1
|
Ayana R, Zandecki C, Van houcke J, Mariën V, Seuntjens E, Arckens L. Single-cell sequencing unveils the impact of aging on the progenitor cell diversity in the telencephalon of the female killifish N. furzeri. Aging Cell 2024; 23:e14251. [PMID: 38949249 PMCID: PMC11464125 DOI: 10.1111/acel.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
The African turquoise killifish (Nothobranchius furzeri) combines a short lifespan with spontaneous age-associated loss of neuro-regenerative capacity, an intriguing trait atypical for a teleost. The impact of aging on the cellular composition of the adult stem cell niches, leading to this dramatic decline in the postnatal neuro- and gliogenesis, remains elusive. Single-cell RNA sequencing of the telencephalon of young adult female killifish of the short-lived GRZ-AD strain unveiled progenitors of glial and non-glial nature, different excitatory and inhibitory neuron subtypes, as well as non-neural cell types. Sub-clustering of the progenitors identified four radial glia (RG) cell types, two non-glial progenitor (NGP) and four intermediate (intercell) cell states. Two astroglia-like, one ependymal, and one neuroepithelial-like (NE) RG subtype were found at different locations in the forebrain in line with their role, while proliferative, active NGPs were spread throughout. Lineage inference pointed to NE-RG and NGPs as start and intercessor populations for glio- and neurogenesis. Upon aging, single-cell RNA sequencing revealed major perturbations in the proportions of the astroglia and intercell states, and in the molecular signatures of specific subtypes, including altered MAPK, mTOR, Notch, and Wnt pathways. This cell catalog of the young regeneration-competent killifish telencephalon, combined with the evidence for aging-related transcriptomic changes, presents a useful resource to understand the molecular basis of age-dependent neuroplasticity. This data is also available through an online database (killifishbrain_scseq).
Collapse
Affiliation(s)
- Rajagopal Ayana
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology sectionLaboratory of Developmental NeurobiologyLeuvenBelgium
| | - Caroline Zandecki
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology sectionLaboratory of Developmental NeurobiologyLeuvenBelgium
| | - Jolien Van houcke
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
| | - Valerie Mariën
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
| | - Eve Seuntjens
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology sectionLaboratory of Developmental NeurobiologyLeuvenBelgium
- Leuven Institute for Single‐Cell OmicsLeuvenBelgium
- KU Leuven Brain InstituteLeuvenBelgium
| | - Lutgarde Arckens
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
- Leuven Institute for Single‐Cell OmicsLeuvenBelgium
- KU Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
2
|
da Cunha JI, Barauna AMD, Garcez RC. Prechordal structures act cooperatively in early trabeculae development of gnathostome skull. Cells Dev 2023; 176:203879. [PMID: 37844659 DOI: 10.1016/j.cdev.2023.203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.
Collapse
Affiliation(s)
- Jaqueline Isoppo da Cunha
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Alessandra Maria Duarte Barauna
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
3
|
Bulk J, Kyrychenko V, Rensinghoff PM, Ghaderi Ardekani Z, Heermann S. Holoprosencephaly with a Special Form of Anophthalmia Result from Experimental Induction of bmp4, Oversaturating BMP Antagonists in Zebrafish. Int J Mol Sci 2023; 24:ijms24098052. [PMID: 37175759 PMCID: PMC10178349 DOI: 10.3390/ijms24098052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Vision is likely our most prominent sense and a correct development of the eye is at its basis. Early eye development is tightly connected to the development of the forebrain. A single eye field and the prospective telencephalon are situated within the anterior neural plate (ANP). During normal development, both domains are split and consecutively, two optic vesicles and two telencephalic lobes emerge. If this process is hampered, the domains remain condensed at the midline. The resulting developmental disorder is termed holoprosencephaly (HPE). The typical ocular finding associated with intense forms of HPE is cyclopia. However, also anophthalmia and coloboma can be associated with HPE. Here, we report that a correct balance of Bone morphogenetic proteins (BMPs) and their antagonists are important for forebrain and eye field cleavage. Experimental induction of a BMP ligand results in a severe form of HPE showing anophthalmia. We identified a dysmorphic forebrain containing retinal progenitors, which we termed crypt-oculoid. Optic vesicle evagination is impaired due to a loss of rx3 and, consecutively, of cxcr4a. Our data further suggest that the subduction of prospective hypothalamic cells during neurulation and neural keel formation is affected by the induction of a BMP ligand.
