1
|
Talvi S, Jokinen J, Sipilä K, Rappu P, Zhang FP, Poutanen M, Rantakari P, Heino J. Embigin deficiency leads to delayed embryonic lung development and high neonatal mortality in mice. iScience 2024; 27:108914. [PMID: 38318368 PMCID: PMC10839689 DOI: 10.1016/j.isci.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Embigin (Gp70), a receptor for fibronectin and an ancillary protein for monocarboxylate transporters, is known to regulate stem cell niches in sebaceous gland and bone marrow. Here, we show that embigin expression is at high level during early mouse embryogenesis and that embigin is essential for lung development. Markedly increased neonatal mortality of Emb-/- mice can be explained by the compromised lung maturation: in Emb-/- mice (E17.5) the number and the size of the small airways and distal airspace are significantly smaller, there are fewer ATI and ATII cells, and the alkaline phosphatase activity in amniotic fluid is lower. Emb-/- lungs show less peripheral branching already at E12.5, and embigin is highly expressed in lung primordium. Thus, embigin function is essential at early pseudoglandular stage or even earlier. Furthermore, our RNA-seq analysis and Ki67 staining results support the idea that the development of Emb-/- lungs is rather delayed than defected.
Collapse
Affiliation(s)
- Salli Talvi
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Kalle Sipilä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London WC2R2LS, UK
| | - Pekka Rappu
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Poutanen
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
| | - Pia Rantakari
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
2
|
Oubounyt M, Adlung L, Patroni F, Wenke NK, Maier A, Hartung M, Baumbach J, Elkjaer ML. Inference of differential key regulatory networks and mechanistic drug repurposing candidates from scRNA-seq data with SCANet. Bioinformatics 2023; 39:btad644. [PMID: 37862243 PMCID: PMC10628438 DOI: 10.1093/bioinformatics/btad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
MOTIVATION The reconstruction of small key regulatory networks that explain the differences in the development of cell (sub)types from single-cell RNA sequencing is a yet unresolved computational problem. RESULTS To this end, we have developed SCANet, an all-in-one package for single-cell profiling that covers the whole differential mechanotyping workflow, from inference of trait/cell-type-specific gene co-expression modules, driver gene detection, and transcriptional gene regulatory network reconstruction to mechanistic drug repurposing candidate prediction. To illustrate the power of SCANet, we examined data from two studies. First, we identify the drivers of the mechanotype of a cytokine storm associated with increased mortality in patients with acute respiratory illness. Secondly, we find 20 drugs for eight potential pharmacological targets in cellular driver mechanisms in the intestinal stem cells of obese mice. AVAILABILITY AND IMPLEMENTATION SCANet is a free, open-source, and user-friendly Python package that can be seamlessly integrated into single-cell-based systems medicine research and mechanistic drug discovery.
Collapse
Affiliation(s)
- Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Lorenz Adlung
- Department of Medicine, Hamburg Center for Translational Immunology (HCTI) and Center for Biomedical AI (bAIome), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany
| | - Fabio Patroni
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Campinas, SP 13083-875, Brazil
| | - Nina Kerstin Wenke
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Michael Hartung
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense 5000, Denmark
| | - Maria L Elkjaer
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
- Department of Neurology, Odense University Hospital, Odense 5000, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
3
|
Chen B, Dong L, Zhang J, Hao Y, Chi W, Song D. Exploring shared pathways and the shared biomarker ERRFI1 in Obstructive sleep apnoea and atherosclerosis using integrated bioinformatics analysis. Sci Rep 2023; 13:15103. [PMID: 37699925 PMCID: PMC10497545 DOI: 10.1038/s41598-023-42184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an upper airway disorder occurring during sleep and is associated with atherosclerosis (AS). AS is a cardiovascular disease caused by environmental and genetic factors, with a high global mortality rate. This study investigated common pathways and potential biomarkers of OSA and AS. Microarray data were downloaded from the Gene Expression Omnibus (GEO) database and used to screen for differentially expressed genes (DEGs) in the OSA and AS datasets. A weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of OSA and AS. The least absolute shrinkage and selection operators (LASSO) were used to determine critical biomarkers. Immune cell infiltration analysis was used to investigate the correlation between immune cell infiltration and common biomarkers of OSA and AS. Results revealed that differentially expressed genes may be involved in inflammatory processes, chemokine signaling pathways, and molecular changes in cell adhesion. ERBB receptor feedback inhibitor 1 (ERRFI1) was the best-shared biomarker for OSA and AS. Immune infiltration analysis showed that ERRFI1 expression was correlated with immune cell changes. Changes in immune pathways, inflammatory processes, and cell adhesion molecules may underlie the pathogenesis of both diseases, and ERRFI1 may be a potential diagnostic marker for patients with OSA and AS.
