1
|
Menezes NA, Peterson KJ, Guo X, Castiglioni V, Kalvisa A, Filimonow K, Schachter K, Schuh CM, Pasias A, Mariani L, Brickman JM, Sedzinski J, Ferretti E. Cell-context response to germ layer differentiation signals is predetermined by the epigenome in regionalized epiblast populations. Nat Commun 2025; 16:5000. [PMID: 40442089 PMCID: PMC12122723 DOI: 10.1038/s41467-025-60348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Stem cells hold promise in regenerative medicine as they have the potential to differentiate into a variety of specialized cell types. However, mechanisms underlying stem cell potency and lineage acquisition remain elusive. Epigenetic modifications and genome accessibility prime cellular feedback to signalling cues, influencing lineage differentiation outcomes. Deciphering how this epigenetic code influences the context-dependent response of pluripotent cells to differentiation cues will elucidate how mammalian tissue diversity is established. Using in vitro and in vivo models, we show that lineage-specific epigenetic signatures precede transcriptional activation of germ layer differentiation programs. We provide evidence that while distinct chromatin accessibility and methylome states prime extraembryonic mesodermal fate decisions, it is DNA methylation, and not chromatin accessibility that predetermines the fates of neuroectoderm, definitive endoderm and neuromesodermal lineages. This study establishes that epigenetic machinery fine-tunes epiblast potency, allowing context-specific spatiotemporal responses to promiscuously used signalling cues controlling organogenesis.
Collapse
Affiliation(s)
- Niels Alvaro Menezes
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kathryn Johanna Peterson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Xiaogang Guo
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Veronica Castiglioni
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Adrija Kalvisa
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Katarzyna Filimonow
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, Jastrzę biec, Poland
| | - Karen Schachter
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Christina Maria Schuh
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Athanasios Pasias
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Luca Mariani
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jakub Sedzinski
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Elisabetta Ferretti
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark.
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark.
- dawn-bio GmbH, Vienna BioCenter, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Qi M, Wang B, Liao H, Xu Y, Dong L, Xu L, Xia Y, Jiang X, Ling S, Qin J. Loss of sex-determining region Y-box 2 (Sox2) captures embryonic stem cells in a primed pluripotent state. J Biol Chem 2025; 301:108501. [PMID: 40216251 PMCID: PMC12135381 DOI: 10.1016/j.jbc.2025.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Two main pluripotent cell lines can be established from the preimplantation and postimplantation mouse embryo as naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. Although the two pluripotent states are interconvertible, the molecular mechanism controlling the transition between naïve and primed pluripotency remains to be fully elucidated. Here, by performing a CRISPR-based loss-of-function screen in ESCs, we identify Sox2 involved in the repression of lineage-specification marker brachyury (T). Upon Sox2 ablation in ESCs, two populations of cells mutually exclusive for CDX2 (trophectoderm marker) and T expression can be observed. T-positive cells display features resembling the salient characteristics of EpiSCs including molecular and functional properties. By using genetic ablation approach, we show that acquisition and maintenance of primed pluripotency in Sox2 null T-positive cells heavily depend on fibroblast growth factor (Fgf) and Nodal, which is produced in an autocrine manner in these cells. We further demonstrate that Sox3 compensates for the absence of Sox2 in maintaining the primed state of Sox2-null pluripotent cells. Establishment of Sox2-deficient pluripotent cells will enable the elucidation of the mechanisms controlling the transition of cells between different states of pluripotency.
Collapse
Affiliation(s)
- Min Qi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Bowen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Huaqi Liao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yuzhuo Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lixia Dong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lijun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Jinzhong Qin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
4
|
Liu S, Meng Y, Lan X, Li R, Kanchanawong P. Ground-state pluripotent stem cells are characterized by Rac1-dependent cadherin-enriched F-actin complexes. J Cell Sci 2025; 138:JCS263811. [PMID: 39886806 DOI: 10.1242/jcs.263811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Pluripotent stem cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, although different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here, we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) into converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We term these structures 'non-junctional cadherin complexes' (NJCCs) and show that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal Ca2+ dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCCs might arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Yue Meng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Xi Lan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
5
|
Kim SM, Kwon EJ, Oh JY, Kim HS, Park S, Jang G, Tae Do J, Kim KT, Cha HJ. AMPK activation by glycogen expenditure primes the exit of naïve pluripotency. EMBO Rep 2025; 26:1504-1527. [PMID: 39962227 PMCID: PMC11933299 DOI: 10.1038/s44319-025-00384-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/21/2024] [Accepted: 01/20/2025] [Indexed: 03/26/2025] Open
Abstract
Embryonic and epiblast stem cells in pre-and post-implantation embryos are characterized by their naïve and primed states, respectively which represent distinct phases of pluripotency. Thus, cellular transition from naïve-to-primed pluripotency recapitulates a drastic metabolic and cellular remodeling after implantation to adapt to changes in extracellular conditions. Here, we found that inhibition of AMPK occurs during naïve transition with two conventional inhibitors of the MEK1 and GSK3β pathways. The accumulation of glycogen due to iGSK3β is responsible for AMPK inhibition, which accounts for high de novo fatty acid synthesis in naïve (ESCs). The knockout of glycogen synthase 1 in naïve ESCs; GKO, resulting in a drastic glycogen loss, leads to a robust AMPK activation and lowers the level of fatty acids. GKO loses cellular characteristics of naïve ESCs and rapidly transitioned to a primed state. The characteristics of GKO are restored by the simultaneous AMPK KO. These findings suggest that high glycogen in epiblast within pre-implantation blastocyst may act as a signaling molecule for timely activation of AMPK, thus ultimately contributing to transition to post-implantation stage epiblast.