Collapse
Affiliation(s)
- Johannes Bulk
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Valentyn Kyrychenko
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Philipp M Rensinghoff
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Zahra Ghaderi Ardekani
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Nandamuri SP, Lusk S, Kwan KM. Loss of zebrafish dzip1 results in inappropriate recruitment of periocular mesenchyme to the optic fissure and ocular coloboma. PLoS One 2022; 17:e0265327. [PMID: 35286359 PMCID: PMC8920261 DOI: 10.1371/journal.pone.0265327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
Cilia are essential for the development and function of many different tissues. Although cilia machinery is crucial in the eye for photoreceptor development and function, a role for cilia in early eye development and morphogenesis is still somewhat unclear: many zebrafish cilia mutants retain cilia at early stages due to maternal deposition of cilia components. An eye phenotype has been described in the mouse Arl13 mutant, however, zebrafish arl13b is maternally deposited, and an early role for cilia proteins has not been tested in zebrafish eye development. Here we use the zebrafish dzip1 mutant, which exhibits a loss of cilia throughout stages of early eye development, to examine eye development and morphogenesis. We find that in dzip1 mutants, initial formation of the optic cup proceeds normally, however, the optic fissure subsequently fails to close and embryos develop the structural eye malformation ocular coloboma. Further, neural crest cells, which are implicated in optic fissure closure, do not populate the optic fissure correctly, suggesting that their inappropriate localization may be the underlying cause of coloboma. Overall, our results indicate a role for dzip1 in proper neural crest localization in the optic fissure and optic fissure closure.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
5
|
Hernández-Núñez I, Robledo D, Mayeur H, Mazan S, Sánchez L, Adrio F, Barreiro-Iglesias A, Candal E. Loss of Active Neurogenesis in the Adult Shark Retina. Front Cell Dev Biol 2021; 9:628721. [PMID: 33644067 PMCID: PMC7905061 DOI: 10.3389/fcell.2021.628721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023] Open
Abstract
Neurogenesis is the process by which progenitor cells generate new neurons. As development progresses neurogenesis becomes restricted to discrete neurogenic niches, where it persists during postnatal life. The retina of teleost fishes is thought to proliferate and produce new cells throughout life. Whether this capacity may be an ancestral characteristic of gnathostome vertebrates is completely unknown. Cartilaginous fishes occupy a key phylogenetic position to infer ancestral states fixed prior to the gnathostome radiation. Previous work from our group revealed that the juvenile retina of the catshark Scyliorhinus canicula, a cartilaginous fish, shows active proliferation and neurogenesis. Here, we compared the morphology and proliferative status of the retina in catshark juveniles and adults. Histological and immunohistochemical analyses revealed an important reduction in the size of the peripheral retina (where progenitor cells are mainly located), a decrease in the thickness of the inner nuclear layer (INL), an increase in the thickness of the inner plexiform layer and a decrease in the cell density in the INL and in the ganglion cell layer in adults. Contrary to what has been reported in teleost fish, mitotic activity in the catshark retina was virtually absent after sexual maturation. Based on these results, we carried out RNA-Sequencing (RNA-Seq) analyses comparing the retinal transcriptome of juveniles and adults, which revealed a statistically significant decrease in the expression of many genes involved in cell proliferation and neurogenesis in adult catsharks. Our RNA-Seq data provides an excellent resource to identify new signaling pathways controlling neurogenesis in the vertebrate retina.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Hélène Mayeur
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls-sur-mer, France
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls-sur-mer, France
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Fátima Adrio
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Wnt Signaling Regulates Ipsilateral Pathfinding in the Zebrafish Forebrain through slit3. Neuroscience 2020; 449:9-20. [DOI: 10.1016/j.neuroscience.2020.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
|
7
|
Nagai-Tanima M, Hong S, Hu P, Carrington B, Sood R, Roessler E, Muenke M. Rare hypomorphic human variation in the heptahelical domain of SMO contributes to holoprosencephaly phenotypes. Hum Mutat 2020; 41:2105-2118. [PMID: 32906187 DOI: 10.1002/humu.24103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.
Collapse
Affiliation(s)
- Momoko Nagai-Tanima
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Blake Carrington
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Grinblat Y, Lipinski RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn 2019; 248:626-633. [PMID: 30993762 DOI: 10.1002/dvdy.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary conservation and experimental tractability have made animal model systems invaluable tools in our quest to understand human embryogenesis, both normal and abnormal. Standard genetic approaches, particularly useful in understanding monogenic diseases, are no longer sufficient as research attention shifts toward multifactorial outcomes. Here, we examine this progression through the lens of holoprosencephaly (HPE), a common human malformation involving incomplete forebrain division, and a classic example of an etiologically complex outcome. We relate the basic underpinning of HPE pathogenesis to critical cell-cell interactions and signaling molecules discovered through embryological and genetic approaches in multiple model organisms, and discuss the role of the mouse model in functional examination of HPE-linked genes. We then outline the most critical remaining gaps to understanding human HPE, including the conundrum of incomplete penetrance/expressivity and the role of gene-environment interactions. To tackle these challenges, we outline a strategy that leverages new and emerging technologies in multiple model systems to solve the puzzle of HPE.
