1
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Le VH, Orniacki C, Murcia-Belmonte V, Denti L, Schütz D, Stumm R, Ruhrberg C, Erskine L. CXCL12 promotes the crossing of retinal ganglion cell axons at the optic chiasm. Development 2024; 151:dev202446. [PMID: 38095299 PMCID: PMC10820821 DOI: 10.1242/dev.202446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.
Collapse
Affiliation(s)
- Viet-Hang Le
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| | - Clarisse Orniacki
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| | - Verónica Murcia-Belmonte
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Dagmar Schütz
- Institute for Pharmacology/Toxicology, Jena University Hospital,Drackendorfer Str. 1, D-07747 Jena, Germany
| | - Ralf Stumm
- Institute for Pharmacology/Toxicology, Jena University Hospital,Drackendorfer Str. 1, D-07747 Jena, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
3
|
Soucy JR, Todd L, Kriukov E, Phay M, Malechka VV, Rivera JD, Reh TA, Baranov P. Controlling donor and newborn neuron migration and maturation in the eye through microenvironment engineering. Proc Natl Acad Sci U S A 2023; 120:e2302089120. [PMID: 37931105 PMCID: PMC10655587 DOI: 10.1073/pnas.2302089120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/30/2023] [Indexed: 11/08/2023] Open
Abstract
Ongoing cell therapy trials have demonstrated the need for precision control of donor cell behavior within the recipient tissue. We present a methodology to guide stem cell-derived and endogenously regenerated neurons by engineering the microenvironment. Being an "approachable part of the brain," the eye provides a unique opportunity to study neuron fate and function within the central nervous system. Here, we focused on retinal ganglion cells (RGCs)-the neurons in the retina are irreversibly lost in glaucoma and other optic neuropathies but can potentially be replaced through transplantation or reprogramming. One of the significant barriers to successful RGC integration into the existing mature retinal circuitry is cell migration toward their natural position in the retina. Our in silico analysis of the single-cell transcriptome of the developing human retina identified six receptor-ligand candidates, which were tested in functional in vitro assays for their ability to guide human stem cell-derived RGCs. We used our lead molecule, SDF1, to engineer an artificial gradient in the retina, which led to a 2.7-fold increase in donor RGC migration into the ganglion cell layer (GCL) and a 3.3-fold increase in the displacement of newborn RGCs out of the inner nuclear layer. Only donor RGCs that migrated into the GCL were found to express mature RGC markers, indicating the importance of proper structure integration. Together, these results describe an "in silico-in vitro-in vivo" framework for identifying, selecting, and applying soluble ligands to control donor cell function after transplantation.
Collapse
Affiliation(s)
- Jonathan R. Soucy
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA02114
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Emil Kriukov
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA02114
| | - Monichan Phay
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA02114
| | - Volha V. Malechka
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA02114
| | - John Dayron Rivera
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA02114
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Petr Baranov
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA02114
| |
Collapse
|
4
|
Iguchi T, Oka Y, Yasumura M, Omi M, Kuroda K, Yagi H, Xie MJ, Taniguchi M, Bastmeyer M, Sato M. Mutually Repulsive EphA7-EfnA5 Organize Region-to-Region Corticopontine Projection by Inhibiting Collateral Extension. J Neurosci 2021; 41:4795-4808. [PMID: 33906900 PMCID: PMC8260171 DOI: 10.1523/jneurosci.0367-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Coordination of skilled movements and motor planning relies on the formation of regionally restricted brain circuits that connect cortex with subcortical areas during embryonic development. Layer 5 neurons that are distributed across most cortical areas innervate the pontine nuclei (basilar pons) by protrusion and extension of collateral branches interstitially along their corticospinal extending axons. Pons-derived chemotropic cues are known to attract extending axons, but molecules that regulate collateral extension to create regionally segregated targeting patterns have not been identified. Here, we discovered that EphA7 and EfnA5 are expressed in the cortex and the basilar pons in a region-specific and mutually exclusive manner, and that their repulsive activities are essential for segregating collateral extensions from corticospinal axonal tracts in mice. Specifically, EphA7 and EfnA5 forward and reverse inhibitory signals direct collateral extension such that EphA7-positive frontal and occipital cortical areas extend their axon collaterals into the EfnA5-negative rostral part of the basilar pons, whereas EfnA5-positive parietal cortical areas extend their collaterals into the EphA7-negative caudal part of the basilar pons. Together, our results provide a molecular basis that explains how the corticopontine projection connects multimodal cortical outputs to their subcortical targets.SIGNIFICANCE STATEMENT Our findings put forward a model in which region-to-region connections between cortex and subcortical areas are shaped by mutually exclusive molecules to ensure the fidelity of regionally restricted circuitry. This model is distinct from earlier work showing that neuronal circuits within individual cortical modalities form in a topographical manner controlled by a gradient of axon guidance molecules. The principle that a shared molecular program of mutually repulsive signaling instructs regional organization-both within each brain region and between connected brain regions-may well be applicable to other contexts in which information is sorted by converging and diverging neuronal circuits.
Collapse
Affiliation(s)
- Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui 910-3190, Japan
| | - Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Osaka 565-0871, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Minoru Omi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuki Kuroda
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hideshi Yagi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Min-Jue Xie
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Martin Bastmeyer
- Department of Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
5
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
6
|
Rigoni M, Negro S. Signals Orchestrating Peripheral Nerve Repair. Cells 2020; 9:E1768. [PMID: 32722089 PMCID: PMC7464993 DOI: 10.3390/cells9081768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The peripheral nervous system has retained through evolution the capacity to repair and regenerate after assault from a variety of physical, chemical, or biological pathogens. Regeneration relies on the intrinsic abilities of peripheral neurons and on a permissive environment, and it is driven by an intense interplay among neurons, the glia, muscles, the basal lamina, and the immune system. Indeed, extrinsic signals from the milieu of the injury site superimpose on genetic and epigenetic mechanisms to modulate cell intrinsic programs. Here, we will review the main intrinsic and extrinsic mechanisms allowing severed peripheral axons to re-grow, and discuss some alarm mediators and pro-regenerative molecules and pathways involved in the process, highlighting the role of Schwann cells as central hubs coordinating multiple signals. A particular focus will be provided on regeneration at the neuromuscular junction, an ideal model system whose manipulation can contribute to the identification of crucial mediators of nerve re-growth. A brief overview on regeneration at sensory terminals is also included.
