregulated miRNAs in HD and describe general biology of miRNAs, their pathophysiological implications, and their potential roles as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Wu J, Yu H, Huang H, Shu P, Peng X. Functions of noncoding RNAs in glial development. Dev Neurobiol 2021; 81:877-891. [PMID: 34402590 DOI: 10.1002/dneu.22848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Glia are widely distributed in the central nervous system and are closely related to cell metabolism, signal transduction, support, cell migration, and other nervous system development processes and functions. Glial development is complex and essential, including the processes of proliferation, differentiation, and migration, and requires precise regulatory networks. Noncoding RNAs (ncRNAs) can be deeply involved in glial development through gene regulation. Here, we review the regulatory roles of ncRNAs in glial development. We briefly describe the classification and functions of noncoding RNAs and focus on microRNAs (miRNAs) and long ncRNAs (lncRNAs), which have been reported to participate extensively during glial formation. The highlight of this summary is that miRNAs and lncRNAs can participate in and regulate the signaling pathways of glial development. The review not only describes how noncoding RNAs participate in nervous system development but also explains the processes of glial development, providing a foundation for subsequent studies on glial development and new insights into the pathogeneses of related neurological diseases.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
27
|
Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Like all other parts of the central nervous system, the mammalian neocortex undergoes temporally ordered set of developmental events, including proliferation, differentiation, migration, cellular identity, synaptogenesis, connectivity formation, and plasticity changes. These neurodevelopmental mechanisms have been characterized by studies focused on transcriptional control. Recent findings, however, have shown that the spatiotemporal regulation of post-transcriptional steps like alternative splicing, mRNA traffic/localization, mRNA stability/decay, and finally repression/derepression of protein synthesis (mRNA translation) have become just as central to the neurodevelopment as transcriptional control. A number of dynamic players act post-transcriptionally in the neocortex to regulate these steps, as RNA binding proteins (RBPs), ribosomal proteins (RPs), long non-coding RNAs, and/or microRNA. Remarkably, mutations in these post-transcriptional regulators have been associated with neurodevelopmental, neurodegenerative, inherited, or often co-morbid disorders, such as microcephaly, autism, epilepsy, intellectual disability, white matter diseases, Rett-syndrome like phenotype, spinocerebellar ataxia, and amyotrophic lateral sclerosis. Here, we focus on the current state, advanced methodologies and pitfalls of this exciting and upcoming field of RNA metabolism with vast potential in understanding fundamental neurodevelopmental processes and pathologies. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yongkyu Park
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Nicholas Page
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Iva Salamon
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Mladen-Roko Rasin
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
28
|
Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021; 43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.
Collapse
Affiliation(s)
- Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Virginia Fernández
- Neurobiology of miRNA, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Kaviya Chinnappa
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
29
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
30
|
MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Semin Cell Dev Biol 2021; 118:83-91. [PMID: 33933350 DOI: 10.1016/j.semcdb.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
In this review, we examine the role of microRNAs in the development of the prefrontal cortex (PFC) in adolescence and in individual differences in vulnerability to mental illness. We describe results from clinical and preclinical research indicating that adolescence coincides with drastic changes in local microRNA expression, including microRNAs that control gene networks involved in PFC and cognitive refinement. We highlight that altered levels of microRNAs in the PFC are associated with psychopathologies of adolescent onset, notably depression and schizophrenia. We show that microRNAs can be measured non-invasively in peripheral samples and could serve as longitudinal physiological readouts of brain expression and psychiatric risk in youth.