Collapse
Affiliation(s)
- Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
Ren X, Hamilton N, Müller F, Yamamoto Y. Cellular rearrangement of the prechordal plate contributes to eye degeneration in the cavefish. Dev Biol 2018; 441:221-234. [PMID: 30031755 DOI: 10.1016/j.ydbio.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Astyanax mexicanus consists of two different populations: a sighted surface-dwelling form (surface fish) and a blind cave-dwelling form (cavefish). In the cavefish, embryonic expression of sonic hedgehog a (shha) in the prechordal plate is expanded towards the anterior midline, which has been shown to contribute to cavefish specific traits such as eye degeneration, enhanced feeding apparatus, and specialized brain anatomy. However, it is not clear how this expanded expression is achieved and which signaling pathways are involved. Nodal signaling has a crucial role for expression of shh and formation of the prechordal plate. In this study, we report increased expression of prechordal plate marker genes, nodal-related 2 (ndr2) and goosecoid (gsc) in cavefish embryos at the tailbud stage. To investigate whether Nodal signaling is responsible for the anterior expansion of the prechordal plate, we used an inhibitor of Nodal signaling and showed a decreased anterior expansion of the prechordal plate and increased pax6 expression in the anterior midline in treated cavefish embryos. Later in development, the lens and optic cup of treated embryos were significantly larger than untreated embryos. Conversely, increasing Nodal signaling in the surface fish embryo resulted in the expansion of anterior prechordal plate and reduction of pax6 expression in the anterior neural plate together with the formation of small lenses and optic cups later in development. These results confirmed that Nodal signaling has a crucial role for the anterior expansion of the prechordal plate and plays a significant role in cavefish eye development. We showed that the anterior expansion of the prechordal plate was not due to increased total cell number, suggesting the expansion is achieved by changes in cellular distribution in the prechordal plate. In addition, the distribution of presumptive prechordal plate cells in Spemann's organiser was also altered in the cavefish. These results suggested that changes in the cellular arrangement of Spemann's organiser in early gastrulae could have an essential role in the anterior expansion of the prechordal plate contributing to eye degeneration in the cavefish.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noémie Hamilton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Clark E, Peel AD. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development 2018; 145:dev.155580. [PMID: 29724758 PMCID: PMC6001374 DOI: 10.1242/dev.155580] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023]
Abstract
Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. While the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete, and Odd-paired expression. In Drosophila these transcription factors are expressed like simple timers within the blastoderm, while in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, UK
| | - Andrew D Peel
- Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
11
|
Powe DK, Dasmahapatra AK, Russell JL, Tchounwou PB. Toxicity implications for early life stage Japanese medaka (Oryzias latipes) exposed to oxyfluorfen. ENVIRONMENTAL TOXICOLOGY 2018; 33:555-568. [PMID: 29385312 PMCID: PMC5912988 DOI: 10.1002/tox.22541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 05/14/2023]
Abstract
We investigated the potential toxic effects of Oxyfluorfen (OXY), an herbicide used in agriculture, on the embryo-larval development of Japanese medaka fish (Oryzias latipes). Embryos (1-day postfertilization) and larvae (2-day posthatch) were exposed to OXY (0.5-8 mg/L) for 96 h and evaluated for mortality and hatching on embryos, and the mortality and growth on larvae during depuration. It was observed that the embryo-mortality was inconsistently altered by OXY; only the 2 mg/L group showed significant reduction on embryo survivability. However, larval-mortality was concentration-dependent and OXY exposure induced scoliosis-like phenotypic features in the surviving larvae; the calculated LC50 was 5.238 mg/L. Our data further indicated that larval skeleton, both axial and appendicular, was the potential target site of OXY. Skeletal growth in larvae exposed to 2 mg/L was inhibited significantly until 1 week of depuration with regard to the linear lengths of neurocranium, Meckel's cartilage, caudal vertebrae (first 10) in the axial skeletons, and pectoral fin and urostyle in the appendicular skeletons. Moreover, the total protein content remained unaltered by OXY after 96 h exposure; while the RNA concentration was reduced significantly in larvae exposed to 2 mg/L. Expression analysis of several genes by quantitative real-time RT-PCR (RT-qPCR) showed significant upregulation of zic5, a zinc-finger type transcription regulator, at the transcription level. This study indicated that the scoliosis induced by OXY in Japanese medaka larvae was the result of stunted skeletal growth, probably because of deregulation of zinc-finger type transcription regulators, at the genomic level.
Collapse
Affiliation(s)
- Doris K. Powe
- Environmental Toxicology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| | - Asok K. Dasmahapatra
- Environmental Toxicology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Joseph L. Russell
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, Mississippi, USA
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
- Corresponding author: Paul B. Tchounwou, Office of the Dean, College of Science, Engineering and Technology, Jackson State University, 1400 JR Lynch Street, Jackson, MS 39217, USA, Phone: 601-979-0777, Fax: 601-203-5142,
| |
Collapse
|
12
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Shitasako S, Ito Y, Ito R, Ueda Y, Shimizu Y, Ohshima T. Wnt and Shh signals regulate neural stem cell proliferation and differentiation in the optic tectum of adult zebrafish. Dev Neurobiol 2017; 77:1206-1220. [DOI: 10.1002/dneu.22509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/29/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Shiori Shitasako
- Department of Life Science and Medical Bio-Science; Waseda University, 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Yoko Ito
- Department of Life Science and Medical Bio-Science; Waseda University, 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Ryoichi Ito
- Department of Life Science and Medical Bio-Science; Waseda University, 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Yuto Ueda
- Department of Life Science and Medical Bio-Science; Waseda University, 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Yuki Shimizu