Collapse
Affiliation(s)
- Bowen Chen
- Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liping Dong
- Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jihua Zhang
- Department of Otolaryngology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Hao
- Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weiwei Chi
- Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongmei Song
- Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Department of Otolaryngology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Bauer BM, Irimia JM, Bloom-Saldana E, Jeong JW, Fueger PT. Pancreatic loss of Mig6 alters murine endocrine cell fate and protects functional beta cell mass in an STZ-induced model of diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536046. [PMID: 37066257 PMCID: PMC10104126 DOI: 10.1101/2023.04.07.536046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Maintaining functional beta cell mass (BCM) to meet glycemic demands is essential to preventing or reversing the progression of diabetes. Yet the mechanisms that establish and regulate endocrine cell fate are incompletely understood. We sought to determine the impact of deletion of mitogen-inducible gene 6 (Mig6), a negative feedback inhibitor of epidermal growth factor receptor (EGFR) signaling, on mouse endocrine cell fate. The extent to which loss of Mig6 might protect against loss of functional BCM in a multiple very low dose (MVLD) STZ-induced model of diabetes was also determined. Methods Ten-week-old male mice with whole pancreas (Pdx1:Cre, PKO) and beta cell-specific (Ins1:Cre, BKO) knockout of Mig6 were used alongside control (CON) littermates. Mice were given MVLD STZ (35 mg/kg for five days) to damage beta cells and induce hyperglycemia. In vivo fasting blood glucose and glucose tolerance were used to assess beta cell function. Histological analyses of isolated pancreata were utilized to assess islet morphology and beta cell mass. We also identified histological markers of beta cell replication, dedifferentiation, and death. Isolated islets were used to reveal mRNA and protein markers of beta cell fate and function. Results PKO mice had significantly increased alpha cell mass with no detectable changes to beta or delta cells. The increase in alpha cells alone did not impact glucose tolerance, BCM, or beta cell function. Following STZ treatment, PKO mice had 18±8% higher BCM than CON littermates and improved glucose tolerance. Interestingly, beta cell-specific loss of Mig6 was insufficient for protection, and BKO mice had no discernable differences compared to CON mice. The increase in BCM in PKO mice was the result of decreased beta cell loss and increased beta cell replication. Finally, STZ-treated PKO mice had more Ins+/Gcg+ bi-hormonal cells compared to controls suggesting alpha to beta cell transdifferentiation. Conclusions Mig6 exerted differential effects on alpha and beta cell fate. Pancreatic loss of Mig6 reduced beta cell loss and promoted beta cell growth following STZ. Thus, suppression of Mig6 may provide relief of diabetes.
Collapse
Affiliation(s)
- Brandon M. Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Bloom-Saldana
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO 65211
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
6
|
Liu L, Xing L, Chen R, Zhang J, Huang Y, Huang L, Xie B, Ren X, Wang S, Kuang H, Lin X, Kumar A, Kim JK, Lee C, Li X. Mitogen-Inducible Gene 6 Inhibits Angiogenesis by Binding to SHC1 and Suppressing Its Phosphorylation. Front Cell Dev Biol 2021; 9:634242. [PMID: 33693003 PMCID: PMC7937727 DOI: 10.3389/fcell.2021.634242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuye Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
8
|
The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem Soc Trans 2020; 47:1715-1731. [PMID: 31845724 DOI: 10.1042/bst20190176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.
Collapse
|
9
|
Kubota N, Suyama M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Med Genomics 2020; 13:8. [PMID: 31969149 PMCID: PMC6977261 DOI: 10.1186/s12920-020-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, for which genome-wide association studies (GWAS) have identified many genetic variants as risk markers. However, the details of underlying molecular mechanisms, especially which variants are functional, are poorly understood. METHODS We utilized a computational approach to survey psoriasis-associated functional variants that might affect protein functions or gene expression levels. We developed a pipeline by integrating publicly available datasets provided by GWAS Catalog, FANTOM5, GTEx, SNP2TFBS, and DeepBlue. To identify functional variants on exons or splice sites, we used a web-based annotation tool in the Ensembl database. To search for noncoding functional variants within promoters or enhancers, we used eQTL data calculated by GTEx. The data of variants lying on transcription factor binding sites provided by SNP2TFBS were used to predict detailed functions of the variants. RESULTS We discovered 22 functional variant candidates, of which 8 were in noncoding regions. We focused on the enhancer variant rs72635708 (T > C) in the 1p36.23 region; this variant is within the enhancer region of the ERRFI1 gene, which regulates lipid metabolism in the liver and skin morphogenesis via EGF signaling. Further analysis showed that the ERRFI1 promoter spatially contacts with the enhancer, despite the 170 kb distance between them. We found that this variant lies on the AP-1 complex binding motif and may modulate binding levels. CONCLUSIONS The minor allele rs72635708 (rs72635708-C) might affect the ERRFI1 promoter activity, which results in unstable expression of ERRFI1, enhancing the risk of psoriasis via disruption of lipid metabolism and skin cell proliferation. Our study represents a successful example of predicting molecular pathogenesis by integration and reanalysis of public data.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
10
|
ERRFI1 Inhibits Proliferation and Inflammation of Nucleus Pulposus and Is Negatively Regulated by miR-2355-5p in Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2019; 44:E873-E881. [PMID: 30817728 DOI: 10.1097/brs.0000000000003011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vivo and in vitro studies of the role of miR-2355-5p and its possible targets in intervertebral disc degeneration (IVDD). OBJECTIVE To elucidate the regulatory role of miR-2355-5p in IVDD and the underlying mechanisms. SUMMARY OF BACKGROUND DATA IVDD, which is caused by multiple factors, is the main cause of lower back pain with or without extremity pain. However, the underlying cellular mechanisms of IVDD pathogenesis are not well elucidated. Cell hyper-proliferation, inflammation, and epidermal growth factor receptor activation have been implicated in IVDD. Up-regulated miR-2355-5p level was identified to associate with IVDD. ERRFI1 (the product of mitogen-inducible gene 6 [MIG6]) was known to inhibit epidermal growth factor receptor activation. METHODS We monitored the expression of miR-2355-5p and ERRFI1 in IVDD tissues and lipopolysaccharides (LPS)-treated nucleus pulposus (NP) cells. We explored the effects of ERFFI1 on NP cells proliferation and LPS-induced pro-inflammatory cytokines production. We searched the targets of miR-2355-5p and explored the effects of miR-2355-5p on NP cells proliferation and cytokines production. RESULTS We identified the up-regulation of miR-2355-5p and down-regulation of ERFFI1 in IVDD samples and LPS-treated NP cells. ERFFI1 inhibited NP cells proliferation and LPS-induced pro-inflammatory cytokine production. MiR-2355-5p targeted ERFFI1 and negatively regulated ERFFI1 expression. MiR-2355-5p regulated IVDD by targeting ERFFI1. CONCLUSION MiR-2355-5p negatively regulated ERFFI1 and prevented the effects of ERRFI1 on inhibiting NP cells proliferation and inflammation. LEVEL OF EVIDENCE N/A.