Collapse
Affiliation(s)
- Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Myology Center (Cir-Myo), University of Padua, 35129 Padua, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| |
Collapse
|
7
|
Chemokine receptor CXCR7 non-cell-autonomously controls pontine neuronal migration and nucleus formation. Sci Rep 2020; 10:11830. [PMID: 32678266 PMCID: PMC7367352 DOI: 10.1038/s41598-020-68852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
Long distance tangential migration transports neurons from their birth places to distant destinations to be incorporated into neuronal circuits. How neuronal migration is guided during these long journeys is still not fully understood. We address this issue by studying the migration of pontine nucleus (PN) neurons in the mouse hindbrain. PN neurons migrate from the lower rhombic lip first anteriorly and then turn ventrally near the trigeminal ganglion root towards the anterior ventral hindbrain. Previously we showed that in mouse depleted of chemokine receptor CXCR4 or its ligand CXCL12, PN neurons make their anterior-to-ventral turn at posteriorized positions. However, the mechanism that spatiotemporally controls the anterior-to-ventral turning is still unclear. Furthermore, the role of CXCR7, the atypical receptor of CXCL12, in pontine migration has yet to be examined. Here, we find that the PN is elongated in Cxcr7 knockout due to a broadened anterior-to-ventral turning positions. Cxcr7 is not expressed in migrating PN neurons en route to their destinations, but is strongly expressed in the pial meninges. Neuroepithelium-specific knockout of Cxcr7 does not recapitulate the PN phenotype in Cxcr7 knockout, suggesting that CXCR7 acts non-cell-autonomously possibly from the pial meninges. We show further that CXCR7 regulates pontine migration by modulating CXCL12 protein levels.
Collapse
|
8
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
9
|
Zanetti G, Negro S, Megighian A, Mattarei A, Lista F, Fillo S, Rigoni M, Pirazzini M, Montecucco C. A CXCR4 receptor agonist strongly stimulates axonal regeneration after damage. Ann Clin Transl Neurol 2019; 6:2395-2402. [PMID: 31725979 PMCID: PMC6917312 DOI: 10.1002/acn3.50926] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
Objective To test whether the signaling axis CXCL12α‐CXCR4 is activated upon crush/cut of the sciatic nerve and to test the activity of NUCC‐390, a new CXCR4 agonist, in promoting nerve recovery from damage. Methods The sciatic nerve was either crushed or cut. Expression and localization of CXCL12α and CXCR4 were evaluated by imaging with specific antibodies. Their functional involvement in nerve regeneration was determined by antibody‐neutralization of CXCL12α, and by the CXCR4 specific antagonist AMD3100, using as quantitative read‐out the compound muscle action potential (CMAP). NUCC‐390 activity on nerve regeneration was determined by imaging and CMAP recordings. Results CXCR4 is expressed at the injury site within the axonal compartment, whilst its ligand CXCL12α is expressed in Schwann cells. The CXCL12α‐CXCR4 axis is involved in the recovery of neurotransmission of the injured nerve. More importantly, the small molecule NUCC‐390 is a strong promoter of the functional and anatomical recovery of the nerve, by acting very similarly to CXCL12α. This pharmacological action is due to the capability of NUCC‐390 to foster elongation of motor neuron axons both in vitro and in vivo. Interpretation Imaging and electrophysiological data provide novel and compelling evidence that the CXCL12α‐CXCR4 axis is involved in sciatic nerve repair after crush/cut. This makes NUCC‐390 a strong candidate molecule to stimulate nerve repair by promoting axonal elongation. We propose this molecule to be tested in other models of neuronal damage, to lay the basis for clinical trials on the efficacy of NUCC‐390 in peripheral nerve repair in humans.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Roma, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
10
|
Negro S, Zanetti G, Mattarei A, Valentini A, Megighian A, Tombesi G, Zugno A, Dianin V, Pirazzini M, Fillo S, Lista F, Rigoni M, Montecucco C. An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells 2019; 8:E1183. [PMID: 31575088 PMCID: PMC6829515 DOI: 10.3390/cells8101183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
The activation of the G-protein coupled receptor CXCR4 by its ligand CXCL12α is involved in a large variety of physiological and pathological processes, including the growth of B cells precursors and of motor axons, autoimmune diseases, stem cell migration, inflammation, and several neurodegenerative conditions. Recently, we demonstrated that CXCL12α potently stimulates the functional recovery of damaged neuromuscular junctions via interaction with CXCR4. This result prompted us to test the neuroregeneration activity of small molecules acting as CXCR4 agonists, endowed with better pharmacokinetics with respect to the natural ligand. We focused on NUCC-390, recently shown to activate CXCR4 in a cellular system. We designed a novel and convenient chemical synthesis of NUCC-390, which is reported here. NUCC-390 was tested for its capability to induce the regeneration of motor axon terminals completely degenerated by the presynaptic neurotoxin α-Latrotoxin. NUCC-390 was found to strongly promote the functional recovery of the neuromuscular junction, as assayed by electrophysiology and imaging. This action is CXCR4 dependent, as it is completely prevented by AMD3100, a well-characterized CXCR4 antagonist. These data make NUCC-390 a strong candidate to be tested in human therapy to promote nerve recovery of function after different forms of neurodegeneration.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Alice Valentini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
- Padua Neuroscience Institute, Padua 35131, Italy.
| | - Giulia Tombesi
- Department of Biology, University of Padua, Padua 35131, Italy.
| | - Alessandro Zugno
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Valentina Dianin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Silvia Fillo
- Center of Medical and Veterinary Research of the Ministry of Defence, Rome 00184, Italy.
| | - Florigio Lista
- Center of Medical and Veterinary Research of the Ministry of Defence, Rome 00184, Italy.
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
- CNR Institute of Neuroscience, Padua 35131, Italy.
| |
Collapse
|
11
|
Cai F, Dai C, Chen S, Wu Q, Liu X, Hong Y, Wang Z, Li L, Yan W, Wang R, Zhang J. CXCL12-regulated miR-370-3p functions as a tumor suppressor gene by targeting HMGA2 in nonfunctional pituitary adenomas. Mol Cell Endocrinol 2019; 488:25-35. [PMID: 30853598 DOI: 10.1016/j.mce.2019.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
Silencing of noncoding genes within the imprinted DLK1-MEG3 locus is exclusive to human nonfunctional pituitary adenomas (NFPAs), but the exact mechanism is still unclear. This study was designed to demonstrate the impact of CXCL12 on the expression of miRNAs within this locus and phenotypic alterations of NFPAs. Human NFPA samples were collected for screening differentially expressed miRNAs by CXCL12. Target mRNAs of the miRNAs were predicted and verified in vitro. Tumor phenotypic alterations were also tested. Another 51 NFPA samples were enrolled to examine the correlation and clinical features. The expression of miR-370 was decreased by CXCL12 treatment in NFPAs. miR-370-3p was predicted and verified to target HMGA2 as a tumor suppressor gene. Overexpression of HMGA2 inhibited its antitumor function. miR-370-3p was downregulated and HMGA2 was upregulated significantly in High grade NFPAs. In conclusion, the CXCL12/miR-370-3p/HMGA2 signaling pathway is involved in tumor growth and invasiveness of NFPAs.