- Department of Life Science and Medical Bio-Science; Waseda University, 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science; Waseda University, 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| |
Collapse
|
14
|
Sedykh I, TeSlaa JJ, Tatarsky RL, Keller AN, Toops KA, Lakkaraju A, Nyholm MK, Wolman MA, Grinblat Y. Novel roles for the radial spoke head protein 9 in neural and neurosensory cilia. Sci Rep 2016; 6:34437. [PMID: 27687975 PMCID: PMC5043386 DOI: 10.1038/srep34437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023] Open
Abstract
Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear. Here we show that zebrafish Rsph9 is expressed in cells bearing motile cilia and kinocilia, and localizes to both 9 + 2 and 9 + 0 ciliary axonemes. Using CRISPR mutagenesis, we show that rsph9 is required for motility of presumptive 9 + 2 olfactory cilia and, unexpectedly, 9 + 0 neural cilia. rsph9 is also required for the structural integrity of 9 + 2 and 9 + 0 ciliary axonemes. rsph9 mutant larvae exhibit reduced initiation of the acoustic startle response consistent with hearing impairment, suggesting a novel role for Rsph9 in the kinocilia of the inner ear and/or lateral line neuromasts. These data identify novel roles for Rsph9 in 9 + 0 motile cilia and in sensory kinocilia, and establish a useful zebrafish PCD model.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Jessica J TeSlaa
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.,Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, 53706, USA
| | - Rose L Tatarsky
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Abigail N Keller
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Kimberly A Toops
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA
| | - Molly K Nyholm
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Marc A Wolman
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA
| | - Yevgenya Grinblat
- Department of Zoology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
15
|
Kanth P, Bronner MP, Boucher KM, Burt RW, Neklason DW, Hagedorn CH, Delker DA. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype. Cancer Prev Res (Phila) 2016; 9:456-65. [PMID: 27026680 DOI: 10.1158/1940-6207.capr-15-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Sessile serrated colon adenoma/polyps (SSA/P) are found during routine screening colonoscopy and may account for 20% to 30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. In addition, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing (RNA-Seq) was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon, and 20 control colon specimens. Differential expression and leave-one-out cross-validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1,422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n = 12) and sporadic SSA/Ps (n = 9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability. A smaller 7-gene panel showed high sensitivity and specificity in identifying BRAF-mutant, CpG island methylator phenotype high, and MLH1-silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. Cancer Prev Res; 9(6); 456-65. ©2016 AACR.
Collapse
Affiliation(s)
- Priyanka Kanth
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah.
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, Utah. Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, Salt Lake City, Utah. Division of Epidemiology, University of Utah, Salt Lake City, Utah
| | - Randall W Burt
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah. Huntsman Cancer Institute, Salt Lake City, Utah
| | - Deborah W Neklason
- Division of Genetic Epidemiology, University of Utah, Salt Lake City, Utah
| | - Curt H Hagedorn
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah. The Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Don A Delker
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Messina A, Lan L, Incitti T, Bozza A, Andreazzoli M, Vignali R, Cremisi F, Bozzi Y, Casarosa S. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling. Stem Cells 2015; 33:2496-508. [PMID: 25913744 DOI: 10.1002/stem.2043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 01/27/2023]
Abstract
It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.
Collapse
Affiliation(s)
| | - Lei Lan
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | - Yuri Bozzi
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simona Casarosa
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
18
|
Tao C, Zhang X. Development of astrocytes in the vertebrate eye. Dev Dyn 2014; 243:1501-10. [PMID: 25236977 DOI: 10.1002/dvdy.24190] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 02/04/2023] Open
Abstract
Astrocytes represent the earliest glial population in the embryonic optic nerve, contributing critically to retinal angiogenesis and formation of brain-retinal-barrier. Despite of many developmental and clinical implications of astrocytes, answers to some of the most fundamental questions of this unique type of glial cells remain elusive. This review provides an overview of the current knowledge about the origination, proliferation, and differentiation of astrocytes, their journey from the optic nerve toward the neuroretina, and their involvement in physiological and pathological development of the visual system.
Collapse
Affiliation(s)
- Chenqi Tao
- Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, New York
| | | |
Collapse
|
19
|
Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun 2014; 5:4272. [PMID: 25001599 PMCID: PMC4102123 DOI: 10.1038/ncomms5272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Patterning of the vertebrate optic vesicle into proximal/optic stalk and distal/neural retina involves midline-derived Hedgehog (Hh) signalling, which promotes stalk specification. In the absence of Hh signalling, the stalks are not specified, causing cyclopia. Recent studies showed that the cell adhesion molecule Cdon forms a heteromeric complex with the Hh receptor Patched 1 (Ptc1). This receptor complex binds Hh and enhances signalling activation, indicating that Cdon positively regulates the pathway. Here we show that in the developing zebrafish and chick optic vesicle, in which cdon and ptc1 are expressed with a complementary pattern, Cdon acts as a negative Hh signalling regulator. Cdon predominantly localizes to the basolateral side of neuroepithelial cells, promotes the enlargement of the neuroepithelial basal end-foot and traps Hh protein, thereby limiting its dispersion. This Ptc-independent function protects the retinal primordium from Hh activity, defines the stalk/retina boundary and thus the correct proximo-distal patterning of the eye. The Drosophila homologue of the vertebrate cell surface glycoprotein Cdon binds Hedgehog ligand and thereby prevents its diffusion. Here, the authors provide evidence for a similar mechanism during vertebrate optic vesicle patterning, where Cdon acts as a negative regulator of Hedgehog signalling to define the boundary between the optic stalk and the retina.