Collapse
Affiliation(s)
- Seong-Min Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T, Wu H, Zhu Z, Guo J, Chen X, Yang J, Zhang W, Ye Y. Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance. J Biol Chem 2025; 301:108140. [PMID: 39730061 PMCID: PMC11791114 DOI: 10.1016/j.jbc.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from preimplantation and postimplantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BRG1/BRM-associated factor (BAF) chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear. This study demonstrates that the LIF/STAT3 and Wnt signaling pathways, in conjunction with canonical BAF (cBAF) and polycomb repressive complex two complexes, inhibit EpiSC gene expression, thereby preventing ESCs from converting to EpiSCs. Upon removal of LIF, the reduced LIF/STAT3 signaling lifts this inhibition, increasing TGF/nodal pathway activity. Subsequently, the cBAF complex facilitates ESC to EpiSC conversion by promoting EpiSC gene expression. Furthermore, unlike cBAF, inhibition of the ncBAF complex downregulates TGF-β signaling, thereby hindering both ESC to EpiSC conversion and EpiSC maintenance. Moreover, this study revealed the dual mechanisms, methylating histone or non-histone protein STAT3, by which polycomb repressive complex two components participate in the regulation of ESCs to EpiSCs. This research elucidates the interplay between distinct BAF complexes and specific signaling pathways in regulating the conversion and maintenance of ESCs and EpiSCs.
Collapse
Affiliation(s)
- Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Yukun Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Heifei, China
| | - Jiayi Guo
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
| | - Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, China.
| |
Collapse
|
7
|
Lee SM, Smela MP, Surani MA. The role of KLF4 in human primordial germ cell development. Open Biol 2025; 15:240214. [PMID: 39837498 PMCID: PMC11750398 DOI: 10.1098/rsob.240214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Primordial germ cells (PGCs) are the founder cells that develop into mature gametes. PGCs emerge during weeks 2-3 of human embryo development. Pluripotency genes are reactivated during PGC specification, including Krüppel-like factor KLF4, but its precise role in PGC development is unclear. Here, we investigated the role of KLF4 in PGC development using our in vitro model for human PGC-like cells (hPGCLCs). We demonstrate that the depletion of KLF4 reduces the efficiency of hPGCLC specification, resulting in hPGCLCs with an aberrant transcriptome. Cut-and-run and transcriptomic analyses reveal that KLF4 represses somatic markers involved in neuronal and endodermal differentiation while promoting the expression of genes associated with PGC specification, such as PAX5, and epigenetic regulators, including DNMT3L and REST. KLF4 targets in hPGCLCs showed significant co-enrichment of motifs for SP and STAT factors, which are known to regulate cell cycle and migration genes. KLF4 contributes to human PGC development by activating genes involved in PGC specification and cell cycle regulation, while repressing somatic genes to maintain PGC identity.
Collapse
Affiliation(s)
- Sun-Min Lee
- Gurdon Institute, Tennis Court Road, University of Cambridge, CambridgeCB2 1QN, UK
- Department of Physics, Konkuk University, Seoul05029, Republic of Korea
| | - Merrick Pierson Smela
- Gurdon Institute, Tennis Court Road, University of Cambridge, CambridgeCB2 1QN, UK
- Wyss Institute, Harvard University, Boston, MA02215, USA
| | - M. Azim Surani
- Gurdon Institute, Tennis Court Road, University of Cambridge, CambridgeCB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, CambridgeCB2 3EL, UK
| |
Collapse
|
8
|
Lu R, Lin B, Lin Z, Xiong H, Liu J, Li L, Gong Z, Wang S, Zhang M, Ding J, Hang C, Guo H, Xie D, Liu Y, Shi D, Liang D, Liu Z, Yang J, Chen YH. Hypo-osmolarity promotes naive pluripotency by reshaping cytoskeleton and increasing chromatin accessibility. J Adv Res 2024:S2090-1232(24)00556-3. [PMID: 39643114 DOI: 10.1016/j.jare.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Cell fate determination and transition are of paramount importance in biology and medicine. Naive pluripotency could be achieved by reprogramming differentiated cells. However, the mechanism is less clear. Osmolarity is an essential physical factor that acts on living cells, especially for pluripotent cells, but its significance in cell fate transition remains unexplored. OBJECTIVES To investigate the role of osmolarity in cell fate transition and its underlying mechanism. METHODS Flow cytometry, quantitative real-time PCR, teratoma and chimeric mice assays were performed to assess reprogramming efficiency and characterize iPSCs. TEM, immunofluorescence staining, western blot, chemical treatment and genetic modification were utilized to evaluate cell morphology, signaling pathways, cytoskeleton and nuclear structure. Multiomic sequencings were applied to unveil the transcriptome, histone markers and chromatin accessibility of EpiSCs in hypo-osmotic condition. RESULTS In hypo-osmotic condition, the reprogramming efficiency of hypo-osmotic EpiSCs increased over 60-fold than that of iso-osmotic cells (1100 vs 18 colonies per 3 × 105 cells), whereas no colony formed in hyper-osmotic cells. As expected, the converted cells displayed naive pluripotency. The hypo-osmotic EpiSCs exhibited larger cell size, nuclear area and less heterochromatin; ATAC-seq and ChIP-seq confirmed the increased accessibility of naive pluripotent gene loci with more H3K27ac. Mechanistically, hypo-osmolarity activated PI3K-AKT-SP1 signaling in EpiSCs, which reshaped cytoskeleton and nucleoskeleton, resulting in genome reorganization and pluripotent gene expression. In contrast, hypo-osmolarity delayed the ESCs' exit from naive pluripotency. Moreover, in MEFs reprograming, hypo-osmolarity promoted the conversion to naive pluripotency. CONCLUSION Hypo-osmolarity promotes cell fate transition by remodeling cytoskeleton, nucleoskeleton and genome via PI3K-AKT-SP1 pathway.
Collapse
Affiliation(s)
- Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zheng Gong
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Siyu Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China; Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China; Department of Cell Biology, School of Medicine, Tongji University, Shanghai 200092, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
9
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
10
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
11
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
12
|
Fan S, Guo C, Yang G, Hong L, Li H, Ma J, Zhou Y, Fan S, Xue Y, Zeng F. GPR160 regulates the self-renewal and pluripotency of mouse embryonic stem cells via JAK1/STAT3 signaling pathway. J Genet Genomics 2024; 51:1055-1065. [PMID: 38750952 DOI: 10.1016/j.jgg.2024.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) remain poorly understood. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of Gpr160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell-cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of Gpr160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Consistent with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shasha Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Hongyu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Ji Ma
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yiye Zhou
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Shuyue Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yan Xue
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China; School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
13
|
Ma Z, Huang X, Kuang J, Wang Q, Qin Y, Huang T, Liang Z, Li W, Fu Y, Li P, Fan Y, Zhai Z, Wang X, Ming J, Zhao C, Wang B, Pei D. Cpt1a Drives primed-to-naïve pluripotency transition through lipid remodeling. Commun Biol 2024; 7:1223. [PMID: 39349670 PMCID: PMC11442460 DOI: 10.1038/s42003-024-06874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.