Collapse
|
31
|
Gong C, Liu L, Shen Y. Biomarkers mining for spinal cord injury based on integrated multi-transcriptome expression profile data. J Orthop Surg Res 2021; 16:267. [PMID: 33863336 PMCID: PMC8051034 DOI: 10.1186/s13018-021-02392-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/02/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND This study was aimed to discover more biomarkers associated with spinal cord injury (SCI) by constructing a competing endogenous RNA (ceRNA) network. METHODS The transcriptome expression profile data related to SCI (GSE45006 GSE20907) were downloaded from GEO database. The differentially expressed RNAs (DERs), including lncRNAs, miRNAs, and mRNAs, between SCI and control groups were selected, which were then performed function enrichment analyses. Following that, a SCI-related ceRNA regulatory network was constructed. PCA analysis was performed on the genes constituting the ceRNA regulatory network directly related to SCI. RESULTS In GSE45006 and GSE20907 datasets, there were respectively 3336 and 1453 DERs. Venn analysis showed that there were 429 DERs which had consistent differential expression direction. RGD1564534-miR-29b-5p relation pair and 103 miRNA-target regulatory pairs were integrated to construct the ceRNA regulatory network. Then a SCI-related ceRNA regulatory network including 8 mRNAs of IFNGR1, STAT2, CYBB, NFATC1, FCGR2B, HMOX1, TLR4, and HK2, a lncRNA of RGD1564534, and a miRNA of miR-29b-5p was constructed. Additionally, two pathways, osteoclast differentiation, and HIF-1 signaling pathway, were involved in this network. PCA indicated the samples before and after injury can be significantly distinguished based on the genes in the ceRNA network. CONCLUSION A total of 8 SCI-related mRNAs have been identified in the ceRNA network, including IFNGR1, STAT2, CYBB, NFATC1, FCGR2B, HMOX1, TLR4, and HK2. Moreover, RGD1564534 may serve as ceRNA by competitively binding to miR-29b-5p to regulate the expression of 8 SCI-related mRNAs. Therefore, these genes may serve as key biomarkers of SCI.
Collapse
Affiliation(s)
- Chongcheng Gong
- Emergency Trauma Surgery, Shanghai East Hospital of Tongji University, No. 150, Jimo Road, Shanghai, 200120 China
| | - Lin Liu
- Emergency Trauma Surgery, Shanghai East Hospital of Tongji University, No. 150, Jimo Road, Shanghai, 200120 China
| | - Yang Shen
- Emergency Trauma Surgery, Shanghai East Hospital of Tongji University, No. 150, Jimo Road, Shanghai, 200120 China
| |
Collapse
|
32
|
Guajardo L, Aguilar R, Bustos FJ, Nardocci G, Gutiérrez RA, van Zundert B, Montecino M. Downregulation of the Polycomb-Associated Methyltransferase Ezh2 during Maturation of Hippocampal Neurons Is Mediated by MicroRNAs Let-7 and miR-124. Int J Mol Sci 2020; 21:ijms21228472. [PMID: 33187138 PMCID: PMC7697002 DOI: 10.3390/ijms21228472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/04/2022] Open
Abstract
Ezh2 is a catalytic subunit of the polycomb repressive complex 2 (PRC2) which mediates epigenetic gene silencing through depositing the mark histone H3 lysine 27 trimethylation (H3K27me3) at target genomic sequences. Previous studies have demonstrated that Enhancer of Zeste Homolog 2 (Ezh2) was differentially expressed during maturation of hippocampal neurons; in immature neurons, Ezh2 was abundantly expressed, whereas in mature neurons the expression Ezh2 was significantly reduced. Here, we report that Ezh2 is downregulated by microRNAs (miRs) that are expressed during the hippocampal maturation process. We show that, in mature hippocampal neurons, lethal-7 (let-7) and microRNA-124 (miR-124) are robustly expressed and can target cognate motifs at the 3′-UTR of the Ezh2 gene sequence to downregulate Ezh2 expression. Together, these data demonstrate that the PRC2 repressive activity during hippocampal maturation is controlled through a post-transcriptional mechanism that mediates Ezh2 downregulation in mature neurons.
Collapse
Affiliation(s)
- Laura Guajardo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
| | - Fernando J. Bustos
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
- CARE Biomedical Research Center, Santiago 83370186, Chile
| | - Gino Nardocci
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
| | - Rodrigo A. Gutiérrez
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
- Millennium Institute for Integrative Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- CARE Biomedical Research Center, Santiago 83370186, Chile
- Correspondence: (B.v.Z.); (M.M.)