Collapse
Affiliation(s)
- Feng Cai
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Congxin Dai
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shasha Chen
- Zhejiang Provincial Key Lab of Geriatrics, Dept. of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang Province, PR China
| | - Qun Wu
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Xiaohai Liu
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Hong
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Zhen Wang
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Li Li
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Wei Yan
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Renzhi Wang
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Jianmin Zhang
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
12
|
Galli J, Pinelli L, Micheletti S, Palumbo G, Notarangelo LD, Lougaris V, Dotta L, Fazzi E, Badolato R. Cerebellar involvement in warts Hypogammaglobulinemia immunodeficiency myelokathexis patients: neuroimaging and clinical findings. Orphanet J Rare Dis 2019; 14:61. [PMID: 30819232 PMCID: PMC6396443 DOI: 10.1186/s13023-019-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a primary immunodeficiency characterized by recurrent bacterial infections, severe chronic neutropenia, with lymphopenia, monocytopenia and myelokathexis which is caused by heterozygous gain of functions mutations of the CXC chemokine receptor 4 (CXCR4). WHIM patients display an increased incidence of non-hematopoietic conditions, such as congenital heart disease suggesting that abnormal CXCR4 may put these patients at increased risk of congenital anomalies. Studies conducted on CXCR4 and SDF-1-deficient mice have demonstrated the role of CXCR4 signaling in neuronal cell migration and brain development. In particular, CXCR4 conditional knockout mice display abnormal cerebellar morphology and poor coordination and balance on motor testing. Results In order to evaluate a possible neurological involvement in WHIM syndrome subjects, we performed neurological examination, including International Cooperative Ataxia Rating Scale, cognitive and psychopathological assessment and brain Magnetic Resonance Imaging (MRI) in 6 WHIM patients (age range 8–51 years) with typical gain of functions mutations of CXCR4 (R334X or G336X). In three cases (P3, P5, P6) neurological evaluation revealed fine and global motor coordination disorders, balance disturbances, mild limb ataxia and excessive talkativeness. Brain MRI showed an abnormal orientation of the cerebellar folia involving bilaterally the gracilis and biventer lobules together with the tonsils in four subjects (P3, P4, P5, P6). The neuropsychiatric evaluation showed increased risk of internalizing and/or externalizing problems in four patients (P2, P3, P4, P6). Conclusions Taken together, these observations suggest CXCR4 gain of function mutations can be associated with cerebellar malformation, mild neuromotor and psychopathological dysfunction in WHIM patients.
Collapse
Affiliation(s)
- Jessica Galli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy.,Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy
| | - Lorenzo Pinelli
- Neuroradiology Unit, Section of Pediatric Neuroradiology, ASST Spedali Civili, Brescia, Italy
| | - Serena Micheletti
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | | | - Vassilios Lougaris
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy.,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy
| | - Laura Dotta
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy.,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy
| | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy.,Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy
| | - Raffaele Badolato
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy. .,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy.
| |
Collapse
|
13
|
Martinez-Chavez E, Scheerer C, Wizenmann A, Blaess S. The zinc-finger transcription factor GLI3 is a regulator of precerebellar neuronal migration. Development 2018; 145:dev.166033. [PMID: 30470704 DOI: 10.1242/dev.166033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Hindbrain precerebellar neurons arise from progenitor pools at the dorsal edge of the embryonic hindbrain: the caudal rhombic lip. These neurons follow distinct migratory routes to establish nuclei that provide climbing or mossy fiber inputs to the cerebellum. Gli3, a zinc-finger transcription factor in the Sonic hedgehog signaling pathway, is an important regulator of dorsal brain development. We demonstrate that in Gli3-null mutant mice, disrupted neuronal migratory streams lead to a disorganization of precerebellar nuclei. Precerebellar progenitors are properly established in Gli3-null embryos and, using conditional gene inactivation, we provide evidence that Gli3 does not play a cell-autonomous role in migrating precerebellar neurons. Thus, GLI3 likely regulates the development of other hindbrain structures, such as non-precerebellar nuclei or cranial ganglia and their respective projections, which may in turn influence precerebellar migration. Although the organization of non-precerebellar hindbrain nuclei appears to be largely unaffected in absence of Gli3, trigeminal ganglia and their central descending tracts are disrupted. We show that rostrally migrating precerebellar neurons are normally in close contact with these tracts, but are detached in Gli3-null embryos.
Collapse
Affiliation(s)
- Erick Martinez-Chavez
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Claudia Scheerer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| |
Collapse
|
14
|
Kawano K, Gotoh H, Nomura T, Ono K. Birthdate-dependent heterogeneity of oculomotor neurons is involved in transmedian migration in the developing mouse midbrain. J Chem Neuroanat 2018; 94:32-38. [PMID: 30120978 DOI: 10.1016/j.jchemneu.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
During the formation of the oculomotor nucleus (nIII), a subset of cells undergoes transmedian migration, crossing the midline to join the contralateral nucleus. A recent study reported that the onset of transmedian migration of nIII neurons is regulated by Slit/Robo signaling. However, developmental programs that differentiate migratory subpopulations of the nIII remain elusive. Here, we identified cellular and molecular characteristics of nIII neurons that are correlated with their migratory behaviors. Birthdate analysis revealed that contralaterally migrating neurons in the caudal part of the nIII are generated at later stages than uncrossed neurons in the rostral part of the nIII. Furthermore, we found that Slit2 is expressed in the ventral midline of the midbrain and contralaterally migrating neurons. On the other hand, Robo2, a receptor of Sli2, is differentially expressed in subpopulations of rostral and caudal parts of the nIII: uncrossed neurons expressed Robo2 in the developing nIII. These results suggest that spatio-temporal regulation of developmental timings and the molecular signatures of oculomotor neurons are crucial for transmedian migration, which underlies appropriate positioning and stereotyped circuit formation of the nIII in the developing mouse midbrain.
Collapse
Affiliation(s)
- Kohei Kawano
- Department of Biology and Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Hitoshi Gotoh
- Department of Biology and Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tadashi Nomura
- Department of Biology and Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Department of Biology and Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan.
| |
Collapse
|
15
|
Stewart AN, Matyas JJ, Welchko RM, Goldsmith AD, Zeiler SE, Hochgeschwender U, Lu M, Nan Z, Rossignol J, Dunbar GL. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Restor Neurol Neurosci 2018; 35:395-411. [PMID: 28598857 DOI: 10.3233/rnn-160678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Utilizing genetic overexpression of trophic molecules in cell populations has been a promising strategy to develop cell replacement therapies for spinal cord injury (SCI). Over-expressing the chemokine, stromal derived factor-1 (SDF-1α), which has chemotactic effects on many cells of the nervous system, offers a promising strategy to promote axonal regrowth following SCI. The purpose of this study was to explore the effects of human SDF-1α, when overexpressed by mesenchymal stem cells (MSCs), on axonal growth and motor behavior in a contusive rat model of SCI. METHODS Using a transwell migration assay, the paracrine effects of MSCs, which were engineered to secrete human SDF-1α (SDF-1-MSCs), were assessed on cultured neural stem cells (NSCs). For in vivo analyses, the SDF-1-MSCs, unaltered MSCs, or Hanks Buffered Saline Solution (vehicle) were injected into the lesion epicenter of rats at 9-days post-SCI. Behavior was analyzed for 7-weeks post-injury, using the Basso, Beattie, and Bresnahan (BBB) scale of locomotor functions. Immunohistochemistry was performed to evaluate major histopathological outcomes, including gliosis, inflammation, white matter sparing, and cavitation. New axonal outgrowth was characterized using immunohistochemistry against the neuron specific growth-associated protein-43 (GAP-43). RESULTS The results of these experiments demonstrate that the overexpression of SDF-1α by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs, a significant reduction in cavitation surrounding the lesion, and an increased density of GAP-43-positive axons inside the SCI lesion/graft site were found. CONCLUSION The results from these experiments support the potential role for utilizing SDF-1α as a treatment for enhancing growth and regeneration of axons after traumatic SCI.