Collapse
|
11
|
Sah RK, Yang A, Bah FB, Adlat S, Bohio AA, Oo ZM, Wang C, Myint MZZ, Bahadar N, Zhang L, Feng X, Zheng Y. Transcriptome profiling of mouse brain and lung under Dip2a regulation using RNA-sequencing. PLoS One 2019; 14:e0213702. [PMID: 31291246 PMCID: PMC6619597 DOI: 10.1371/journal.pone.0213702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Disconnected interacting protein 2 homolog A (DIP2A) is highly expressed in nervous system and respiratory system of developing embryos. However, genes regulated by Dip2a in developing brain and lung have not been systematically studied. Transcriptome of brain and lung in embryonic 19.5 day (E19.5) were compared between wild type and Dip2a-/- mice. An average of 50 million reads per sample was mapped to the reference sequence. A total of 214 DEGs were detected in brain (82 up and 132 down) and 1900 DEGs in lung (1259 up and 641 down). GO enrichment analysis indicated that DEGs in both Brain and Lung were mainly enriched in biological processes ‘DNA-templated transcription and Transcription from RNA polymerase II promoter’, ‘multicellular organism development’, ‘cell differentiation’ and ‘apoptotic process’. In addition, COG classification showed that both were mostly involved in ‘Replication, Recombination, and Repair’, ‘Signal transduction and mechanism’, ‘Translation, Ribosomal structure and Biogenesis’ and ‘Transcription’. KEGG enrichment analysis showed that brain was mainly enriched in ‘Thyroid cancer’ pathway whereas lung in ‘Complement and Coagulation Cascades’ pathway. Transcription factor (TF) annotation analysis identified Zinc finger domain containing (ZF) proteins were mostly regulated in lung and brain. Interestingly, study identified genes Skor2, Gpr3711, Runx1, Erbb3, Frmd7, Fut10, Sox11, Hapln1, Tfap2c and Plxnb3 from brain that play important roles in neuronal cell maturation, differentiation, and survival; genes Hoxa5, Eya1, Errfi1, Sox11, Shh, Igf1, Ccbe1, Crh, Fgf9, Lama5, Pdgfra, Ptn, Rbp4 and Wnt7a from lung are important in lung development. Expression levels of the candidate genes were validated by qRT-PCR. Genome wide transcriptional analysis using wild type and Dip2a knockout mice in brain and lung at embryonic day 19.5 (E19.5) provided a genetic basis of molecular function of these genes.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Analn Yang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fatoumata Binta Bah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Salah Adlat
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zin Mar Oo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chenhao Wang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - May Zun Zaw Myint
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Noor Bahadar
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| |
Collapse
|
12
|
Xiao Z, Sperl B, Gärtner S, Nedelko T, Stacher-Priehse E, Ullrich A, Knyazev PG. Lung cancer stem cells and their aggressive progeny, controlled by EGFR/MIG6 inverse expression, dictate a novel NSCLC treatment approach. Oncotarget 2019; 10:2546-2560. [PMID: 31069016 PMCID: PMC6493460 DOI: 10.18632/oncotarget.26817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
The lung cancer stem cell (LuCSC) model comprises an attractive framework to explore acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Here, we used NSCLC cell line model to translate cellular heterogeneity into tractable populations to understand the origin of lung cancers and drug resistance. The epithelial LuCSCs, presumably arising from alveolar bipotent stem/progenitor cells, were lineage naïve, noninvasive, and prone to creating aggressive progeny expressing AT2/AT1 markers. LuCSC-holoclones were able to initiate rimmed niches, where their specialization created pseudo-alveoli structures. Mechanistically, LuCSC transitioning from self-renewal (β-catenin and Nanog signaling) to malignant lineage differentiation is regulated by EGFR activation and the inverse inhibition of tumor suppressor MIG6. We further identified the functional roles of endogenous EGFR signaling in mediating progeny invasiveness and their ligands in LuCSC differentiation. Importantly, drug screening demonstrated that EGFR driving progeny were strongly responsive to TKIs; however, the LuCSCs were exclusively resistant but sensitive to AMPK agonist Metformin, antibiotic Salinomycin and to a lesser degree Carboplatin. Our data reveals previously an unknown mechanism of NSCLC resistance to EGFR-TKIs, which is associated with LuCSCs bearing a silenced EGFR and inversely expressed MIG6 suppressor gene. Taken altogether, successful NSCLC treatment requires development of a novel combination of drugs, efficiently targeting both LuCSCs and heterogeneous progeny.