Collapse
Affiliation(s)
- Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qiannan Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Pengli Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Monteleone E, Corrieri P, Provero P, Viavattene D, Pulvirenti L, Raggi L, Carbognin E, Bianchi ME, Martello G, Oliviero S, Pandolfi PP, Poli V. STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA. Brief Funct Genomics 2024; 23:651-662. [PMID: 37801430 PMCID: PMC11428181 DOI: 10.1093/bfgp/elad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.
Collapse
Affiliation(s)
- Emanuele Monteleone
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Corrieri
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Daniele Viavattene
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Lorenzo Pulvirenti
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Laura Raggi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | | | | | | | | | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- William N. Pennington Cancer Institute, Nevada System of Higher Education, Reno, Nevada
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
15
|
Arekatla G, Skylaki S, Corredor Suarez D, Jackson H, Schapiro D, Engler S, Auler M, Camargo Ortega G, Hastreiter S, Reimann A, Loeffler D, Bodenmiller B, Schroeder T. Identification of an embryonic differentiation stage marked by Sox1 and FoxA2 co-expression using combined cell tracking and high dimensional protein imaging. Nat Commun 2024; 15:7860. [PMID: 39251590 PMCID: PMC11385471 DOI: 10.1038/s41467-024-52069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hartland Jackson
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Health Systems; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Denis Schapiro
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | - Stefanie Engler
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Markus Auler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Simon Hastreiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology and Laboratory Medicine, The University of Tennessee, Memphis, TN, USA
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
16
|
Modic M, Kuret K, Steinhauser S, Faraway R, van Genderen E, Ruiz de Los Mozos I, Novljan J, Vičič Ž, Lee FCY, Ten Berge D, Luscombe NM, Ule J. Poised PABP-RNA hubs implement signal-dependent mRNA decay in development. Nat Struct Mol Biol 2024; 31:1439-1447. [PMID: 39054355 PMCID: PMC11402784 DOI: 10.1038/s41594-024-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK-MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3' untranslated region (3'UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3'UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A-PABP convergence, which enhances PABP 3'UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP-RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression.
Collapse
Affiliation(s)
- Miha Modic
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| | - Klara Kuret
- The Francis Crick Institute, London, UK
- National Institute of Chemistry, Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Rupert Faraway
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Emiel van Genderen
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jona Novljan
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Vičič
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Flora C Y Lee
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Derk Ten Berge
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Liang D, Yan R, Long X, Ji D, Song B, Wang M, Zhang F, Cheng X, Sun F, Zhu R, Hou X, Wang T, Zou W, Zhang Y, Pu Z, Zhang J, Zhang Z, Liu Y, Hu Y, He X, Cao Y, Guo F. Distinct dynamics of parental 5-hydroxymethylcytosine during human preimplantation development regulate early lineage gene expression. Nat Cell Biol 2024; 26:1458-1469. [PMID: 39080410 PMCID: PMC11392820 DOI: 10.1038/s41556-024-01475-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
The conversion of DNA 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET enzymes represents a significant epigenetic modification, yet its role in early human embryos remains largely unknown. Here we showed that the early human embryo inherited a significant amount of 5hmCs from an oocyte, which unexpectedly underwent de novo hydroxymethylation during its growth. Furthermore, the generation of 5hmC in the paternal genome after fertilization roughly followed the maternal pattern, which was linked to DNA methylation dynamics and regions of sustained methylation. The 5hmCs persisted until the eight-cell stage and exhibited high enrichment at OTX2 binding sites, whereas knockdown of OTX2 in human embryos compromised the expression of early lineage genes. Specifically, the depletion of 5hmC affected the activation of embryonic genes, which was further evaluated by ectopically expressing mouse Tet3 in human early embryos. These findings revealed distinct dynamics of 5hmC and unravelled its multifaceted functions in early human embryonic development.
Collapse
Affiliation(s)
- Dan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Rui Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xin Long
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Mengyao Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Fan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xin Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fengyuan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ran Zhu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xinling Hou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Zhixin Pu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Yuqiong Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China.
| | - Fan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
18
|
Garate X, Gómez-García PA, Merino MF, Angles MC, Zhu C, Castells-García A, Ed-Daoui I, Martin L, Ochiai H, Neguembor MV, Cosma MP. The relationship between nanoscale genome organization and gene expression in mouse embryonic stem cells during pluripotency transition. Nucleic Acids Res 2024; 52:8146-8164. [PMID: 38850157 DOI: 10.1093/nar/gkae476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
During early development, gene expression is tightly regulated. However, how genome organization controls gene expression during the transition from naïve embryonic stem cells to epiblast stem cells is still poorly understood. Using single-molecule microscopy approaches to reach nanoscale resolution, we show that genome remodeling affects gene transcription during pluripotency transition. Specifically, after exit from the naïve pluripotency state, chromatin becomes less compacted, and the OCT4 transcription factor has lower mobility and is more bound to its cognate sites. In epiblast cells, the active transcription hallmark, H3K9ac, decreases within the Oct4 locus, correlating with reduced accessibility of OCT4 and, in turn, with reduced expression of Oct4 nascent RNAs. Despite the high variability in the distances between active pluripotency genes, distances between Nodal and Oct4 decrease during epiblast specification. In particular, highly expressed Oct4 alleles are closer to nuclear speckles during all stages of the pluripotency transition, while only a distinct group of highly expressed Nodal alleles are in close proximity to Oct4 when associated with a nuclear speckle in epiblast cells. Overall, our results provide new insights into the role of the spatiotemporal genome remodeling during mouse pluripotency transition and its correlation with the expression of key pluripotency genes.
Collapse
Affiliation(s)
- Ximena Garate
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marta Cadevall Angles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chenggan Zhu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Alvaro Castells-García
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
| | - Ilyas Ed-Daoui
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Hiroshi Ochiai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
19
|
Hu Z, Yang L, Zhang M, Tang H, Huang Y, Su Y, Ding Y, Li C, Wang M, Zhou Y, Zhang Q, Guo L, Wu Y, Wang Q, Liu N, Kang H, Wu Y, Yao D, Li Y, Ruan Z, Wang H, Bao F, Liu G, Wang J, Wang Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab 2024; 36:1586-1597.e7. [PMID: 38703762 DOI: 10.1016/j.cmet.2024.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.