Collapse
Affiliation(s)
- Andrew Nathaniel Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Jessica Jane Matyas
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ryan Matthew Welchko
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Alison Delanie Goldsmith
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Sarah Elizabeth Zeiler
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Ming Lu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Zhenhong Nan
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Inst., 4677 Towne Centre Rd. Suite 101 Saginaw, MI, USA
| |
Collapse
|
16
|
Negro S, Lessi F, Duregotti E, Aretini P, La Ferla M, Franceschi S, Menicagli M, Bergamin E, Radice E, Thelen M, Megighian A, Pirazzini M, Mazzanti CM, Rigoni M, Montecucco C. CXCL12α/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals. EMBO Mol Med 2018; 9:1000-1010. [PMID: 28559442 PMCID: PMC5538331 DOI: 10.15252/emmm.201607257] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12α, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by α-latrotoxin. CXCL12α acts via binding to the neuronal CXCR4 receptor. A CXCL12α-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration in vivo Recombinant CXCL12α in vivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons in vitro These findings indicate that the CXCL12α-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paolo Aretini
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Marco La Ferla
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Sara Franceschi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | | | - Elisanna Bergamin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
17
|
Yung AR, Druckenbrod NR, Cloutier JF, Wu Z, Tessier-Lavigne M, Goodrich LV. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS. Cell Rep 2018; 22:1666-1680. [PMID: 29444422 PMCID: PMC5877811 DOI: 10.1016/j.celrep.2018.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.
Collapse
Affiliation(s)
- Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zhuhao Wu
- Laboratory of Brain Development & Repair, The Rockefeller University, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Drebrin in Neuronal Migration and Axonal Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:141-155. [PMID: 28865019 DOI: 10.1007/978-4-431-56550-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During development, production of neurons from neural stem cells, migration of neurons from their birthplace to their final location, and extension of neurites, axons, and dendrites are important for the formation of functional neuronal circuits. The actin cytoskeleton has major roles in the morphological development of neurons. In this chapter, we focused on the distribution and function of the actin-binding protein, drebrin, to elucidate the importance of drebrin-bound F-actin in neurons during early developmental stages of neurons in embryonic, postnatal, and adult brains. There are three major isoforms of drebrin in the chicken brain (E1, E2, and A) and two major isoforms in the mammalian brain (E and A). Among these drebrin isoforms, drebrin E1 and E2 in chicken and drebrin E in the mammalian brain are involved in these neuronal stages. In migrating neurons of the developing and adult brain, drebrin is localized at the base of filopodia of leading processes, to regulate neuronal migration. In axonal growth cones, drebrin is localized in the transitional zone to regulate axonal growth by inhibiting actomyosin interactions and mediating the interactions between F-actin and microtubules. For axonal collateral branching, drebrin is localized at axonal actin patches and the base of filopodia, to accelerate the transition from actin patches to filopodia and stabilize the filopodia.
Collapse
|
19
|
Kratochwil CF, Maheshwari U, Rijli FM. The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry. Front Neural Circuits 2017; 11:33. [PMID: 28567005 PMCID: PMC5434118 DOI: 10.3389/fncir.2017.00033] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 01/26/2023] Open
Abstract
The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. PN neurons originate at the posterior rhombic lip and migrate tangentially crossing several rhombomere derived territories to reach their final position in ventral part of the pons. The developing PN provide a classical example of tangential neuronal migration and a study system for understanding its molecular underpinnings. We anticipate that understanding the mechanisms of PN migration and assembly will also permit a deeper understanding of the molecular and cellular basis of cortico-cerebellar circuit formation and function.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of KonstanzKonstanz, Germany.,Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| |
Collapse
|
20
|
Rollins NK, Booth TN, Chahrour MH. Variability of Ponto-cerebellar Fibers by Diffusion Tensor Imaging in Diverse Brain Malformations. J Child Neurol 2017; 32:271-285. [PMID: 27920266 DOI: 10.1177/0883073816680734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To describe pontine axonal anomalies across diverse brain malformations. Institutional review board-approved review of magnetic resonance imaging (MRI) and genetic testing of 31 children with brain malformations and abnormal pons by diffusion tensor imaging. Anomalous dorsal pontocerebellar tracts were seen in mid-hindbrain anomalies and in diffuse malformations of cortical development including lissencephaly, gyral disorganization with dysplastic basal ganglia, presumed congenital fibrosis of extraocular muscles type 3, and in callosal agenesis without malformations of cortical development. Heterotopic and hypoplastic corticospinal tracts were seen in callosal agenesis and in focal malformations of cortical development. There were no patterns by chromosomal microarray analysis in the non-lissencephalic brains. In lissencephaly, there was no relationship between severity, deletion size, or appearance of the pontocerebellar tract. Pontine axonal anomalies may relate to defects in precerebellar neuronal migration, chemotactic signaling of the pontine neurons, and/or corticospinal tract pathfinding and collateral branching not detectable with routine genetic testing.
Collapse
Affiliation(s)
- Nancy K Rollins
- 1 Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Department of Radiology, Children's Health System of Texas, Dallas, TX, USA
| | - Timothy N Booth
- 1 Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Department of Radiology, Children's Health System of Texas, Dallas, TX, USA
| | - Maria H Chahrour
- 3 Departments of Neuroscience and Psychiatry, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Zhang W, Sun JZ, Han Y, Chen J, Liu H, Wang Y, Yue B, Chen Y. CXCL12/CXCR4 signaling pathway regulates cochlear development in neonatal mice. Mol Med Rep 2016; 13:4357-64. [PMID: 27052602 DOI: 10.3892/mmr.2016.5085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotactic cytokines (chemokines) are a highly conserved class of secreted signaling molecules that are important in various cellular processes. CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4) have been previously reported to be crucial for the establishment of neural networks in different neuronal systems. However, it is unclear whether the CXCL12/CXCR4 signaling pathway regulates the development of the cochlea. The current study investigated the effects of the CXCL12/CXCR4 signaling pathway on cochlear development in neonatal mice. The expression levels of CXCL12 and CXCR4 were detected using immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrating that CXCL12 and CXCR4 expression were significantly increased during cochlear development in neonatal mice. Treatment of spiral ganglion neurons with CXCL12 significantly decreased the protein expression levels of caspase‑3 and cleaved caspase‑3, indicating that CXCL12/CXCR4 signaling increased cell survival of spiral ganglion neurons. Furthermore, CXCL12 treatment significantly increased the number and length of neurites extending from spiral ganglion neurons. By contrast, the in vitro effects of CXCL12 were significantly abrogated by AMD100, a CXCR4 antagonist. Additionally, inhibiting CXCL12/CXCR4 signaling in neonatal mice significantly reduced the cell number and altered the morphology of spiral ganglion neurons in vivo. Thus, the present study indicates that the CXCL12/CXCR4 signaling pathway is important during the development of cochleae in neonatal mice.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ji-Zhou Sun
- Department of Otolaryngology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hui Liu
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ye Wang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Yue
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
22
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
23
|
HATANAKA Y, ZHU Y, TORIGOE M, KITA Y, MURAKAMI F. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:1-19. [PMID: 26755396 PMCID: PMC4880546 DOI: 10.2183/pjab.92.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons' site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits.