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
- Correspondence: (B.v.Z.); (M.M.)
| |
Collapse
|
33
|
An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A 2020; 117:29113-29122. [PMID: 33139574 PMCID: PMC7682328 DOI: 10.1073/pnas.2006700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian central nervous system contains unique projections from the cerebral cortex thought to underpin complex motor and cognitive skills, including the corticospinal tract and corpus callosum. The neurons giving rise to these projections—corticospinal and callosal projection neurons—develop from the same progenitors, but acquire strikingly different fates. The broad evolutionary conservation of known genes controlling cortical projection neuron fates raises the question of how the more narrowly conserved corticospinal and callosal projections evolved. We identify a microRNA cluster selectively expressed by corticospinal projection neurons and exclusive to placental mammals. One of these microRNAs promotes corticospinal fate via regulation of the callosal gene LMO4, suggesting a mechanism whereby microRNA regulation during development promotes evolution of neuronal diversity. The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Collapse
|
34
|
Dungan CM, Valentino T, Vechetti IJ, Zdunek CJ, Murphy MP, Lin AL, McCarthy JJ, Peterson CA. Exercise-mediated alteration of hippocampal Dicer mRNA and miRNAs is associated with lower BACE1 gene expression and Aβ 1-42 in female 3xTg-AD mice. J Neurophysiol 2020; 124:1571-1577. [PMID: 33052800 DOI: 10.1152/jn.00503.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Changes to cerebral miRNA expression have been implicated in the progression of Alzheimer's disease (AD), as miRNAs that regulate the expression of gene products involved in amyloid beta (Aβ) processing, such as BACE1, are dysregulated in those that suffer from AD. Exercise training improves cognition and reduces BACE1 and Aβ-plaque burden; however, the mechanisms are not fully understood. Using our progressive weighted wheel running (PoWeR) exercise program, we assessed the effect of 20 wk of exercise training on changes in hippocampal miRNA expression in female 3xTg-AD (3xTg) mice. PoWeR was sufficient to promote muscle hypertrophy and increase myonuclear abundance. Furthermore, PoWeR elevated hippocampal Dicer gene expression in 3xTg mice, while altering miRNA expression toward a more wild-type profile. Specifically, miR-29, which is validated to target BACE1, was significantly lower in sedentary 3xTg mice when compared with wild-type but was elevated following PoWeR. Accordingly, BACE1 gene expression, along with detergent-soluble Aβ1-42, was lower in PoWeR-trained 3xTg mice. Our data suggest that PoWeR training upregulates Dicer gene expression to alter cerebral miRNA expression, which may contribute to reduced Aβ accumulation and delay AD progression.NEW & NOTEWORTHY Previous studies have outlined the beneficial effects of exercise on lowering BACE1 expression and reducing Aβ plaques. This study extends upon the work of others by outlining a new potential mechanism by which exercise elicits beneficial effects on Alzheimer's disease pathology, specifically through modulation of Dicer and miRNA expression. This is the first study to examine Dicer and miRNA expression in the hippocampus of the 3xTg model within the context of exercise.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky.,The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Taylor Valentino
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | | - Michael P Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky.,The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
35
|
Fernández V, Martínez-Martínez MÁ, Prieto-Colomina A, Cárdenas A, Soler R, Dori M, Tomasello U, Nomura Y, López-Atalaya JP, Calegari F, Borrell V. Repression of Irs2 by let-7 miRNAs is essential for homeostasis of the telencephalic neuroepithelium. EMBO J 2020; 39:e105479. [PMID: 32985705 PMCID: PMC7604626 DOI: 10.15252/embj.2020105479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Structural integrity and cellular homeostasis of the embryonic stem cell niche are critical for normal tissue development. In the telencephalic neuroepithelium, this is controlled in part by cell adhesion molecules and regulators of progenitor cell lineage, but the specific orchestration of these processes remains unknown. Here, we studied the role of microRNAs in the embryonic telencephalon as key regulators of gene expression. By using the early recombiner Rx-Cre mouse, we identify novel and critical roles of miRNAs in early brain development, demonstrating they are essential to preserve the cellular homeostasis and structural integrity of the telencephalic neuroepithelium. We show that Rx-Cre;DicerF/F mouse embryos have a severe disruption of the telencephalic apical junction belt, followed by invagination of the ventricular surface and formation of hyperproliferative rosettes. Transcriptome analyses and functional experiments in vivo show that these defects result from upregulation of Irs2 upon loss of let-7 miRNAs in an apoptosis-independent manner. Our results reveal an unprecedented relevance of miRNAs in early forebrain development, with potential mechanistic implications in pediatric brain cancer.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Maria Ángeles Martínez-Martínez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Rafael Soler