Collapse
Affiliation(s)
- Zhijuan Hu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Maolei Zhang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Yujie Su
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Chong Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengfei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Liman Guo
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Yue Wu
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Haoran Kang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Deyang Yao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yukun Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Ruan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feixiang Bao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guopan Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Junwei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
20
|
Li-Bao L, Díaz-Díaz C, Raiola M, Sierra R, Temiño S, Moya FJ, Rodriguez-Perales S, Santos E, Giovinazzo G, Bleckwehl T, Rada-Iglesias Á, Spitz F, Torres M. Regulation of Myc transcription by an enhancer cluster dedicated to pluripotency and early embryonic expression. Nat Commun 2024; 15:3931. [PMID: 38729993 PMCID: PMC11087473 DOI: 10.1038/s41467-024-48258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.
Collapse
Affiliation(s)
- Lin Li-Bao
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Andaluz de Biología del Desarrollo (CABD), Sevilla, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rocío Sierra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Elisa Santos
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Álvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Francois Spitz
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
21
|
Fang F, Li Z, Zhang X, Huang Q, Lu S, Wang X. Divergent Roles of KLF4 During Primordial Germ Cell Fate Induction from Human Embryonic Stem Cells. Reprod Sci 2024; 31:727-735. [PMID: 37884729 DOI: 10.1007/s43032-023-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
As a core transcriptional factor regulating pluripotency, Krüppel-like factor 4 (KLF4) has gained much attention in the field of stem cells during the past decades. However, few research have focused on the function of KLF4 during human primordial germ cell (PGC) specification. Here, we induced human PGC-like cells (hPGCLCs) from human embryonic stem cells (hESCs) and the derived hPGCLCs upregulated PGC-related genes, like SOX17, BLIMP1, TFAP2C, NANOS3, and the naïve pluripotency gene KLF4. The KLF4-knockout hESCs formed typical multicellular colonies with clear borders, expressed pluripotency genes, such as NANOG, OCT4, and SOX2, and exhibited no differences in proliferation capacity compared with wild type hESCs. Notably, KLF4 deletion in hESCs did not influence the induction of PGCLCs in vitro. In contrast, overexpression of KLF4 during PGC induction process inhibited the efficiency of PGCLC formation from hESCs in vitro. Overexpression of KLF4 may regenerate the naïve ground state in hESCs and results in repression for PGC specification. Thus, KLF4 could be a downstream target of human PGC program and the upregulation of KLF4 is prepared for late stage of germline development.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoke Zhang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qi Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
22
|
Dufour A, Kurylo C, Stöckl JB, Laloë D, Bailly Y, Manceau P, Martins F, Turhan AG, Ferchaud S, Pain B, Fröhlich T, Foissac S, Artus J, Acloque H. Cell specification and functional interactions in the pig blastocyst inferred from single-cell transcriptomics and uterine fluids proteomics. Genomics 2024; 116:110780. [PMID: 38211822 DOI: 10.1016/j.ygeno.2023.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The embryonic development of the pig comprises a long in utero pre- and peri-implantation development, which dramatically differs from mice and humans. During this peri-implantation period, a complex series of paracrine signals establishes an intimate dialogue between the embryo and the uterus. To better understand the biology of the pig blastocyst during this period, we generated a large dataset of single-cell RNAseq from early and hatched blastocysts, spheroid and ovoid conceptus and proteomic datasets from corresponding uterine fluids. Our results confirm the molecular specificity and functionality of the three main cell populations. We also discovered two previously unknown subpopulations of the trophectoderm, one characterised by the expression of LRP2, which could represent progenitor cells, and the other, expressing pro-apoptotic markers, which could correspond to the Rauber's layer. Our work provides new insights into the biology of these populations, their reciprocal functional interactions, and the molecular dialogue with the maternal uterine environment.
Collapse
Affiliation(s)
- Adrien Dufour
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | - Cyril Kurylo
- Université de Toulouse, INRAE, ENVT, GenPhySE, Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Jan B Stöckl
- Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Denis Laloë
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | - Yoann Bailly
- INRAE, GenESI, La Gouvanière, 86480 Rouillé, France
| | | | - Frédéric Martins
- Plateforme Genome et Transcriptome (GeT-Santé), GenoToul, Toulouse University, CNRS, INRAE, INSA, Toulouse, France; I2MC - Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Ali G Turhan
- Université Paris Saclay, Inserm, UMRS1310, 7 rue Guy Moquet, 94800 Villejuif, France
| | | | - Bertrand Pain
- Université de Lyon, Inserm, INRAE, SBRI, 18 Av. du Doyen Jean Lépine, 69500 Bron, France
| | - Thomas Fröhlich
- Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Sylvain Foissac
- Université de Toulouse, INRAE, ENVT, GenPhySE, Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Jérôme Artus
- Université Paris Saclay, Inserm, UMRS1310, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Hervé Acloque
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France.