Collapse
Affiliation(s)
- Yumiko HATANAKA
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Yan ZHU
- Division of Brain Function, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Makio TORIGOE
- Lab Dev Gene Regulation, RIKEN, BSI, Wako, Saitama, Japan
| | - Yoshiaki KITA
- Lab Mol Mech Thalamus Dev, RIKEN BSI, Wako, Saitama, Japan
| | - Fujio MURAKAMI
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett 2015; 589:3773-85. [PMID: 26431946 DOI: 10.1016/j.febslet.2015.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Midbrain dopaminergic neurons (MbDNs) modulate cognitive processes, regulate voluntary movement, and encode reward prediction errors and aversive stimuli. While the degeneration of MbDNs underlies the motor defects in Parkinson's disease, imbalances in dopamine levels are associated with neuropsychiatric disorders such as depression, schizophrenia and substance abuse. In recent years, progress has been made in understanding how MbDNs, which constitute a relatively small neuronal population in the brain, can contribute to such diverse functions and dysfunctions. In particular, important insights have been gained regarding the distinct molecular, neurochemical and network properties of MbDNs. How this diversity of MbDNs is established during brain development is only starting to be unraveled. In this review, we summarize the current knowledge on the diversity in MbDN progenitors and differentiated MbDNs in the developing rodent brain. We discuss the signaling pathways, transcription factors and transmembrane receptors that contribute to setting up these diverse MbDN subpopulations. A better insight into the processes that establish diversity in MbDNs will ultimately improve the understanding of the architecture and function of the dopaminergic system in the adult brain.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci 2015; 35:9211-24. [PMID: 26085643 DOI: 10.1523/jneurosci.0156-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radial glial cells are the neural progenitors of the developing CNS and have long radial processes that guide radially migrating neurons. The integrity of the radial glial scaffold, in particular proper adhesion between the endfeet of radial processes and the pial basement membrane (BM), is important for the cellular organization of the CNS, as indicated by evidence emerging from the developing cortex. However, the mechanisms underlying the maintenance of radial glial scaffold integrity during development, when the neuroepithelium rapidly expands, are still poorly understood. Here, we addressed this issue in the developing mouse spinal cord. We show that CXCR4, a receptor of chemokine CXCL12, is expressed in spinal cord radial glia. Conditional knock-out of Cxcr4 in radial glia caused disrupted radial glial scaffold with gaps at the pial endfeet layer and consequentially led to an invasion of boundary cap (BC) cells into the spinal cord. Because BC cells are PNS cells normally positioned at the incoming and outgoing axonal roots, their invasion into the spinal cord suggests a compromised CNS/PNS boundary in the absence of CXCL12/CXCR4 signaling. Both disrupted radial glial scaffold and invasion of BC cells into the CNS were also present in mice deficient in CXCR7, a second receptor of CXCL12. We further show that CXCL12 signaling promotes the radial glia adhesion to BM components and activates integrin β1 avidity. Our study unravels a novel molecular mechanism that deploys CXCL12/CXCR4/CXCR7 for the maintenance of radial glial scaffold integrity, which in turn safeguards the CNS/PNS boundary during spinal cord development.
Collapse
|
26
|
Lovick JK, Hartenstein V. Hydroxyurea-mediated neuroblast ablation establishes birth dates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain. Dev Biol 2015; 402:32-47. [PMID: 25773365 PMCID: PMC4472457 DOI: 10.1016/j.ydbio.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/27/2022]
Abstract
The Drosophila brain is comprised of neurons formed by approximately 100 lineages, each of which is derived from a stereotyped, asymmetrically dividing neuroblast. Lineages serve as structural and developmental units of Drosophila brain anatomy and reconstruction of lineage projection patterns represents a suitable map of Drosophila brain circuitry at the level of neuron populations ("macro-circuitry"). Two phases of neuroblast proliferation, the first in the embryo and the second during the larval phase (following a period of mitotic quiescence), produce primary and secondary lineages, respectively. Using temporally controlled pulses of hydroxyurea (HU) to ablate neuroblasts and their corresponding secondary lineages during the larval phase, we analyzed the effect on development of primary and secondary lineages in the late larval and adult brain. Our findings indicate that timing of neuroblast re-activation is highly stereotyped, allowing us to establish "birth dates" for all secondary lineages. Furthermore, our results demonstrate that, whereas the trajectory and projection pattern of primary and secondary lineages is established in a largely independent manner, the final branching pattern of secondary neurons is dependent upon the presence of appropriate neuronal targets. Taken together, our data provide new insights into the degree of neuronal plasticity during Drosophila brain development.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Nishida K, Matsumura S, Taniguchi W, Uta D, Furue H, Ito S. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging. PLoS One 2014; 9:e103321. [PMID: 25100083 PMCID: PMC4123881 DOI: 10.1371/journal.pone.0103321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Wataru Taniguchi
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, Japan
| | - Daisuke Uta
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Würth R, Bajetto A, Harrison JK, Barbieri F, Florio T. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front Cell Neurosci 2014; 8:144. [PMID: 24904289 PMCID: PMC4036438 DOI: 10.3389/fncel.2014.00144] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine-based drugs.
Collapse
Affiliation(s)
- Roberto Würth
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida Gainesville, FL, USA
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| |
Collapse
|
29
|
Williams JL, Patel JR, Daniels BP, Klein RS. Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. ACTA ACUST UNITED AC 2014; 211:791-9. [PMID: 24733828 PMCID: PMC4010893 DOI: 10.1084/jem.20131224] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axons requires the generation of new oligodendrocytes from oligodendrocyte progenitor cells (OPCs). Although OPCs are detected in MS lesions, repair of myelin is limited, contributing to progressive clinical deterioration. In the CNS, the chemokine CXCL12 promotes remyelination via CXCR4 activation on OPCs, resulting in their differentiation into myelinating oligodendrocytes. Although the CXCL12 scavenging receptor CXCR7/ACKR3 (CXCR7) is also expressed by OPCs, its role in myelin repair in the adult CNS is unknown. We show that during cuprizone-induced demyelination, in vivo CXCR7 antagonism augmented OPC proliferation, leading to increased numbers of mature oligodendrocytes within demyelinated lesions. CXCR7-mediated effects on remyelination required CXCR4 activation, as assessed via both phospho-S339-CXCR4-specific antibodies and administration of CXCR4 antagonists. These findings identify a role for CXCR7 in OPC maturation during remyelination and are the first to use a small molecule to therapeutically enhance myelin repair in the demyelinated adult CNS.
Collapse
Affiliation(s)
- Jessica L Williams
- Department of Internal Medicine, 2 Department of Pathology and Immunology, and 3 Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
30
|
Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 2014; 92:433-9. [PMID: 24722947 DOI: 10.1007/s00109-014-1123-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Chemokines were recognized originally for their ability to dictate the migration and activation of leukocytes. However, CXC chemokine ligand 12 (CXCL12, also known as stromal cell-derived factor-1) and its receptor CXCR4 are the first chemokine and receptor that have been shown to be critical for developmental processes, including homing and maintenance of hematopoietic stem cells (HSCs), production of immune cells, homing of primordial germ cells (PGCs), cardiogenesis, arterial vessel branching in some organs, and appropriate assemblies of particular types of neurons. This review focuses on the pathophysiological relevance of CXCL12-CXCR4 signaling in mammals.