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Martina Dori
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ugo Tomasello
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Yuki Nomura
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - José P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
36
|
Giannocco G, Kizys MML, Maciel RM, de Souza JS. Thyroid hormone, gene expression, and Central Nervous System: Where we are. Semin Cell Dev Biol 2020; 114:47-56. [PMID: 32980238 DOI: 10.1016/j.semcdb.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Thyroid hormones (TH; T3 and T4) play a fundamental role in the fetal stage to the adult phase, controlling gene and protein expression in virtually all tissues. The endocrine and CNS systems have relevant interaction, and the TH are pivotal for the proper functioning of the CNS. A slight failure to regulate TH availability during pregnancy and/or childhood can lead to neurological disorders, for example, autism and cognitive impairment, or depression. In this review, we highlight how TH acts in controlling gene expression, its role in the CNS, and what substances widely found in the environment can cause in this tissue. We highlight the role of Endocrine Disruptors used on an everyday basis in the processing of mRNAs responsible for neurodevelopment. We conclude that TH, more precisely T3, acts mainly throughout its nuclear receptors, that the deficiency of this hormone, either due to the lack of its main substrate iodine, or by to incorrect organification of T4 and T3 in the gland, or by a mutation in transporters, receptors and deiodinases may cause mild (dysregulated mood in adulthood) to severe neurological impairment (Allan-Herndon-Dudley syndrome, presented as early as childhood); T3 is responsible for the expression of numerous CNS genes related to oxygen transport, growth factors, myelination, cell maturation. Substances present in the environment and widely used can interfere with the functioning of the thyroid gland, the action of TH, and the functioning of the CNS.
Collapse
Affiliation(s)
- Gisele Giannocco
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil; Departamento de Ciências Biológicas, Universidade Federal de São Paulo, UNIFESP, Diadema, SP 09920-000, Brazil
| | - Marina Malta Letro Kizys
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil
| | - Rui Monteiro Maciel
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil
| | - Janaina Sena de Souza
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Pascale E, Divisato G, Palladino R, Auriemma M, Ngalya EF, Caiazzo M. Noncoding RNAs and Midbrain DA Neurons: Novel Molecular Mechanisms and Therapeutic Targets in Health and Disease. Biomolecules 2020; 10:E1269. [PMID: 32899172 PMCID: PMC7563414 DOI: 10.3390/biom10091269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Renata Palladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Edward Faustine Ngalya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
38
|
Zeng J, Dong S, Luo Z, Xie X, Fu B, Li P, Liu C, Yang X, Chen Y, Wang X, Liu Z, Wu J, Yan Y, Wang F, Chen JF, Zhang J, Long G, Goldman SA, Li S, Zhao Z, Liang Q. The Zika Virus Capsid Disrupts Corticogenesis by Suppressing Dicer Activity and miRNA Biogenesis. Cell Stem Cell 2020; 27:618-632.e9. [PMID: 32763144 DOI: 10.1016/j.stem.2020.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
Zika virus (ZIKV) causes microcephaly and disrupts neurogenesis. Dicer-mediated miRNA biogenesis is required for embryonic brain development and has been suggested to be disrupted upon ZIKV infection. Here we mapped the ZIKV-host interactome in neural stem cells (NSCs) and found that Dicer is specifically targeted by the capsid from ZIKV, but not other flaviviruses, to facilitate ZIKV infection. We identified a capsid mutant (H41R) that loses this interaction and does not suppress Dicer activity. Consistently, ZIKV-H41R is less virulent and does not inhibit neurogenesis in vitro or corticogenesis in utero. Epidemic ZIKV strains contain capsid mutations that increase Dicer binding affinity and enhance pathogenicity. ZIKV-infected NSCs show global dampening of miRNA production, including key miRNAs linked to neurogenesis, which is not observed after ZIKV-H41R infection. Together these findings show that capsid-dependent suppression of Dicer is a major determinant of ZIKV immune evasion and pathogenesis and may underlie ZIKV-related microcephaly.