| |
Collapse
|
23
|
Guo H, Hang C, Lin B, Lin Z, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. HAND factors regulate cardiac lineage commitment and differentiation from human pluripotent stem cells. Stem Cell Res Ther 2024; 15:31. [PMID: 38317221 PMCID: PMC10845658 DOI: 10.1186/s13287-024-03649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
24
|
Zhao H, Li D, Xiao X, Liu C, Chen G, Su X, Yan Z, Gu S, Wang Y, Li G, Feng J, Li W, Chen P, Yang J, Li Q. Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin. iScience 2024; 27:108537. [PMID: 38213626 PMCID: PMC10783625 DOI: 10.1016/j.isci.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifang Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoyu Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhenxin Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shijia Gu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
MacCarthy CM, Wu G, Malik V, Menuchin-Lasowski Y, Velychko T, Keshet G, Fan R, Bedzhov I, Church GM, Jauch R, Cojocaru V, Schöler HR, Velychko S. Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell 2024; 31:127-147.e9. [PMID: 38141611 DOI: 10.1016/j.stem.2023.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
Collapse
Affiliation(s)
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; International Bio Island, Guangzhou, China; MingCeler Biotech, Guangzhou, China
| | - Vikas Malik
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Taras Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gal Keshet
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rui Fan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; University of Utrecht, Utrecht, the Netherlands; STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
26
|
Li D, Luo L, Guo L, Wu C, Zhang R, Peng Y, Wu M, Kuang J, Li Y, Zhang Y, Xie J, Xie W, Mao R, Ma G, Fu X, Chen J, Hutchins AP, Pei D. c-Jun as a one-way valve at the naive to primed interface. Cell Biosci 2023; 13:191. [PMID: 37838693 PMCID: PMC10576270 DOI: 10.1186/s13578-023-01141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND c-Jun is a proto-oncogene functioning as a transcription factor to activate gene expression under many physiological and pathological conditions, particularly in somatic cells. However, its role in early embryonic development remains unknown. RESULTS Here, we show that c-Jun acts as a one-way valve to preserve the primed state and impair reversion to the naïve state. c-Jun is induced during the naive to primed transition, and it works to stabilize the chromatin structure and inhibit the reverse transition. Loss of c-Jun has surprisingly little effect on the naïve to primed transition, and no phenotypic effect on primed cells, however, in primed cells the loss of c-Jun leads to a failure to correctly close naïve-specific enhancers. When the primed cells are induced to reprogram to a naïve state, these enhancers are more rapidly activated when c-Jun is lost or impaired, and the conversion is more efficient. CONCLUSIONS The results of this study indicate that c-Jun can function as a chromatin stabilizer in primed EpiSCs, to maintain the epigenetic cell type state and act as a one-way valve for cell fate conversions.
Collapse
Affiliation(s)
- Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 190 Kaiyuan Dadao, Huangpu District, Guangzhou, 510799, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Ling Luo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuman Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ran Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 190 Kaiyuan Dadao, Huangpu District, Guangzhou, 510799, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 190 Kaiyuan Dadao, Huangpu District, Guangzhou, 510799, China
| | - Junqi Kuang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yudan Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jun Xie
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Wenxiu Xie
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rui Mao
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiekai Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Yunqi Town, No.18 Longshan Street, Xihu District, Hangzhou, 310024, China.
| |
Collapse
|
27
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Meng S, Liu X, Zhu S, Xie P, Fang H, Pan Q, Fang K, Li F, Zhang J, Che Z, Zhang Q, Mao G, Wang Y, Hu P, Chen K, Sun F, Xie W, Luo Z, Lin C. Young LINE-1 transposon 5' UTRs marked by elongation factor ELL3 function as enhancers to regulate naïve pluripotency in embryonic stem cells. Nat Cell Biol 2023; 25:1319-1331. [PMID: 37591949 DOI: 10.1038/s41556-023-01211-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
LINE-1s are the major clade of retrotransposons with autonomous retrotransposition activity. Despite the potential genotoxicity, LINE-1s are highly activated in early embryos. Here we show that a subset of young LINE-1s, L1Md_Ts, are marked by the RNA polymerase II elongation factor ELL3, and function as enhancers in mouse embryonic stem cells. ELL3 depletion dislodges the DNA hydroxymethylase TET1 and the co-repressor SIN3A from L1Md_Ts, but increases the enrichment of the Bromodomain protein BRD4, leading to loss of 5hmC, gain of H3K27ac, and upregulation of the L1Md_T nearby genes. Specifically, ELL3 occupies and represses the L1Md_T-based enhancer located within Akt3, which encodes a key regulator of AKT pathway. ELL3 is required for proper ERK activation and efficient shutdown of naïve pluripotency through inhibiting Akt3 during naïve-primed transition. Our study reveals that the enhancer function of a subset of young LINE-1s controlled by ELL3 in transcription regulation and mouse early embryo development.
Collapse
Affiliation(s)
- Siyan Meng
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoxu Liu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shiqi Zhu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haitong Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qingyun Pan
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Ke Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fanfan Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jin Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhuanzhuan Che
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Guangyao Mao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Fei Sun
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China.
- Shenzhen Research Institute, Southeast University, Shenzhen, China.
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Shenzhen Research Institute, Southeast University, Shenzhen, China.
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, China.
| |
Collapse
|
29
|
Masamsetti VP, Tam PP. Rat epiblast-derived stem cells recapitulate the attributes of pre-gastrulation epiblast. CELL REPORTS METHODS 2023; 3:100575. [PMID: 37671029 PMCID: PMC10475837 DOI: 10.1016/j.crmeth.2023.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Iwatsuki and colleagues have generated self-renewing pluripotent stem cells from the pre-gastrulation epiblast of the rat embryo and from other cellular sources: rat embryonic stem cells (rESCs) and epiblast-like cells derived from the rESCs. These rat epiblast-derived stem cells (rEpiSCs) display germ-line competence that is characteristic of mouse formative stem cells and early signature of specification of germ layer lineages typical of primed state mouse epiblast stem cells.