Collapse
|
20
|
Cohen SP, LaChappelle AR, Walker BS, Lassiter CS. Modulation of estrogen causes disruption of craniofacial chondrogenesis in Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:113-120. [PMID: 24747083 DOI: 10.1016/j.aquatox.2014.03.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Estrogen is a steroid hormone that is ubiquitous in vertebrates, but its role in cartilage formation has not been extensively studied. Abnormalities of craniofacial cartilage and bone account for a large portion of birth defects in the United States. Zebrafish (Danio rerio) have been used as models of human disease, and their transparency in the embryonic period affords additional advantages in studying craniofacial development. In this study, zebrafish embryos were treated with 17-β estradiol (E2) or with an aromatase inhibitor and observed for defects in craniofacial cartilage. Concentrations of E2 greater than 2μM caused major disruptions in cartilage formation. Concentrations below 2μM caused subtle changed in cartilage morphology that were only revealed by measurement. The angles formed by cartilage elements in fish treated with 1.5 and 2μM E2 were increasingly wide, while the length of the primary anterior-posterior cartilage element in these fish decreased significantly from controls. These treatments resulted in fish with shorter, flatter faces as estrogen concentration increased. Inhibition of aromatase activity also resulted in similar craniofacial disruption indicating that careful control of estrogen signaling is required for appropriate development. Further investigation of the phenomena described in this study could lead to a better understanding of the etiology of craniofacial birth defects and endocrine disruption of cartilage formation.
Collapse
Affiliation(s)
- Sarah P Cohen
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Adam R LaChappelle
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Benjamin S Walker
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | | |
Collapse
|
21
|
Range R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis 2014; 52:222-34. [PMID: 24549984 DOI: 10.1002/dvg.22759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 02/01/2023]
Abstract
The molecular mechanisms used by deuterostome embryos (vertebrates, urochordates, cephalochordates, hemichordates, and echinoderms) to specify and then position the anterior neuroectoderm (ANE) along the anterior-posterior axis are incompletely understood. Studies in several deuterostome embryos suggest that the ANE is initially specified by an early, broad regulatory state. Then, a posterior-to-anterior wave of respecification restricts this broad ANE potential to the anterior pole. In vertebrates, sea urchins and hemichordates a posterior-anterior gradient of Wnt/β-catenin signaling plays an essential and conserved role in this process. Recent data collected from the basal deuterostome sea urchin embryo suggests that positioning the ANE to the anterior pole involves more than the Wnt/β-catenin pathway, instead relying on the integration of information from the Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. Moreover, comparison of functional and expression data from the ambulacrarians, invertebrate chordates, and vertebrates strongly suggests that this Wnt network might be an ANE positioning mechanism shared by all deuterostomes.
Collapse
Affiliation(s)
- Ryan Range
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
22
|
Savastano CP, Bernardi P, Seuánez HN, Moreira MÂM, Orioli IM. Rare nasal cleft in a patient with holoprosencephaly due to a mutation in the ZIC2 gene. ACTA ACUST UNITED AC 2014; 100:300-6. [PMID: 24677696 DOI: 10.1002/bdra.23216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Holoprosencephaly (HPE) is a spectrum of midline malformations of the prosencephalon generally reflected in a continuum of midline facial anomalies. Patients with mutation in the ZIC2 gene usually present a normal or mildly dysmorphic face associated with a severe brain malformation. Here we present a rare unilateral nasal cleft (Tessier cleft n. 1) with holoprosencephaly in a patient with a ZIC2 mutation. CASE The male newborn presented with alobar HPE, microcephaly, ocular hypertelorism, upslanting palpebral fissures, a bulky nose with a left paramedian alar cleft. Mutational screening for HPE genes revealed the occurrence of a frameshift mutation in the ZIC2 gene. The mutation was inherited from the father who presented only mild ocular hypotelorism but had an affected child with HPE from his first marriage. CONCLUSION The occurrence of oral clefts is common in patients with HPE, but unusual in patients with mutation in the ZIC2 gene. To our knowledge, clefts of the nasal alae have been reported only once or twice in patients with ZIC2 mutations. In documented patients from the literature, only 2% of individuals with described pathogenic mutations in the ZIC2 gene (3/171) presented facial clefts, one of them a nasal cleft, while common oral clefts were observed in 27% of individuals (7/26) described with nonpathogenic ZIC2 mutations or presenting a concomitant mutation in another HPE gene. When compared with the general population, nasal clefts are common in ZIC2 mutations and these mutations must be searched for in undiagnosed cases.