Collapse
Affiliation(s)
- Takashi Nagasawa
- Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan,
| |
Collapse
|
31
|
Huang GJ, Edwards A, Tsai CY, Lee YS, Peng L, Era T, Hirabayashi Y, Tsai CY, Nishikawa SI, Iwakura Y, Chen SJ, Flint J. Ectopic cerebellar cell migration causes maldevelopment of Purkinje cells and abnormal motor behaviour in Cxcr4 null mice. PLoS One 2014; 9:e86471. [PMID: 24516532 PMCID: PMC3917845 DOI: 10.1371/journal.pone.0086471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice.
Collapse
Affiliation(s)
- Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| | - Andrew Edwards
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cheng-Yu Tsai
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi-Shin Lee
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Lei Peng
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shu-Jen Chen
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jonathan Flint
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|
33
|
Alimov A, Wang H, Liu M, Frank JA, Xu M, Ou X, Luo J. Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods. Metab Brain Dis 2013; 28:667-76. [PMID: 23979425 PMCID: PMC3809151 DOI: 10.1007/s11011-013-9430-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) results from ethanol exposure to the developing fetus and is the leading cause of mental retardation. FASD is associated with a broad range of neurobehavioral deficits which may be mediated by ethanol-induced neurodegeneration in the developing brain. An immature brain is more susceptible to ethanol neurotoxicity. We hypothesize that the enhanced sensitivity of the immature brain to ethanol is due to a limited capacity to alleviate cellular stress. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that subcutaneous injection of ethanol induced a wide-spread neuroapoptosis in postnatal day 4 (PD4) C57BL/6 mice, but had little effect on the brain of PD12 mice. We analyzed the expression profile of genes regulating apoptosis, and the pathways of ER stress response (also known as unfolded protein response, UPR) and autophagy during these ethanol-sensitive and resistant periods (PD4 versus PD12) using PCR microarray. The expression of pro-apoptotic genes, such as caspase-3, was much higher on PD4 than PD12; in contrast, the expression of genes that regulate UPR and autophagy, such as atf6, atg4, atg9, atg10, beclin1, bnip3, cebpb, ctsb, ctsd, ctss, grp78, ire1α, lamp, lc3 perk, pik3c3, and sqstm1 was significantly higher on PD12 than PD4. These results suggest that the vulnerability of the immature brain to ethanol could result from high expression of pro-apoptotic proteins and a deficiency in the stress responsive system, such as UPR and autophagy.
Collapse
Affiliation(s)
- Alexander Alimov
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Haiping Wang
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Mei Liu
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jacqueline A. Frank
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Mei Xu
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Xiaoming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Jia Luo
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Correspondence author: Dr. Jia Luo, Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, Kentucky 40536. ; Tel: 859-323-3036; Fax: 859-257-0199
| |
Collapse
|
34
|
Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res 2013; 11:965-77. [DOI: 10.1016/j.scr.2013.06.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/23/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
|
35
|
Kobayashi H, Kawauchi D, Hashimoto Y, Ogata T, Murakami F. The control of precerebellar neuron migration by RNA-binding protein Csde1. Neuroscience 2013; 253:292-303. [PMID: 24012837 DOI: 10.1016/j.neuroscience.2013.08.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Neuronal migration during brain development sets the position of neurons for the subsequent wiring of neural circuits. To understand the molecular mechanism regulating the migrating process, we considered the migration of mouse precerebellar neurons. Precerebellar neurons originate in the rhombic lip of the hindbrain and show stereotypic, long-distance tangential migration along the circumference of the hindbrain to form precerebellar nuclei at discrete locations. To identify the molecular components underlying this navigation, we screened for genes expressed in the migrating precerebellar neurons. As a result, we identified the following three genes through the screening; Calm1, Septin 11, and Csde1. We report here functional analysis of one of these genes, Csde1, an RNA-binding protein implicated in the post-transcriptional regulation of a subset of cellular mRNA, by examining its participation in precerebellar neuronal migration. We found that shRNA-mediated inhibition of Csde1 expression resulted in a failure of precerebellar neurons to complete their migration into their prospective target regions, with many neurons remaining in migratory paths. Furthermore, those that did reach their destination failed to invade the depth of the hindbrain via radial migration. These results have uncovered a crucial role of Csde1 in the proper control of both radial and tangential migration of precerebellar neurons.
Collapse
Affiliation(s)
- H Kobayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
36
|
Shinohara M, Zhu Y, Murakami F. Four-dimensional analysis of nucleogenesis of the pontine nucleus in the hindbrain. J Comp Neurol 2013; 521:3340-57. [DOI: 10.1002/cne.23353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/09/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Masaki Shinohara
- Graduate School of Frontier Biosciences, Osaka University; Suita; Osaka; 560-8531; Japan
| | - Yan Zhu
- Graduate School of Frontier Biosciences, Osaka University; Suita; Osaka; 560-8531; Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University; Suita; Osaka; 560-8531; Japan
| |
Collapse
|
37
|
Puelles L, Harrison M, Paxinos G, Watson C. A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 2013; 36:570-8. [PMID: 23871546 DOI: 10.1016/j.tins.2013.06.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 12/22/2022]
Abstract
In the past, attempts to create a hierarchical classification of brain structures (an ontology) have been limited by the lack of adequate data on developmental processes. Recent studies on gene expression during brain development have demonstrated the true morphologic interrelations of different parts of the brain. A developmental ontology takes into account the progressive rostrocaudal and dorsoventral differentiation of the neural tube, and the radial migration of derivatives from progenitor areas, using fate mapping and other experimental techniques. In this review, we used the prosomeric model of brain development to build a hierarchical classification of brain structures based chiefly on gene expression. Because genomic control of neural morphogenesis is remarkably conservative, this ontology should prove essentially valid for all vertebrates, aiding terminological unification.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, University of Murcia, Murcia 30003, Spain
| | | | | | | |
Collapse
|
38
|
CXCL12/SDF-1 facilitates optic nerve regeneration. Neurobiol Dis 2013; 55:76-86. [PMID: 23578489 DOI: 10.1016/j.nbd.2013.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/08/2013] [Accepted: 04/01/2013] [Indexed: 01/30/2023] Open
Abstract
Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the glial scar forming at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon inflammatory stimulation (IS), enabling these neurons to grow axons into the injured optic nerve. The outcome of IS stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12/SDF-1 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore, the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and by inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3-pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased IS triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.