Collapse
Affiliation(s)
- V. Pragathi Masamsetti
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- The University of Sydney, Faculty of Medicine and Health, School of Medical Sciences, NSW 2006, Australia
| | - Patrick P.L. Tam
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- The University of Sydney, Faculty of Medicine and Health, School of Medical Sciences, NSW 2006, Australia
| |
Collapse
|
30
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
31
|
Zhang Y, Li X, Gao S, Liao Y, Luo Y, Liu M, Bian Y, Xiong H, Yue Y, He A. Genetic reporter for live tracing fluid flow forces during cell fate segregation in mouse blastocyst development. Cell Stem Cell 2023; 30:1110-1123.e9. [PMID: 37541214 DOI: 10.1016/j.stem.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Youdong Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shu Gao
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Yingjie Luo
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiqing Xiong
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Miyazaki S, Yamano H, Motooka D, Tashiro F, Matsuura T, Miyazaki T, Miyazaki JI. Zfp296 knockout enhances chromatin accessibility and induces a unique state of pluripotency in embryonic stem cells. Commun Biol 2023; 6:771. [PMID: 37488353 PMCID: PMC10366109 DOI: 10.1038/s42003-023-05148-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The Zfp296 gene encodes a zinc finger-type protein. Its expression is high in mouse embryonic stem cells (ESCs) but rapidly decreases following differentiation. Zfp296-knockout (KO) ESCs grew as flat colonies, which were reverted to rounded colonies by exogenous expression of Zfp296. KO ESCs could not form teratomas when transplanted into mice but could efficiently contribute to germline-competent chimeric mice following blastocyst injection. Transcriptome analysis revealed that Zfp296 deficiency up- and down-regulates a distinct group of genes, among which Dppa3, Otx2, and Pou3f1 were markedly downregulated. Chromatin immunoprecipitation sequencing demonstrated that ZFP296 binding is predominantly seen in the vicinity of the transcription start sites (TSSs) of a number of genes, and ZFP296 was suggested to negatively regulate transcription. Consistently, chromatin accessibility assay clearly showed that ZFP296 binding reduces the accessibility of the TSS regions of target genes. Zfp296-KO ESCs showed increased histone H3K9 di- and trimethylation. Co-immunoprecipitation analyses revealed interaction of ZFP296 with G9a and GLP. These results show that ZFP296 plays essential roles in maintaining the global epigenetic state of ESCs through multiple mechanisms including activation of Dppa3, attenuation of chromatin accessibility, and repression of H3K9 methylation, but that Zfp296-KO ESCs retain a unique state of pluripotency while lacking the teratoma-forming ability.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Yamano
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumi Tashiro
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takumi Matsuura
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Toray Industries, Inc., Tokyo, Japan
| | - Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
33
|
Singh A, Rappolee DA, Ruden DM. Epigenetic Reprogramming in Mice and Humans: From Fertilization to Primordial Germ Cell Development. Cells 2023; 12:1874. [PMID: 37508536 PMCID: PMC10377882 DOI: 10.3390/cells12141874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and human embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications. Global epigenetic reprogramming occurs in mammals at two stages: post-fertilization and during the development of primordial germ cells (PGC). Epigenetic reprogramming after fertilization involves rapid demethylation of the paternal genome mediated through active and passive DNA demethylation, and gradual demethylation in the maternal genome through passive DNA demethylation. The de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b, restore DNA methylation beginning from the blastocyst stage until the formation of the gastrula, and DNA maintenance methyltransferase, Dnmt1, maintains methylation in the somatic cells. The PGC undergo a second round of global demethylation after allocation during the formative pluripotent stage before gastrulation, where the imprints and the methylation marks on the transposable elements known as retrotransposons, including long interspersed nuclear elements (LINE-1) and intracisternal A-particle (IAP) elements are demethylated as well. Finally, DNA methylation is restored in the PGC at the implantation stage including sex-specific imprints corresponding to the sex of the embryo. This review introduces a novel perspective by uncovering how toxicants and stress stimuli impact the critical period of allocation during formative pluripotency, potentially influencing both the quantity and quality of PGCs. Furthermore, the comprehensive comparison of epigenetic events between mice and humans breaks new ground, empowering researchers to make informed decisions regarding the suitability of mouse models for their experiments.
Collapse
Affiliation(s)
- Aditi Singh
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Daniel A. Rappolee
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Reproductive Stress Measurement, Mechanisms and Management, Corp., 135 Lake Shore Rd., Grosse Pointe Farms, MI 48236, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Douglas M. Ruden
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
34
|
Arekatla G, Trenzinger C, Reimann A, Loeffler D, Kull T, Schroeder T. Optogenetic manipulation identifies the roles of ERK and AKT dynamics in controlling mouse embryonic stem cell exit from pluripotency. Dev Cell 2023:S1534-5807(23)00183-1. [PMID: 37207652 DOI: 10.1016/j.devcel.2023.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
ERK and AKT signaling control pluripotent cell self-renewal versus differentiation. ERK pathway activity over time (i.e., dynamics) is heterogeneous between individual pluripotent cells, even in response to the same stimuli. To analyze potential functions of ERK and AKT dynamics in controlling mouse embryonic stem cell (ESC) fates, we developed ESC lines and experimental pipelines for the simultaneous long-term manipulation and quantification of ERK or AKT dynamics and cell fates. We show that ERK activity duration or amplitude or the type of ERK dynamics (e.g., transient, sustained, or oscillatory) alone does not influence exit from pluripotency, but the sum of activity over time does. Interestingly, cells retain memory of previous ERK pulses, with duration of memory retention dependent on duration of previous pulse length. FGF receptor/AKT dynamics counteract ERK-induced pluripotency exit. These findings improve our understanding of how cells integrate dynamics from multiple signaling pathways and translate them into cell fate cues.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
35
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
36
|
Carbognin E, Carlini V, Panariello F, Chieregato M, Guerzoni E, Benvegnù D, Perrera V, Malucelli C, Cesana M, Grimaldi A, Mutarelli M, Carissimo A, Tannenbaum E, Kugler H, Hackett JA, Cacchiarelli D, Martello G. Esrrb guides naive pluripotent cells through the formative transcriptional programme. Nat Cell Biol 2023; 25:643-657. [PMID: 37106060 PMCID: PMC7614557 DOI: 10.1038/s41556-023-01131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.
Collapse
Affiliation(s)
- Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Elena Guerzoni
- Department of Biology, University of Padua, Padua, Italy
| | | | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Cristina Malucelli
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti 'Eduardo Caianiello', Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto per le Applicazioni del Calcolo 'Mauro Picone,' Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Eitan Tannenbaum
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples 'Federico II', Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples 'Federico II', Naples, Italy.
| | | |
Collapse
|
37
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
38
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
39
|
Gao F, Wu S, Li Y, Fang Y, Liu M, Du J, Kong Q, An T. Inhibition of TGF-β pathway improved the pluripotency of porcine pluripotent stem cells. In Vitro Cell Dev Biol Anim 2023; 59:142-152. [PMID: 36867291 DOI: 10.1007/s11626-023-00752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023]
Abstract
Porcine pluripotent stem cells had been derived from different culture systems. PeNK6 is a porcine pluripotent stem cell line that we established from an E5.5 embryo in a defined culture system. Signaling pathways related with pluripotency had been assessed in this cell line, and TGF-β signaling pathway-related genes were found upregulated significantly. In this study, we elucidated the role of the TGF-β signaling pathway in PeNK6 through adding small molecule inhibitors, SB431542 (KOSB) or A83-01 (KOA), into the original culture medium (KO) and analyzing the expression and activity of key factors involved in the TGF-β signaling pathway. In KOSB/KOA medium, the morphology of PeNK6 became compact and the nuclear-to-cytoplasm ratio was increased. The expression of the core transcription factor SOX2 was significantly upregulated compared with cell lines in the control KO medium, and the differentiation potential became balanced among three germ layers rather than bias to neuroectoderm/endoderm as the original PeNK6 did. The results indicated that inhibition of TGF-β has positive effects on the porcine pluripotency. Based on these results, we established a pluripotent cell line (PeWKSB) from E5.5 blastocyst by employing TGF-β inhibitors, and the cell line showed improved pluripotency.