Collapse
Affiliation(s)
- Clarice Pagani Savastano
- Estudo Colaborativo Latino Americano de Malformações Congênitas (ECLAMC), Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil; INAGEMP - Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
23
|
Shh/Boc signaling is required for sustained generation of ipsilateral projecting ganglion cells in the mouse retina. J Neurosci 2013; 33:8596-607. [PMID: 23678105 DOI: 10.1523/jneurosci.2083-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling is an important determinant of vertebrate retinal ganglion cell (RGC) development. In mice, there are two major RGC populations: (1) the Islet2-expressing contralateral projecting (c)RGCs, which both produce and respond to Shh; and (2) the Zic2-expressing ipsilateral projecting RGCs (iRGCs), which lack Shh expression. In contrast to cRGCs, iRGCs, which are generated in the ventrotemporal crescent (VTC) of the retina, specifically express Boc, a cell adhesion molecule that acts as a high-affinity receptor for Shh. In Boc(-/-) mutant mice, the ipsilateral projection is significantly decreased. Here, we demonstrate that this phenotype results, at least in part, from the misspecification of a proportion of iRGCs. In Boc(-/-) VTC, the number of Zic2-positive RGCs is reduced, whereas more Islet2/Shh-positive RGCs are observed, a phenotype also detected in Zic2 and Foxd1 null embryos. Consistent with this observation, organization of retinal projections at the dorsal lateral geniculate nucleus is altered in Boc(-/-) mice. Analyses of the molecular and cellular consequences of introducing Shh into the developing VTC and Zic2 and Boc into the central retina indicate that Boc expression alone is insufficient to fully activate the ipsilateral program and that Zic2 regulates Shh expression. Taking these data together, we propose that expression of Boc in cells from the VTC is required to sustain Zic2 expression, likely by regulating the levels of Shh signaling from the nearby cRGCs. Zic2, in turn, directly or indirectly, counteracts Shh and Islet2 expression in the VTC and activates the ipsilateral program.
Collapse
|
24
|
Santos-Ledo A, Cavodeassi F, Carreño H, Aijón J, Arévalo R. Ethanol alters gene expression and cell organization during optic vesicle evagination. Neuroscience 2013; 250:493-506. [PMID: 23892006 PMCID: PMC3988994 DOI: 10.1016/j.neuroscience.2013.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 01/12/2023]
Abstract
Ethanol alters eye morphogenesis at early stages of embryogenesis. The expression patterns of some genes important for eye morphogenesis are perturbed. Ethanol is related to alterations in cell morphology. Ethanol interferes with the optic vesicles evagination.
Ethanol has been described as a teratogen in vertebrate development. During early stages of brain formation, ethanol affects the evagination of the optic vesicles, resulting in synophthalmia or cyclopia, phenotypes where the optic vesicles partially or totally fuse. The mechanisms by which ethanol affects the morphogenesis of the optic vesicles are however largely unknown. In this study we make use of in situ hybridization, electron microscopy and immunohistochemistry to show that ethanol has profound effects on cell organization and gene expression during the evagination of the optic vesicles. Exposure to ethanol during early eye development alters the expression patterns of some genes known to be important for eye morphogenesis, such as rx3/1 and six3a. Furthermore, exposure to ethanol interferes with the acquisition of neuroepithelial features by the eye field cells, which is clear at ultrastructual level. Indeed, ethanol disrupts the acquisition of fusiform cellular shapes within the eye field. In addition, tight junctions do not form and retinal progenitors do not properly polarize, as suggested by the mis-localization and down-regulation of zo1. We also show that the ethanol-induced cyclopic phenotype is significantly different to that observed in cyclopic mutants, suggesting a complex effect of ethanol on a variety of targets. Our results show that ethanol not only disrupts the expression pattern of genes involved in retinal morphogenesis, such as rx3 and rx1, but also disrupts the changes in cell polarity that normally occur during eye field splitting. Thus, ethylic teratology seems to be related not only to modifications in gene expression and cell death but also to alterations in cell morphology.
Collapse
Affiliation(s)
- A Santos-Ledo
- Departamento de Biología Celular y Patología, IBSAL-Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
25
|
Chervenak AP, Hakim IS, Barald KF. Spatiotemporal expression of Zic genes during vertebrate inner ear development. Dev Dyn 2013; 242:897-908. [PMID: 23606270 DOI: 10.1002/dvdy.23978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Inner ear development involves signaling from surrounding tissues, including the adjacent hindbrain, periotic mesenchyme, and notochord. These signals include SHH, FGFs, BMPs, and WNTs from the hindbrain and SHH from the notochord. Zic genes, which are expressed in the dorsal neural tube and act during neural development, have been implicated as effectors of these pathways. This report examines whether Zic genes' involvement in inner ear development is a tenable hypothesis based on their expression patterns. RESULTS In the developing inner ear of both the chick and mouse, all of the Zic genes were expressed in the dorsal neural tube and variably in the periotic mesenchyme, but expression of the Zic genes in the otic epithelium was not found. The onset of expression differed among the Zic genes; within any given region surrounding the otic epithelium, multiple Zic genes were expressed in the same place at the same time. CONCLUSIONS Zic gene expression in the region of the developing inner ear is similar between mouse and chick. Zic expression domains overlap with sites of WNT and SHH signaling during otocyst patterning, suggesting a role for Zic genes in modulating signaling from these pathways.
Collapse
Affiliation(s)
- Andrew P Chervenak
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
26
|
Teslaa JJ, Keller AN, Nyholm MK, Grinblat Y. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development. Dev Biol 2013; 380:73-86. [PMID: 23665173 DOI: 10.1016/j.ydbio.2013.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early patterning of tissues adjacent to craniofacial chondrogenic condensations.