Collapse
|
39
|
Yuan L, Zhang H, Liu J, Rubin JB, Cho YJ, Shu HK, Schniederjan M, MacDonald TJ. Growth factor receptor-Src-mediated suppression of GRK6 dysregulates CXCR4 signaling and promotes medulloblastoma migration. Mol Cancer 2013; 12:18. [PMID: 23497290 PMCID: PMC3599655 DOI: 10.1186/1476-4598-12-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis in medulloblastoma (MB) is associated with poor survival. Recent genetic studies revealed MB to comprise distinct molecular subgroups, including the sonic hedgehog (SHH) subgroup that exhibits a relatively high rate of progression. To identify targeted therapeutics against metastasis, a better understanding of the regulation of MB cell migration is needed. G protein-coupled receptor kinases (GRKs) have been implicated in cancer metastasis through their regulation of G-protein coupled receptors (GPCRs) involved in growth factor (GF)-mediated cell migration. However, the specific roles and regulation of GRKs in MB have not been investigated. METHODS Microarray mRNA analysis was performed for GRKs, GPCRs, and GFs in 29 human MB, and real time RT-PCR was used to detect GRK6 expression in MB cells. Lenti- or retro-virus infection, and siRNA or shRNA transfection, of MB cells was used to overexpress and knockdown target genes, respectively. Western blot was used to confirm altered expression of proteins. The effect of altered target protein on cell migration was determined by Boyden chamber assay and xCELLigence migration assays. RESULTS We observed co-overexpression of PDGFRA, CXCR4, and CXCL12 in the SHH MB subtype compared to non-SHH MB (5, 7, and 5-fold higher, respectively). GRK6, which typically acts as a negative regulator of CXCR4 signaling, is downregulated in MB, relative to other GRKs, while the percentage of GRK6 expression is lower in MB tumors with metastasis (22%), compared to those without metastasis (43%). In SHH-responsive MB cells, functional blockade of PDGFR abolished CXCR4-mediated signaling. shPDGFR transfected MB cells demonstrated increased GRK6 expression, while PDGF or 10% FBS treatment of native MB cells reduced the stability of GRK6 by inducing its proteosomal degradation. Overexpression or downregulation of Src, a key mediator of GF receptor/PDGFR signaling, similarly inhibited or induced GRK6 expression, respectively. siRNA downregulation of GRK6 enhanced CXCR4 signaling and promoted MB migration, while lentiviral-GRK6 overexpression suppressed CXCR4 signaling, potentiated the effect of AMD3100, a CXCR4 antagonist, and impaired migration. CONCLUSIONS Our findings demonstrate a novel mechanism of GF receptor/PDGFR-Src-mediated dysregulation of CXCR4 signaling that promotes MB cell migration, which could potentially be exploited for therapeutic targeting in SHH MB.
Collapse
Affiliation(s)
- Liangping Yuan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 2015 Uppergate Drive NE, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
41
|
Increased susceptibility to severe chronic liver damage in CXCR4 conditional knock-out mice. Dig Dis Sci 2012; 57:2892-900. [PMID: 22674400 DOI: 10.1007/s10620-012-2239-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/02/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND The chemokine SDF-1 and its receptor CXCR4 are essential for the proper functioning of multiple organs. In the liver, cholangiocytes and hepatic progenitor cells (HPCs) are the main cells that produce SDF-1, and SDF-1 is thought to be essential for HPC-stimulated liver regeneration. AIMS In this study, CXCR4 conditionally targeted mice were used to analyze the role of SDF-1 in chronically damaged liver. METHODS Chronic liver damage was induced in MxCre CXCR4(f/null) mice and the control MxCre CXCR4(f/wt) mice by CCl(4). Serum markers were analyzed to assess liver function and damage, the number of cytokeratin-positive cells as a measure of HPCs, and the extent of liver fibrosis. Additional parameters relating to liver damage, such as markers of HPCs, liver function, MMPs, and TIMPs were measured by real-time PCR. RESULTS Serum ALT was significantly higher in MxCre CXCR4(f/null) mice than MxCre CXCR4(f/wt) mice. The number of cytokeratin-positive cells and the area of fibrosis were also increased in the MxCre CXCR4(f/null) mice. The expression of mRNAs for several markers related to hepatic damage and regeneration was also increased in the liver of MxCre CXCR4(f/null) mice, including primitive HPC marker prominin-1, MMP9, TNF-α, and α-SMA. CONCLUSIONS MxCre CXCR4(f/null) mice were susceptible to severe chronic liver damage, suggesting that SDF-1-CXCR4 signals are important for liver regeneration and preventing the progression of liver disease. Modulation of SDF-1 may therefore be a promising treatment strategy for patients with chronic liver disease.
Collapse
|
42
|
Lee E, Han J, Kim K, Choi H, Cho EG, Lee TR. CXCR7 mediates SDF1-induced melanocyte migration. Pigment Cell Melanoma Res 2012; 26:58-66. [PMID: 22978759 DOI: 10.1111/pcmr.12024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/12/2012] [Indexed: 01/08/2023]
Abstract
Melanoblasts are derived from the neural crest and migrate to the dermal/epidermal border of skin and hair bulges. Although melanoblast migration during embryogenesis has been well investigated, there are only a few reports regarding the migration of mature melanocytes. Here, we demonstrate that a chemokine, stromal-derived factor-1 (SDF1, also known as CXCL12), and one of its receptor CXCR7 regulate normal human epidermal melanocyte (NHEM) migration. We found that SDF1 induces the directional migration of NHEMs. Interestingly, although both CXCR4 and CXCR7 are expressed in NHEMs, blockade of CXCR4 using a CXCR4-specific neutralizing antibody did not exert any influence on the SDF1-induced migration of NHEMs, whereas blockade of CXCR7 using a CXCR7-specific neutralizing antibody did influence migration. Furthermore, SDF1-induced NHEMs migration exhibited the early hallmark events of CXCR7 signaling associated with MAP kinase activation. It is known that the phosphorylation of ERK through CXCR7 signaling is mediated by β-arrestins. The treatment of NHEMs with SDF1 resulted in the phosphorylation of ERK in a β-arrestin 2-dependent manner. These results suggest that melanocytes may have a unique mechanism of migration via SDF1/CXCR7 signaling that is different from that of other cell types.
Collapse
Affiliation(s)
- Eunkyung Lee
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin-si, South Korea
| | | | | | | | | | | |
Collapse
|
43
|
Cotrufo T, Andrés RM, Ros O, Pérez-Brangulí F, Muhaisen A, Fuschini G, Martínez R, Pascual M, Comella JX, Soriano E. Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. Eur J Neurosci 2012; 36:3152-64. [PMID: 22946563 DOI: 10.1111/j.1460-9568.2012.08259.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Directed cell migration and axonal guidance are essential steps in neural development that share many molecular mechanisms. The guidance of developing axons and migrating neurons is likely to depend on the precise control of plasmalemma turnover in selected regions of leading edges and growth cones, respectively. Previous results provided evidence of a signaling mechanism that couples chemotropic deleted in colorectal cancer (DCC)/Netrin-1 axonal guidance and exocytosis through Syntaxin1(Sytx1)/TI-VAMP SNARE proteins. Here we studied whether Netrin-1-dependent neuronal migration relies on a similar SNARE mechanism. We show that migrating neurons in the lower rhombic lip (LRL) express several SNARE proteins, and that DCC co-associates with Sytx1 and TI-VAMP in these cells. We also demonstrate that cleavage of Sytx1 by botulinum toxin C1 (BoNT/C1) abolishes Netrin-1-dependent chemoattraction of migrating neurons, and that interference of Sytx1 functions with shRNAs or Sytx1-dominant negatives disrupts Netrin-1-dependent chemoattraction of LRL neurons. These findings indicate that a Sytx1/DCC interaction is required for Netrin-1 guidance of migrating neurons, thereby highlighting a relationship between guidance signaling and SNARE proteins that regulate membrane turnover.