Collapse
Affiliation(s)
- Fang Gao
- College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China.,Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuang Wu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yan Li
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuan Fang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Minli Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiawei Du
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qingran Kong
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Tiezhu An
- College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
40
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
41
|
Choi EB, Vodnala M, Saini P, Anugula S, Zerbato M, Ho JJ, Wang J, Ho Sui SJ, Yoon J, Roels M, Inouye C, Fong YW. Transcription factor SOX15 regulates stem cell pluripotency and promotes neural fate during differentiation by activating the neurogenic gene Hes5. J Biol Chem 2023; 299:102996. [PMID: 36764520 PMCID: PMC10023989 DOI: 10.1016/j.jbc.2023.102996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
SOX2 and SOX15 are Sox family transcription factors enriched in embryonic stem cells (ESCs). The role of SOX2 in activating gene expression programs essential for stem cell self-renewal and acquisition of pluripotency during somatic cell reprogramming is well-documented. However, the contribution of SOX15 to these processes is unclear and often presumed redundant with SOX2 largely because overexpression of SOX15 can partially restore self-renewal in SOX2-deficient ESCs. Here, we show that SOX15 contributes to stem cell maintenance by cooperating with ESC-enriched transcriptional coactivators to ensure optimal expression of pluripotency-associated genes. We demonstrate that SOX15 depletion compromises reprogramming of fibroblasts to pluripotency which cannot be compensated by SOX2. Ectopic expression of SOX15 promotes the reversion of a postimplantation, epiblast stem cell state back to a preimplantation, ESC-like identity even though SOX2 is expressed in both cell states. We also uncover a role of SOX15 in lineage specification, by showing that loss of SOX15 leads to defects in commitment of ESCs to neural fates. SOX15 promotes neural differentiation by binding to and activating a previously uncharacterized distal enhancer of a key neurogenic regulator, Hes5. Together, these findings identify a multifaceted role of SOX15 in induction and maintenance of pluripotency and neural differentiation.
Collapse
Affiliation(s)
- Eun-Bee Choi
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Munender Vodnala
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Prince Saini
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Sharath Anugula
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Madeleine Zerbato
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California, USA; Howard Hughes Medical Institute, Berkeley, California, USA
| | - Jianing Wang
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joon Yoon
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marielle Roels
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA
| | - Carla Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California, USA; Howard Hughes Medical Institute, Berkeley, California, USA
| | - Yick W Fong
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.
| |
Collapse
|
42
|
Yoshimatsu S, Nakajima M, Sonn I, Natsume R, Sakimura K, Nakatsukasa E, Sasaoka T, Nakamura M, Serizawa T, Sato T, Sasaki E, Deng H, Okano H. Attempts for deriving extended pluripotent stem cells from common marmoset embryonic stem cells. Genes Cells 2023; 28:156-169. [PMID: 36530170 DOI: 10.1111/gtc.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshikuni Sasaoka
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.,Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Hongkui Deng
- Stem Cell Research Center, Peking University, Beijing, China
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
43
|
Li W, Long Q, Wu H, Zhou Y, Duan L, Yuan H, Ding Y, Huang Y, Wu Y, Huang J, Liu D, Chen B, Zhang J, Qi J, Du S, Li L, Liu Y, Ruan Z, Liu Z, Liu Z, Zhao Y, Lu J, Wang J, Chan WY, Liu X. Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat Commun 2022; 13:7414. [PMID: 36460681 PMCID: PMC9718843 DOI: 10.1038/s41467-022-35199-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pluripotent stem cells hold great promise in regenerative medicine and developmental biology studies. Mitochondrial metabolites, including tricarboxylic acid (TCA) cycle intermediates, have been reported to play critical roles in pluripotency. Here we show that TCA cycle enzymes including Pdha1, Pcb, Aco2, Cs, Idh3a, Ogdh, Sdha and Mdh2 are translocated to the nucleus during somatic cell reprogramming, primed-to-naive transition and totipotency acquisition. The nuclear-localized TCA cycle enzymes Pdha1, Pcb, Aco2, Cs, Idh3a promote somatic cell reprogramming and primed-to-naive transition. In addition, nuclear-localized TCA cycle enzymes, particularly nuclear-targeted Pdha1, facilitate the 2-cell program in pluripotent stem cells. Mechanistically, nuclear Pdha1 increases the acetyl-CoA and metabolite pool in the nucleus, leading to chromatin remodeling at pluripotency genes by enhancing histone H3 acetylation. Our results reveal an important role of mitochondrial TCA cycle enzymes in the epigenetic regulation of pluripotency that constitutes a mitochondria-to-nucleus retrograde signaling mode in different states of pluripotent acquisition.
Collapse
Affiliation(s)
- Wei Li
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Long
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Hao Wu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Lifan Duan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yingzhe Ding
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yile Huang
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jinyu Huang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Delong Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Baodan Chen
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jian Zhang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China
| | - Juntao Qi
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shiwei Du
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zifeng Ruan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihuang Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yifan Zhao
- grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Wai-Yee Chan
- grid.10784.3a0000 0004 1937 0482CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
44
|
Hu S, Metcalf E, Mahat DB, Chan L, Sohal N, Chakraborty M, Hamilton M, Singh A, Singh A, Lees JA, Sharp PA, Garg S. Transcription factor antagonism regulates heterogeneity in embryonic stem cell states. Mol Cell 2022; 82:4410-4427.e12. [PMID: 36356583 PMCID: PMC9722640 DOI: 10.1016/j.molcel.2022.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022]
Abstract
Gene expression heterogeneity underlies cell states and contributes to developmental robustness. While heterogeneity can arise from stochastic transcriptional processes, the extent to which it is regulated is unclear. Here, we characterize the regulatory program underlying heterogeneity in murine embryonic stem cell (mESC) states. We identify differentially active and transcribed enhancers (DATEs) across states. DATEs regulate differentially expressed genes and are distinguished by co-binding of transcription factors Klf4 and Zfp281. In contrast to other factors that interact in a positive feedback network stabilizing mESC cell-type identity, Klf4 and Zfp281 drive opposing transcriptional and chromatin programs. Abrogation of factor binding to DATEs dampens variation in gene expression, and factor loss alters kinetics of switching between states. These results show antagonism between factors at enhancers results in gene expression heterogeneity and formation of cell states, with implications for the generation of diverse cell types during development.