Collapse
Affiliation(s)
- Zhiguang Xiao
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany,2 Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bianca Sperl
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Silvia Gärtner
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Tatiana Nedelko
- 3 Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, 81675, Germany
| | | | - Axel Ullrich
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Pjotr G. Knyazev
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany,5 Current address: DoNatur GmbH, Martinsried, Munich, 82152, Germany
| |
Collapse
|
13
|
Donner DB, Ruan DT, Toriguchi K, Bergsland EK, Nakakura EK, Lin MH, Antonia RJ, Warren RS. Mitogen Inducible Gene-6 Is a Prognostic Marker for Patients with Colorectal Liver Metastases. Transl Oncol 2019; 12:550-560. [PMID: 30639964 PMCID: PMC6328378 DOI: 10.1016/j.tranon.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Prognostic schemes that rely on clinical variables to predict outcome after resection of colorectal metastases remain imperfect. We hypothesized that molecular markers can improve the accuracy of prognostic schemes. METHODS We screened the transcriptome of matched colorectal liver metastases (CRCLM) and primary tumors from 42 patients with unresected CRCLM to identify differentially expressed genes. Among the differentially expressed genes identified, we looked for associations between expression and time to disease progression or overall survival. To validate such associations, mRNA levels of the candidate genes were assayed by qRT-PCR from CRCLM in 56 additional patients who underwent hepatectomy. RESULTS Seven candidate genes were selected for validation based on their differential expression between metastases and primary tumors and a correlation between expression and surgical outcome: lumican; tissue inhibitor metalloproteinase 1; basic helix-loop-helix domain containing class B2; fibronectin; transmembrane 4 superfamily member 1; mitogen inducible gene 6 (MIG-6); and serpine 2. In the hepatectomy group, only MIG-6 expression was predictive of poor survival after hepatectomy. Quantitative PCR of MIG-6 mRNA was performed on 25 additional hepatectomy patients to determine if MIG-6 expression could substratify patients beyond the clinical risk score. Patients within defined clinical risk score categories were effectively substratified into distinct groups by relative MIG-6 expression. CONCLUSIONS MIG-6 expression is inversely associated with survival after hepatectomy and may be used to improve traditional prognostic schemes that rely on clinicopathologic data such as the Clinical Risk Score.
Collapse
Affiliation(s)
- David B Donner
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143.
| | - Dan T Ruan
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Kan Toriguchi
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Emily K Bergsland
- The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; Department of Medicine, Division of Hematology/Oncology, The University of California San Francisco, San Francisco, CA. 94143
| | - Eric K Nakakura
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Meng Hsun Lin
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Ricardo J Antonia
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Robert S Warren
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| |
Collapse
|
14
|
Boopathy GTK, Lynn JLS, Wee S, Gunaratne J, Hong W. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell Signal 2017; 43:21-31. [PMID: 29196224 DOI: 10.1016/j.cellsig.2017.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
Activating mutations in the kinase domain of epidermal growth factor receptor (EGFR) leads to the constitutively active kinase, improves the EGFR stability and promotes malignant transformation in lung adenocarcinoma. Despite the clinical significance, the mechanism by which the increased kinase activity stabilizes the receptor is not completely understood. Using SILAC phosphoproteomic approach, we identify that Mig6 is highly phosphorylated at S256 in EGFR mutants (19del and L858R). Loss of Mig6 contributes to the efficient degradation of EGFR wildtype and mutants in lung cancer cells. Mig6 regulates the recruitment of c-Cbl to EGFR as the ablation of Mig6 enables efficient ubiquitination of the EGFR mutants through elevated recruitment of c-Cbl. We show that the cells with activating mutants of EGFR inactivate Mig6 through phosphorylation at S256. Inactivated Mig6 causes inefficient ubiquitination of EGFR, leading to defective degradation of the receptor thus contributing to the increased stability of the receptor. Taken together, we show a novel function of Mig6 in regulating the ubiquitination of EGFR.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| | - Julia Lim Sze Lynn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| |
Collapse
|
15
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
16
|
Liu J, Cho SN, Wu SP, Jin N, Moghaddam SJ, Gilbert JL, Wistuba I, DeMayo FJ. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017; 112:47-56. [PMID: 29191600 PMCID: PMC5718380 DOI: 10.1016/j.lungcan.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer related deaths worldwide and mutation activating KRAS is one of the most frequent mutations found in lung adenocarcinoma. Identifying regulators of KRAS may aid in the development of therapies to treat this disease. The mitogen-induced gene 6, MIG-6, is a small adaptor protein modulating signaling in cells to regulate the growth and differentiation in multiple tissues. Here, we investigated the role of Mig-6 in regulating adenocarcinoma progression in the lungs of genetically engineered mice with activation of Kras. MATERIALS AND METHODS Using the CCSPCre mouse to specifically activate expression of the oncogenic KrasG12D in Club cells, we investigated the expression of Mig-6 in CCSPCreKrasG12D-induced lung tumors. To determine the role of Mig-6 in KrasG12D-induced lung tumorigenesis, Mig-6 was conditionally ablated in the Club cells by breeding Mig6f/f mice to CCSPCreKrasG12D mice, yielding CCSPCreMig-6d/dKrasG12D mice (Mig-6d/dKrasG12D). RESULTS We found that Mig-6 expression is decreased in CCSPCreKrasG12D-induced lung tumors. Ablation of Mig-6 in the KrasG12D background led to enhanced tumorigenesis and reduced life expectancy. During tumor progression, there was increased airway hyperplasia, a heightened inflammatory response, reduced apoptosis in KrasG12D mouse lungs, and an increase of total and phosphorylated ERBB4 protein levels. Mechanistically, Mig-6 deficiency attenuates the cell apoptosis of lung tumor expressing KRASG12D partially through activating the ErbB4 pathway. CONCLUSIONS In summary, Mig-6 deficiency promotes the development of KrasG12D-induced lung adenoma through reducing the cell apoptosis in KrasG12D mouse lungs partially by activating the ErbB4 pathway.
Collapse
Affiliation(s)
- Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Sung-Nam Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Gilbert
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA.
| |
Collapse
|
17
|
Beauchemin KJ, Wells JM, Kho AT, Philip VM, Kamir D, Kohane IS, Graber JH, Bult CJ. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development. PeerJ 2016; 4:e2318. [PMID: 27602285 PMCID: PMC4991849 DOI: 10.7717/peerj.2318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ). Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS). Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular) defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO) archive (GSE74243). Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http://lungdevelopment.jax.org).