Collapse
Affiliation(s)
- Jessica J Teslaa
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2012; 130:95-111. [PMID: 23111324 DOI: 10.1016/j.mod.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
The vertebrate forebrain or prosencephalon is patterned at the beginning of neurulation into four major domains: the telencephalic, hypothalamic, retinal and diencephalic anlagen. These domains will then give rise to the majority of the brain structures involved in sensory integration and the control of higher intellectual and homeostatic functions. Understanding how forebrain pattering arises has thus attracted the interest of developmental neurobiologists for decades. As a result, most of its regulators have been identified and their hierarchical relationship is now the object of active investigation. Here, we summarize the main morphogenetic pathways and transcription factors involved in forebrain specification and propose the backbone of a possible gene regulatory network (GRN) governing its specification, taking advantage of the GRN principles elaborated by pioneer studies in simpler organisms. We will also discuss this GRN and its operational logic in the context of the remarkable morphological and functional diversification that the forebrain has undergone during evolution.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolas Cabrera, 1, Madrid 28049, Spain
| | | | | |
Collapse
|
29
|
Xing L, Hoshijima K, Grunwald DJ, Fujimoto E, Quist TS, Sneddon J, Chien CB, Stevenson TJ, Bonkowsky JL. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding. PLoS One 2012; 7:e43968. [PMID: 22937139 PMCID: PMC3427223 DOI: 10.1371/journal.pone.0043968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA) of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd) coding exon: a 17 base-pair (bp) deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.
Collapse
Affiliation(s)
- Lingyan Xing
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Interdepartmental Program in Neurosciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - David J. Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Esther Fujimoto
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tyler S. Quist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jacob Sneddon
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Interdepartmental Program in Neurosciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tamara J. Stevenson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Interdepartmental Program in Neurosciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
30
|
Carlin D, Sepich D, Grover VK, Cooper MK, Solnica-Krezel L, Inbal A. Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling. Development 2012; 139:2614-24. [PMID: 22736245 PMCID: PMC3383232 DOI: 10.1242/dev.076018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/18/2023]
Abstract
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Carlin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diane Sepich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Vandana K. Grover
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael K. Cooper
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Adi Inbal
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
31
|
Taniguchi K, Anderson AE, Sutherland AE, Wotton D. Loss of Tgif function causes holoprosencephaly by disrupting the SHH signaling pathway. PLoS Genet 2012; 8:e1002524. [PMID: 22383895 PMCID: PMC3285584 DOI: 10.1371/journal.pgen.1002524] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
Holoprosencephaly (HPE) is a severe human genetic disease affecting craniofacial development, with an incidence of up to 1/250 human conceptions and 1.3 per 10,000 live births. Mutations in the Sonic Hedgehog (SHH) gene result in HPE in humans and mice, and the Shh pathway is targeted by other mutations that cause HPE. However, at least 12 loci are associated with HPE in humans, suggesting that defects in other pathways contribute to this disease. Although the TGIF1 (TG-interacting factor) gene maps to the HPE4 locus, and heterozygous loss of function TGIF1 mutations are associated with HPE, mouse models have not yet explained how loss of Tgif1 causes HPE. Using a conditional Tgif1 allele, we show that mouse embryos lacking both Tgif1 and the related Tgif2 have HPE-like phenotypes reminiscent of Shh null embryos. Eye and nasal field separation is defective, and forebrain patterning is disrupted in embryos lacking both Tgifs. Early anterior patterning is relatively normal, but expression of Shh is reduced in the forebrain, and Gli3 expression is up-regulated throughout the neural tube. Gli3 acts primarily as an antagonist of Shh function, and the introduction of a heterozygous Gli3 mutation into embryos lacking both Tgif genes partially rescues Shh signaling, nasal field separation, and HPE. Tgif1 and Tgif2 are transcriptional repressors that limit Transforming Growth Factor β/Nodal signaling, and we show that reducing Nodal signaling in embryos lacking both Tgifs reduces the severity of HPE and partially restores the output of Shh signaling. Together, these results support a model in which Tgif function limits Nodal signaling to maintain the appropriate output of the Shh pathway in the forebrain. These data show for the first time that Tgif1 mutation in mouse contributes to HPE pathogenesis and provide evidence that this is due to disruption of the Shh pathway. Holoprosencephaly (HPE) is a devastating genetic disease affecting human brain development. HPE affects more than 1/8,000 live births and up to 1/250 conceptions. Several genetic loci are associated with HPE, and the mutated genes have been identified at some. We have analyzed the role of the TGIF1 gene, which is present at one of these loci (the HPE4 locus) and is mutated in a subset of human HPE patients. We show that Tgif1 mutations in mice cause HPE when combined with a mutation in the closely related Tgif2 gene. This provides the first evidence from model organisms that TGIF1 is in fact the gene at the HPE4 locus that causes HPE when mutated. The Sonic Hedgehog signaling pathway is the best understood pathway in the pathogenesis of HPE, and mutation of the Sonic Hedgehog gene in both humans and mice causes HPE. We show that mutations in Tgif1 and Tgif2 in mice cause HPE by disrupting the Sonic Hedgehog signaling pathway, further emphasizing the importance of this pathway for normal brain development. Thus we confirm TGIF1 as an HPE gene and provide genetic evidence that Tgif1 mutations cause HPE by disrupting the interplay of the Nodal and Sonic Hedgehog pathways.