Collapse
Affiliation(s)
- Jianxiong Zeng
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shupeng Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifei Luo
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaochun Xie
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bishi Fu
- Department of Paediatrics, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China; State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Chengrong Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenshan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youzhen Yan
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Feng Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA; Department of Neurology, University of Rochester, Rochester, NY, USA; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Qiming Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Sehovic E, Spahic L, Smajlovic-Skenderagic L, Pistoljevic N, Dzanko E, Hajdarpasic A. Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS One 2020; 15:e0232351. [PMID: 32353026 PMCID: PMC7192422 DOI: 10.1371/journal.pone.0232351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by major social, communication and behavioural challenges. The cause of ASD is still unclear and it is assumed that environmental, genetic and epigenetic factors influence the risk of ASD occurrence. MicroRNAs (miRNAs) are short 21-25 nucleotide long RNA molecules which post-transcriptionally regulate gene expression. MiRNAs play an important role in central nervous system development; therefore, dysregulation of miRNAs is connected to changes in behaviour and cognition observed in many disorders including ASD. Based on previously published work, on diagnosing ASD using miRNAs, we hypothesized that miRNAs can be used as biomarkers in children with suspected developmental disorders (DD) including ASD within Bosnian-Herzegovinian (B&H) population. 14 selected miRNAs were tested on saliva of children with suspected developmental disorders including ASD. The method of choice was qRT-PCR as a relatively cheap method available in most diagnostic laboratories in low to mid-income countries (LMIC). Out of 14 analysed miRNAs, 6 were differentially expressed between typically developing children and children with some type of developmental disorder including autism spectrum disorder. Using the most optimal logistic regression, we were able to distinguish between ASD and typically developing (TD) children. We have found 5 miRNAs as potential biomarkers. From those, 3 were differentially expressed within the ASD cohort. All 5 miRNAs had shown good chi-square statistics within the logistic regression performed on all 14 analysed miRNAs. The accuracy of 5-miRNAs model training set was 90.2%, while the validation set had a 90% accuracy. This study has shown that miRNAs may be considered as biomarkers for ASD detection and may be used to identify children with ASD along with standard developmental screening tests. By combining these methods we may be able to reach a reliable and accessible diagnostic model for children with ASD in LMIC such as B&H.
Collapse
Affiliation(s)
- Emir Sehovic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lemana Spahic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | | | - Eldin Dzanko
- Education for All (EDUS), Sarajevo, Bosnia and Herzegovina
| | - Aida Hajdarpasic
- Department of Medical Biology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- * E-mail:
| |
Collapse
|
40
|
Loffreda A, Nizzardo M, Arosio A, Ruepp MD, Calogero RA, Volinia S, Galasso M, Bendotti C, Ferrarese C, Lunetta C, Rizzuti M, Ronchi AE, Mühlemann O, Tremolizzo L, Corti S, Barabino SML. miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog Neurobiol 2020; 190:101803. [PMID: 32335272 DOI: 10.1016/j.pneurobio.2020.101803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentless and fatal neurological disease characterized by the selective degeneration of motor neurons. No effective therapy is available for this disease. Several lines of evidence indicate that alteration of RNA metabolism, including microRNA (miRNA) processing, is a relevant pathogenetic factor and a possible therapeutic target for ALS. Here, we showed that the abundance of components in the miRNA processing machinery is altered in a SOD1-linked cellular model, suggesting consequent dysregulation of miRNA biogenesis. Indeed, high-throughput sequencing of the small RNA fraction showed that among the altered miRNAs, miR-129-5p was increased in different models of SOD1-linked ALS and in peripheral blood cells of sporadic ALS patients. We demonstrated that miR-129-5p upregulation causes the downregulation of one of its targets: the RNA-binding protein ELAVL4/HuD. ELAVL4/HuD is predominantly expressed in neurons, where it controls several key neuronal mRNAs. Overexpression of pre-miR-129-1 inhibited neurite outgrowth and differentiation via HuD silencing in vitro, while its inhibition with an antagomir rescued the phenotype. Remarkably, we showed that administration of an antisense oligonucleotide (ASO) inhibitor of miR-129-5p to an ALS animal model, SOD1 (G93A) mice, result in a significant increase in survival and improved the neuromuscular phenotype in treated mice. These results identify miR-129-5p as a therapeutic target that is amenable to ASO modulation for the treatment of ALS patients.