Collapse
Affiliation(s)
- Kyle J. Beauchemin
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME, United States
| | | | - Alvin T. Kho
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | | | - Daniela Kamir
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Isaac S. Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | | | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
18
|
Izumchenko E, Sidransky D. Understanding the MIG6-EGFR Signaling Axis in Lung Tumorigenesis. Cancer Discov 2016; 5:472-4. [PMID: 25941338 DOI: 10.1158/2159-8290.cd-15-0336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With multiple clinical trials under way targeting mutant EGFR in patients with lung cancer, Maity and colleagues address important aspects of a MIG6-EGFR signaling axis using genetically engineered mouse models expressing mutated EGFRs on the MIG6-deficient background. This study extends our understanding of EGFR regulation by MIG6 and reveals that MIG6 antagonizes tumor formation in mutant EGFR-driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Evgeny Izumchenko
- Division of Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - David Sidransky
- Division of Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
19
|
Anastasi S, Lamberti D, Alemà S, Segatto O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin Cell Dev Biol 2015; 50:115-24. [PMID: 26456277 DOI: 10.1016/j.semcdb.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
The ErbB signaling network instructs the execution of key cellular programs, such as cell survival, proliferation and motility, through the generation of robust signals of defined strength and duration. In contrast, unabated ErbB signaling disrupts tissue homeostasis and leads to cell transformation. Cells oppose the threat inherent in excessive ErbB activity through several mechanisms of negative feedback regulation. Inducible feedback inhibitors (IFIs) are expressed in the context of transcriptional responses triggered by ErbB signaling, thus being uniquely suited to regulate ErbB activity during the execution of complex cellular programs. This review focuses on MIG6, an IFI that restrains ErbB signaling by mediating ErbB kinase suppression and receptor down-regulation. We will review key issues in MIG6 function, regulation and tumor suppressor activity. Subsequently, the role for MIG6 loss in the pathogenesis of tumors driven by ErbB oncogenes as well as in the generation of cellular addiction to ErbB signaling will be discussed. We will conclude by analyzing feedback inhibition by MIG6 in the context of therapies directed against ErbB and non-ErbB oncogenes.
Collapse
Affiliation(s)
- Sergio Anastasi
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Dante Lamberti
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Stefano Alemà
- Institute of Cell Biology and Neurobiology, CNR, 00016 Monterotondo, Italy.
| | - Oreste Segatto
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| |
Collapse
|
20
|
Wendt MK, Williams WK, Pascuzzi PE, Balanis NG, Schiemann BJ, Carlin CR, Schiemann WP. The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6. Neoplasia 2015; 17:124-33. [PMID: 25622905 PMCID: PMC4309683 DOI: 10.1016/j.neo.2014.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022] Open
Abstract
Numerous studies by our lab and others demonstrate that epidermal growth factor receptor (EGFR) plays critical roles in primary breast cancer (BC) initiation, growth and dissemination. However, clinical trials targeting EGFR function in BC have lead to disappointing results. In the current study we sought to identify the mechanisms responsible for this disparity by investigating the function of EGFR across the continuum of the metastatic cascade. We previously established that overexpression of EGFR is sufficient for formation of in situ primary tumors by otherwise nontransformed murine mammary gland cells. Induction of epithelial-mesenchymal transition (EMT) is sufficient to drive the metastasis of these EGFR-transformed tumors. Examining growth factor receptor expression across this and other models revealed a potent downregulation of EGFR through metastatic progression. Consistent with diminution of EGFR following EMT and metastasis EGF stimulation changes from a proliferative to an apoptotic response in in situ versus metastatic tumor cells, respectively. Furthermore, overexpression of EGFR in metastatic MDA-MB-231 BC cells promoted their antitumorigenic response to EGF in three dimensional (3D) metastatic outgrowth assays. In line with the paradoxical function of EGFR through EMT and metastasis we demonstrate that the EGFR inhibitory molecule, Mitogen Induced Gene-6 (Mig6), is tumor suppressive in in situ tumor cells. However, Mig6 expression is absolutely required for prevention of apoptosis and ultimate metastasis of MDA-MB-231 cells. Further understanding of the paradoxical function of EGFR between primary and metastatic tumors will be essential for application of its targeted molecular therapies in BC.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907.
| | - Whitney K Williams
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Pete E Pascuzzi
- Purdue University Libraries, Purdue University, West Lafayette, IN 47907
| | - Nikolas G Balanis
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Barbara J Schiemann
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Cathleen R Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
21
|
Milewska M, Romano D, Herrero A, Guerriero ML, Birtwistle M, Quehenberger F, Hatzl S, Kholodenko BN, Segatto O, Kolch W, Zebisch A. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation. PLoS One 2015; 10:e0129859. [PMID: 26065894 PMCID: PMC4466796 DOI: 10.1371/journal.pone.0129859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR.