Collapse
Affiliation(s)
- Tiziana Cotrufo
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Institute for Research in Biomedicine, Parc Cientific de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu Y, Murakami F. Chemokine CXCL12 and its receptors in the developing central nervous system: emerging themes and future perspectives. Dev Neurobiol 2012; 72:1349-62. [PMID: 22689506 DOI: 10.1002/dneu.22041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/24/2023]
Abstract
Homeostatic chemokine CXCL12 (also known as SDF-1) and its receptor CXCR4 are indispensable for the normal development of the nervous system. This chemokine system plays a plethora of functions in numerous neural developmental processes, from which the underlying molecular and cellular mechanisms are beginning to be unravelled. Recent identification of CXCR7 as a second receptor for CXCL12 provides opportunities to gain deeper insights into how CXCL12 operates in the nervous system. Here, we review the diverse roles of CXCL12 in the developing central nervous system, summarize the recent progress in uncovering CXCR7 functions, and discuss the emerging common themes from these works and future perspectives.
Collapse
Affiliation(s)
- Yan Zhu
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
45
|
Saha B, Jaber M, Gaillard A. Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 2012; 6:14. [PMID: 22509153 PMCID: PMC3321408 DOI: 10.3389/fncel.2012.00014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 01/16/2023] Open
Abstract
In the last few decades great thrust has been put in the area of regenerative neurobiology research to combat brain injuries and neurodegenerative diseases. The recent discovery of neurogenic niches in the adult brain has led researchers to study how to mobilize these cells to orchestrate an endogenous repair mechanism. The brain can minimize injury-induced damage by means of an immediate glial response and by initiating repair mechanisms that involve the generation and mobilization of new neurons to the site of injury where they can integrate into the existing circuit. This review highlights the current status of research in this field. Here, we discuss the changes that take place in the neurogenic milieu following injury. We will focus, in particular, on the cellular and molecular controls that lead to increased proliferation in the Sub ventricular Zone (SVZ) as well as neurogenesis. We will also concentrate on how these cellular and molecular mechanisms influence the migration of new cells to the affected area and their differentiation into neuronal/glial lineage that initiate the repair mechanism. Next, we will discuss some of the different factors that limit/retard the repair process and highlight future lines of research that can help to overcome these limitations. A clear understanding of the underlying molecular mechanisms and physiological changes following brain damage and the subsequent endogenous repair should help us develop better strategies to repair damaged brains.
Collapse
Affiliation(s)
- Bhaskar Saha
- Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases group, INSERM U1084, University of Poitiers Poitiers, France
| | | | | |
Collapse
|
46
|
Dun XP, Bandeira de Lima T, Allen J, Geraldo S, Gordon-Weeks P, Chilton JK. Drebrin controls neuronal migration through the formation and alignment of the leading process. Mol Cell Neurosci 2012; 49:341-50. [PMID: 22306864 PMCID: PMC3356577 DOI: 10.1016/j.mcn.2012.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/18/2022] Open
Abstract
Formation of a functional nervous system requires neurons to migrate to the correct place within the developing brain. Tangentially migrating neurons are guided by a leading process which extends towards the target and is followed by the cell body. How environmental cues are coupled to specific cytoskeletal changes to produce and guide leading process growth is unknown. One such cytoskeletal modulator is drebrin, an actin-binding protein known to induce protrusions in many cell types and be important for regulating neuronal morphology. Using the migration of oculomotor neurons as a model, we have shown that drebrin is necessary for the generation and guidance of the leading process. In the absence of drebrin, leading processes are not formed and cells fail to migrate although axon growth and pathfinding appear grossly unaffected. Conversely, when levels of drebrin are elevated the leading processes turn away from their target and as a result the motor neuron cell bodies move along abnormal paths within the brain. The aberrant trajectories were highly reproducible suggesting that drebrin is required to interpret specific guidance cues. The axons and growth cones of these neurons display morphological changes, particularly increased branching and filopodial number but despite this they extend along normal developmental pathways. Collectively these results show that drebrin is initially necessary for the formation of a leading process and subsequently for this to respond to navigational signals and grow in the correct direction. Furthermore, we have shown that the actions of drebrin can be segregated within individual motor neurons to direct their migration independently of axon guidance.
Collapse
Affiliation(s)
- Xin-peng Dun
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Research Way, Plymouth PL6 8BU, UK
| | | | | | | | | | | |
Collapse
|
47
|
Mithal DS, Banisadr G, Miller RJ. CXCL12 signaling in the development of the nervous system. J Neuroimmune Pharmacol 2012; 7:820-34. [PMID: 22270883 DOI: 10.1007/s11481-011-9336-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Chemokines are small, secreted proteins that have been shown to be important regulators of leukocyte trafficking and inflammation. All the known effects of chemokines are transduced by action at a family of G protein coupled receptors. Two of these receptors, CCR5 and CXCR4, are also known to be the major cellular receptors for HIV-1. Consideration of the evolution of the chemokine family has demonstrated that the chemokine Stromal cell Derived Factor-1 or SDF1 (CXCL12) and its receptor CXCR4 are the most ancient members of the family and existed in animals prior to the development of a sophisticated immune system. Thus, it appears that the original function of chemokine signaling was in the regulation of stem cell trafficking and development. CXCR4 signaling is important in the development of many tissues including the nervous system. Here we discuss the manner in which CXCR4 signaling can regulate the development of different structures in the central and peripheral nervous systems and the different strategies employed to achieve these effects.
Collapse
Affiliation(s)
- Divakar S Mithal
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
48
|
Nishida K, Nakayama K, Yoshimura S, Murakami F. Role of Neph2 in pontine nuclei formation in the developing hindbrain. Mol Cell Neurosci 2011; 46:662-70. [DOI: 10.1016/j.mcn.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 11/29/2022] Open
|
49
|
Sánchez-Alcañiz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, López-Bendito G, Stumm R, Marín O. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 2011; 69:77-90. [PMID: 21220100 DOI: 10.1016/j.neuron.2010.12.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 12/17/2022]
Abstract
The chemokine Cxcl12 binds Cxcr4 and Cxcr7 receptors to control cell migration in multiple biological contexts, including brain development, leukocyte trafficking, and tumorigenesis. Both receptors are expressed in the CNS, but how they cooperate during migration has not been elucidated. Here, we used the migration of cortical interneurons as a model to study this process. We found that Cxcr4 and Cxcr7 are coexpressed in migrating interneurons, and that Cxcr7 is essential for chemokine signaling. Intriguingly, this process does not exclusively involve Cxcr7, but most critically the modulation of Cxcr4 function. Thus, Cxcr7 is necessary to regulate Cxcr4 protein levels, thereby adapting chemokine responsiveness in migrating cells. This demonstrates that a chemokine receptor modulates the function of another chemokine receptor by controlling the amount of protein that is made available for signaling at the cell surface.
Collapse
|
50
|
Terasaki M, Sugita Y, Arakawa F, Okada Y, Ohshima K, Shigemori M. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathol 2011; 28:89-97. [DOI: 10.1007/s10014-010-0013-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/30/2022]
|