Collapse
Affiliation(s)
- Alessia Loffreda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Alessandro Arosio
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, 44121 Ferrara, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, 44121 Ferrara, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy; Neurology Unit, San Gerardo Hospital, Monza, MB, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, 20162 Milan, Italy
| | - Mafalda Rizzuti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Antonella E Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Lucio Tremolizzo
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy; Neurology Unit, San Gerardo Hospital, Monza, MB, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Silvia M L Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
41
|
Xiao ZH, Wang L, Gan P, He J, Yan BC, Ding LD. Dynamic Changes in miR-126 Expression in the Hippocampus and Penumbra Following Experimental Transient Global and Focal Cerebral Ischemia-Reperfusion. Neurochem Res 2020; 45:1107-1119. [PMID: 32067150 DOI: 10.1007/s11064-020-02986-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
miR-126 which is considered one of the most important miRNAs for maintaining vascular integrity, plays an important role in neuroprotection after cerebral ischemia-reperfusion (I-R). Moreover, vascular endothelial growth factor A (VEGFA), sprouty-related EVH1 domain-containing protein 1 (SPRED1), and Raf-1 are also involved in physiological processes of vascular endothelial cells (ECs). This study investigated how miR-126 changes with reperfusion time in different brain tissues after global cerebral ischemia and focal cerebral ischemia and examined the underlying mechanism miR-126 involving VEGFA, SPRED1, and Raf-1 after I-R. The results indicated decreases in the levels of miR-126-3p and miR-126-5p expression in mice and gerbils after I-R, consistent with the results after oxygen and glucose deprivation and reperfusion (OGD/R) in PC12 cells. Glial cells were activated as neuronal damage gradually increased after I-R. Inhibition of miR-126-3p exacerbated the OGD/R-induced cell death and reduced cell viability. After miR-126-3p inhibition, the levels of SPRED1 and VEGFA expression were increased, and p-Raf-1 expression was decreased after OGD/R. Moreover, based on the intervention of miR-126-3p inhibition, we found that the expression of p-Raf-1 was significantly increased after the intervention of siSPRED1, while it was not statistically significant after intervention of siVEGFA. The reduction of miR-126 expression after global and focal cerebral ischemia exacerbated neuronal death, which was closely related to increasing the SPRED1 activation and inhibiting the Raf-1 expression.
Collapse
Affiliation(s)
- Zhang Hong Xiao
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Li Wang
- Department of Neurology, Affiliated Hospital, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ping Gan
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Jing He
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Bing Chun Yan
- Department of Neurology, Affiliated Hospital, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Li Dong Ding
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China.
| |
Collapse
|
42
|
Reséndiz-Castillo LJ, Minjarez-Vega B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. Neurologia 2020; 37:S0213-4853(19)30137-9. [PMID: 31959491 DOI: 10.1016/j.nrl.2019.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.
Collapse
Affiliation(s)
- L J Reséndiz-Castillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - B Minjarez-Vega
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - M A Hernández-Sapiéns
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México.
| |
Collapse
|
43
|
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20236055. [PMID: 31801298 PMCID: PMC6929013 DOI: 10.3390/ijms20236055] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
Collapse
Affiliation(s)
- Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Dmytro Gerasymchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Institute of Molecular Biology and Genetics, NASU, Kyiv 03143, Ukraine
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Correspondence: ; Tel.: +358-50-448-4545
| |
Collapse
|
44
|
Qiu F, Mao X, Liu P, Wu J, Zhang Y, Sun D, Zhu Y, Gong L, Shao M, Fan K, Chen J, Lu J, Jiang Y, Zhang Y, Curia G, Li A, He M. microRNA Deficiency in VIP+ Interneurons Leads to Cortical Circuit Dysfunction. Cereb Cortex 2019; 30:2229-2249. [PMID: 33676371 DOI: 10.1093/cercor/bhz236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 12/13/2022] Open
Abstract
Genetically distinct GABAergic interneuron subtypes play diverse roles in cortical circuits. Previous studies revealed that microRNAs (miRNAs) are differentially expressed in cortical interneuron subtypes, and are essential for the normal migration, maturation, and survival of medial ganglionic eminence-derived interneuron subtypes. How miRNAs function in vasoactive intestinal peptide expressing (VIP+) interneurons derived from the caudal ganglionic eminence remains elusive. Here, we conditionally removed Dicer in postmitotic VIP+ interneurons to block miRNA biogenesis. We found that the intrinsic and synaptic properties of VIP+ interneurons and pyramidal neurons were concordantly affected prior to a progressive loss of VIP+ interneurons. In vivo recording further revealed elevated cortical local field potential power. Mutant mice had a shorter life span but exhibited better spatial working memory and motor coordination. Our results demonstrate that miRNAs are indispensable for the function and survival of VIP+ interneurons, and highlight a key role of VIP+ interneurons in cortical circuits.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuan Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Daijing Sun