Collapse
Affiliation(s)
| | - David Romano
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Marc Birtwistle
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Oreste Segatto
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
22
|
Maity TK, Venugopalan A, Linnoila I, Cultraro CM, Giannakou A, Nemati R, Zhang X, Webster JD, Ritt D, Ghosal S, Hoschuetzky H, Simpson RM, Biswas R, Politi K, Morrison DK, Varmus HE, Guha U. Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma. Cancer Discov 2015; 5:534-49. [PMID: 25735773 DOI: 10.1158/2159-8290.cd-14-0750] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Somatic mutations in the EGFR kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here, we demonstrate that MIG6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/Y395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for MIG6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. SIGNIFICANCE This study demonstrates that MIG6 is a potent tumor suppressor for mutant EGFR-driven lung tumor initiation and progression in mice and provides a possible mechanism by which mutant EGFR can partially circumvent this tumor suppressor in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Tapan K Maity
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Abhilash Venugopalan
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Andreas Giannakou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roxanne Nemati
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xu Zhang
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Joshua D Webster
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Daniel Ritt
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Sarani Ghosal
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Romi Biswas
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Katerina Politi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Harold E Varmus
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
23
|
Inhibition of epidermal growth factor receptor restores decidualization markers in stromal fibroblasts from women with endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2014. [DOI: 10.5301/je.5000198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose Decidualization comprises specific biochemical and morphological changes in uterine endometrium essential for establishment of pregnancy. This process is abnormal in women with endometriosis, a disorder in which endometrial-like tissue is present outside the uterus. The aim of this study was to restore cAMP-induced decidualization marker expression in endometrial stromal fibroblasts from women with endometriosis by using chemical inhibitors to PI3K/AKT/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and epidermal growth factor receptor (EGFR) signaling pathways in vitro. Methods Endometrial stromal fibroblasts (eSF) from women with (eSFendo) and without (eSFnon-endo) endometriosis were treated with inhibitors to EGFR tyrosine kinase (gefitinib), mTOR (rapamycin) and MAPK kinase 1/2 (MEK1/2) (UO126) during 8-bromoadenosine 3′,5′-cyclic monophosphate (8-br-cAMP)–stimulated decidualization. Decidualization was assessed by evaluating expression of insulin growth factor binding protein 1 (IGFBP1), prolactin (PRL) and forkhead box protein O1A (FOXO1A) by quantitative real-time PCR. Results Gefitinib restored expression of decidualization markers in eSFendo to levels consistent with those in eSFnon-endo. Elevated levels of phosphorylated mTOR in eSFendo were reduced to levels found in eSFnon-endo, by gefitinib during treatment with 8-br-cAMP. Additional gene expression analyses suggested dysregulation of EGFR negative feedback regulators in eSFendo. Conclusions Results implicate EGFR signaling as an underlying cause for aberrant cAMP-induced decidualization in women with endometriosis, and provide a potential target for management of infertility associated with the disease. The reduction of p-mTOR levels in eSFendo during 8-br-cAMP treatment suggests cooperation between EGR and protein kinase A signaling in the regulation of mTOR in eSF.
Collapse
|
24
|
Joiner DM, Less KD, Van Wieren EM, Zhang YW, Hess D, Williams BO. Accelerated and increased joint damage in young mice with global inactivation of mitogen-inducible gene 6 after ligament and meniscus injury. Arthritis Res Ther 2014; 16:R81. [PMID: 24670222 PMCID: PMC4060238 DOI: 10.1186/ar4522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/13/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction Ligament and meniscal damage can cause joint disease. Arthritic joints contain increased amounts of epidermal growth factor receptor (EGFR) protein, and polymorphisms in EGFR are associated with arthritis risk. The role of endogenous EGFR regulation during joint disease due to ligament and meniscal trauma is unknown. Mitogen-inducible gene 6 (MIG-6) can reduce EGFR phosphorylation and downstream signaling. We examined the effect of EGFR modulation by MIG-6 on joint disease development after ligament and meniscus injury. Methods Knee ligament transection and meniscus removal were performed surgically on mice homozygous for a global inactivating mutation in MIG-6 (Mig-6−/−) and in wild-type (WT) animals. Results Two weeks after surgery, Mig-6−/−mice had bone erosion as well as greater fibrous tissue area and serum RANKL concentration than WT mice. Four weeks after surgery, Mig-6−/−mice had less cartilage and increased cell proliferation relative to contralateral control and WT knees. Increased apoptotic cells and growth outside the articulating region occurred in Mig-6−/−mice. Tibia trabecular bone mineral density (BMD) and the number of trabeculae were lower in surgically treated knees relative to the respective control knees for both groups. BMD, as well as trabecular thickness and number, were lower in surgically treated knees from Mig-6−/−mice relative to WT surgically treated knees. Phosphorylated EGFR staining in surgically treated knees decreased for WT mice and increased for Mig-6−/−mice. Fewer inflammatory cells were present in the knees of WT mice. Conclusion Mig-6−/−mice have rapid and increased joint damage after ligament and meniscal trauma. Mig-6 modification could lessen degenerative disease development after this type of injury.
Collapse
|
25
|
Cartilage-specific deletion of Mig-6 results in osteoarthritis-like disorder with excessive articular chondrocyte proliferation. Proc Natl Acad Sci U S A 2014; 111:2590-5. [PMID: 24550287 DOI: 10.1073/pnas.1400744111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A deficiency of mitogen-inducible gene-6 (Mig-6) in mice leads to the development of an early-onset, osteoarthritis (OA)-like disorder in multiple synovial joints, underlying its importance in maintaining joint homeostasis. Here we determined what joint tissues Mig-6 is expressed in and what role chondrocytes play in the Mig-6-deficient OA-like disorder. A Mig-6/lacZ reporter mouse strain expressing β-galactosidase under the control of the Mig-6 gene promoter was generated to determine Mig-6 expression in joint tissues. By β-galactosidase staining, we demonstrated that Mig-6 was uniquely expressed in the cells across the entire surface of the synovial joint cavity, including chondrocytes in the superficial zone of articular cartilage and in the meniscus, as well as synovial lining cells. By crossing Mig-6-floxed mice to Col2a1-Cre transgenic mice, to generate cartilage-specific deletion of Mig-6, we demonstrated that deficiency of Mig-6 in the chondrocytes results in a joint phenotype that only partially recapitulates the OA-like disorder of the Mig-6-deficient mice: Ubiquitous deletion of Mig-6 led to the OA-like disorder in multiple joints, whereas cartilage-specific deletion affected the knees but rarely other joints. Furthermore, chondrocytes with Mig-6 deficiency showed excessive proliferative activities along with enhanced EGF receptor signaling in the articular cartilage and in the abnormally formed osteophytes. Our findings provide insight into the crucial requirement for Mig-6 in maintaining joint homeostasis and in regulating chondrocyte activities in the synovial joints. Our data also suggest that other cell types are required for fully developing the Mig-6-deficient OA-like disorder.