Collapse
Affiliation(s)
- Kenichiro Taniguchi
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anoush E. Anderson
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ann E. Sutherland
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway. Dev Biol 2012; 361:220-31. [DOI: 10.1016/j.ydbio.2011.10.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/30/2011] [Accepted: 10/08/2011] [Indexed: 11/21/2022]
|
33
|
Chabchoub E, Willekens D, Vermeesch JR, Fryns JP. Holoprosencephaly and ZIC2 microdeletions: novel clinical and epidemiological specificities delineated. Clin Genet 2011; 81:584-9. [PMID: 21496007 DOI: 10.1111/j.1399-0004.2011.01684.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Holoprosencephaly (HPE), the most common malformation of the human brain results from abnormal cleavage of the forebrain during the early embryonic developmental stages. The spectrum of malformations in HPE is wide, ranging from the classical cyclopia/proboscis to fairly asymptomatic forms [i.e. a single maxillary central incisor (SMCI)]. HPE may be caused by environmental or genetic factors. ZIC2 (13q32) was the second gene identified in which mutations cause HPE and recently a specific phenotype was ascribed to ZIC2-mutation HPE. Earlier, we reported a boy presenting HPE and deafness. Cytogenetic analyses were normal. Using array-comparative genomic hybridization (aCGH), we found a de novo 129 kb del(13)(q32) encompassing ZIC2 and ZIC5. There is no evidence for the involvement of ZIC5 in human diseases. We reviewed the literature for ZIC2-ZIC5 deletions and their involvement in neural tube defects (NTDs). Interestingly, we found evidence for a specific facial phenotype for ZIC2 gene deletion patients distinct from those with point mutations. In addition, based on the clinical data together with pathology, imaging and functional studies, we suggest an outline for a model explaining the genetic heterogeneity of ZIC2-ZIC5-associated NTDs and propose further studies for validation.
Collapse
Affiliation(s)
- E Chabchoub
- Centre for Human Genetics, University Hospitals of Leuven, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
34
|
Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:287-330. [PMID: 21377629 DOI: 10.1016/b978-0-12-384878-9.00007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual impairment and blindness is widespread across the human population, and the development of therapies for ocular pathologies is of high priority. The zebrafish represents a valuable model organism for studying human ocular disease; it is utilized in eye research to understand underlying developmental processes, to identify potential causative genes for human disorders, and to develop therapies. Zebrafish eyes are similar in morphology, physiology, gene expression, and function to human eyes. Furthermore, zebrafish are highly amenable to laboratory research. This review outlines the use of zebrafish as a model for human ocular diseases such as colobomas, glaucoma, cataracts, photoreceptor degeneration, as well as dystrophies of the cornea and retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, Texas, USA
| | | | | |
Collapse
|
35
|
Moldrich RX, Gobius I, Pollak T, Zhang J, Ren T, Brown L, Mori S, De Juan Romero C, Britanova O, Tarabykin V, Richards LJ. Molecular regulation of the developing commissural plate. J Comp Neurol 2010; 518:3645-61. [PMID: 20653027 DOI: 10.1002/cne.22445] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coordinated transfer of information between the brain hemispheres is essential for function and occurs via three axonal commissures in the telencephalon: the corpus callosum (CC), hippocampal commissure (HC), and anterior commissure (AC). Commissural malformations occur in over 50 human congenital syndromes causing mild to severe cognitive impairment. Disruption of multiple commissures in some syndromes suggests that common mechanisms may underpin their development. Diffusion tensor magnetic resonance imaging revealed that forebrain commissures crossed the midline in a highly specific manner within an oblique plane of tissue, referred to as the commissural plate. This specific anatomical positioning suggests that correct patterning of the commissural plate may influence forebrain commissure formation. No analysis of the molecular specification of the commissural plate has been performed in any species; therefore, we utilized specific transcription factor markers to delineate the commissural plate and identify its various subdomains. We found that the mouse commissural plate consists of four domains and tested the hypothesis that disruption of these domains might affect commissure formation. Disruption of the dorsal domains occurred in strains with commissural defects such as Emx2 and Nfia knockout mice but commissural plate patterning was normal in other acallosal strains such as Satb2(-/-). Finally, we demonstrate an essential role for the morphogen Fgf8 in establishing the commissural plate at later developmental stages. The results demonstrate that correct patterning of the commissural plate is an important mechanism in forebrain commissure formation.
Collapse
Affiliation(s)
- Randal X Moldrich
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma. Biochim Biophys Acta Mol Basis Dis 2010; 1812:390-401. [PMID: 20850526 DOI: 10.1016/j.bbadis.2010.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 09/08/2010] [Indexed: 01/10/2023]
Abstract
In this review, we highlight recent literature concerning the signaling mechanisms underlying the development of two neural birth defects, holoprosencephaly and coloboma. Holoprosencephaly, the most common forebrain defect, occurs when the cerebral hemispheres fail to separate and is typically associated with mispatterning of embryonic midline tissue. Coloboma results when the choroid fissure in the eye fails to close. It is clear that Sonic hedgehog (Shh) signaling regulates both forebrain and eye development, with defects in Shh, or components of the Shh signaling cascade leading to the generation of both birth defects. In addition, other intercellular signaling pathways are known factors in the incidence of holoprosencephaly and coloboma. This review will outline recent advances in our understanding of forebrain and eye embryonic pattern formation, with a focus on zebrafish studies of Shh and retinoic acid pathways. Given the clear overlap in the mechanisms that generate both diseases, we propose that holoprosencephaly and coloboma can represent mild and severe aspects of single phenotypic spectrum resulting from aberrant forebrain development. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|