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yueyan Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengmeng Shao
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Keyang Fan
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Chen
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangteng Lu
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yan Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- Department of Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Fairchild CLA, Cheema SK, Wong J, Hino K, Simó S, La Torre A. Let-7 regulates cell cycle dynamics in the developing cerebral cortex and retina. Sci Rep 2019; 9:15336. [PMID: 31653921 PMCID: PMC6814839 DOI: 10.1038/s41598-019-51703-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
In the neural progenitors of the developing central nervous system (CNS), cell proliferation is tightly controlled and coordinated with cell fate decisions. Progenitors divide rapidly during early development and their cell cycle lengthens progressively as development advances to eventually give rise to a tissue of the correct size and cellular composition. However, our understanding of the molecules linking cell cycle progression to developmental time is incomplete. Here, we show that the microRNA (miRNA) let-7 accumulates in neural progenitors over time throughout the developing CNS. Intriguingly, we find that the level and activity of let-7 oscillate as neural progenitors progress through the cell cycle by in situ hybridization and fluorescent miRNA sensor analyses. We also show that let-7 mediates cell cycle dynamics: increasing the level of let-7 promotes cell cycle exit and lengthens the S/G2 phase of the cell cycle, while let-7 knock down shortens the cell cycle in neural progenitors. Together, our findings suggest that let-7 may link cell proliferation to developmental time and regulate the progressive cell cycle lengthening that occurs during development.
Collapse
Affiliation(s)
- Corinne L A Fairchild
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
46
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
47
|
Salloum-Asfar S, Satheesh NJ, Abdulla SA. Circulating miRNAs, Small but Promising Biomarkers for Autism Spectrum Disorder. Front Mol Neurosci 2019; 12:253. [PMID: 31680857 PMCID: PMC6808050 DOI: 10.3389/fnmol.2019.00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a heterogeneous group of complex neurodevelopmental disorders characterized by social skill and communication deficits, along with stereotyped repetitive behavior. miRNAs, small non-coding RNAs that have been recognized as critical regulators of gene expression, play a key role in the neurodevelopmental transcriptional networks of the human brain. Previous investigations have proven that circulating miRNAs open up new possibilities for the emerging roles of diagnostic and prognostic biomarkers in human disorders and diseases. Biomarker development has been progressively becoming more recognized as a cornerstone in medical diagnosis, paving the way to drug discoveries and limiting the progression of various diseases. Due to the complexity of ASD, considerable endeavors have either unsuccessfully identified biomarkers for the disorder or have not yet been established. Cell-free circulating miRNAs in biofluids are extraordinarily stable and considered to represent the next-generation of clinical, non-invasive, biomarkers for many pathologies including neurological and neurodevelopmental disorders. Here, we conducted a review of all peer-reviewed articles addressing the circulating profiles of miRNAs, mostly performed in serum and saliva samples in individuals with ASD.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Noothan J Satheesh
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
48
|
Posner R, Laubenbacher R. Connecting the molecular function of microRNAs to cell differentiation dynamics. J R Soc Interface 2019; 16:20190437. [PMID: 31551049 PMCID: PMC6769318 DOI: 10.1098/rsif.2019.0437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs form a class of short, non-coding RNA molecules which are essential for proper development in tissue-based plants and animals. To help explain their role in gene regulation, a number of mathematical and computational studies have demonstrated the potential canalizing effects of microRNAs. However, such studies have typically focused on the effects of microRNAs on only one or a few target genes. Consequently, it remains unclear how these small-scale effects add up to the experimentally observed developmental outcomes resulting from microRNA perturbation at the whole-genome level. To answer this question, we built a general computational model of cell differentiation to study the effect of microRNAs in genome-scale gene regulatory networks. Our experiments show that in large gene regulatory networks, microRNAs can control differentiation time without significantly changing steady-state gene expression profiles. This temporal regulatory role cannot be naturally replicated using protein-based transcription factors alone. While several microRNAs have been shown to regulate differentiation time in vivo, our findings provide a new explanation of how the cumulative molecular actions of individual microRNAs influence genome-scale cellular dynamics. Taken together, these results may help explain why tissue-based organisms exclusively depend on miRNA-mediated regulation, while their more primitive counterparts do not.