Collapse
|
26
|
Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J 2014; 44:513-22. [PMID: 24435005 DOI: 10.1183/09031936.00146413] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic respiratory diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD) and lung cancer, are the second leading cause of death among Europeans. Despite this, there have been only a few therapeutic advances in these conditions over the past 20 years. In this review we provide evidence that targeting the epidermal growth factor receptor (EGFR) signalling pathway may represent a novel therapeutic panacea for treating chronic lung disease. Using evidence from human patient samples, transgenic animal models, and cell and molecular biology studies we highlight the roles of this signalling pathway in lung development, homeostasis, repair, and disease ontogeny. We identify mechanisms underlying lung EGFR pathway regulation and suggest how targeting these mechanisms using new and existing therapies has the potential to improve future lung cancer, COPD and pulmonary fibrosis patient outcomes.
Collapse
Affiliation(s)
- Sabari Vallath
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Laura Succony
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Adam Giangreco
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| |
Collapse
|
27
|
Gardner A, Borthwick LA, Fisher AJ. Lung epithelial wound healing in health and disease. Expert Rev Respir Med 2014; 4:647-60. [DOI: 10.1586/ers.10.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Im SK, Jeong H, Jeong HW, Kim KT, Hwang D, Ikegami M, Kong YY. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice. PLoS One 2013; 8:e58511. [PMID: 23526992 PMCID: PMC3602295 DOI: 10.1371/journal.pone.0058511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/16/2023] Open
Abstract
Sorting nexin 5 (Snx5) has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5-/- mice) resulted in partial perinatal lethality; 40% of Snx5-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5-/- mice were comparable to those of Snx5+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.
Collapse
Affiliation(s)
- Sun-Kyoung Im
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - HyoBin Jeong
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Hyun-Woo Jeong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Young-Yun Kong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
29
|
Schug TT, Erlebacher A, Leibowitz S, Ma L, Muglia LJ, Rando OJ, Rogers JM, Romero R, vom Saal FS, Wise DL. Fetal programming and environmental exposures: implications for prenatal care and preterm birth. Ann N Y Acad Sci 2012; 1276:37-46. [PMID: 23278645 PMCID: PMC4154493 DOI: 10.1111/nyas.12003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sponsored by the New York Academy of Sciences and Cincinnati Children's Hospital Medical Center, with support from the National Institute of Environmental Health Sciences (NIEHS), the National Institute on Drug Abuse (NIDA), and Life Technologies, "Fetal Programming and Environmental Exposures: Implications for Prenatal Care and Preterm Birth" was held on June 11-12, 2012 at the New York Academy of Sciences in New York City. The meeting, comprising individual talks and panel discussions, highlighted basic, clinical, and translational research approaches, and highlighted the need for specialized testing of drugs, consumer products, and industrial chemicals, with a view to the unique impacts these can have during gestation. Speakers went on to discuss many other factors that affect prenatal development, from genetics to parental diet, revealing the extraordinary sensitivity of the developing fetus.
Collapse
Affiliation(s)
- Thaddeus T Schug
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS One 2012; 7:e38955. [PMID: 22701735 PMCID: PMC3373526 DOI: 10.1371/journal.pone.0038955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.
Collapse
|
31
|
Zhu W, Nelson CM. PI3K signaling in the regulation of branching morphogenesis. Biosystems 2012; 109:403-11. [PMID: 22525052 DOI: 10.1016/j.biosystems.2012.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/03/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
Branching morphogenesis drives the formation of epithelial organs including the mammary gland, lung, kidney, salivary gland and prostate. Branching at the cellular level also drives development of the nervous and vascular systems. A variety of signaling pathways are orchestrated together to establish the pattern of these branched organs. The phosphoinositide 3-kinase (PI3K) signaling network is of particular interest because of the diverse outcomes it generates, including proliferation, motility, growth, survival and cell death. Here, we focus on the role of the PI3K pathway in the development of branched tissues. Cultured cells, explants and transgenic mice have revealed that the PI3K pathway is critical for the regulation of cell proliferation, apoptosis and motility during branching of tissues.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
32
|
Ahn SE, Jeong W, Kim JH, Lim W, Kim J, Bazer FW, Han JY, Song G. ERBB receptor feedback inhibitor 1: identification and regulation by estrogen in chickens. Gen Comp Endocrinol 2012; 175:194-205. [PMID: 22137914 DOI: 10.1016/j.ygcen.2011.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 11/16/2022]
Abstract
The ERBB receptor feedback inhibitor 1 (ERRFI1) is a scaffolding adaptor protein, that plays a pivotal role in the epidermal growth factor receptor (EGFR) cell signaling cascade as a negative regulator affecting many important physiological processes. It was recently reported that ERRFI1 is a critical regulator of the response of the endometrium to estrogen regulation of tissue homeostasis in mice. But, very little is known about ERRF11 and hormonal regulation of the ERRFI1 gene in chickens. Therefore, in the present study, ERRFI1 gene was cloned and its differential expression profile analyzed at different embryonic stages, in various adult organs, and in oviducts from estrogen-treated chickens. Chicken ERRFI1 has an open-reading frame of 2848 nucleotides that encode for a protein of 465 amino acids that has considerable homology to mammalian ERRFI1 proteins (>62% identity). Importantly, ERRFI1 mRNA is abundantly distributed in various organs from chickens. We then determined that DES (diethylstilbestrol, a synthetic nonsteroidal estrogen) induced ERRFI1 mRNA and protein predominantly in luminal and glandular epithelial cells of the oviduct. Further, we determined whether microRNAs, specifically miR-200b, miR-429 and miR-1639, influence ERRFI1 expression via its 3'UTR and found that it does not directly target the 3'UTR of ERRFI1 mRNA. Therefore, it is unlikely that post-transcriptional regulation influences ERRFI1 expression in the chicken oviduct. In conclusion, our results indicate that ERRFI1 is a novel estrogen-stimulated gene expressed in epithelial cells of the chicken oviduct that likely plays an important role in oviduct growth and differentiation during early development of the chicken.