Collapse
Affiliation(s)
- Sofia Hu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Emily Metcalf
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dig Bijay Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lynette Chan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noor Sohal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meenakshi Chakraborty
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxwell Hamilton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arundeep Singh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jacqueline A Lees
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Salil Garg
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Laboratory Medicine, Yale Stem Cell Center and Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
45
|
Romitti M, Tourneur A, de Faria da Fonseca B, Doumont G, Gillotay P, Liao XH, Eski SE, Van Simaeys G, Chomette L, Lasolle H, Monestier O, Kasprzyk DF, Detours V, Singh SP, Goldman S, Refetoff S, Costagliola S. Transplantable human thyroid organoids generated from embryonic stem cells to rescue hypothyroidism. Nat Commun 2022; 13:7057. [PMID: 36396935 PMCID: PMC9672394 DOI: 10.1038/s41467-022-34776-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
The thyroid gland captures iodide in order to synthesize hormones that act on almost all tissues and are essential for normal growth and metabolism. Low plasma levels of thyroid hormones lead to hypothyroidism, which is one of the most common disorder in humans and is not always satisfactorily treated by lifelong hormone replacement. Therefore, in addition to the lack of in vitro tractable models to study human thyroid development, differentiation and maturation, functional human thyroid organoids could pave the way to explore new therapeutic approaches. Here we report the generation of transplantable thyroid organoids derived from human embryonic stem cells capable of restoring plasma thyroid hormone in athyreotic mice as a proof of concept for future therapeutic development.
Collapse
Affiliation(s)
- Mírian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Tourneur
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Barbara de Faria da Fonseca
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi (Gosselies), Belgium
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xiao-Hui Liao
- Departments of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sema Elif Eski
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaetan Van Simaeys
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi (Gosselies), Belgium
- Service de Médecine Nucléaire, Hôpital Érasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Laura Chomette
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Helene Lasolle
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Monestier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominika Figini Kasprzyk
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Detours
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sumeet Pal Singh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi (Gosselies), Belgium
- Service de Médecine Nucléaire, Hôpital Érasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Refetoff
- Departments of Medicine, The University of Chicago, Chicago, IL, USA
- Departments of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
46
|
Wang SH, Hao J, Zhang C, Duan FF, Chiu YT, Shi M, Huang X, Yang J, Cao H, Wang Y. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1985-1997. [PMID: 35391627 DOI: 10.1007/s11427-021-2076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The pluripotent state of embryonic stem cells (ESCs) is regulated by a sophisticated network of transcription factors. High expression of KLF17 has recently been identified as a hallmark of naive state of human ESCs (hESCs). However, the functional role of KLF17 in naive state is not clear. Here, by employing various gain and loss-of-function approaches, we demonstrate that KLF17 is essential for the maintenance of naive state and promotes the primed to naive state transition in hESCs. Mechanistically, we identify MAPK3 and ZIC2 as two direct targets repressed by KLF17. Overexpression of MAPK3 or ZIC2 partially blocks KLF17 from promoting the naive pluripotency. Furthermore, we find that human and mouse homologs of KLF17 retain conserved functions in promoting naive pluripotency of both species. Finally, we show that Klf17 may be essential for early embryo development in mouse. These findings demonstrate the important and conserved function of KLF17 in promoting naive pluripotency and reveal two essential transcriptional targets of KLF17 that underlie its function.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jing Hao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chao Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Fei-Fei Duan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ya-Tzu Chiu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
47
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
48
|
Walker CJ, Batan D, Bishop CT, Ramirez D, Aguado BA, Schroeder ME, Crocini C, Schwisow J, Moulton K, Macdougall L, Weiss RM, Allen MA, Dowell R, Leinwand LA, Anseth KS. Extracellular matrix stiffness controls cardiac valve myofibroblast activation through epigenetic remodeling. Bioeng Transl Med 2022; 7:e10394. [PMID: 36176599 PMCID: PMC9472021 DOI: 10.1002/btm2.10394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Aortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated. Here, we studied changes that occur in VICs during myofibroblast activation by using a hydrogel matrix to recapitulate different stiffnesses in the valve leaflet during fibrosis. We first compared the chromatin landscape of qVICs cultured on soft hydrogels and aVICs cultured on stiff hydrogels, representing the native and diseased phenotypes respectively. Using assay for transposase-accessible chromatin sequencing (ATAC-Seq), we found that open chromatin regions in aVICs were enriched for transcription factor binding motifs associated with mechanosensing pathways compared to qVICs. Next, we used RNA-Seq to show that the open chromatin regions in aVICs correlated with pro-fibrotic gene expression, as aVICs expressed higher levels of contractile fiber genes, including myofibroblast markers such as alpha smooth muscle actin (αSMA), compared to qVICs. In contrast, chromatin remodeling genes were downregulated in aVICs compared to qVICs, indicating qVICs may be protected from myofibroblast activation through epigenetic mechanisms. Small molecule inhibition of one of these remodelers, CREB Binding Protein (CREBBP), prevented qVICs from activating to aVICs. Notably, CREBBP is more abundant in valves from healthy patients compared to fibrotic valves. Our findings reveal the role of mechanical regulation in chromatin remodeling during VIC activation and quiescence and highlight one potential therapeutic target for treating AVS.
Collapse
Affiliation(s)
- Cierra J. Walker
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Biochemistry DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Carrie T. Bishop
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Megan E. Schroeder
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Jessica Schwisow
- Division of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Karen Moulton
- Division of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Laura Macdougall
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kristi S. Anseth
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
49
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
50
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|