Collapse
Affiliation(s)
- Russell Posner
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
49
|
El Wazan L, Urrutia-Cabrera D, Wong RCB. Using transcription factors for direct reprogramming of neurons in vitro. World J Stem Cells 2019; 11:431-444. [PMID: 31396370 PMCID: PMC6682505 DOI: 10.4252/wjsc.v11.i7.431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/07/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cell therapy offers great promises in replacing the neurons lost due to neurodegenerative diseases or injuries. However, a key challenge is the cellular source for transplantation which is often limited by donor availability. Direct reprogramming provides an exciting avenue to generate specialized neuron subtypes in vitro, which have the potential to be used for autologous transplantation, as well as generation of patient-specific disease models in the lab for drug discovery and testing gene therapy. Here we present a detailed review on transcription factors that promote direct reprogramming of specific neuronal subtypes with particular focus on glutamatergic, GABAergic, dopaminergic, sensory and retinal neurons. We will discuss the developmental role of master transcriptional regulators and specification factors for neuronal subtypes, and summarize their use in promoting direct reprogramming into different neuronal subtypes. Furthermore, we will discuss up-and-coming technologies that advance the cell reprogramming field, including the use of computational prediction of reprogramming factors, opportunity of cellular reprogramming using small chemicals and microRNA, as well as the exciting potential for applying direct reprogramming in vivo as a novel approach to promote neuro-regeneration within the body. Finally, we will highlight the clinical potential of direct reprogramming and discuss the hurdles that need to be overcome for clinical translation.
Collapse
Affiliation(s)
- Layal El Wazan
- Cellular Reprogramming Unit, Centre for Eye Research Australia, Melbourne 3004, Australia
| | - Daniel Urrutia-Cabrera
- Cellular Reprogramming Unit, Centre for Eye Research Australia, Melbourne 3004, Australia
| | | |
Collapse
|
50
|
Shu P, Wu C, Ruan X, Liu W, Hou L, Fu H, Wang M, Liu C, Zeng Y, Chen P, Yin B, Yuan J, Qiang B, Peng X, Zhong W. Opposing Gradients of MicroRNA Expression Temporally Pattern Layer Formation in the Developing Neocortex. Dev Cell 2019; 49:764-785.e4. [PMID: 31080058 DOI: 10.1016/j.devcel.2019.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 11/08/2018] [Accepted: 04/07/2019] [Indexed: 12/24/2022]
Abstract
The precisely timed generation of different neuronal types is a hallmark of development from invertebrates to vertebrates. In the developing mammalian neocortex, neural stem cells change competence over time to sequentially produce six layers of functionally distinct neurons. Here, we report that microRNAs (miRNAs) are dispensable for stem-cell self-renewal and neuron production but essential for timing neocortical layer formation and specifying laminar fates. Specifically, as neurogenesis progresses, stem cells reduce miR-128 expression and miR-9 activity but steadily increase let-7 expression, whereas neurons initially maintain the differences in miRNA expression present at birth. Moreover, miR-128, miR-9, and let-7 are functionally distinct; capable of specifying neurons for layer VI and layer V and layers IV, III, and II, respectively; and transiently altering their relative levels of expression can modulate stem-cell competence in a neurogenic-stage-specific manner to shift neuron production between earlier-born and later-born fates, partly by temporally regulating a neurogenesis program involving Hmga2.
Collapse
Affiliation(s)
- Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chao Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiangbin Ruan
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Liu
- Department of Anatomy and Histology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hongye Fu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ming Wang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chang Liu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yi Zeng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pan Chen
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jiangang Yuan
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Weimin Zhong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA.
| |
Collapse
|