Collapse
Affiliation(s)
- Suzie E Ahn
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kishimoto K, Nishizuka M, Ueda T, Kajita K, Ugawa S, Shimada S, Osada S, Imagawa M. Indispensable role of factor for adipocyte differentiation 104 (fad104) in lung maturation. Exp Cell Res 2011; 317:2110-23. [PMID: 21704616 DOI: 10.1016/j.yexcr.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
Abstract
Factor for adipocyte differentiation 104 (fad104) is a regulator of adipogenesis and osteogenesis. Our previous study showed that fad104-deficient mice died immediately after birth, suggesting fad104 to be essential for neonatal survival. However, the cause of this rapid death is unclear. Here, we demonstrate the role of fad104 in neonatal survival. Phenotypic and morphological analyses showed that fad104-deficient mice died due to cyanosis-associated lung dysplasia including atelectasis. Furthermore, immunohistochemistry revealed that FAD104 was strongly expressed in ATII cells in the developing lung. Most importantly, the ATII cells in lungs were immature, and impaired the expression of surfactant-associated proteins. Collectively, these results indicate that fad104 has an indispensable role in lung maturation, especially the maturation and differentiation of ATII cells.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Z, Dong Q, Wang Y, Qu L, Qiu X, Wang E. Downregulation of Mig-6 in nonsmall-cell lung cancer is associated with EGFR signaling. Mol Carcinog 2011; 51:522-34. [PMID: 21739478 DOI: 10.1002/mc.20815] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 11/06/2022]
Abstract
Downregulation of Mig-6 expression has been implicated in several human cancers and its loss can lead to prolonged activation of EGFR and carcinogenesis. The present study aimed to investigate the clinical significance of loss of Mig-6 expression in nonsmall-cell lung cancer (NSCLC) and the biological functions of Mig-6 in NSCLC cell lines. Mig-6 expression was downregulated in 47/91 (51.6%) cases of NSCLC that were examined. Mig-6 downregulation significantly correlated with poor differentiation (P = 0.0131), histological type (P = 0.0021), and EGFR expression (P = 0.003). In addition, knockdown of Mig-6 expression in H1299 and BE1 cells promoted EGF-induced tumor cell proliferation and migration. Furthermore, Mig-6 knockdown led to a significant increase in phospho-AKT, phospho-ERK, phospho-EGFR as well as MMP-2 and MMP-9 levels. These results indicate that downregulated Mig-6 in NSCLC tissues may serve as a new marker that can predict the activation of EGFR signaling pathway.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Segatto O, Anastasi S, Alemà S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J Cell Sci 2011; 124:1785-93. [DOI: 10.1242/jcs.083303] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Signalling by the epidermal growth factor receptor (EGFR) controls morphogenesis and/or homeostasis of several tissues from worms to mammals. The correct execution of these programmes requires the generation of EGFR signals of appropriate strength and duration. This is obtained through a complex circuitry of positive and negative feedback regulation. Feedback inhibitory mechanisms restrain EGFR activity in time and space, which is key to ensuring that receptor outputs are commensurate to the cell and tissue needs. Here, we focus on the emerging field of inducible negative feedback regulation of the EGFR in mammals. In mammalian cells, four EGFR inducible feedback inhibitors (IFIs), namely LRIG1, RALT (also known as MIG6 and ERRFI1), SOCS4 and SOCS5, have been discovered recently. EGFR IFIs are expressed de novo in the context of early or delayed transcriptional responses triggered by EGFR activation. They all bind to the EGFR and suppress receptor signalling through several mechanisms, including catalytic inhibition and receptor downregulation. Here, we review the mechanistic basis of IFI signalling and rationalise the function of IFIs in light of gene-knockout studies that assign LRIG1 and RALT an essential role in restricting cell proliferation. Finally, we discuss how IFIs might participate in system control of EGFR signalling and highlight the emerging roles for IFIs in the suppression of EGFR-driven tumorigenesis.
Collapse
Affiliation(s)
- Oreste Segatto
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | - Sergio Anastasi
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | - Stefano Alemà
- Institute of Cell Biology, CNR, 00016 Monterotondo, Italy
| |
Collapse
|
36
|
Gypas F, Bei ES, Zervakis M, Sfakianakis S. A disease annotation study of gene signatures in a breast cancer microarray dataset. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:5551-5554. [PMID: 22255596 DOI: 10.1109/iembs.2011.6091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Breast cancer is a complex disease with heterogeneity between patients regarding prognosis and treatment response. Recent progress in advanced molecular biology techniques and the development of efficient methods for database mining lead to the discovery of promising novel biomarkers for prognosis and prediction of breast cancer. In this paper, we applied three computational algorithms (RFE-LNW, Lasso and FSMLP) to one microarray dataset for breast cancer and compared the obtained gene signatures with a recently described disease-agnostic tool, the Genotator. We identified a panel of 152 genes as a potential prognostic signature and the ERRFI1 gene as possible biomarker of breast cancer disease.
Collapse
Affiliation(s)
- Foivos Gypas
- Department of Electronic and Computer Engineering, Technical University of Crete, Chania 73100, Greece
| | | | | | | |
Collapse
|